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ABSTRACT
In this paper we consider distributed K-Nearest Neighbor
(KNN) search and range query processing in high dimen-
sional data. Our approach is based on Locality Sensitive
Hashing (LSH) which has proven very efficient in answering
KNN queries in centralized settings. We consider mappings
from the multi-dimensional LSH bucket space to the linearly
ordered set of peers that jointly maintain the indexed data
and derive requirements to achieve high quality search re-
sults and limit the number of network accesses. We put
forward two such mappings that come with these salient
properties: being locality preserving so that buckets likely
to hold similar data are stored on the same or neighboring
peers and having a predictable output distribution to ensure
fair load balancing. We show how to leverage the linearly
aligned data for efficient KNN search and how to efficiently
process range queries which is, to the best of our knowledge,
not possible in existing LSH schemes. We show by compre-
hensive performance evaluations using real world data that
our approach brings major performance and accuracy gains
compared to state-of-the-art.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing—
Indexing methods; H.4.m [Information Systems]: Miscel-
laneous
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Distributed High Dimensional Search
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1. INTRODUCTION
The rapid growth of online information, triggered by the

popularity of the Internet and the huge amounts of user-
generated content from Web 2.0 applications, calls for effi-
cient management of this data to improve usability and en-
able efficient and accurate access to the data. User-generated
data today range from simple text snippets to (semi-) struc-
tured documents and multimedia content. To enable rich
representation and avoid loss of information, the number
of features extracted to represent the data is very often
high. Furthermore, as the data sources are naturally dis-
tributed in large-scale networks, traditional centralized in-
dexing techniques become impractical. To address the de-
manding needs caused by this rapidly growing, large-scale,
and naturally distributed information ecology, we propose in
the following an efficient, distributed, and scalable index for
high-dimensional data enabling efficient and accurate simi-
larity search.

Peer-to-Peer (P2P) overlay networks are well-known to
facilitate the sharing of large amounts of data in a decen-
tralized and self-organizing way. These networks offer enor-
mous benefits for distributed applications in terms of ef-
ficiency, scalability, and resilience to node failures. Dis-
tributed Hash Tables (DHTs) [30, 28], for example, allow
efficient key lookups in logarithmic number of routing hops
but are typically limited to exact or range queries. Simi-
larity search in high dimensional data has been a popular
research topic in the last years [9, 17, 32, 8, 14]. Distributed
processing of such queries is even more complicated, but is
unavoidable due to the inherently distributed way data is
generated in the Web. Existing approaches to the similarity
search problem in high dimensional data either focus on cen-
tralized settings, as cited above, rely on preprocessing data
centrally, assume data ownership by peers in a hierarchical
P2P setting or fail at providing both high quality search
results and a fair load balance in the network [16, 29, 15].

In this paper we consider similarity search over high di-
mensional data in structured overlay networks. Inspired by
the idea of Locality Sensitive Hashing (LSH) technique [17,
14] which probabilistically assigns similar data to the same
bucket in a hash table, we first investigate the difficulties of
directly applying this method to a distributed environment
and then devise two locality preserving mappings which sat-
isfy the identified requirements of bucket placement on peers
of a P2P network. The first requirement, placing buckets
which are likely to hold similar data on the same peer or its
neighboring peers, aims at minimizing the number of net-
work hops necessary to retrieve the search results, causing
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a decrease in both network traffic and the overall response
time. The second requirement considers load balancing and
is satisfied by harnessing estimates of the distribution of
resulting data (bucket) mapping. The basic ideas for our
approach appeared in a preliminary short paper at a work-
shop [19]. This current work substantially extends the prior
work in the following ways: we capture the notion of buck-
ets likely to hold similar data, enabling more elaboration
on suitability of different mapping scheme. We propose an-
other novel mapping schemes which satisfies our identified
requirements. We also address range queries which are diffi-
cult to process in LSH-based indexing techniques and show
how our proposed mappings can be used to derive estimates
of the range of necessary peers to be visited. In addition, we
extended our experimental evaluation by considering more
datasets and comparing against state-of-the-art.

1.1 Problem Statement and System Overview
In similarity search objects are characterized by a collec-

tion of relevant features and are represented as points in a
high dimensional space. In some applications the objects
are considered in a metric space where only a distance func-
tion is defined among them and the features of the objects
are unknown. However, with the advances in metric space
embedding (cf.[1]) a vector space assumption is valid and
realistic. Given a collection of such points and a distance
function between them, similarity search can be performed
in the following two forms:

• K-Nearest Neighbor (KNN) query: Given a query point
q the goal is to find the K closest (in terms of the dis-
tance function) points to it.

• range query: Given a query point q and a range r the
goal is to find all points within a distance r of q.

In many applications returning the approximate KNN of
a point, instead of the exact ones, suffices. The approximate
version is even more desirable when the data dimensionality
is high, as similarity search is very expensive in such do-
mains. Here, the goal is to find K objects whose distances
are within a small factor (1+ε) of the true K nearest neigh-
bors’ distances. The quality of similarity search is measured
by the number of returned results, as well as the distances
to the query for the K points returned compared to the cor-
responding distances of the true K nearest objects for KNN
queries.

