

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

DISTRIBUTED SENSOR NETWORKS

SEMIANNUAL TECHNICAL SUMMARY REPORT

TO THE

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

1 APRIL -30 SEPTrEMBER 1981

ISSUED 5 MAY 198 DTIC
AELECTE

JUN 18 1982

B

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

i/u

ABSTRACT

This report describes the work performed on the DARPA

Distributed Sensor Networks Program at Lincoln Laboratory

during the period 1 April through 30 September 1981.

1C.c91sion or
-- TI S G :.iI V/

1)p~ r 1 1.CT., -

Dist ~5C.

CONTENT S

Abstract i

1. INTRODUCTION AND SUMMARY

11. TEST-BED CONFIGURATIONS PLAN 3

111. TEST-BED STATUS 1

A. Nodal Signal Processing Subsystem 11

13. Real-Time Tracking 13I
C. MC68000 System Software 18

D. Data-Recording and Signal- Processing Software 20

WV. COMMUNICATION AND SELF-LOCATION

SUBSYSTEM 23

A. DCU Hardware Development 23

B. Timing Considerations Z4

V. ADVANCED NODE ARCHITECTURE 27

VI. MISCELLANEOUS 31

A. Inter-Process Communication in a Distributed
Environment 31

B. CPU and Memory Resource Control in a
Tracking Processor 31

C. Distribution of Tracking Tasks Over Multiple
Processors 34

V

DISTRIBUTED SENSOR NETWORKS

I. INTRODUCTION AND SUMMARY

The Distributed Sensor Networks (DSN) program is aimed at developing

and extending target surveillance and tracking technology in systems that em-

ploy multiple spatially distributed sensors and processing resources. Such

a system would be made up of sensors, data bases, and processors distributed

throughout an area and interconnected by an appropriate digital-data commu-

nication system. Surveillance and tracking of low-flying aircraft has been

selected to develop and evaluate DSN concepts in the light of a specific system

problem. A DSN test bed that will make use of multiple small acoustic arrays

as sensors for low-flying aircraft is being developed and will be used to test

and demonstrate DSN techniques and technology. This Semiannual Technical

Summary (SATS) reports results for the periodri April through 30 Sep-

tember 1981.

A plan for the evolution of the test-bed hardware configuration during the

next year has been formulated and is presented in Sec. II. At the end of that

period, each test-bed node will contain a Digital Communication Unit (DCU),

up to two attached Motorola 68000 processors for tracking, and a signal-

processing subsystem. The signal-processing subsystem also provides for

data recording and playback. The test bed will also include an Experimental

Control Computer that can serve to provide interim internodal communications

by means of telephone lines.

The present status of the test-bed hardware and software is reported in

Sec. III.

Four nodes are now operational for data acquisition purposes. One of

those is installed in a vehicle for mobile operation, but the vehicle currently

equires access to commercial power. An order has been placed for an

coustically quieted generator to remedy this situation. Three nodes now

contain array processors that will be used to perform signal processing in

b4

real time. With minor exceptions, all the hardware required for the signal-

processing and data-recording subsystems for six nodes is now on hand.

Two test-bed nodes have had Motorola 68000 processors added to them

and have been used to demonstrate real-time azimuth tracking by those two

nodes, using precomputed and recorded signal -processor outputs as inputs.

Azimuth track outputs from the two sites were combined using a PDP-1 1/70 to

produce posiion tracks and confirm that it will be possible to do the same i

real time using a 68000. Progress with the design and development of test-bed

software for the 68000 processors and the signal -proce ssing subsystem is

also reported.

The results of a preliminary design effort directed at the development of

an experimental Communication and Self-location subsystem for the DSN test

bed are reported in Sec. IV. The system will consist of a Digital Communi-

cation Unit that is being developed within the DSN project and a Radio Unit

(RU) that is being developed as part of a separate Communications Network

Technology program. The DCU will be fabricated primarily of commercial

board-level components, including a Motorola 68000-based single-board

computer. The status of our investigation into more advanced multiprocessor

computer configurations for test-bed nodes is summarized in Sec. V.

Section VI reports on papers that have been written dealing with inter-

process communication in a distributed environment and with resource control

in tracking processors. It also describes an approach for handling of target
hypothesis trees in a distributed system and how tracking tasks might be

distributed over processors.

I. TEST-BED CONFIGURATIONS PLAN

A plan has been formulated for developing the test-bed nodal hardware

over the next year in such a way as to enable both single-site and multisite

tracking to be accomplished in each node, and to provide necessary internodal

communications using both telephone lines and, eventually, radio communica-

tions. The plan provides for expansion of each node from the present configu-

ration to a multiple-processor configuration sufficient to experimentally sup-

port all essential DSN functions. Development of test-bed nodes beyond what

is described here will depend upon the results of our investigation of new

nodal architectures.

At the present time, two of the test-bed nodes are configured as shown in

Fig.II-1. This configuration consists essentially of a standard nodal signal pro-

cessing subsystem augmented with a Motorola 68000 computer. Other nodes

now contain only the signal-processing subsystem in various stages of deploy-

ment as reviewed in Sec. III. As shown in Fig.II-1, the J and L nodes are each

connected to a PDP-1/70 computer by two communication links. The

PDP-11/70 provides general-purpose software development and research ser-

vices to the DSN project and also provides experiment monitor and control

function for the attached nodes. The test-bed plan provides for a six-node con-

figuration with a dedicated Experiment Control Computer (ECC) replacing the

PDP-11/70 and with each test-bed node connected to the ECC through only one

communication line. The plan includes configurations for the ECC and its

usage as a communication emulator until the time that radios are integrated

into the test bed.

All nodal hardware shown in Fig.II-1, except for the 68000 Design Module

and the modems, constitutes the data-acquisition and signal-processing portion

of the nodes. These will remain unchanged, but the Design Module, which is

a now obsolete prototype board, will be replaced with the new 68000 Versamodule

systems. Six Versamodule systems have been purchased, one for each test-

bed node. The configuration for the new version 1 node is shown in Fig.II-Z.

