
Distributed Second Order Methods with Fast Rates

and Compressed Communication

Rustem Islamov 1 2 Xun Qian 1 Peter Richtárik 1

Abstract

We develop several new communication-efficient

second-order methods for distributed optimiza-

tion. Our first method, NEWTON-STAR, is a vari-

ant of Newton’s method from which it inherits its

fast local quadratic rate. However, unlike New-

ton’s method, NEWTON-STAR enjoys the same

per iteration communication cost as gradient de-

scent. While this method is impractical as it relies

on the use of certain unknown parameters charac-

terizing the Hessian of the objective function at

the optimum, it serves as the starting point which

enables us to design practical variants thereof

with strong theoretical guarantees. In particular,

we design a stochastic sparsification strategy for

learning the unknown parameters in an iterative

fashion in a communication efficient manner. Ap-

plying this strategy to NEWTON-STAR leads to

our next method, NEWTON-LEARN, for which we

prove local linear and superlinear rates indepen-

dent of the condition number. When applicable,

this method can have dramatically superior con-

vergence behavior when compared to state-of-the-

art methods. Finally, we develop a globalization

strategy using cubic regularization which leads to

our next method, CUBIC-NEWTON-LEARN, for

which we prove global sublinear and linear con-

vergence rates, and a fast superlinear rate. Our

results are supported with experimental results on

real datasets, and show several orders of magni-

tude improvement on baseline and state-of-the-art

methods in terms of communication complexity.

*Equal contribution 1King Abdullah University of Science
and Technology, Thuwal, Saudi Arabia 2Moscow Institute of
Physics and Technology, Dolgoprudny, Russia. Correspondence
to: Rustem Islamov <islamov.ri@phystech.edu>.

Proceedings of the 38
th International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction

The prevalent paradigm for training modern supervised ma-

chine learning models is based on (regularized) empirical

risk minimization (ERM) (Shalev-Shwartz and Ben-David,

2014), and the most commonly used optimization methods

deployed for solving ERM problems belong to the class of

stochastic first order methods (Robbins and Monro, 1951;

Nemirovski et al., 2009). Since modern training data sets

are very large and are becoming larger every year, it is

increasingly harder to get by without relying on modern

computing architectures which make efficient use of dis-

tributed computing. However, in order to develop efficient

distributed methods, one has to keep in mind that communi-

cation among the different parallel workers (e.g. processors

or compute nodes) is typically very slow, and almost invari-

ably forms the main bottleneck in deployed optimization

software and systems (Bekkerman et al., 2011). For this

reason, further advances in the area of communication effi-

cient distributed first order optimization methods for solving

ERM problems are highly needed, and research in this area

constitutes one of the most important fundamental endeav-

ors in modern machine learning. Indeed, this research field

is very active, and numerous advances have been made over

the past decade (Seide et al., 2014; Wen et al., 2017; Alistarh

et al., 2017; Bernstein et al., 2018; Mishchenko et al., 2019;

Stich and Karimireddy, 2019; Tang et al., 2019).

1.1. Distributed optimization

We consider L2 regularized empirical risk minimization

problems of the form

min
x∈Rd

[

P (x) := f(x) + λ
2 ‖x‖2

]

, (1)

where f : Rd → R is a smooth1 convex function of the

“average of averages” structure

f(x) := 1
n

n
∑

i=1

fi(x), fi(x) :=
1
m

m
∑

j=1

fij(x), (2)

1Function φ : Rd → R is smooth if it is differentiable, and has
Lφ Lipschitz gradient: ‖∇φ(x)−∇φ(y)‖ ≤ Lφ‖x− y‖ for all

x, y ∈ R
d. We say that Lφ is the smoothness constant of φ.

and λ ≥ 0 is a regularization parameter. Here n is the

number of parallel workers (nodes), and m is the number

of training examples handled by each node2. The value

fij(x) denotes the loss of the model parameterized by vector

x ∈ R
d on the jth example owned by the ith node. This

example is denoted as aij ∈ R
d, and the corresponding loss

function is ϕij : R → R, and hence we have

fij(x) := ϕij(a
⊤
ijx). (3)

Thus, f represents the average loss/risk over all nm training

datapoints, and problem (1) seeks to find the model whose

(L2 regularized) empirical risk is minimized. We make the

following assumption throughout the paper.

Assumption 1.1. Problem (1) has at least one optimal

solution x∗. For all i and j, the loss function ϕij : R → R

is γ-smooth, twice differentiable, and its second derivative

ϕ′′
ij : R → R is ν-Lipschitz continuous.

Note that in view of (3), the Hessian of fij at point x is

Hij(x) := ∇2fij(x) = hij(x)aija
⊤
ij , (4)

where

hij(x) := ϕ′′
ij(a

⊤
ijx). (5)

In view of Assumption 1.1, we have |ϕ′′
ij(t)| ≤ γ for all

t ∈ R, and

|hij(x)−hij(y)| ≤ ν|a⊤ijx− a⊤ijy| ≤ ν‖aij‖‖x− y‖ (6)

for all x, y ∈ R
d. Let R := maxij ‖aij‖. The Hessian of

fi is given by

Hi(x)
(2)
= 1

m

m
∑

j=1

Hij(x)
(4)
= 1

m

m
∑

j=1

hij(x)aija
⊤
ij , (7)

and the Hessian of f is given by

H(x)
(2)
= 1

n

n
∑

i=1

Hi(x)
(7)
= 1

nm

n
∑

i=1

m
∑

j=1

hij(x)aija
⊤
ij . (8)

1.2. The curse of the condition number

All first order methods—distributed or not—suffer from a

dependence on an appropriately chosen notion of a condition

number3—a number that describes the difficulty of solving

the problem by the method at hand. A condition number is a

function of the goal we are trying to achieve (e.g., minimize

2All our results can be extended in a straightforward way to
the more general case when node i contains mi training examples.
We decided to present the results in the special case m = mi for
all i in order to simplify the notation.

3Example: if one wishes to minimize an L-smooth µ-strongly
convex function and one cares about the number of gradient type
iterations, the appropriate notion of a condition number is κ := L

µ
.

the number of iterations vs minimize the number of com-

munications), choice of the loss function, structure of the

model we are trying to learn, and last but not least, the size

and properties of the training data. In fact, most research

in this area is motivated by the desire to design methods

that would have a reduced dependence on the condition

number. This is the case for many of the tricks heavily stud-

ied in the literature, including minibatching (Takáč et al.,

2013), importance sampling (Needell et al., 2015; Zhao

and Zhang, 2015), random reshuffling (Mishchenko et al.,

2020), variance reduction (Schmidt et al., 2017; Johnson

and Zhang, 2013; Xiao and Zhang, 2014; Defazio et al.,

2014), momentum (Loizou and Richtárik, 2017a;b), adap-

tivity (Malitsky and Mishchenko, 2019), communication

compression (Alistarh et al., 2017; Bernstein et al., 2018;

Mishchenko et al., 2019), and local computation (Ma et al.,

2017; Stich, 2020; Khaled et al., 2020). Research in this

area is becoming saturated, and new ideas are needed to

make further progress.