We consider similarity search in structured peer-to-peer
networks, where N peers P1, ..., PN are connected by a DHT
that is organized in a cyclic ID space, such as in Chord [30].
Every node is responsible for all keys with identifiers be-
tween the ID of its predecessor node and its own ID. Our
underlying similarity search method is probabilistic and re-
lies on building several indices of data to achieve highly ac-
curate query results. We assume each of these data indices
is maintained by a subset of size n of all peers where n is an
order of magnitude smaller than N . Each of these subsets
form a local DHT among themselves. For each replica of the
data we deterministically select a subset of peers to hold the
corresponding index, i.e., not all peers hold a share of the
index from the beginning. These initially selected peers are
gateway peers to the corresponding local DHTs. The num-
ber of peers/nodes inside each local DHT might grow/shrink
over time depending on the load of the system. The loca-
tions (IDs) of the gateway peers is global knowledge based
on a deterministic sampling process with fixed seed value.
However, not the peers are known but only their IDs in the
underlying network. We explain this process in more detail

in Section 4. If a gateway peer is not accessible, the peer cur-
rently holding the gateway peer ID is asked to join the local
DHT using one of the other gateway peers. These dynamics
are handled by the underlying network and are beyond the
scope of this paper.

Our goal is to map the high dimensional data to the peers
in a way that assures fair load balancing in the local DHTs
and at the same time enables efficient and accurate KNN
and range query processing.

1.2 Contribution and Outline
With this work we make the following contributions:

• We discuss the difficulties of distributing existing LSH
schemes and derive requirements to distribute them in
a way that assures fair load balance and efficient and
accurate similarity search processing.

• We present two novel mapping schemes which satisfy
the mentioned requirements.

• We present a top-K algorithm to efficiently process
distributed KNN queries.

• We show, relying on our mapping schemes, how otherwise-
difficult-to-process range queries can be efficiently pro-
cessed in our setting by presenting a novel sampling-
based method which utilizes our estimated range of
peers necessary to contact.

• We experimentally evaluate the efficiency and effec-
tiveness of our approach using two real-world data sets.

The rest of this paper is organized as follows. Section
2 discusses related work. Section 3 presents the require-
ments of distributing LSH indices to the linear peer domain
and puts forward two mappings which satisfy those require-
ments. Section 4 concentrates on the creation of the local
DHTs. Section 5 presents the KNN query processing al-
gorithms. Section 6 addresses the challenges in processing
range queries and presents an approach based on range sam-
pling to overcome these constraints. Section 7 presents the
experimental evaluation of our approach. Section 8 con-
cludes the paper.

2. RELATED WORK
Similarity search in high dimensional spaces has been the

focus of many works in the database community in the re-
cent years. The problem has been intensively researched on
in the centralized setting, for which the approaches can be
divided into two main categories. Space partitioning meth-
ods form the first category consisting of all tree-based ap-
proaches such as R-tree [18] and K-D trees [7], which per-
form very well when data dimensionality is not high but de-
grade to linear search for high enough dimensions [9]. The
Pyramid [8] and iDistance[32] techniques map the high di-
mensional data to one dimension and partition/cluster that
space to answer queries by translating them to the one di-
mensional space. The second category consists of hash-based
approaches which trade accuracy for efficiency, by return-
ing approximate closest neighbors of a query point. LSH
[17] is an approximate method, which uses several local-
ity preserving hash functions to hash the data, such that
with high probability close points are hashed to the same
bucket. While this method is very efficient in terms of time,
tuning such hash functions depends on the distance of the
query point to its closest neighbor. Several follow-ups of
this method exist which try to solve the problems associ-
ated with it [6, 14, 23, 25, 2]. Very recently [4] proposed
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a method based on distance hashing which has the advan-
tage of not depending on any specific distance measure, but
involves some off-line tuning of parameters. Approximate
range search in high dimensions has also been the focus of
some works such as [3, 12] which return points in (1 + ε)r
of the query point, instead of retrieving points which have
exactly distance smaller or equal to r to the query point. In
this work we do not consider approximate ranges queries.

With the emergence of the P2P paradigm [30, 28], there
has been a tendency to leverage the power of distributed
computing by sharing the cost incurred by such methods
over a set of machines. A number of P2P approaches, such
as [13, 10, 11] have been proposed for similarity search, but
they are either dedicated to one dimensional data or do not
consider very high dimensional data. MCAN [16] uses a
pivot-based technique to map the high dimensional metric
data to an N-dimensional vector space, and then uses CAN
[28] as its underlying structured P2P system. The pivots are
chosen based on the data, which is preprocessed in a cen-
tralized fashion and then distributed over the peers. SWAM
[5] is a family of Small World Access Methods, which aims
at building a network topology that groups together peers
with similar content. In this structure peers can hold a single
data item each, which is not well-suited for large data sets.
SkipIndex [33] and VBI-tree [21] both rely on tree-based ap-
proaches which do not scale well when data dimensions are
high. In pSearch [31], the well known information retrieval
techniques Vector Space Model(VSM) and Latent Seman-
tic Indexing(LSI) are used to generate a semantic space.
This Cartesian space is then directly mapped to a multi-
dimensional CAN which basically has the same dimensional-
ity of the Cartesian space (as high as 300 dimensions). Since
the dimensionality of the underlying peer-to-peer network
depends on the dimensionality of the data (or the number
of reduced dimensions) different overlays are needed for vari-
ous data sets with different dimensionality. This dependency
and centralized computation of LSI make this approach less
practical in real applications. In [29] the authors follow
pSearch by employing VSM and LSI, but map the result-
ing high dimensional Cartesian space to a one dimensional
Chord. Unlike pSearch this method is independent of corpus
size and dimensionality. This is the closest work in state of
the art to us, since it considers high dimensional data over a
structured peer-to-peer system. We compare our approach
to this work and explain it in more depth in Section 2.1.
Recently, SimPeer [15] was proposed, which uses the princi-
ple of iDistance [20] to provide range search capabilities in a
hierarchical unstructured P2P network for high dimensional
data. In this work also, the peers are assumed to hold and
maintain their own data. On the contrary, we consider effi-
cient similarity search over structured P2P networks, which
guarantees logarithmic lookup time in terms of network size,
and leverage on LSH-based approaches to provide approx-
imate results to KNN search efficiently, even in very high
dimensional data. Our approach also enables efficient range
search which is difficult in LSH-based approaches.