It consists of a signal-processing subsystem controlled by the 11/34 and a 68000

processor which is used for both communications and tracking functions. The

3

!i_ A

TO J NODE

A/D MICROPHONE

DESIGN PP Ip 11/34

MOLNOLE

PP = PARLLEL POR

FTg. INL PrsnLofgrton MfAGNd Lnoes

4AP

L NODE

T115e-N TERMINAL MODEM TO ECC

IN PROC ESS OR CHA S_,sI

I VERSAMODULERET

MODULE SUBSSTE PROCESSO

SUBSYSTEM

LEGND P CNSOE PRT P PRLELPR

SPDE REEALEOR
113

Fig. 1-2. ersin i nde c niuain

TIME A/DF 9-RA5

node is capable of local operation by means of its attached terminal and of re-

mote operation over the network. In addition, the node is equipped with a Re-

mote Reset Device (RRD) which monitors the communication line for reset

codes. Upon receipt of an appropriate code, the RRD can interrupt the 68000,

reset the 68000, or reset the 11/34. This facilitates a recovery from a crash

in a remote node.

The main functional advances represented by the version 1 node and the

ECC are: (1) Improved nodal reliability and suitability for remote operation,

(2) ability to function with only one communication link per node, (3) ability to

operate the test bed as a truly distributed system with the ECC providing in-

ternodal communications by means of message switching between attached

communication links as indicated in Fig.I1-3. The ECC will also be used to

initialize the system and to monitor distributed-tracking experiments.

11/70

T i MONITOR

ECC TE TR NI

Fig.II-3. Role of the Experiment Control Computer (ECC)

in communications emulation and test-bed monitoring.

6

The configuration of the ECC is shown in Fig.II-4. It will use a 68000 pro-

cessor with 128K bytes of memory. The serial data links to each of the nodes

are interfaced to the ECC processor by means of Motorola MCCM cards which

support four DMA channels each. This will allow the links to operate at a full

9600 baud while minimizing the CPU time required. The ECC can be controlled

either locally, using the Tektronix display, or remotely from the 11/70 com-

puter. All program downloading into the nodes will be performed over the link

to the 11/70 via the ECC. Data logging can also be performed using the link

to the 11/70 although an architectural provision has been made for the future

addition of an ECC disk for this purpose.

For the version 1 nodal configuration, a single 68000 processor on each

node must be time shared to perform both single-site and multisite tracking as

well as simple communications through the ECC. This is a large load for a

single unit, and we are now considering whether we should evolve the nodes

directly into version 2 nodes. The version 2 nodal configuration shown in

Fig.II-5 provides for up to two tracking processors and a Digital Communica-

tions Unit that will be dedicated to communication functions. The DCU (which

is discussed in more detail in Sec. IV) and the Radio Unit and Modem will con-

stitute the Communication and Self-location subsystems for the test-bed nodes.

The RU is shown dotted because it will not be integrated into the nodes

until FY 83.

As shown in the figure, a remote maintenance module is included in

version 2. The function of this remote maintenance module is to allow remote

checkout of a node over the network and to reset or interrupt processors at-

tached to the DCU. Some of the remote maintenance functions planned for

implementation are:

(a) Turn on and off the battery charger.

(b) Turn on and off calibration speaker.

(c) Monitor battery power to microphones.

7

TKRNXTO 11/70 jI8ON
TEKTONIXMODEM

DISPLAY

J1 F

LOCAL/
REMOTE
SWITCH

F -INSIDE PROCESSOR CHASSIS

REMOTE VMOI1 1 28K-BYTE I DISK I
RESET PROCESSORMEOY ICNRLR

T VICEMMR ONRLE
EVICE BOARD L-

VERSABUSI

ICC IC
ISERIAL SERIAL
ICC'

ADIINL 00 0 0 0 0

TO NODESjFig.II-4. Experinr :;ntrol Computer configuration.

8

.

SRADIO I 111'71-NI

I UNIT I

-
TERMINAL MODEM TO ECC

LOCAL!/
REMOTE

CP HP s CP

REMOTE DIGITALSI CD SGNL
MAINTENANCE PP COMMUNICATION PROCESSING

MODULE UNIT SUBSYSTEM

PP1 SIDSPP

PPj - C CP PP PP

68000 68000
TRACKING TRACKING
PROCESSOR PROCESSORt t t t

RESET INT RESET INT

LEGEND PP PARALLEL PORT

SP SERIAL PORT
CP = CONSOLE PORT

Fig.II-5. Version 2 node configuration with two tracking processors.

9

-... - -- . , L - - -i ~~

4

While most of the new features of the nodes are oriented toward operating

the system as a network, provision will be retained for operating nodes in a

data-collection mode. It will continue to be possible to load the 11/34 from

magnetic tape and operate it in stand-alone mode under local terminal control.

i1

iI

:14

i 10

III. TEST-BED STATUS

A. NODAL SIGNAL PROCESSING SUBSYSTEM

The following summarizes the hardware status of the test-bed signal

processing subsystems. These subsystems are comprised of the elements

shown within the dotted line of Fig. H1-2. The basic elements provide sensing,

data recording, time stamping, and signal- processing capabilities for all node

configurations.

As of this, writing, four signal processing subsystem nodes are operational

for data acquisition purposes. Three of these are also operational for signal

processing. The microphone array and calibration speaker for a fifth node

have been deployed on an unused radar tower in preparation for the installation

of the electronics for that node. One of the operational data acquisition nodes

is the first of three planned mobile nodes. This mobile node was assembled

after the first of three custom vehicles, being purchased from Poindexter In-

dustries in Houston, Texas, was delivered in early September.

With the exception of one PDP-11/34 computer, which was returned to the

factory for replacement; one magnetic tape transport, presently on order; and

one array processor which is to be ordered, all hardware to complete the fifth

and sixth nodes is on hand. This hardware will be installed in the next two

DSN vehicles as they are delivered from Houston, Texas. At that time we will

have three fixed and three mobile nodes.

The first mobile node does not yet contain a self-contained power system.

Outlets to supply power are being installed at outdoor locations in close prox-

imity to presently deployed microphone arrays. This will allow any or all of

the mobile systems to be checked out and used with any of the established

arrays.