1.3. Newton’s method to the rescue?

One of the ideas that undoubtedly crossed everybody’s mind

is the trivial observation that there is a very old and simple

method which does not suffer from any conditioning issues:

Newton’s method. Indeed, when it works, Newton’s method

has a fast local quadratic convergence rate which is entirely

independent of the condition number of the problem (Beck,

2014). While this is a very attractive property, developing

scalable distributed variants of Newton’s method that could

also provably outperform gradient based methods remains

a largely unsolved problem. To highlight the severity of

the issues with extending Newton’s method to stochastic

and distributed settings common in machine learning, we

note that until recently, we did not even have any Newton-

type analogue of SGD that could provably work with small

minibatch sizes, let alone minibatch size one (Kovalev et al.,

2019). In contrast, SGD with minibatch size one is one of

the simplest and well understood variants thereof (Needell

et al., 2015), and much of modern development in the area

of SGD methods is much more sophisticated. Most variants

of Newton’s method proposed for deployment in machine

learning are heuristics, which is to say that they are not

supported with any convergence guarantees, or have conver-

gence guarantees without explicit rates, or suffer from rates

that are worse than the rates of first order methods.

1.4. Contributions summary

We develop several new fundamental Newton-type methods

which we hope make a marked step towards the ultimate

goal of developing practically useful and communication

efficient distributed second order methods. Our methods

are designed with the explicit goal of supporting efficient

communication in a distributed setting, and in sharp contrast

Table 1. Summary of algorithms proposed and convergence results proved in this paper.
Convergence

Method result † type rate

Rate
independent of the
condition number?

Theorem

NEWTON-STAR
(

NS
)

(12)
rk+1 ≤ cr2k local quadratic ✓ 2.1

MAX-NEWTON
(

MN
)

Algorithm 4
rk+1 ≤ cr2k local quadratic ✓ H.1

NEWTON-LEARN
(

NL1
)

Algorithm 1

local linear ✓ 3.2

rk+1 ≤ cθk
1 rk local superlinear ✓ 3.2

NEWTON-LEARN
(

NL2
)

Algorithm 2

Φk
2 ≤ θk

2Φ
0
2 local linear ✓ 3.5

rk+1 ≤ cθk
2 rk local superlinear ✓ 3.5

CUBIC-NEWTON-LEARN
(

CNL
)

Algorithm 3

∆k ≤ c
k

global sublinear ✗ F.3

∆k ≤ c exp(−k/c) global linear ✗ F.4

Φk
3 ≤ θk

3Φ
0
3 local linear ✓ F.5

rk+1 ≤ cθk
3 rk local superlinear ✓ F.5

Quantities for which we prove convergence: (i) distance to solution rk :=
∥

∥

∥
xk − x∗

∥

∥

∥
; (ii) Lyapunov function Φk

q :=
∥

∥

∥
xk − x∗

∥

∥

∥

2

+

cq
∑n

i=1

∑m
j=1

(hk
ij − hij(x

∗))2 for q = 1, 2, 3, where hij(x
∗) = ϕ′′

ij(a
⊤
ijx

∗) (see (5)); (iii) Function value suboptimality

∆k := P (xk) − P (x∗)

† constant c is possibly different each time it appears in this table. Refer to the precise statements of the theorems for the exact values.

with most recent work, their design was heavily influenced

by our desire to equip them with strong convergence guar-

antees typical for the classical Newton’s method (Wallis,

1685; Raphson, 1697) and cubically regularized Newton’s

method (Griewank, 1981; Nesterov and Polyak, 2006). Our

convergence results are summarized in Table 1.

• First new method and its local quadratic convergence.

We first show that if we know the Hessian of the objective

function at the optimal solution, then we can use it instead of

the typical Hessian appearing in Newton’s method, and the

resulting algorithm, which we call NEWTON-STAR (NS),

inherits local quadratic convergence behavior of Newton’s

method (see Theorem 2.1). In a distributed setting with a

central orchestrating sever, each compute node only needs

to send the local gradient to the server node, and no matrices

need to be sent. While this method is not practically useful,

it acts as a stepping stone to our next method, in which

these deficiencies are removed. This method is described

in Section 2. A somewhat different method with similar

properties, which we call MAX-NEWTON
4, is described in

Section H.

• Second new method and its local linear and super-

linear convergence. Motivated by the above result, we

propose a learning scheme which enables us to learn the

Hessian at the optimum iteratively in a communication ef-

ficient manner. This scheme gives rise to our second new

method: NEWTON-LEARN (NL). We analyze this method

in two cases: (i) all individual loss functions are convex and

λ > 0 (giving rise to the NL1 method), and (ii) the aggregate

loss function P is strongly convex (giving rise to the NL2

method). Besides the local full gradient, each worker node

4In fact, this was the first method we developed, in Summer
2020, when we embarked on the research which eventually lead to
the results presented in this paper.

needs to send additional information to the server node in

order to learn the Hessian at the optimum. However, our

learning scheme supports compressed communication with

arbitrary compression level. This level can be chosen so that

in each iteration, each node sends an equivalent of a few

gradients to the server only. That is, we can achieve O(d)
communication complexity in each iteration. In both cases,

we prove local linear convergence for a carefully designed

Lyapunov function, and local superlinear convergence for

the squared distance to optimum (see Theorems 3.2 and 3.5).

Remarkably, all these rates are independent of the condition

number.5 The NL1 and NL2 methods and the associated

theory are described in Section 3.

• Third new method and its global convergence. Next,

we equip our learning scheme with a cubic regularization

strategy (Griewank, 1981; Nesterov and Polyak, 2006),

which leads to a new globally convergent method: CUBIC-

NEWTON-LEARN (CNL). We establish global sublinear

and linear convergence (for function values) guarantees for

convex and strongly convex problems, respectively. The

method can also achieve a fast local linear (for a Lyapunov

function) and superlinear (for squared distance to solution)

convergence in the strongly convex case. We describe this

method and the associated theory in Section F.

• Experiments. Our theory is corroborated with numerical

experiments showing the superiority of our methods to sev-

eral state-of-the-art benchmarks, including DCGD (Khirirat

et al., 2018), DIANA (Mishchenko et al., 2019; Horváth et al.,

2019b), ADIANA (Li et al., 2020), BFGS (Broyden, 1967;

Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), and DINGO

(Crane and Roosta, 2019). Our methods can achieve com-

5However, the size of the neighborhood of local convergence
is not independent of the condition number.

munication complexity which is several orders of magnitude

better than competing methods (see Section 4).

2. Three Steps Towards an Efficient

Distributed Newton Type Method

In order to better explain the algorithms and results of this

paper, we will proceed through several steps in a gradual

explanation of the ideas that ultimately lead to our methods.