2.1 The Approach by Sahin et al.
Here we briefly describe the approach of [29]. A globally

known list R = r1, r2, ..., rv of reference data points is con-
sidered. These are either randomly chosen from the data set
or are the cluster representatives of a clustered sample set.
In order to index a data point v, it is compared against all
reference points and a sorted list of references in increasing
distance to v is constructed. The first j references, which are
the reference points closest to v are used to make the Chord
key for it: the binary representations of the ID’s of these j
references are concatenated, with the highest relevant refer-

ence as the high order bits. If there are any remaining bits
in the Chord bit representation, they are filled with zeros.
The intuition behind this approach is that points which are
close to each other, share common top references and will
therefore be stored at the same peer. In order to increase the
probability of this event, multiple Chord keys are made for
each data point, choosing j different reference points, or dif-
ferent permutations of them. At query time, the query point
is similarly mapped to the Chord ring and the correspond-
ing peers are scanned with the K closest points returned
and merged at the peer issuing the query. Figure 1 shows
an example of indexing a data point. This approach of map-
ping data points to the Chord ring focuses on placing close
points on the same peer and does not exploit nearby peers.
For example a data point q close to v might have (r6, r4) as
its two first closest references, corresponding to the Chord
key 1001100000, resulting in placing it on a far peer from
where v is placed (i.e. 1101000000). In our approach we
aim at placing close points on the same peer or neighbor-
ing peers to exploit the linear order of peers in Chord style
DHTs and avoid high number of DHT lookups.

Sorted reference list (v) = {r6,r4,r0,r5,r2,r1,r3,r7}
R = {r0,r1,r2,r3,r4,r5,r6,r7}

Reference points
to create Chord keys

Corresponding 
Chord keys

(1st,2nd)

(1st,3rd)

(2nd,3rd)

(r6,r4)

(r6,r0)

 (r4,r0)

1101000000

1100000000

1000000000

Figure 1: Illustration of mapping a data point v to
the Chord peer space by Sahin. The number of ref-
erences is 7, the Chord range is (0, 210), j is 2 and
each data point is replicated three times.

2.2 Revisiting LSH
The basic idea behind the LSH-based approaches is the

application of locality sensitive hashing functions. A family
of hash functions H = {h : S → U} is called (r1, r2, p1, p2)-
sensitive if the following conditions are satisfied for any two
points q,v ∈ S:

• if dist(q,v) ≤ r1 then PrH(h(q) = h(v)) ≥ p1

• if dist(q,v) > r2 then PrH(h(q) = h(v)) ≤ p2

where S specifies the domain of points and dist is the
distance measure defined in this domain.

If r1 < r2 and p1 > p2, the salient property of these func-
tions results in more similar objects being mapped to the
same hash value than distant ones. The actual indexing
is done using LSH functions and by building several hash
tables to increase the probability of collision (i.e. being
mapped to the same hash value) for close points. At query
time, the KNN search is performed by hashing the query
point to one bucket per hash table, scanning that bucket
and then ranking all discovered objects by their distance to
the query point. The closest K points are returned as the
final result.

In the last few years, the development of locality sensitive
hash functions has been well addressed in the literature. In
this work, we consider the family of LSH functions based
on p-stable distributions [14]. This family of LSH functions
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are most suitable when the distance measure between the
points is the lp norm. Given a point v = v1, . . . , v2 in the d-
dimensional vector space, its lp norm is defined as: ||v||p =

(|v1|p + ...+ |vd|p)1/p.
Stable Distribution: A distribution D over IR is called p-
stable, if there exists p ≥ 0 such that for any n real numbers
r1 . . . rn and i.i.d. variables X1 . . . Xn with distribution D,
the random variable

∑
i riXi has the same distribution as

the variable (
∑
i |ri|

p)1/pX, where X is a random variable
with distribution D. p-stable distributions exist for p ∈
(0, 2]. The Cauchy and Normal distributions are respectively
1-stable and 2-stable.

In the case of p-stable LSH, for each d-dimensional data
point v the hashing scheme considers k independent hash
functions of the following form :

ha,B(v) = ba · v +B

W
c (1)

where a is a d-dimensional vector whose elements are cho-
sen independently from a p-stable distribution, W ∈ IR, and
B is drawn uniformly from [0,W ]. Each hash function maps
a d-dimensional data point to an integer. With k such hash
functions, the final result is an integer vector of dimension
k of the the following form:

g(v) = (ha1,B1(v), ..., hak,Bk (v)) (2)

In this work we assume the distance function is the widely
used l2 norm (Euclidean distance) and use the Normal dis-
tribution as our p-stable distribution.