Specifications for a quiet engine/generator power system were submitted

to four manufacturers of such equipment. Bids were received and evaluated,

-nd a purchase order for one such system was issued to J & A Enterprises of

)wampscott, Massachusetts. The power system, scheduled for delivery in

December 1981, consists of an Onan I 5-kW gasoline -driven, air-cooled

11

engine/generator (E/G) set housed in a custom-designed sound- attenuating en-

closure. The E/G power system will mount on the rear platform of the DSN

vehicle. Figure III- 1 is a picture of the vehicle showing the rear platform,

measuring 6 x 8 ft, which will accommodate the E/G power system. Equip-

mnent racks are visible through the open door.

The microphone array at the Lincoln Laboratory Flight Facility was moved

from the hangar roof to an open grassed area west of the hangar area. This

required a 1000-ft signal cable run from the control electronics to the array.

Calibration and noise -background recording tests have shown this node to be

completely operational and in a much better location than was the case before

the move. Figure 111- 2 shows the array in its new location with the calibration

speaker off to the left of the array.

Time-of-day (TOD) timing systems using both NBS WWVB time broadcasts

and Geostationary Operational Environmental Satellite (GOES) time transmis-

sions were evaluated for use as a common source to time synchronize the six

DSN nodes (for time tagging data tapes, etc.). The satellite TOD clock system

was found far superior to the WWVB radio system for our purposes. The pri-

mary reason for this was the weak WWV#VB signal levels in this area. With the

satellite system, time synchronization was never lost after the system was

turned on. The True Time Instrument' s model 468-DC TOD digital clock sat-

ellite unit was evaluated, and six of these units with appropriate antennas

have since been ordered and received. Installation of the clock systems at the

nodes is under way at the present time. The construction of six DSN timer

units was completed during the past quarter, and all have been checked out with

the 11/34 computer interface. It is through these timer units that the TOD

clocks communicate with the 11/34 computer.

B. REAL-TIME TRACKING

In the prior SATS, 1 it was reported that the single-site tracking algorithms

had been converted to run on a Motorola 68000 processor. This work has been

expanded to allow the demonstration of real-time tracking of targets by two

nodes. In this demonstration, prerecorded outputs from signal -processing

algorithms are input to single-site trackers running in the two nodes at a

13

I

MULTISITE LOCATION IIW57-
AND TRACKING

POSITION
POSITION TRACKS
TRACK

DISPLAY DS

RD " N SPOOLED

AZIMUTH

TRACKS
FROM L NODE J NODE

0

MICROPHONES A/D
TAK

LIED11-*)/34 68000 4014

RECORED
MAGNETIC DATA SINGLE- AZIMUTH

APE PEAKS SITE TRACK

TRACKING DISPLAY

I I~PROCESSORI

SIGNAL
PROCESSING

Fig. 111- 3. Experimental data flow.

14

real-time rate. The output from the trackers is then transmitted to a central

11/70 computer where the azimuth tracks are combined in real time to gener-

ate target location tracks.

The experimental configuration used from this demonstration is shown in

Fig. 111- 3, which is similar to Fig. 11- 1, but with emphasis placed upon the

use of that configuration for the real-time demonstrations. The two nodes are

designated L and J, corresponding to the buildings on which the acoustic arrays

for these nodes are located. Each of these nodes has a Motorola 68000 proces-

sor which performs single-site tracking and communicates track outputs to

the PDP-11/70 over a 9600-baud line. Each node contains a PDP-11/34 com-

puter, which controls the data acquisition and the signal processing. The

11/34 is also connected to the PDP-11/70 by a 9600-baud line for program

loading. The J node is equipped with a Tektronix 4014 graphics display which

is used fcr displaying azimuth tracks in real time. The PDP-11/70 computer

is also equipped with a Tektronix display on which the locations and position

tracks of the targets can be displayed.

The hardware configuration of Fig. 111- 3 will support processing live data

from microphones, recording of live and processed data, and processing of

previously recorded data. Pending completion of the real-time signal process-

ing software, raw microphone data are recorded onto magnetic tape. This isI then processed off line to produce a tape containing peaks (estimated target
power levels and azimuths). The peak tape is then mounted, and the peak re-

cords are read by the 11/34 and passed to the 68000 in simulated real time.
The peak data are then processed by the single-site tracking software to pro-

duce azimuth tracks as a function of time. Tracking load and performance

are exactly as they would be with live data being processed through the signal

processor in real time. Azimuth tracks are transmitted over 9600-baud links

to the 11/70. In addition, the azimuth tracks for node J can be displayed on

the graphics display attached to that node.

Azimuth track data are spooled into disk files upon being received by the

PDP- 11/70. The multisite location and tracking algorithm takes its inputs

from these spool files. Spooling is used so that the multisite tracking need

not run in real time. This facilitates testing when other users are sharing the

i5

11/70. With no other users on the 11/70, the multisite location tracker oper-

ates in real time, including the display of position tracks on an attached Tek-

tronics 4014 terminal.

The multisite location algorithm uses the location technique described

previously.2 In this algorithm, each azimuth track point received from a node

is compared with azimuth tracks from other nodes to form locations. These

locations are then formed into position tracks, which are plotted on the graph-

ics display. The algorithm now runs in the 1/70 computer. It will be con-

verted to run in a nodal 68000 processor for future experiments and demon-

strations in the test bed. The algorithm is implemented using dynamically

allocated lists for nodal azimuth tracks and for target tracks. As a result it

can accommodate different scenarios and variations in the number of nodes

in the network.

The multisite location algorithm used less than 12 percent of the 11/70

CPU time when processing two-node data, with an average of two azimuth

tracks per node as input. The processing load will increase with the number

of nodes and the number of tracks per node. We estimate that it should be

possible to process inputs from at least four nodes in real time with a single

68000 processor.

For the existing algorithms, the single-site tracker is a larger consumer

of CPU time than the two-site location tracker. Depending upon its parameter

settings, it can consume more than the available CPU time in a single 68000

processor. Consequently, a study of processor resource allocation methods

was undertaken as part of the initial tuning of the single-site tracker to make

it run in real time in a single processor. That study is reported separately

in Sec. VI- 2.

To assist in the study of processing bottlenecks in the single-site tracker,

a special piece of hardware was constructed to non-intrusively measure the

average time consumed within any section of code. The device is triggered

to start and stop elapsed-time measurements based upon access to specific

addresses on the 68000 bus. The addresses are settable using DIP switches.

Using this hardware, it was found that the clustering routine used far more

CPU time than expected. As a result, the clusterer was rewritten from a

16

"combine the closest pair" algorithm to a stream clusterer, which improved

the speed considerably.