While this is not the process we used to come up with

our methods, in retrospect we believe that our methods

and results will be understood more easily when seen as

having been arrived at in this way. In other words, we have

constructed what we believe is a plausible discovery story,

one enabling faster and better comprehension. If these ideas

seem to follow naturally, it is because we made a conscious

effort to make then appear that way. The goal of this paper

is to develop communication efficient variants of Newton’s

method for solving the distributed optimization problem (1).

2.1. Naive distributed implementation of Newton’s

method

Newton’s method applied to problem (1) performs the itera-

tion

xk+1 = xk −
(

∇2P (xk)
)−1 ∇P (xk)

(1)
= xk −

(

H(xk) + λI
)−1 ∇P (xk). (9)

A naive way to implement this method in the parameter

server framework is for each node i to compute the Hessian

Hi(x
k) and gradient ∇fi(x

k) and to communicate these

objects to the server. The server then averages the local

Hessians Hi(x
k) to produce H(xk) via (8), and averages

the local gradients ∇fi(x
k) to produce ∇f(xk). The server

then adds λI to the Hessian, producing H(xk) + λI =
∇2P (xk), adds λxk to the gradient, producing ∇P (xk) =
∇f(xk)+λxk, and subsequently performs the Newton step

(9). The resulting vector xk+1 is then broadcasted to the

nodes and the process is repeated.

This implementation mirrors the way GD and many other

first order methods are implemented in the parameter server

framework. However, unlike in the case of GD, where only

O(d) floats need to be sent and received by each node in

each iteration, the upstream communication in Newton’s

method requires O(d2) floats to be communicated by each

worker to the server. Since d is typically very large, this

is prohibitive in practice. Moreover, computation of the

Newton’s step by the parameter server is much more ex-

pensive than simple averaging of the gradients performed

by gradient type methods. However, in this paper we will

not be concerned with the cost of the Newton step itself,

as we will assume the server is powerful enough and the

network connection is slow enough for this step not to be

the main bottleneck of the iteration. Instead, we assume that

the communication steps in general, and the O(d2) com-

munication of the Hessian matrices in particular, is what

forms the bottleneck. The O(d) per node communication

cost of the local gradients is negligible, and so is the O(d)
broadcast of the updated model.

2.2. A better implementation taking advantage of the

structure of Hij(x)

The above naive implementation can be improved in the

setting when m < d2 by taking advantage of the explicit

structure (7) of the local Hessians as a conic combination of

positive semidefinite rank one matrices:

Hi(x) =
1
m

m
∑

j=1

hij(x)aija
⊤
ij . (10)

Indeed, assuming that the server has direct access to all

the training data vectors aij ∈ R
d (these vectors can be

sent to the server at the start of the process), node i can

send the m coefficients hi1(x), . . . , him(x) to the server

instead, and the server is then able to reconstruct the Hessian

matrix Hi(x) from this information. This way, each node

sends O(m+ d) floats to the server, which is a substantial

improvement on the naive implementation in the regime

when m ≪ d2. However, when m ≫ d, the upstream

communication cost is still substantially larger than the O(d)
cost of GD. If the server does not have enough memory to

store all vectors aij , this procedure does not work.

2.3. NEWTON-STAR: Newton’s method with a single

Hessian

We now introduce a simple idea which, surprisingly, en-

ables us to remove the need to iteratively communicate any

coefficients altogether. Assume, for the sake of argument,

that we know the values hij(x
∗) for all i, j. That is, as-

sume the server has access to coefficients hij(x
∗) for all

i, j, and that each node i has access to coefficients hij(x
∗)

for j = 1, . . . ,m, i.e., to the vector

hi(x) := (hi1(x), . . . , him(x)) ∈ R
m (11)

for x = x∗. Next, consider the following new Newton-

like method which we call NEWTON-STAR (NS), where the

“star” points to the method’s reliance on the knowledge of

the optimal solution x∗:

xk+1 = xk −
(

∇2P (x∗)
)−1 ∇P (xk)

(1)
= xk − (H(x∗) + λI)

−1 ∇P (xk). (12)

Since the server knows H(x∗), all that the nodes need to

communicate are the local gradients ∇fi(x
k), which costs

O(d) per node. The server then computes xk+1, broad-

casts it back to the nodes, and the process is repeated. This

method has the same per-iteration O(d) communication

complexity as GD. However, as we show next, the number

of iterations (which is the same as the number of com-

munications) of NEWTON-STAR does not depend on the

condition number – a property it borrows from the clas-

sical Newton’s method. The following theorem says that

NEWTON-STAR enjoys local quadratic convergence.

Theorem 2.1 (Local quadratic convergence). Let Assump-

tion 1.1 hold, and assume that H(x∗) � µ∗
I for some

µ∗ ≥ 0 (for instance, this holds if f is µ∗-strongly convex)

and that µ∗ + λ > 0. Then for any starting point x0 ∈ R
d,

the iterates of NEWTON-STAR for solving problem (1) sat-

isfy the following inequality6:

‖xk+1−x∗‖ ≤ ν
2(µ∗+λ) ·

(

1
nm

n
∑

i=1

m
∑

j=1

‖aij‖3
)

·‖xk−x∗‖2.

Note that we do not need to assume f to be convex or

strongly convex. Instead, all we need to assume is positive

definiteness of the Hessian at the optimum. This implies

local strong convexity, and since our convergence result is

local, that is all we need.

Remark. Besides NEWTON-STAR, we have designed an-

other new Newton-type method with a local quadratic rate.

This method, which we call MAX-NEWTON, is similar to

NEWTON-STAR in that it relies on the knowledge of the

coefficients hij(x
∗) for j = 1, . . . ,m. We describe this

method in Appendix H.

3. NEWTON-LEARN: Learning the Hessian and

Local Convergence Theory

In Sections 2.1, 2.2 and 2.3 we have gone through three steps

in our story, with the first true innovation and contribution

of this paper being the NEWTON-STAR method and its rate.

We have now sufficiently prepared the ground to motivate

our first key contribution: the NEWTON-LEARN method.

We only outline the basic insights behind this method here;

the details are included in Section 3.