In LSH-based schemes, in order to achieve high search
accuracy, multiple hash tables need to be constructed. Ex-
perimental results [17] show that the number of hash ta-
bles needed can reach up to over a hundred. In centralized
settings this causes space efficiency issues. While this con-
straint is less visible in a P2P setting, a high number of hash
tables results in another serious issue arising specifically in
this environment. In order to visit all hash tables (which
is needed to answer the KNN query with good accuracy) a
large number of peers may need to be contacted. Solutions
to this shortcoming in centralized settings [23, 25] suggest
investigating more than one bucket in each hash table, in-
stead of building many different hash tables. The main idea
is that we can guess which buckets other than the bucket
which the query hashes to, are more likely to hold data that
is similar to the query point. In our envisioned P2P scenario,
jumping from one bucket to another can potentially cause
jumping from one peer to another, which induces O(log n)
network hops in a network of n peers. In the following sec-
tion, we discuss and introduce mapping schemes which allow
us to significantly reduce the number of incurred network
hops during query time by grouping those buckets which are
likely to hold similar data on the same peer, while effectively
balancing the load in the network.

3. MAPPING LSH TO THE PEER IDENTI-
FIER SPACE

Given the output of the p-stable LSH, which is a vector of
integers, we consider a mapping to the peer identifier space,
denoted as ξ : Zk → IN.

Different instances of the mapping function ξ come with
different characteristics w.r.t. to load balancing and the abil-
ity to efficiently search the index. In terms of network band-
width consumption and number of network hops, clearly,
a mapping of all data to just one peer is optimal. Obvi-
ously, this mapping suffers from a huge load imbalance. The
other extreme is to assign each hash bucket to a peer using

a pseudo-uniform hash function that provides perfect load
balancing but steals any control on grouping similar buckets
on the same peer, therefore causing an excessive number of
DHT lookups. More formally, ξ should satisfy the following
two conditions:

• Condition 1: assign buckets likely to hold similar data
to the same peer.

• Condition 2: have a predictable output distribution
which fosters fair load balancing.

Figure 2 shows an illustration of the overall mapping from
the d-dimensional space, to the k-dimensional LSH buckets,
to finally the peer identifier space using ξ.

d-dimensional
Data

k-dimensional
p-stable LSH bucket space

...

...

...

...

⎥⎦
⎥

⎢⎣
⎢ +⋅

W
Bva Peer identifier space

Figure 2: Illustration of the two level mapping from
the d-dimensional space to the peer identifier space.

We first try to capture the semantics of similar buckets:
buckets likely to hold close data. The first condition of the
LSH definition states that close points are more likely to be
mapped to the same hash value. However, it is not clear
which hash buckets are more probable to hold similar data.
This has been discussed also in [23, 25] in a query-dependent
way. However we need a more general view, as mapping
buckets to peers should be independent of queries. We show
that using hash functions of the form of Equation 1 close
points have a higher probability of being mapped to close
integers, that is, integers with small l1 distance. This is
more general than the LSH definition, i.e. being hashed to
the same value. Since bucket labels are concatenations of
such integers, we argue that the l1 distance can capture the
distance between buckets, buckets likely to hold close data
have small l1 distance to each other. We prove the following
theorems following the above argument.

Theorem 1 For any three points v1,v2,q ∈ S where
||q−v1||2 = c1 and ||q−v2||2 = c2 and c1 < c2 the following
inequality holds:

pr(|h(q)− h(v1)| ≤ δ) ≥ pr(|h(q)− h(v2)| ≤ δ)
Proof. Let s(c, δ) := pr(|h(q) − h(v)| ≤ δ) and t(c, δ) :=
pr(|h(q)− h(v)| = δ) where ||q− v||2 = c. Then s(c, δ) can
be written as s(c, δ) = t(c, 0) + · · · + t(c, δ). We want to
show that for any fixed δ, s(c, δ) is monotonically decreas-
ing in terms of c. We first derive t(c, δ). Our argument is
similar to that of [14]. Since elements of the random vector
a are chosen from a standard Normal distribution, a.q−a.v
is distributed according to cX where X is a random variable
drawn from a Normal distribution. Therefore the probabil-
ity distribution of |a.q − a.v| is 1

c
f(x

c
) where f(x) denotes

the probability density function of the absolute value of the
standard Normal distribution (i.e., the mean is zero and the
variance is one) :

f(x) =

{
0 if x < 0

2√
2π
e−x

2/2 if x ≥ 0
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For δ = 0, in order to have |h(q) − h(v1)| = δ, |a.q −
a.v| has to be in [0,W ). Depending on the exact value of
|a.q− a.v| different range of values for B can leave |h(q)−
h(v1)| = 0 or change it to |h(q)− h(v1)| = 1. For example
if |a.q − a.v|=0, all values of B ∈ [0,W ) keep the desired
values |h(q) − h(v1)| = 0. The size of this range of val-
ues for B decreases linearly as |a.q − a.v| increases inside
[0,W ), until it reaches 0 for |h(q)−h(v1)| = W . Since B is
drawn uniformly at random from [0,W ], the following can
be derived:

t(c, 0) =

∫ W

0

1

c
f(
u

c
)(1− u

W
)du

The case for δ > 0 is similar. However this time, a bigger
range of values ([(δ − 1)W, (δ + 1)W )) for |a.q − a.v| can
satisfy |h(q) − h(v1)| = δ . The argument regarding B is
similar to above. Therefore the following can be seen:

t(c, δ) =

∫ (δ)W

(δ−1)W

1

c
f(
u

c
)(
u

W
− (δ − 1))du

+

∫ (δ+1)W

(δ)W

1

c
f(
u

c
)((δ + 1)− u

W
)du (3)