Figure 111-4 shows the position tracks obtained from a 3-min. run using 1
data recorded during the fly-by of a T-28 aircraft. The track of the T-28 is

also shown for comparison as is the map showing highways and other major

features in the vicinity of the experiment. Graphic displays of two-site tracks,

with a background map and scales, are produced as part of the output of the

two-site tracking algorithm.

0
z T28 FLIGHT

PATH

J 0OD~~L NODE

0

-2

2 -1 0 1 2

KILOMETERS EAST

Fig. 11I-4. Target position track plot for T-28 aircraft data.

As a result of these activities we have:

(1) Confirmed that we can operate our single-site tracking

algorithms in real time in a single 68000 processor, pro-

vided that the number of targets is small.

17

oV

4e

(2) Confirmed that our multisite locator algorithm will

operate in real time in a single 68000 processor for

a small number of nodes. This conclusion is based

upon the fact that a two-node PDP-1 1/70 version op-

erates in real time using only a small fraction of the

PDP- 11/70.

In addition, considerable insight has been gained concerning the performance

of tracking algorithms and the interactions between the algorithms, the esti-

mation of azimuths by the signal -processing software, and the geometrical

configuration of the targets and tracking nodes. This can now be applied to

improve algorithms and system performance.

C. MC68000 SYSTEM SOFTWARE

Extensions are being made to the 68000 executive software to support DMA

and interrupt -driven I/0, as well as multitasking. These extensions are being

made to provide the support necessary for the development of applications-

level software for the Experiment Control Computer (ECC) and the Digital Con-

trol Unit (DCU). The philosophy of the planned extensions is to make them as

simple as possible.

We now operate our 68000' s without a resident operating system. User

programs obtain operating system level services by means of calls to execu-

tive subroutines. These subroutines are contained in the run-time library

which is linked with the user's program prior to downloading from the 11/70

computer. This same philosophy will be continued, with the extensions taking

the form of added subroutine calls.

Programs are developed using the PDP- 11/70 computer where they are

edited, compiled, assembled, and link edited with the run-time library. The

resultant absolute load module is downline loaded into the 68000 over a serial

ASCII link. The code is executed in the 68000 under the control of a small

ROM resident monitor that provides breakpoint debugging facilities. Programs

are mostly written in the C language with executive routines patterned after

UNIX routines whenever possible.

18

A load module is able to run on any configuration 68000 system provided

that the 68000 is equipped with suitable ROMs. These ROMs contain a device

table and other configuration data which are interrogated by the executive-

level routines. These routines are then able to modify their actions to be

appropriate to the configuration on which they are being run. This technique

avoids having to generate separate load modules for each configuration and

thereby simplifies software development.

The current 68000 i/o package supports programmed 1/0. That is, data

are read from, or written to, theVI/ control circuitry directly by the pro-

cessor. Interrupts are not used and data are transferred only at the time an

1/0 request is made by the user's program. This has been adequate for exist-

ing tracking and display programs that talk to one I/O port at a time. How-

ever, the DCU and the EGG must handle multiple asynchronous data streams

with moderate to high data rates. At the same time, they must be capable of

communicating with their operator console terminals. Interrupt -driven I/O

software is being implemented to handle such data streams in parallel and to

handle the DMA devices that will be required to provide some of these services.

The console and host ports will be run under interrupts using ring buffers.

For DMA devices, the user processes will provide the necessary buffers. In

all cases, the I/O control will be by means of queues and queued objects. TheI queued objects will be requests to fill or empty the user I/O buffers. Each
I/0 channel will have separate input and output request queues. Execution of
user requests will be done in the background by the interrupt I/O routines.

Multitask operation of the 68000 is necessary for the EGG, the DGU, and

for running single-site and multisite tracking in one CPU. In each case, the

tasks will operate as a group to achieve a common goal. Also they will oper-

ate in a sympathetic environment where the actions of one task can be modified

to meet the needs of another. This situation has allowed us to plan a simple

implementation in which all the tasks are loaded as one module and in which

tasks are not protected from one another.

A design document for these extensions has been prepared and is being

used as the basis for implementation. The present implementation status is

that most of the interrupt -driven I/0 routines have been completed and

19

rudimentary multitasking has been tested. The major items still to be com-

pleted are serial and parallel DMA I/O drivers and the use of time functions

in multitasking operations.

D. DATA-RECORDING AND SIGNAL -PROCESSING SOFTWARE

A new Data Acquisition System (DAS) has been designed for the nodal

PDP-11/34 processors and will be implemented to replace the previous Data

Acquisition System 2 '3 and the Analysis Server. The new design incorporates

nodal signal processing and data recording in one package. The design is more

general than the previous one and provides flexibility for algorithm and perfor-

mance experimentation. In addition, the primitive operations needed to make

use of the nodal array processors for real-time signal processing have been

designed and implemented.

Data format changes have been made as follows. First, time stamp and

node identification information are added to the output data. Second, checksum

and resynchronization information are added to allow the data to be sent to in-

tercomputer communications ports as well as to magnetic tape. Third, mod-

ifications were made to allow handling of data other than unprocessed acoustic

time series. This includes cross spectra, single-channel power spectra,

wavenumber spectra, and peaks in wavenumber spectra, as well as parametric

information about the nodal hardware and software configuration. Fourth, pro-

vision was made for links between parametric data records and other data

records whose interpretation depends upon the parameters.

The data formats designed for the new DAS represent an experimental use

of computer information storage and communication concepts that are quite

different from those usually employed in computer systems. Our general idea

is to think in terms of fixed value sets rather than in terms of variables that

take on different values at different times. For example, much of the data in

a DSN can naturally be considered as time series. Such a time series is a set

of values, or value set, where each value has a unique identifier containing the

time of the value and a name for the conceptual variable to which the value be-

longs. The values are constants, they never change, and they can be stored

and rebroadcast indefinitely without any logical inconsistency arising in the

information structure.

20

In the new DAS the data values are called external objects, and are fairly

large structures. They contain a 16-byte external object identifier, and at

least one 8-byte external structure header (external structures are explained

below), in addition to any communications protocol information. The size of

the external objects will range from several tens of bytes to several kilobytes.