3.1. The main iteration

In NEWTON-LEARN we maintain a sequence of vectors

hk
i = (hk

i1, . . . , h
k
im) ∈ R

m,

6While this inequality holds for any x0 ∈ R
d, it is only

meaningful if it leads to a contraction in the distance to opti-
mum, and this means that Theorem 2.1 ensures convergence to
x∗ only if x0 is sufficiently close to x∗. That is, the theorem
implies local quadratic convergence only. To see this, let c > 0
be the constant on the right hand side of the inequality, so that
‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2 for all k. It is easy to see that
requiring ‖x0 − x∗‖ ≤ 1

2c
suffices to ensure convergence.

for all i = 1, . . . , n throughout the iterations k ≥ 0 with the

goal of learning the values hij(x
∗) for all i, j. That is, we

construct the sequence with the explicit intention to enforce

hk
ij → hij(x

∗) as k → ∞. (13)

Using hk
ij ≈ hij(x

∗) we estimate the Hessian H(x∗) via

H(x∗) ≈ H
k := 1

nm

n
∑

i=1

m
∑

j=1

hk
ijaija

⊤
ij , (14)

and then perform a similar iteration to (12):

xk+1 = xk −
(

H
k + λI

)−1 ∇P (xk). (15)

3.2. Learning the coefficients: the idea

To complete the description of the method, we need to

explain how the vectors hk+1
i are updated. This is also the

place where we can force the method to be communication

efficient. Indeed, if we can design a rule that would enforce

the update vectors hk+1
i − hk

i to be sparse, say

‖hk+1
i − hk

i ‖0 ≤ s (16)

for some 1 ≤ s ≤ m and all i and k, then the upstream

communication by each node in each iteration would be of

the order O(s+d) only (provided the server has access to all

vectors aij)! That is, each node i only needs to communicate

s entries of the update vector hk+1
i −hk

i as the rest are equal

to zero, and each node also needs to communicate the d
dimensional gradient ∇fi(x

k). Note that O(s + d) can

be interpreted as an interpolation between the O(m + d)
per-iteration communication complexity of the structure-

aware implementation of Newton’s method from Section 2.2,

and of the O(d) per-iteration communication complexity of

NEWTON-STAR described in Section 2.3.

In the more realistic regime when the server does not have

access to the data {aij}, we ask each worker i to additionally

send the corresponding s vectors aij , which costs extra

O(sd) in communication per node. However, when s =
O(1), this is the same per-iteration communication effort as

that of GD.

We develop two different update rules defining the evolution

of the vectors hk
1 , . . . , h

k
n. This first rule (see (19)) applies

to the λ > 0 case and leads to our first variant of NEWTON-

LEARN which we call NL1 (see Algorithm 1). This rule and

the method are described in Section 3.5. The second rule ap-

plies also to the λ = 0 cases and leads to our second variant

of NEWTON-LEARN which we call NL2 (see Algorithm 2).

This rule and the method are described in Section 3.6.

3.3. Outline of fast local convergence theory

We show in Theorem 3.2 (covering NL1) and Theorem 3.5

(covering NL2) that NEWTON-LEARN enjoys a local linear

rate wrt a certain Lyapunov function which involves the term

‖xk − x∗‖2 and also all terms of the form ‖hk
i − hi(x

∗)‖2.

This means that i) the main iteration (15) works, i.e., xk

converges to x∗ at a local linear rate, and that ii) the learning

procedure works, and the desired convergence described

in (13) occurs at a local linear rate. In addition, we also

establish a local superlinear rate of ‖xk−x∗‖2. Remarkably,

these rates are independent of any condition number, which

is in sharp contrast with virtually all results on distributed

Newton-type methods we are aware of.

Moreover, we wish to remark that second order methods

are not typically analyzed using a Lyapunov style analysis.

Indeed, we only know of a couple works that do so. First,

Kovalev et al. (2019) develop stochastic Newton and cubic

Newton methods of a different structure and scope from

ours. They do not consider distributed optimization nor

communication compression. Second, Kovalev et al. (2020)

develop a stochastic BFGS method. Again, their method

and scope is very different from ours. Hence, our analysis

may be of independent interest as it adds to the arsenal

of theoretical tools which could be used in a more precise

analysis of other second order methods.

3.4. Compressed learning

Instead of merely relying on sparse updates for the vectors

hk
i (see (16)), we provide a more general communication

compression strategy which includes sparsification as a spe-

cial case (Alistarh et al., 2017). We do so via the use of a

random compression operator. We say that a randomized

map C : Rm → R
m is a compression operator (compres-

sor) if there exists a constant ω ≥ 0 such that the following

relations hold for all x ∈ R
m:

E [C(x)] = x (17)

E
[

‖C(x)‖2
]

≤ (ω + 1)‖x‖2. (18)

The identity compressor C(x) ≡ x satisfies these relations

with ω = 0. The larger the variance parameter ω is allowed

to be, the easier it can be to construct a compressor C for

which the value C(x) can be encoded using a small number

of bits only. We refer the reader to (Beznosikov et al., 2020)

for a list of several compressors and their properties.

3.5. NL1 (learning in the λ > 0 case)

We now consider the case where all loss functions ϕij are

convex and λ > 0.

Assumption 3.1. Each ϕij is convex, λ > 0.

When combined with Assumption 1.1, Assumption 3.1 im-

plies that ϕ′′
ij(t) ≥ 0 for all t, hence hij(x) = ϕ′′

ij(a
⊤
i x) ≥

0 for all x ∈ R
d. In particular, hij(x

∗) ≥ 0 for all

i, j. Since we wish to construct a sequence of vectors

hk
i = (hk

i1, . . . , h
k
im) ∈ R

m satisfying hk
ij → hij(x

∗), it

makes sense to try to enforce all vectors in this sequence to

have nonnegative entries: hk
ij ≥ 0.

Since Hk arises as a linear combination of the rank-one ma-

trices aija
⊤
ij (see (14)), this makes Hk positive semidefinite,

which in turn means that the matrix H
k + λI appearing in

the main iteration (15) of NEWTON-LEARN is invertible,

and hence the iteration is well defined.7

The learning iteration and the NL1 algorithm. In particu-

lar, in NEWTON-LEARN each node i computes the vector

hi(x
k) ∈ R

m of second derivatives defined in (11), and

then performs the update

hk+1
i =

[

hk
i + ηCk

i (hi(x
k)− hk

i)
]

+
, (19)

where η > 0 is a learning rate, Ck
i is a freshly sampled

compressor by node i at iteration k. By [·]+ we denote

the positive part function applied element-wise, defined for

scalars as follows: [t]+ = t if t ≥ 0 and [t]+ = 0 otherwise.

We remark that it is possible to interpret the learning proce-

dure (19) as one step of projected stochastic gradient descent

(SGD) applied to a certain quadratic optimization problem

whose unique solution is the vector hi(x
k).

The NL1 algorithm (Algorithm 1) arises as the combination

of the Newton-like update (15) (adjusted to take account of

the explicit regularizer) and the learning procedure (19). It

is easy to see that the update rule for Hk in NL1 is designed

to ensure that Hk remains of the form H
k = 1

n

∑n
i=1 H

k
i ,

where H
k
i = 1

m

∑m
j=1 h

k
ijaija

⊤
ij . The update rule for xk,

performed by the server, is identical to (15), with an extra

provision for the regularizer. The vector xk+1 is broadcasted

to all workers. Let us comment on how the key commu-

nication step is implemented. If the server does not have

direct access to the training data vectors {aij}, we choose

Option 1, otherwise we choose Option 2. A key property

of NL1 is that the server is able to maintain copies of the

learning vectors hk
i without the need for these vectors to be

communicated by the workers to the server. Indeed, pro-

vided the workers and the server agree on the same set of

initial vectors h0
1, . . . , h

0
n, update (19) can be independently

computed by the server as well from its memory state hk
i

and the compressed message Ck
i (hi(x

k)−hk
i) received from

node i. This strategy is reminiscent of the way the key step

in the first-order method DIANA (Mishchenko et al., 2019;

Horváth et al., 2019b) is executed. In this sense, NL1 can

be seen as arising from a successful marriage of Newton’s

method and the DIANA trick.