Summing up all values of t(c, d) for d ≤ δ, we arrive at
the following for s(c, δ):

s(c, δ) =

∫ (δ+1)W

0

1

c
f(
u

c
)du+

∫ (δ+1)W

(δ)W

1

c
f(
u

c
)(δ − u

W
)du

With a change of variable v = u
c

we can eliminate all
occurrences of c inside the integrals and take the derivative
of s(c, δ) in terms of c. Given that

∫
uf(u)du = −f(u), this

will lead us to:

∂s(c, δ)

∂c
=

1

W
(f(

(δ + 1)W

c
)− f(

(δ)W

c
))

which is smaller than 0 for all values of c > 0, as f(x) is
monotonically decreasing. Therefore for any fixed δ, s(c, δ)
is monotonically decreasing in terms of c. 2

Theorem 2 For any two points q,v ∈ S, pr(|h(q) −
h(v)| = δ) is monotonically decreasing in terms of δ.

Proof. Let ||q − v||2 = c. From Theorem 1, pr(|h(q) −
h(v)| = δ) is equal to Eq. 3. It is easy to see that if we take
the derivative from this equation in terms of δ we arrive at
the following:

∂t(c, δ)

∂δ
= −

∫ (δ)W
c

(δ−1)W
c

f(u)du+

∫ (δ+1)W
c

(δ)W
c

f(u)du

which is smaller than zero, as the range of the two in-
tegrals is equal, the term under both is the same and is
monotonically decreasing and non negative for the values
under comparison. 2

The above two theorems indicates that l1 can capture the
distance between buckets in terms of probability of holding
close data: Given bucket labels b1,b2 and b3 which are
integer vectors of dimension k, if ||b1−b2)||1 < ||b1−b3||1,
then b1 and b2 have a higher probability to hold similar data
than b1 and b3.

Having a better understanding of the semantics of similar
buckets, we now discuss two mappings which satisfy the two
conditions mentioned above.

3.1 Linear Mapping based on Sum
We propose ξsum(b) =

∑k
i=1 bi as an appropriate place-

ment function which can be used to map the k-dimensional
vector of integer b, as the output of p-stable LSH, to the
one dimensional peer identifier space. The intuition is that
the sum treats all bucket label parts bi equally and that mi-
nor differences in the bi values are smoothed out by the sum
leading to close ξsum() values for “close” bucket labels. In
the following, we show how relying on p-stable LSH and its
characteristics, it satisfies both conditions above.

We first investigate condition 1. As discussed in the pre-
vious section, buckets which are likely to hold similar data
have small l1 distance to each other. Given ξsum as our
mapping function we have: |ξsum(b1) − ξsum(b2)|=|(b11 −
b21)+ · · ·+(b1k−b2k)| ≤ ||b1−b2||1. Which means if buck-
ets with labels b1 and b2 are likely to hold similar data,
ξsum(b1) and ξsum(b2) will also be close. Given the assign-
ment of data to peers in Chord-style overlays, this results in
assigning the two buckets to the same or neighboring peers
in the Chord ring with high probability.

As for the second condition, assume d-dimensional points,
a and v1. If elements of a are chosen from a Normal dis-
tribution with mean 0 and standard deviation 1, denoted as
N(0,1), a · v1 is distributed according to the Normal distri-
bution N(0, ||v1||2). For not too large W , ha,B(v1) is dis-

tributed according to the Normal distributionN( W
2W

, ||v1||2
W

)
where h is function of the form Eq. 1. Therefore g(v1) will
be a k -dimensional vector, whose elements follow the above
distribution. We can now benefit from a nice property of
the Normal distributions under summation: ξsum(g(v1)) is
distributed according to the Normal distribution

N(
k

2
,

√
k||v1||2
W

)

The global picture consisting of all data points v1, . . . ,vM

first projected using p-stable LSH and then mapped to Z by
ξsum, following the Normal distribution

N(
k

2
,

√
k
∑
i ||vi||22√
MW

)

We can therefore predict the distribution of the output
of ξsum, having an estimate of the mean of data points’ l2
norm. We assume that we know the mean norm of avail-
able data, but as we will later see, this assumption is only
relevant for the start-up of the system where gateway peers
are inserted into the hash tables. Calculating statistics, like
in our case the mean, over data distributed in large-scale
systems has been well addressed in the literature (cf., e.g.,
[22]). In Section 4 we show how this can be used to balance
the load in the network.