An external object is a modular entity composed of a sequence of struc-

tures called external structures. The first external structure in an object

serves as a header and contains the object identifier along with sequencing in-

formation used in magnetic tape and simple one-way communications media

protocols. The next external structure is the principal structure in the object,

i.e., the data. Following the principal structure are optional print names,

time-and-node stamp, comment, and error message structures.

In defining external object formats it was necessary to address the issue

of computer- independent standards for binary data representation. Our solu-

tion, suggested in part by the INTERNET protocol, 5was to adopt the byte-

oriented format of the IBM 360, in which numbers are 1, 2, 4, or 8 bytes long

and are aligned at a displacement within their containing structure which is an

exact multiple of their length. For numerical representation, we have adopted

the IBM standard for integers and the IEEE standard for floating point. Both

standard and computer- specific external objects are allowed. Since a 1-byte

integer is stored in the same way by all computers, a part of the external ob-

ject header is used to indicate if the object is standard or for a specific com-

puter type.

In addition to formulating a new DAS design, the primitives needed to in-

teract with the FPS-120B array processors attached to the PDP-11/34's in

the test-bed nodes have been defined and implemented. With these tasks com-

pleted, we can now proceed to implement real-time signal -proc es sing algorithms

in the test-bed nodes and implement improved data collection software that will

provide for processed as well as unprocessed data collection.

The primitives for dealing with the FPS-120B copy data and code between

the PDP-11/34 and array processor memories, start an array processor func-

tion, and wait for the array processor to complete a processing step. They

are executed by the PDP-11/34, and they provide the programmer with

21

considerable flexibility in using the array processor. Array-processor and

general-purpose code can be easily mixed.

The memory copy primitive copies blocks of data between addresses in a

single 32-bit address space -into which both PDP-11 and array processor mem-

ory have been incorporated. Input and output routines can use memory copy

to input directly to the array processor memory or to output directly from

that memory. The same array processor memory can be accessed under dif-

ferent addresses to get the same information in different formats, e.g., an

array processor word may appear as a 32-bit PDP-11 floating-point number

when accessed with one address, or as a 16-bit fixed-point number when ac-

cessed with another address. Memory copy is implemented as a sequence of

atomic units that copy up to 32 bytes and then stop to allow the PDP-11 to in-

terrupt. This avoids potential timing problems in a real-time system.

REFERENCES

i. Distributed Sensor Networks Semiannual Technical Summary,

Lincoln Laboratory, M.I.T. (31 March 1981), DTIC AD-A108275.

2. Ibid. (31 March 1980), DTIC AD-A091766/6.

3. Ibid. (30 September 1979), DDC AD-A086800/0.

4. Ibid. (30 September 1980), DTIC AD-A103045/1.

5. "DoD Standard Internet Protocol," Comput. Commun. Rev. 10,
12-51 (1980).

22

IV. COMMUNICATION AND SELF-LOCATION SUBSYSTEM

A Communication and Self-location subsystem is being developed for use

in the DSN test bed. In the short term it will be used to provide internodaL

DSN communications by means of telephone lines interconnecting nodes through

a single switching computer. In the longer term it will provide all necessary

test-bed communications and sef-location functions by means of digital radios.

The subsystem will consist of two parts: a Digital Communications Unit (DCU)
and a Radio Unit (RU). The results of a preliminary design effort directed at

the development of the communication subsystem are reported below. The RU

is being developed under a companion Communications Network Technology

program.

A. DCU HARDWARE DEVELOPMENT

Hardware options for the implementation of a DCU have been investigated

and a decision made to maximize the use of off-the-shelf hardware for the test-

bed DCUs. A tentative decision was made to use the Motorola Versamodule

family of boards for the DCU and the following report reflects that decision,

but the more recently available Stanford University Network (SUN) single-board

processors appear to be an interesting alternative. We will evaluate the use

of those processors in the DCU before completing a detailed design and starting

implementation. The SUN card interfaces to the very widely used Multibus,

whereas the Versamodule interfaces to the less widely used Versabus.

Each DC J in the test bed will consist of monoboard computers, additional

memory boards, boards with high-throughput parallel DMA channels, and an

additional experimental board to provide extra serial I/O ports and remote

maintenance and control services for test-bed nodes. The minimum essential

configuration will be with one computer, one memory board, one DMA board,

and one experimental board.

The Versamodule monoboard computer includes two serial 9600-baud

ports, 32K of RAM, 32K of PROM, timers, and four programmed parallel I/O

ports. One serial port can be used to interface to a local terminal and the

other for a phone-link connection through modems to the test-bed Experiment

23

Control Computer. The four parallel I/O ports can be used to monitor or con-

trol other subsystems in the node.

A four-channel parallel DMA board has been announced by Motorola, and

its suitability for use in the test-bed DCU is being investigated. The tentative

plan is to use three of the channels to interface the DCU to the RU. Two

16-bit parallel channels will be reserved for receiving and sending packet text.

Although the RU will operate in half-duplex mode, two channels will be used

because a transmit packet might be preempted by a reception. The third chan-

nel is allocated to half-duplex status and command communications between

the DCU and RU. It will alternately pass command and status records that al-

low the DCU to control the RU and that inform the DCU of RU packet receptions

and transmissions as well as other RU status information. The fourth channel

is a candidate for a high-speed interface between the DCU and the rest of the

test-bed node.

The memory board in a DCU will provide for data transfer between the

DCU and RU on a non-interference basis with the DCU processor board and

will provide the extra memory needed to support all self-location as well as

communication functions. If necessary, an additional processor board will be

added to support self-location. In the early stages of use in the test bed, with

communications provided by telephone lines, the DCU will also support a lim-

ited amount of tracking software.

Versamodule back planes now come in four-slot modules so there is a

size, weight, and cost penalty in going beyond four boards in a single DCU.

But to minimize the design and development of special boards and maximize

use of commercial boards, it appears that the test-bed DCU may contain as

many as six Versamodule boards. It does not appear that there would be a

corresponding problem with the use of the Multibus and SUN processors. That

option offers the potential for reduced size, weight, and cost with equivalent

or improved functionality.