7Positive definiteness of Hessian estimates is enforced in sev-
eral popular quasi-Newton methods as well; for instance, in the
BFGS method (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970). However, quasi-Newton methods operate in a
markedly different manner, and the way in which positive definite-
ness is enforced there is also different.

Algorithm 1 NL1: NEWTON-LEARN (λ > 0 case)

Parameters: learning rate η > 0
Initialization: x0 ∈ R

d; h0
1, . . . , h

0
n ∈ R

m
+ ; H

0 =

1
nm

n
∑

i=1

m
∑

j=1

h0
ijaija

⊤
ij ∈ R

d×d

for k = 0, 1, 2, . . . do

Broadcast xk to all workers

for each node i = 1, . . . , n do

Compute local gradient ∇fi(x
k)

hk+1
i = [hk

i + ηCk
i (hi(x

k)− hk
i)]+

Send ∇fi(x
k) and mk

i = Ck
i (hi(x

k)−hk
i) to server

Option 1: Send {aij : hk+1
ij − hk

ij 6= 0} to server

Option 2: Do nothing if server knows {aij : ∀j}
end for

xk+1 = xk−
(

H
k + λI

)−1
(

1
n

n
∑

i=1

∇fi(x
k) + λxk

)

For each i, compute hk+1
i via hk+1

i = [hk
i + ηmk

i]+

H
k+1 = H

k + 1
nm

n
∑

i=1

m
∑

j=1

(hk+1
ij − hk

ij)aija
⊤
ij

end for

Theory. In our theoretical results we rely on the Lyapunov

function

Φk
1 := ‖xk − x∗‖2 + 1

3mnην2R2Hk,

where Hk :=
∑n

i=1 ‖hk
i − hi(x

∗)‖2. Our main theorem

follows.

Theorem 3.2 (Convergence of NL1). Let Assumptions 1.1

and 3.1 hold. Let η ≤ 1
ω+1 and assume that ‖xk − x∗‖2 ≤

λ2

12ν2R6 for all k ≥ 0. Then for Algorithm 1 we have the

inequalities

E[Φk
1] ≤ θk1Φ

0
1,

E

[

‖xk+1−x∗‖2

‖xk−x∗‖2

]

≤ θk1
(

6η + 1
2

)

ν2R6

λ2 Φ0
1,

where θ1 := 1−min
{

η
2 ,

5
8

}

.

Since the stepsize bound η ≤ 1
ω+1 is independent of the

condition number, and since from the proof of Lemma 3.3

we have ν2R6

λ2 Φ0
1 ≤ 1

12 + 1
36η , the linear convergence rates

of E[Φk
1] and E

[

‖xk+1−x∗‖2

‖xk−x∗‖2

]

are both independent of the

condition number. Next, we explore under what conditions

we can guarantee for all the iterates to stay in a small neigh-

borhood.

Lemma 3.3. Let Assumptions 1.1 and 3.1 hold. Assume hk
ij

is a convex combination of {hij(x
0), hij(x

1), ..., hij(x
k)}

for all i, j and k. Assume ‖x0 − x∗‖2 ≤ λ2

12ν2R6 . Then

‖xk − x∗‖2 ≤ λ2

12ν2R6 for all k ≥ 0.

It is easy to verify that if we choose h0
ij = hij(x

0)
and use the random sparsification compressor and η ≤

1
ω+1 , then hk

ij is always a convex combination of

{hij(x
0), hij(x

1), ..., hij(x
k)} for k ≥ 0. Thus, from

Lemma 3.3 we can guarantee that all the iterates stay in

the small neighborhood assumed in Theorem 3.2 as long as

the initial point x0 is in it.

3.6. NL2 (learning in the λ ≥ 0 case)

In this subsection, we consider the case where P is µ-

strongly convex. Note that we do not require the compo-

nents fij to be convex.

Assumption 3.4. P is µ-strongly convex, |hk
ij | ≤ γ for

k ≥ 0.

The learning iteration and the NL2 algorithm. As in

Algorithm 1, we use a sequence of vectors {hk
i }k≥0 to learn

hi(x
∗). However, this time we rely on a different technique

for enforcing positive definiteness of the Hessian estimator.

Since λ can be zero, our previous technique aimed at forcing

the coefficients hk
ij to be nonnegative will not work. So, we

give up on this, and instead of (19) we use the simpler

update

hk+1
i = hk

i + ηCk
i (hi(x

k)− hk
i). (20)

In order to guarantee positive definiteness of the Hessian

estimator Hk + λI we instead rely on the second part of

Assumption 3.4. Provided that there exists γ > 0 such that

|hk
ij | ≤ γ for all i, j, note that

hij(x
k)+2γ

hk
ij
+2γ

is always positive.

Noticing that each aija
⊤
ij is positive semidefinite and that

∇2f(xk) can be expressed in the form

1
nm

n
∑

i=1

m
∑

j=1

(

hij(x
k)+2γ

hk
ij
+2γ

· (hk
ij + 2γ)− 2γ

)

aija
⊤
ij ,

for βk := maxi,j
hij(x

k)+2γ

hk
ij
+2γ

, we get the inequal-

ity 1
nm

∑n
i=1

∑m
j=1

[

βk(hk
ij + 2γ)− 2γ

]

aija
⊤
ij −

∇2f(xk) = 1
nm

∑n
i=1

∑m
j=1

[

βk − hij(x
k)+2γ

hk
ij
+2γ

]

(hk
ij +

2γ)aija
⊤
ij � 0, where 0 is the d × d zero matrix, and

A � B means A−B is positive semidefinite. Thus, if we

can maintain the Hessian estimator in the form

H
k := 1

nm

n
∑

i=1

m
∑

j=1

[

βk(hk
ij + 2γ)− 2γ

]

aija
⊤
ij ,

then H
k + λI � ∇2f(xk) + λI = ∇2P (xk) � µI,

where the last inequality follows from Assumption 3.4.

To achieve this goal, we use an auxiliary matrix A
k, and

maintain A
k = 1

nm

∑n
i=1

∑m
j=1(h

k
ij + 2γ)aija

⊤
ij , and

H
k = βk

A
k − 2γ · 1

nm

∑n
i=1

∑m
j=1 aija

⊤
ij . The rest of

Algorithm 2 is the same as Algorithm 1.