3.2 Linear Mapping based on Cauchy LSH
As another instance of ξ we propose the LSH function

based on Cauchy distribution (1-stable) which offers a prob-
abilistic placement of similar buckets on the same peer. More
formally, for a bucket label b,

ξlsha′,B′ (b) = ba
′ · b +B′

W2
c

where elements of a′ are chosen independently from a
standard Cauchy distribution with probability distribution
function
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cr(x;x0, γ) =
1

πγ

1

1 + (x−x0
γ

)2

where the location parameter x0 = 0, scale parameter γ =
1, W2 ∈ IR, and B′ is chosen uniformly from [0,W2]. Note
that b denotes a bucket label and is a k dimensional vector
of integers which is itself the output of an LSH function
applied on a d-dimensional data point. Given that this LSH
function is most suitable for the l1 norm and that l1 captures
the dissimilarity among buckets, ξlsha′,B′ probabilistically

satisfies condition 1.
The output distribution of this function is similarly pre-

dictable. Assume a bucket label b1. Given the characteris-
tics of p-stable distributions, a′ · b1 follows the distribution
||b1||1X where X is a Cauchy distribution. For not too large
W2, ha′,B′(b1) is distributed with the probability distribu-
tion function

cr(x;
W2

2W2
,
||b1||1
W2

)

a Cauchy distribution with location parameter 1
2

and

scale parameter ||b1||1
W2

. Now, considering all bucket labels,

b1, . . . ,bP mapped to Z by ξlsha′,B′ , the output follows the

Cauchy distribution with location parameter 1
2

and scale

parameter
∑
||bi||1
PW2

. In this case, to be able to predict the

distribution of the output, we need the mean of l1 norms of
all possible bucket labels. Since the initial hash functions
ha,B are known to all peers, this again boils down to the
problem of distributed statistics calculation [22].

4. LOCAL DHT CREATION
To map a particular domain of integer values to a (subset

of) peers, it is important to know the size and distribution of
the domain. As discussed in Sections 3.1 and 3.2 the values
generated by ξsum and ξlsh follow known distributions. We
briefly describe how this information can be utilized to cre-
ate local DHTs which as described in Section 1.1 maintain
the data index, for a more detailed description see [19].

Consider a linear bucket space of M buckets in which we
want to distribute the values generated by the ξsum map-
ping. The case for ξlsh follows similarly. Let µsum, σsum be
the mean and the standard deviation of the values gener-
ated by ξsum (cf. Section 3). We choose the first bucket (at
position 1) to be responsible for µsum−2∗σsum and the last
bucket (at position M) to be responsible for µsum+2∗σsum.
We restrict ourselves to the span of two standard deviation
to avoid overly broad domains and map the remaining data
to the considered range via a simple modulo operation:

ψ(value) := (
value− (µsum − 2 ∗ σsum)

4 ∗ σsum
∗M)modM (4)

As mentioned in Section 1.1 we want to maintain each
particular LSH hash table (which is an index of the whole
data points) by a subset of peers that is usually some orders
of magnitude smaller than the global set of peers. To limit
the responsibility of maintaining one hash table to a subset
of peers, we dynamically form separate local DHTs for each
hash table as follows: At system startup, we place γ peers
at predefined positions (known by all peers) based on the
normal distribution N(µsum, σsum) by sampling γ values
from N(µsum, σsum) and mapping them to buckets in the
range of {1, ..,M} using ψ.

For a particular number of initial peers and the sampled

values, we consider

ρ(value, l) := (ψ(value) + hash(l))mod |G|

as the mapping of a (value, l)-pair to the global set of peers
G, where l is a hash table id. ρ consists of two components,
the previously described ψ function and hash(l) as an offset
for global load balancing. The peers responsible for these ρ
values are invited to join (create) the particular DHTs.

The case for ξlsh is similar, just we use the location and
scale parameters of the predicted Cauchy distribution in
Equation 4 since mean or standard deviation are not de-
fined for Cauchy distributions. Also at start up, peers are
sampled from the predicted Cauchy distribution.

The number of peers dynamically grows inside each lo-
cal DHT by overloaded peers issuing requests on the global
DHT to find peers to join the local DHT on a particular
position (bucket). In case of access load problems, the gate-
way peers can call for a global increment of the number of
gateway peers, i.e., increase the number of possible gateway
peers that will subsequently be hit by requests and hence
invited to join the local DHTs maintaining the LSH hash
tables. We can benefit from the rich related work on load
balancing techniques over DHT, such as the work by Pi-
toura et al [26], that replicates “hot” ranges inside a Chord
style DHT and then lets peers randomly choose among the
replicated arcs.

4.1 Handling Churn
We will now discuss possible ways to handle churn, in

particular, peers leaving the system without prior notice,
but leave any detailed analysis and in particular the impact
of the low level (DHT based) churn handling mechanisms to
the overall performance as future work.

To handle churn it is common practise to introduce a cer-
tain degree of replication to the system. One such replication
based mechanisms has been already introduced above when
presenting the concept of multiple gateway peers per local
DHT which solves the following problem: If a peer lookup
on one of the predefined positions leads to a peer that is not
currently in the local DHT as a gateway peer, that peer is-
sues a lookup on one of the other entry points and joins the
particular hash table it belongs to. We can furthermore add
two more ways of replication: (i) replication of complete
local DHTs and/or (ii) replication within particular local
DHTs. While approach (i) is straight forward to implement
it is extremely coarse and more suitable for handling access
load problems (hot peers) rather than handling churn in an
efficient way. Approach (ii) seems to be more suitable for
handling churn: neighboring peers within each local DHT
could maintain also the index of their immediate neighbors
and in case of a peer failure transmit the replicas to the new
peer joining the free spot. Both approaches certainly cause
higher load on the system not only in terms of storage but in
particular in terms of message exchanges to keep the replicas
in sync. We will investigate the impact of replicated local
DHTs in our future work and for this paper concentrate on
the actual indexing mechanisms. Note that in addition to
the replication mechanisms presented above, the underlying
global DHT might use replication of routing indices as well,
which is treated by us as a black box.