B. TIMING CONSIDERATIONS

The RU will be a pseudonoise spread-spectrum unit with code changing

for each bit throughout a packet. The spreading code for the first bit of a

24

packet is called the seed code. The seed determines the rest of the sequence

in a packet, and the seed will be changed under DCU control as a function of

time. The seed will be changed no more often than once each 10 ms, and no

individual node will broadcast more than one packet in a 10-ms interval. This

allows for enough broadcasts to provide the needed DSN communications and,

because the seed changes often and is not reused by any transmitter, will pro-

vide good resistance against repeat jammers.

Consistent with the 10-ms minimum time between possible changes in

code seeds and transmission of packets, time in the communication subsystem

will be decomposed into two components. A fast component will keep track of

times smaller than 10 ms, and a slow component will keep track of time in

units of 10 ms. The slow time will be maintained by software in the DCU, and

the fast time will be maintained in hardware by the RU. The 10-ms beat will

be provided to the DCU by the RU hardware clock. The use of 10-ms code

changing intervals and a number of other implementation issues have led to

this decomposition. The DCU will select the slots in which the RU is to at-

tempt transmissions. It will initiate a transmission attempt by the RU in a

selected slot by means of a command packet sent to the RU in the previous

slot. The command will specify the desired start time within the slot. When

a received packet is sent from the RU to the DCU, the RU will also report the

arrival time of the first bit in the packet. The reported time will specify only

the time of arrival within the 10-ms slot in which the bit arrived.

The fast clock will advance in increments of 10.81081 ns (the reciprocal

of the system clock of 92.5 MHz). A 20-stage binary counter in the RU will

provide the clockword. (A count of 925,000 corresponds to 10 ms and in the

absence of time slew commands is the maximum count before reset.) As men-

tioned, the RU hardware clock provides the 10-ms "beat" for the DCU soft-

ware clock. Conversely, the DCU will shift the node's perception of the slot

boundary by providing a slew adjustment word to the fast clock. Part of each

command packet from the DCU will specify the length of the next 10-ms inter-

val in terms of a count of 10.81081 fast ticks. The purpose of clock slewing

in a node is to align the 10-ms ticks of a node with those of its neighbors so all

the nodes will be transmitting and receiving with the correct seeds to facilitate

communication.

25

The following outlines one way that new nodes can achieve synchronization

with an operating network although the node may initially have no a priori

knowledge of network time. At random times and at random nodes, an operat-

ing network can broadcast timing packets using a seed known to all potential

participants in the network. Such a packet would contain both network time

(the slow clock) and the packet transmission time within whatever I 0-ms in-

terval it was transmitted. A new unsynchronized node need only listen using

the known seed until it receives a packet. It then can set its DCU clock exact-

ly and can compute the slew needed to align its 10-ms ticks with those of the

network. The alignent accuracy will be determined primarily by the unknown

propagation time of the timing packet that was used. This will be on the order

of 50 pLs or less, depending upon the distance between nodes. A subsequent

bilateral packet exchange between the new member and any synchronized older

member can be used to determine the absolute range between the two nodes as

well as provide a vernier estimate of the remaining clock offsets. The remain-

ing clock difference will be eliminated via the slew mechanism, and the internode

range will be added to self-location tables. Clock alignment after such a se-

quence will be on the order of a single tick of the fast clock. Of course, clocks

will slowly drift relative to each other and distributed procedures will be re-

quired to routinely monitor such drift and provide corrections to keep synchro-

nization within acceptable bounds.

Startup, network synchronization, and self- location measurements are

ongoing DSN research areas. The approach outlined above is the one being

considered for initial test-bed implementation, with a single node arbitrarily

selected at startup to be the network nucleus.

26

V. ADVANCED NODE ARCHITECTURE

Alternatives are being investigated for multiple-processor DSN nodes

beyond the version 2 configuration shown in Fig. 11-5. The overall specifica-

tion and preliminary design for an advanced multiple-processor DSN nodal

processor has been completed. Motorola 68000's have been used as the basic

processor in the system. From the architectural point of view, each nodal

processor is flexible both in number of 68000 processors and in the amount of

memory these processors may share. The system can be viewed as groups of

processors having both private and shared memory, with groups further inter-

connected by a packet bus.

During the next two quarters we plan to review our design, investigate

other alternatives as outlined below, and select an alternative that will be used

for experimental purposes in the test bed. Implementation of our present spec-

ification for a DSN nodal processor would require the detail design and develop-

ment of a new 68000-based single-board computer as part of the nodal processor

development. Major objectives of the coming months will be to simplify the

existing design, adopt commercially available processor boards if possible,

and formulate a plan for developing advanced nodes and incorporating them

into the test bed. The following summarizes the status of our investigation of

alternatives to our existing preliminary design.

We have just received detailed documentation for BBN's Butterfly Proces-

sor for consideration as an alternative advanced node processor element. We

will review this documentation and evaluate the BBN processor in terms of the

DSN application. Some of the areas of concern are the lack of a priority mech-

anism in messages, the possible inability of the memory map to rapidly expand

virtual segments, and the likelihood that the microcode in the Processor Node

Controller co-processor will not meet our needs and may be difficult to modify.

Not unexpectedly, several new single-board computers have recently ap-

peared on the commercial market and one in particular may be well suited to

the DSN context. The board is now a commercial offering by Forward Tech-

nology, and other sources are expected to be available shortly. It is based on

27

the Stanford University SUN machine whose development was sponsored by

DARPA. It is comparatively inexpensive ($3500), has 256 kB (kilobytes) of

local memory with parity, a memory map which will rapidly expand virtual

segments, and a counter/timer IC which provides one 16-bit timer for the

user. The board provides an interface to an IEEE 796 bus (Multibus) and is

immediately capable of supporting a shared-memory communication system

with a centrally arbitrated access to the shared memory. This leads to the

obvious advantage that commercial memory boards, which are already pro-

duced in volume, may be used in this system, and, in fact, large numbers of

1/0 devices are also readily available for installation on an IEEE 796 bus.

As mentioned in Sec. IV, the SUN processor is also being considered as

the basis for the Digital Communication Unit (DCU) that is to be part of the

DSN test bed. The use of this processor for the DCU as well as for advanced

nodal multiprocessor experimentation is attractive since the DCU could then

be just another homogeneous element of an advanced nodal configuration.