Theory. Our analysis of NL2 relies on the Lyapunov func-

tion

Φk
2 := ‖xk − x∗‖2 + 1

3mnην2R2Hk,

Algorithm 2 NL2: NEWTON-LEARN (general case)

Parameters: η > 0; γ > 0
Initialization: x0 ∈ R

d; h0
i ∈ R

m
+ ; A

0 =
1

nm

∑n
i=1

∑m
j=1(h

0
ij + 2γ)aija

⊤
ij ∈ R

d×d

for k = 0, 1, 2, . . . do

broadcast xk to all workers

for i = 1, . . . , n do

Compute local gradient ∇fi(x
k)

hk+1
i = hk

i + ηCk
i (hi(x

k)− hk
i)

βk
i = maxj∈[m]

hij(x
k)+2γ

hk
ij
+2γ

Send ∇fi(x
k), βk

i , and ηCk
i (hi(x

k)− hk
i) to server

Option 1: Send {aij : hk+1
ij − hk

ij 6= 0} to server

Option 2: Do nothing if server knows {aij : ∀j}
end for

βk = maxi{βk
i }

H
k = βk

A
k − 2γ · 1

nm

n
∑

i=1

m
∑

j=1

aija
⊤
ij ∈ R

d×d

xk+1 = xk−
(

H
k + λI

)−1
(

1
n

n
∑

i=1

∇fi(x
k) + λxk

)

A
k+1 = A

k+ 1
nm

n
∑

i=1

m
∑

j=1

(ηCk
i (hi(x

k)−hk
i))jaija

⊤
ij

end for

where Hk :=
∑n

i=1 ‖hk
i − hi(x

∗)‖2. We now present our

main convergence result for NL2.

Theorem 3.5 (Convergence of NL2). Let Assumptions 1.1

and 3.4 hold. Assume η ≤ 1
ω+1 and ‖xk − x∗‖2 ≤

µ2

432mnν2R6 for all k ≥ 0. Then for Algorithm 2 we have the

inequalities

E[Φk
2] ≤ θk2Φ

0
2,

E

[

‖xk+1−x∗‖2

‖xk−x∗‖2

]

≤ θk2 (3mnη + 1) 72ν2R6

µ2 Φ0
2,

where θ2 := 1−min
{

η
2 ,

1
2

}

.

As before, we give sufficient conditions guaranteeing that

the iterates stay in a small neighborhood of the optimum.

Lemma 3.6. Let Assumptions 1.1 and 3.4 hold. Assume hk
ij

is a convex combination of {hij(x
0), hij(x

1), ..., hij(x
k)}

for all i, j and k. Assume ‖x0 − x∗‖2 ≤ µ2

432mnν2R6 . Then

‖xk − x∗‖2 ≤ µ2

432mnν2R6 for all k ≥ 0.

If we choose h0
ij = hij(x

0), use a random compressor

with variance ω, and choose stepsize η ≤ 1
ω+1 , then hk

ij

is a convex combination of {hij(x
0), hij(x

1), ..., hij(x
k)}

for all k ≥ 0. Thus, via Lemma 3.6 we can guarantee all

the iterates to be in the small neighborhood required by

Theorem 3.5 as long as the initial point x0 is in it.

4. Experiments

We now study the empirical performance of our second

order methods NL1, NL2 and CNL, and compare them with

relevant benchmarks and with state-of-the-art methods. We

test on the regularized logistic regression problem

min
x∈Rd

{

1
n

n
∑

i=1

1
m

m
∑

j=1

log
(

1 + exp(−bija
⊤
ijx)

)

+ λ
2 ‖x‖2

}

,

where {aij , bij}j∈[m] are data samples at the i-th node.

Data sets. In our experiments we use four standard datasets

from the LIBSVM library: a2a, a7a, a9a, and w8a. More

experiments are provided in the appendix.

Compression operators. For the first order methods we use

three compression operators: random sparsification (Stich

et al., 2018), random dithering (Alistarh et al., 2017), and

natural compression (Horváth et al., 2019a). For random-r
sparsification, the number of communicated bits per itera-

tion is 32r+ log2
(

d
r

)

, and we choose r = d/4. For random

dithering, we choose s =
√
d, which means the number of

communicated bits per iteration is 2.8d + 32. For natural

compression, the number of communicated bits per iteration

is 9d bits. For NL1 and NL2 we use the random-r sparsifi-

cation operator with different values of r. For CNL we use

the random sparsification Cp (the definition is given in the

appendix) with p = 1/20 and r = 1.

Parameter setting. In our experiments, we use the theoreti-

cal parameters (e.g., stepsizes) for all the three algorithms:

vanilla Distributed Compressed Gradient Descent (DCGD)

(Khirirat et al., 2018), DIANA (Mishchenko et al., 2019), and

ADIANA (Li et al., 2020). As the initial approximation of the

Hessian in BFGS (Broyden, 1967; Fletcher, 1970; Goldfarb,

1970; Shanno, 1970), we use H0 = ∇2P (x0), and the step-

size is 1. We set the same constants in DINGO (Crane and

Roosta, 2019) as they did: θ = 10−4, φ = 10−6, ρ = 10−4,
and use backtracking line search for DINGO to select the

largest stepsize in {1, 2−1, 2−2, 2−4, . . . , 2−10}. We con-

duct experiments for two values of the regularization pa-

rameter λ: 10−3, 10−4. For the a2a dataset, we set num-

ber of nodes to n = 15 and the size of local dataset to

m = 151. For the remaining datasets we choose: a7a

(n = 100,m = 161), a9a (n = 80,m = 407), w8a

(n = 142,m = 350). In the figures we plot the relation of

the optimality gap P (xk) − P (x∗) and the number of ac-

cumulated transmitted bits or iterations. The optimal value

P (x∗) in each case is the function value at the 20-th iterate

of standard Newton’s method. In all plots, “communicated

bits” refers to the total number of bits that all nodes send to

the server. We adopt the realistic setting where the server

does not have access to the local data (Option 1).

0 10 20 30

iterations

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤)

Newton

NL1, r=1
NL1, r=3
NL2, r=1
NL2, r=3

210 213 216 219 222
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤)

Newton

NL1, r=1
NL1, r=3
NL2, r=1
NL2, r=3

(a) artificial, λ = 10−4 (b) artificial, λ = 10−4

0 10 20 30

iterations

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤)

Newton

NL1, r=1
NL1, r=3
NL2, r=1
NL2, r=3

210 213 216 219 222
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤)
Newton

NL1, r=1
NL1, r=3
NL2, r=1
NL2, r=3

(c) artificial, λ = 10−5 (d) artificial, λ = 10−5

Figure 1. Comparison of NL1 and NL2, with Newton’s method in

terms of iteration complexity for (a), (c); in terms of communica-

tion complexity for (b), (d).