5. KNN QUERY PROCESSING
Given l LSH hash tables, a query point q = (q1, ..., qd)

is first mapped to buckets g1(q) . . . gl(q) using the p-stable
LSH method. The query initiator then uses one randomly
selected gateway peer per local DHT as an entry to that
local DHT. Subsequently, the responsible peer P for main-
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taining the share of the global index that contains gi(q) is
determined by mapping gi(q) to the peer identifier space us-
ing ξ(gi(q)), as defined above. The query is passed on to P
that executes the KNN query locally using a full scan and
passes the query on. We restrict the local query execution to
a simple full-scan query processing since we do not want to
intermingle local performance with global performance. The
local query execution strategy is orthogonal to our work. For
the query forwarding (i.e., routing), we consider two possi-
ble options: (i) incremental forwarding to neighboring peers
or (ii) forwarding based on the multi probe technique [23].
The results return by all l hash tables are aggregated at the
query initiator and the K closest points to q are returned.

5.1 Linear Forwarding
We will now define a stopping condition for the linear

forwarding method. Let τ denote the distance of the Kth

object w.r.t. the query object q, obtained by a local full scan
KNN search. Peer P will pass the query and the current
rank-K distance τ to its neighboring peers Ppred and Psucc,
causing each one single network hop. Upon receiving the
query, Ppred and Psucc will issue a local full scan KNN search
and compare their best result to τ (cf. Algorithm 1). If the
distance dbest of the best document is bigger than τ , the
peer will not return any results and will stop forwarding the
query to its neighbor (depending on the direction, successor
or predecessor). The stopping condition can be relaxed by
introducing a parameter α and stop forwarding if dbest >
τ/α. α allows for either a more aggressive querying (α > 1)
of neighboring peers or for an early stopping (α < 1).

Input: query q, threshold τ , Pinit, direction
result[] = localIndex.executeLocalKnn(q);
if result[0].distance>τ/α then

done;
else

resultSet = ∅;
for (index=0; index<K; index++) do

if results[index].distance<τ/α then
resultSet.add(results[index]);

else
τ ′ = resultSet.rankKDistance();
sendResults(resultSet, Pinit);
forwardQuery(this.predecessor() or/and
this.successor(), τ ′, q, Pinit, pred or/and
succ);

end
end

end

Algorithm 1: Top-K Style Query Execution based on
the locality sensitive mapping to the linear peer space by
passing the query on to succeeding or preceding peers.

5.2 Multi-Probe Based Forwarding
The multi-probe LSH method [23] slightly varies the in-

tegers in g(q) and produces bucket ID’s which are likely to
hold close elements to q. For each of these modifications,
the method then probes the resulting bucket for new an-
swerers. We adapt this technique as an alternative to the
successor/predecessor based forwarding as follows: after the
full scan, the peer generates a list of buckets to probe next,
considering the maximum number of extra buckets. It is
very likely that some of these buckets have already been vis-
ited, thus they are removed from the list. For a generated
bucket g(q) with ξsum(g(q)) /∈]P.pred().id, P.id], the peer

issues a lookup in the local DHT and forwards the query
and bucket list to the peer responsible for ξ(g(q)). The peer
that receives the query, issues a full scan, removes visited
buckets from the list and forwards the query (cf. Algorithm
2).

Input: Local DHT L, query q, bucketlist, Pinit
result[] = localIndex.executeLocalKnn(q);
while (bucketlist.hasElement() do

b =bucketlist.removeBucket();
bucketId =ξ(b);
if bucketId ∈ ]P.pred().id, P.id] then

nothing to do;
else

Pnew = L.lookup(bucketId);
sendResults(Pinit, results);
forwardQuery(Pnew, ,bucketlist, Pinit);
break;

end
end

Algorithm 2: Multi Probe based Variant of the KNN
query processing.

The multi probe algorithm relies on the parameter that
specifies the maximum number of probes, whereas the linear
forwarding algorithm has a clear defined stopping condition.
The relaxation parameter α is optional.

6. RANGE QUERY
While LSH provides a nice solution to KNN query pro-

cessing in high dimensional data, unlike other methods, it
is difficult to extend it to range queries. This is because
specific LSH functions are designed to map points with cer-
tain distance from each other to the same hash value. The
parameter r1 in the definition of LSH functions indicates
this distance (cf., Section 2.2). Therefore different indices
should be made for different parameters r1 to satisfy range
search for different values of the range radius. However it is
impractical to construct a different index for each possible
range.

With mapping similar buckets to the same peer or to
neighboring peers, we can support also range queries. Sev-
eral buckets, which are likely to hold similar data to the
query are investigated.

6.1 Range Query Processing
Range query processing over the linearly mapped data is

different to the KNN queries as the overall objective is to
return all items within a particular range, i.e., the stop-
ping condition of the linear forwarding algorithm needs to
be adapted. The startup phase of the query processing is
the same as described in Section 5 for the KNN query algo-
rithms: for a given query we determine the peer responsible
for the bucket to which this point is mapped.

Once the starting peer is known and receives the query,
it will first execute the query locally using a full scan and
return all matching items to the query initiating peer, i.e.,
send all items within range < r. Subsequently, it will for-
ward the query to its neighboring peers. The forwarding
stops at a peer that does not have a single matching item.