In the Forward Technology board (as in the BBN implementation), pro-

tection of the shared memory is specified by the originator of a read or write

operation. This means that if a process in one processor crashes, it may

very well corrupt shared data. If other processors rely upon the validity of

that data, the crash may propagate. On the other hand, erecting a firewall

against this crash propagation by requiring validation of all shared data before

use will impose a fairly heavy load on the processors. It is likely that the

same firewall in a message-based system, such as our packet bus design,

will load the processors less heavily because the overhead for checking an

entire message Is paid only once, rather than once per word.

Neither the Butterfly nor the SUN processors have any of the special

software and hardware maintenance features which we incorporated in our

own design. However, if the processors could be augmented with these fea-

tures, then the major difference between them is essentially the inter-processor

communication mechanism. The Forward Technology processor supports

shared-memory communication, and the BBN machine emulates this mode

in addition to providing a block copy function. The BBN processor, however,

28

it1

provides a higher potential aggregate bandwidth for communications than

either the Forward Technology machine or our design, but without any avail-

able prioritized access to communications. Neither the Forward Technology

nor the BBN machines provide multidrop or broadcast modes for messages

as our design does.

,;

VI. MISCELLANEOUS

A. INTER-PROCESS COMMUNICATION IN A DISTRIBUTED
ENVIRONMENT

We are continuing general investigations into software aspects of

inter-processor communication systems for real-time distributed environ-

menits. A paper 1 that deals with this problem area has been written and will

appear in the IEEE Transactions on Communications. It discusses the im-

portant issues of reliability, process congestion, throughput and response

time and then proposes an inter-process communication system based upon

queueable objects. It deals with the logical aspects of inter-process com-

munication, not with the details associated with any particular communication

medium. The idea is to devise a uniform software interface for inter-process

communication so that processes can communicate in the same way over a

range of physical interconnections from shared virtual memory to radios.

The inter-process communication system discussed in the paper is an out-

growth of the queueable -object communication system which we have imple-

mented and use in the PDP-1 1/34 computers in the test-bed nodes.

B. CPU AND MEMORY RESOURCE CONTROL IN A TRACKING
PROCESSOR

While developing tracking software to run in the test bed, it became ap-

parent that the number of hypotheses could exceed the memory available to

hold them and the CPU time available to process them. This motivated us to

investigate how to control these limited resources to obtain good performance

while operating within the constraint of available resources. The results of

this investigation will be published, and are summarized here.

Figure VI-1 shows a simple hierarchical hypothesis generation model that

corresponds to our acoustic tracking algorithms. In this model, processing

is done in frame intervals of T seconds. Sensor inputs arrive every T sec-

onds, and are processed to generate level-1 hypotheses, which are used to

generate level-2 hypotheses, and so forth. All the level-k hypotheses are

created or updated at one pass before proceeding to level k + 1. The hypotheses

at level k can be pruned before proceeding to level k + 1.

31

INTER -NODE TARGET TARGET

EXCHANGE TRACKS AZIMUTH

TASK 4 TASK I

LOCAIONSSELECT

LOCAIONSPEAKS

TASK 3 TASK 0

INTER - NODE AZIMUTH INPUT
EXCHANGE TRACKS PEAKS

TASK 2

Fig. VI-1. Hierarchical structure of acoustic tracking software.

32

IW.
6,

The nodal DSN tracking software is organized with one task responsible

for the generation, evaluation, and pruning of hypotheses at one level of the

hierarchy. A single such task performs the functions of the hypothesis Pruner

and the Knowledge Sources that generate and modify hypotheses in the Hearsay

system,3 ' 4 but only for a single level of the hierarchy.

We have used a simple model for the consumption of CPU time by tasks

to evaluate CPU control strategies. The model for the time required at level

k is:

T(k) = Cin (k) N(k- I) + Cout (k) NI(k)

where N(k) is the number of hypotheses output from level k and input to level

k + I, N1(k) is the number of hypotheses generated at level k before pruning

to N(k), and Cin (k) and Cout (k) are proportionality constants expressing the

processing time per hypothesis input and generated at level k, respectively.

This model assumes that the processing time is a linear function of the hy-

pothesis counts, which is a reasonable approximation for our DSN algorithms.

For the system to operate in real time, the sum of the T(k) within a

frame interval T must be less than T. Some approaches that might be used

to do this are:

(1) Generate all feasible hypotheses, but save only those

better than some threshold V(k).

(2) Randomly generate feasible hypotheses up to some

maximum limit M(k).

(3) Generate all feasible hypotheses, keeping only the

best M(k).

(4) Generate a random set of Mi(k) feasible hypotheses,

keeping only the best M(k).

Obviously it is desirable to retain hypotheses at any level in the hierarchy

that are the support for high-quality hypotheses at higher levels. Our analysis

of resource control strategies assumed that we can formulate local quality

measures for each level such that the selection of good hypotheses will tend to

produce hypotheses that are the support for good hypotheses at higher levels.

33

In order to evaluate the alternative strategies, we required a model for

the generation of feasible hypotheses. A Poisson model was selected. The

appropriateness of this choice was tested using 10 min. of acoustic data re-

corded at one of our test-bed arrays. The distribution of the peaks generated

by the signal-processing algorithms, each peak corresponding to a feasible

hypothesis at the bottom of the hypothesis hierarchy, was measured and found

to be well approximated by a Poisson distribution.

The four control techniques suggested above have been reviewed using

the Poisson assumption and the linear CPU time model. Method (4) was

judged to be the best alternative for initial use by us in the test bed on the

basis of performance and implementation simplicity. With M1(k) and M(k)

fixed, there are absolute upper limits on resource usage so real-time operation

can be assured. But MI(k) can be selected large enough so that very few

high-quality hypotheses are completely missed. A number of runs with ex-

perimental data have been used to select the two parameters for each task.

The organization of memory to hold hypotheses was also considered. If

the memory required to store one hypothesis at level k is H(k), then the total

memory required is the sum of H(k) M(k) for all levels plus the largest value

of [Ml(k) - M(k)J H(k), to allow memory for generating hypotheses prior to

pruning. By suitably choosing the parameters M(k) and Ml(k), we can ensure

that the number of hypotheses does not exceed the amount of memory available

to hold them. This is provided that the memory space occupied by hypotheses

that are eliminated is made available for reuse. We could achieve total reuse

by preallocating the space for the MI(k) hypotheses at each level, plus a shared

buffer used to temporarily hold the excess hypotheses that are generated prior

to pruning. For the DSN tested, we are using a dynamic memory allocation

scheme for the hypotheses. This offers the benefit of allowing the system to

accommodate changes in 1I\(k) and M(k) while it is running. Such changes

might eventually be made in response to changes in performance goals.