4.1. Comparison with Newton’s method

In our next experiment we compare NL1 and NL2, using

different values of r for random-r compression, with New-

ton’s method; see Figure 1. We clearly see that Newton’s

method performs better than NL1 and NL2 in terms of itera-

tion complexity, as expected. However, our methods have

better communication efficiency than Newton’s method, by

several orders of magnitude. Moreover, we see that the

smaller r is, the better NL1 and NL2 perform in terms of

communication complexity.

4.2. Comparison with BFGS

In our next test, we compare NL1 and NL2 using r = 1 with

BFGS in Figure 2(a). The experimental results clearly show

that our methods have faster convergence rate in terms of

communication complexity.

4.3. Comparison with ADIANA

Next, we compare NL1 and NL2 with ADIANA with three

different compressors: random sparsification, random dither-

ing, and natural compression; see Figure 2(b). The results

indeed show that our methods converge to the optimum us-

ing fewer bits than ADIANA for all three compressors. For

brevity, we denote ADIANA with natural compression, ran-

dom sparsification, and random dithering by ADIANA-NC,

ADIANA-RS, and ADIANA-RD, respectively.

4.4. Comparison with DINGO

We now compare NL1 and NL2 with DINGO. The results in

Figure 2(c) show that our methods are more communication

efficient than DINGO, by many orders of magnitude.

220 223 226 229 232
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤)

NL1, r=1
NL2, r=1; p=1=20
BFGS

218 221 224 227 230
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤)

NL1, r=1
NL2, r=1; p=1=20
ADIANA-NC
ADIANA-RS, r= d=4
ADIANA-RD, s=

p
d

(a) a9a, λ = 10−3 (b) a9a, λ = 10−3

221 223 225 227
communicated bits

10-15

10-12

10-9

10-6

10-3

100

P
(x
k
)
¡
P
(x

¤)

NL1, r=1
NL2, r=1; p=1=20
DINGO

218 221 224 227 230 233
communicated bits

10-15

10-12

10-9

10-6

10-3

100

103

P
(x
k
)
¡
P
(x

¤)

CNL, r=1; p=1=20
DCGD-NC
DCGD-RS, r= d=4
DIANA-NC
DIANA-RS, r= d=4

(c) a7a, λ = 10−4 (d) a7a, λ = 10−4

Figure 2. Comparison of NL1 and NL2 (a) with BFGS; (b) with

ADIANA; (c) with DINGO; (d) CNL with DIANA and DCGD; in

terms of communication complexity.

4.5. Comparison with DCGD and DIANA

Finally, we compare CNL using the random sparsification

Cp with DCGD and DIANA with two compression opera-

tors: random sparsification and natural compression in Fig-

ure 2(d). According to the numerical experiments, CNL is

more communication efficient method than others. We use

the same notation as mentioned above.

References

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic.

QSGD: Communication-efficient SGD via gradient quan-

tization and encoding. Advances in Neural Information

Processing Systems, pages 1709–1720, 2017.

Amir Beck. Introduction to Nonlinear Optimization: Theory,

Algorithms, and Applications with MATLAB. Society for

Industrial and Applied Mathematics, USA, 2014. ISBN

1611973643.

Ron Bekkerman, Mikhail Bilenko, and John Langford. Scal-

ing up machine learning: Parallel and distributed ap-

proaches. Cambridge University Press, 2011.

J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anand-

kumar. SignSGD: Compressed optimisation for non-

convex problems. The 35th International Conference

on Machine Learning, pages 560–569, 2018.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik,

and Mher Safaryan. On biased compression for dis-

tributed learning. arXiv:2002.12410, 2020.

Charles G Broyden. Quasi-Newton methods and their appli-

cation to function minimisation. Mathematics of Compu-

tation, 21(99):368–381, 1967.

Rixon Crane and Fred Roosta. DINGO: Distributed

Newton-type method for gradient-norm optimiza-

tion. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems,

volume 32, pages 9498–9508. Curran Associates,

Inc., 2019. URL https://proceedings.

neurips.cc/paper/2019/file/

9718db12cae6be37f7349779007ee589-Paper.

pdf.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.

SAGA: A fast incremental gradient method with sup-

port for non-strongly convex composite objectives. In

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,

and K. Q. Weinberger, editors, Advances in Neural Infor-

mation Processing Systems 27, pages 1646–1654. Curran

Associates, Inc., 2014.

Rodger Fletcher. A new approach to variable metric algo-

rithms. The Computer Journal, 13(3):317–323, 1970.

Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar, and

Kannan Ramchandran. Communication efficient dis-

tributed approximate Newton method. In IEEE Inter-

national Symposium on Information Theory (ISIT), 2020.

doi: 10.1109/ISIT44484.2020.9174216.

Donald Goldfarb. A family of variable-metric methods de-

rived by variational means. Mathematics of Computation,

24(109):23–26, 1970.

Nicholas IM Gould, Daniel P Robinson, and H Sue Thorne.

On solving trust-region and other regularised subprob-

lems in optimization. Mathematical Programming Com-

putation, 2(1):21–57, 2010.

Andreas Griewank. The modification of Newton’s method

for unconstrained optimization by bounding cubic terms.

Technical report, Department of Applied Mathematics

and Theoretical Physics, University of Cambridge, 1981.

Technical Report NA/12.

Filip Hanzely, Nikita Doikov, Yurii Nesterov, and Peter

Richtarik. Stochastic subspace cubic Newton method. In

International Conference on Machine Learning, pages

4027–4038. PMLR, 2020.

Samuel Horváth, Chen-Yu Ho, Ľudovı́t Horváth,

Atal Narayan Sahu, Marco Canini, and Peter Richtárik.

Natural compression for distributed deep learning. arXiv

preprint arXiv:1905.10988, 2019a.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko,

Sebastian Stich, and Peter Richtárik. Stochastic dis-

tributed learning with gradient quantization and variance

reduction. arXiv preprint arXiv:1904.05115, 2019b.

Rie Johnson and Tong Zhang. Accelerating stochastic gradi-

ent descent using predictive variance reduction. In NIPS,

pages 315–323, 2013.

Ahmed Khaled, Konstantin Mishchenko, and Peter

Richtárik. Tighter theory for local SGD on identical

and heterogeneous data. In The 23rd International Con-

ference on Artificial Intelligence and Statistics (AISTATS

2020), 2020.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Jo-

hansson. Distributed learning with compressed gradients.

In arXiv preprint arXiv:1806.06573, 2018.

Dmitry Kovalev, Konstanting Mishchenko, and Peter

Richtárik. Stochastic Newton and cubic Newton meth-

ods with simple local linear-quadratic rates. In NeurIPS

Beyond First Order Methods Workshop, 2019.

Dmitry Kovalev, Robert M. Gower, Peter Richtárik, and

Alexander Rogozin. Fast linear convergence of random-

ized BFGS. arXiv:2002.11337, 2020.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik.