C. DISTRIBUTION OF TRACKING TASKS OVER MULTIPLE
PROCESSORS

The hierarchical task structure discussed in the preceding section leads

to a straightforward decomposition over multiple processors with one or more

34

layers assigned to each processor. The tasks can be assigned to minimize

interprocessor traffic while maximizing the use of the combined CPU time of

the processors. This will typically result in tasks residing in the same pro-

cessor as their input hypothesis level, although this is by no means essential.

In the existing tracking software, hypotheses are kept on linked lists with

one list per level of the hypothesis tree. The tracking tasks utilize a List

Management System (LMS) to access the hypotheses. To create a new hypoth-

esis, the routine lwrite(list, position, &structure) is used, where "structure"

is the hypothesis structure to be entered into the list. To retrieve a hypothesis

the routine lread(list, position, &structure) is used, where "structure" is the

structure into which the hypothesis is to be copied. Hypotheses may be mod-

ified by the lrewrite routine.

The following describes how the LMS system will be modified to handle

the situation when the hypothesis tree is distributed over several processors.

The LMS software running in each processor will maintain tables of the as-

signment of different lists in the hypothesis tree to different processors. When

an access request to a particular list is made, the LMS software will deter-

mine if it is in the local processor or in another. If the list is in the local

processor, the access request will be fulfilled locally. If the list is in a re-

mote processor, a message requesting the list function will be sent to that

processor to obtain the requested service. This message will contain the

hypothesis in the case of an lwrite, or simply the request in the case of an

Iread. The remote processor will reply with a message containing the hypoth-

esis, in the case of an tread, or an acknowledgment in the case of an Lwrite.

The result will be returned to the tracking task that initially requested the

service. As the tracking tasks use the same calls to LMS for both local and

remote accesses, the tracking code will be independent of which processor

it runs in.

A general software structure to implement this is shown in Fig. VI-2. At

the top level are the tracking tasks which call LMS subroutines to access the

hypothesis database. These routines communicate with a guardian of the

hypothesis lists being maintained in the local CPU. The guardian has a table

35

TRACKING TRACKING TRACKING TRACKING
TASK TASK TASK TASK

LMS SUBROUTINES

IF

GUARDIAN GUARDIAN LOCAL

TABLE TASK HYPOTHESIS
LISTS

MESSAGES

=MESSAGE
H

SWITCHMESG

TABLE SWITCH

STRANSPORT TRANSPORT

TASK TASK]

1115875-N]

Fig. VI-2. Software structure for a distributed List Management
System (LMS).

36

indicating which lists are maintained by which processor. If the list is in the

local processor, the guardian performs the requested action. If the list is not

local, the guardian will send a message to the guardian in the appropriate

processor.

Messages between guardians will be handled by a general Message Switch

in each processor. It will handle messages on the basis of DSN node identi-

fication, processor within the node, and task within the processor. Messages

will be switched between local tasks. When a message is destined for another

processor, it will be switched to the local task that interfaces to that processor.

For destinations within the same node, the task will be the one handling the

local hardware connection to the processor. For processors on other nodes,

the task will be an interface to an appropriate communication network. Such

tasks are indicated by the Transport Tasks in the figure.

Message switch tables and guardian tables will initially be assigned man-

ually and will be compiled into the load modules for each individual processor.

This is simple to implement and will suffice for many DSN experiments. The

dynamic allocation and modification of these tables is a topic for future DSN

work.

REFERENCES

1. R. L. Walton, "Rationale for a Queue able Object Distributed
Inter-Process Communication System," to be published in the
IEEE Transactions on Communications.

Z. P. E. Green, "Resource Control in a Real-Time Tracking
Processor," to be published in the Conf. Record, Fifteenth
Asolimar Conf. on Circuits, Systems, and Computers,
Pacific Grove, California, 9-11 November 1981.

3. L. D. Erman and V. R. Lesser, "The Hearsay-II System: A
Tutorial," Chap. 16 in Trends in Speech Recognition, W. A. Lea,
Ed. (Prentice-Hall, Englewood Cliffs, New Jersey, 1980).

4. V. R. Lesser and L. D. Erman, "Distributed Interpretation: A
Model and Experiment," IEEE Trans. Comput. C-29, 1144-1162
(1980).

37

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FOR
I. REPORT NUMBER GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

ESD-TR-82-012 9
4- TITLE faend Subiile) S YEO EOT&PRO OEE

Distributed Sensor NetworksIApi-30Stebr18

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR/,) S. CONTRACT OR GRANT NUMBER(s)

Richard T. Lacoss F19628-80-C-M02

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREAL& WORK UNIT NUMBERS

Lincoln Laboratory. M .. T. ARPA Order 3345
p.O0. Box 73 Program Element Noe. 61101E and 62708E
Lexingtonl, MA 02173-0073 Project Nos. ID30 and ITIO

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency 30 September 1981
1400 Wilson Boulevard 13. NUMBER OF PAGES
Arlington, VA 22209 44

14. MONITORING AGENCY NAME & ADDRESS (if dsfferees lion Controlling Office) 15. SECURITY CLA4S. (of this report)

Electronic Systems Division Unclassified

Hansom AB, M 01715IS. DECLASSIFICATION DOWNGRADING
SCH EDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract ensured in Block 20, if dilfrena Poa. Report)

14. SUPPLEMENTARY NOTES

None

19. K EY WORDS (Continue on revers side if necessary and Identify by block numnber)

multipie-sensor surveillance system acoustic sensors

mliledetection low-flying aircraft

target surveillance and tracking acoustic array processing
communication netwrk digital radio

70. ABSTRACT (Contjae en reerse aide if necessary and identify by block nsumber)

7his report describes the work performed on the DARPA Distributed
Sensor Networks Program at Lincoln Laboratory during the period 1 April
Uirougb 30 September 1981.

1D JAN71 1473 EDITION OF I NOV 65 IS OBSOLETE UCASFE

SECURITY CI.ASSIFtCAYION OF THIS PAGE (When Dole Entered)