Acceleration for compressed gradient descent in dis-

tributed and federated optimization. In International

Conference on Machine Learning, 2020.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A uni-

versal catalyst for first-order optimization. arXiv preprint

arXiv:1506.02186, 2015.

Nicolas Loizou and Peter Richtárik. Linearly convergent

stochastic heavy ball method for minimizing general-

ization error. In NIPS Workshop on Optimization for

Machine Learning, 2017a.

Nicolas Loizou and Peter Richtárik. Momentum and

stochastic momentum for stochastic gradient, New-

ton, proximal point and subspace descent methods.

arXiv:1712.09677, 2017b.

Chenxin Ma, Jakub Konečný, Martin Jaggi, Virginia Smith,

Michael I. Jordan, Peter Richtárik, and Martin Takáč.

Distributed optimization with arbitrary local solvers. Op-

timization Methods and Software, 32(4):813–848, 2017.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradi-

ent descent without descent. In Hal Daumé III and Aarti

Singh, editors, Proceedings of the 37th International Con-

ference on Machine Learning, volume 119 of Proceed-

ings of Machine Learning Research, pages 6702–6712.

PMLR, 13–18 Jul 2019.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč,

and Peter Richtárik. Distributed learning with compressed

gradient differences. arXiv preprint arXiv:1901.09269,

2019.

https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9718db12cae6be37f7349779007ee589-Paper.pdf

Konstantin Mishchenko, Ahmed Khaled, and Peter

Richtárik. Random reshuffling: Simple analysiswith vast

improvements. In 34th Conference on Neural Information

Processing Systems (NeurIPS 2020), 2020.

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochas-

tic gradient descent, weighted sampling, and the random-

ized Kaczmarz algorithm. Mathematical Programming,

155(1–2):549–573, 2015.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and

Alexander Shapiro. Robust stochastic approximation

approach to stochastic programming. SIAM Journal on

Optimization, 19(4):1574–1609, 2009.

Yurii Nesterov and Boris T. Polyak. Cubic regularization of

Newton method and its global performance. Mathemati-

cal Programming, 108(1):177–205, 2006.

Boris Polyak and Andrey Tremba. New versions of Newton

method: step-size choice, convergence domain and under-

determined equations. arXiv preprint arXiv:1703.07810,

2019.

Boris Polyak and Andrey Tremba. New versions of new-

ton method: step-size choice, convergence domain and

under-determined equations. Optimization Methods and

Software, 35(6):1272–1303, 2020.

Josepho Raphson. Analysis aequationum universalis seu

ad aequationes algebraicas resolvendas methodus gener-

alis, & expedita, ex nova infinitarum serierum methodo,

deducta ac demonstrata. Oxford: Richard Davis, 1697.

Sashank J. Reddi, Jakub Konečný, Peter Richtárik, Barnabás

Póczos, and Alex Smola. AIDE: fast and communica-

tion efficient distributed optimization. arXiv:1608.06879,

2016.

H. Robbins and S. Monro. A stochastic approximation

method. Annals of Mathematical Statistics, 22:400–407,

1951.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite

sums with the stochastic average gradient. Math. Pro-

gram., 162(1-2):83–112, 2017.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochas-

tic gradient descent and its application to data- parallel

distributed training of speech DNNs. Fifteenth Annual

Conference of the International Speech Communication

Association, 2014.

Shai Shalev-Shwartz and Shai Ben-David. Understanding

machine learning: from theory to algorithms. Cambridge

University Press, 2014.

Ohad Shamir, Nati Srebro, and Tong Zhang.

Communication-efficient distributed optimization

using an approximate Newton-type method. In Proceed-

ings of the 31st International Conference on Machine

Learning, PMLR, volume 32, pages 1000–1008, 2014.

David F Shanno. Conditioning of quasi-Newton methods

for function minimization. Mathematics of computation,

24(111):647–656, 1970.

S. U. Stich and S. P. Karimireddy. The error-feedback

framework: Better rates for SGD with delayed gradients

and compressed communication. arXiv: 1909.05350,

2019.

Sebastian U. Stich. Local SGD converges fast and commu-

nicates little. In International Conference on Learning

Representations, 2020.

Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin

Jaggi. Sparsified SGD with memory. In Advances in Neu-

ral Information Processing Systems, pages 4447–4458,

2018.

Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan

Srebro. Mini-batch primal and dual methods for SVMs.

In 30th International Conference on Machine Learning,

pages 537–552, 2013.

H. Tang, X. Lian, T. Zhang, and J. Liu. DoubleSqueeze: Par-

allel stochastic gradient descent with double-pass error-

compensated compression. In Proceedings of the 36th

International Conference on Machine Learning, pages

6155–6165, 2019.

John Wallis. A treatise of algebra, both histori-

cal and practical. Philosophical Transactions

of the Royal Society of London, 15(173):1095–

1106, 1685. doi: 10.1098/rstl.1685.0053. URL

https://royalsocietypublishing.org/

doi/abs/10.1098/rstl.1685.0053.

Shusen Wang, Fred Roosta, Peng Xu, and Michael W

Mahoney. Giant: Globally improved approximate

newton method for distributed optimization. In

S. Bengio, H. Wallach, H. Larochelle, K. Grau-

man, N. Cesa-Bianchi, and R. Garnett, editors,

Advances in Neural Information Processing Systems,

volume 31, pages 2332–2342. Curran Associates,

Inc., 2018. URL https://proceedings.

neurips.cc/paper/2018/file/

dabd8d2ce74e782c65a973ef76fd540b-Paper.

pdf.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, and H. Li. Tern-

grad: Ternary gradients to reduce communication in dis-

tributed deep learning. Advances in Neural Information

Processing Systems, pages 1509–1519, 2017.

https://royalsocietypublishing.org/doi/abs/10.1098/rstl.1685.0053
https://royalsocietypublishing.org/doi/abs/10.1098/rstl.1685.0053
https://proceedings.neurips.cc/paper/2018/file/dabd8d2ce74e782c65a973ef76fd540b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dabd8d2ce74e782c65a973ef76fd540b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dabd8d2ce74e782c65a973ef76fd540b-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dabd8d2ce74e782c65a973ef76fd540b-Paper.pdf

Lin Xiao and Tong Zhang. A proximal stochastic gradi-

ent method with progressive variance reduction. SIAM

Journal on Optimization, 24(4):2057–2075, 2014.

Jiaqi Zhang, Keyou You, and Tamer Başar. Distributed

adaptive Newton methods with globally superlinear con-

vergence. arXiv preprint arXiv:2002.07378, 2020.

Yuchen Zhang and Lin Xiao. DiSCO: Distributed optimiza-

tion for self-concordant empirical loss. In Proceedings of

the 32nd International Conference on Machine Learning,

PMLR, volume 37, pages 362–370, 2015.

Peilin Zhao and Tong Zhang. Stochastic optimization with

importance sampling. The 32nd International Conference

on Machine Learning, 37:1–9, 2015.