While this processing seems to be intuitive it has the fol-
lowing serious drawback caused by an observation illustrated
in Figure 3. The range of the query is indicated by the long
arrow, the spot in the middle represents the query point.
Now, the three circles indicate the responsibility of peers for
the data items. Obviously, the data in the inner circle can
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be processed since it is maintained by the initial peer hosting
also the query point. Then, however, due to the often natu-
rally clustered data, the following up peer does not maintain
any items in the desired range hence causing the algorithm
to stop when having covered the range to the second inner
circle, thus missing relevant items.

To overcome this problem of “empty” ranges inside the
query range, we opt for sampling the range, i.e., starting
separate range queries at predefined position.

The idea is to sample s points in the range peerl, ..., peeru
Unfortunately, the data distribution inside this range is

not known a priori. Furthermore, it depends on the query
point and on the range itself, which makes it not tractable
to pre-compute. This in particular means that even though
the actual data distribution inside the hash tables is known
(to the peers maintaining it) it cannot be used to predict
the query dependent range of peers to visit.

In absence of any knowledge of data distributions, we em-
ploy a simple sampling method that divides the range in
equally sized sub-ranges. For each sub-range, the query is
forwarded to one responsible peer. Subsequently, each peer
starts the range query processing and as described above,
each processing thread stops when (i) an already queried
peer is met or (ii) a peer does not have any single item
within the specified range. We will now describe the process
of range estimations.

Figure 3: Illustration of the problem we face when
processing range queries over the linearly mapped
data. The “empty” ranges cause the algorithm to
stop before the full range has been explored.

6.2 Range Prediction
We will now try to derive query dependent lower and up-

per bounds for the values generated by ξ. As we will later
see, these estimates can be used to enable efficient paral-
lelized in-hash-table query processing.

Recall from Section 2.2 that the output of the considered
LSH hash function is a k-dimensional vector of integer values
where each value corresponds to one of the k hash functions
of the form of Equation 1.

Assume a query point q = (q1, ..., qd) and a range r.

Let furthermore be a(+) = argmaxj{aij} and a(−) =
argminj{aij} the positions of the largest and smallest val-
ues of elements of one of the k vectors ai. The idea is to
select samples from the d dimensional space that are in dis-
tance r of q and produce a bucket label with maximum l1
difference from ga,b(q) from Equation 2. These samples will
be mapped into the linear space using ha,b and ξ.

To construct these samples, we repeat the following for all
k vectors of ai. We add to the query vector at the maximal
and minimal value positions of vector ai the query range r.
More formally, we generate the upper range point as qi

(+) :=
q+j

a
(+)
i

∗r and the lower range point as qi
(−) := q−j

a
(−)
i

∗r

where ji is the ith unit vector.

Flickr Corel
#data points 1,000,000 60,000
#dimensions 282 89

#peers in Global DHT (N) 1,000,000 100,000
#peers per Local DHT (n) 1000 100

Table 1: Data Sets and Overlay setup

Using these generated samples of points in distance r we
apply the standard techniques using LSH hashing and map-
ping through ξ to determine the upper and lower bound ξ
values

upper(q, r) := argmaxi{ξ(g(q(+)))}
lower(q, r) := argmini{ξ(g(q(−)))}

Assume peeru and peerl to be the two peers responsible
for the above two values. According to condition 1 of an
appropriate ξ function, peers which fall between these two
peers in the Chord style ring, are most likely to hold data
in range r of the query point q. Since the output distribu-
tion of ξ is known the above values can be used to estimate
the number of peers which should be contacted to answer a
query with range r.

7. EXPERIMENTS
7.1 Experimental Setup

We have implemented a simulation of the proposed system
and algorithms using Java 1.6. The simulation runs on a
2x2.33 GHz Quad-Core Intel Xeon CPU with 8GB RAM.
The data is stored in an Oracle 11g database.

Data Sets and Overlay setup
Flickr: We used a crawl of Flickr consisting of 1, 000, 000
images represented by their MPEG7 visual descriptors. The
total number of dimensions per image is 282 and contains
descriptors such as Edge Histogram Type and Homogeneous
Texture Type. For the global DHT we considered a popula-
tion of 1, 000, 000 peers and each replica of the data set is
maintained by a local DHT of 1000 peers.

Corel: For the second data set we experimented on 60, 000
photo images from the Corel data set as previously used in,
e.g. [24] 1. Each image has 89 dimensions in this data set.
In this case we assumed a global DHT of 100, 000 peers and
100 peers per local DHT.

For both datasets, we use the Euclidean distance to mea-
sure the distances between points, treating all dimensions
equally and without preprocessing the data. As query points
we chose 100 points randomly from each of the datasets.
All performance measures are averaged over 100 queries.
K = 20 in all KNN experiments. Table 1 summarizes the
data set and overlay setup parameters.

Methods under Comparison
To evaluate our data placement methods, we distribute the
data among peers once with ξsum and once with ξlsh. We
experimented with different values of LSH parameters: k,
W and W2 and here report the best performances achieved.
In the results, unless otherwise stated, the default values
are k = 20, W = 5 and W2 = 3 for the Flickr data set and
k = 20, W = 50 and W2 = 1.25 for the Corel data set. For
each of these mapping functions we consider the following
query processing methods:

Simple: This is the baseline query processing algorithm.
At query time, the whole local index of the peer which is

1available under:
http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures
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responsible for the mapped LSH bucket using ξ is scanned
without further forwarding. This is used both for KNN and
range queries.

MProbe: At KNN query time we use the multi-probing
based algorithm as described in Section 5.2, fixing the num-
ber of probes to 100.

Linear: At query time the linear forwarding algorithm,
Section 5.1, is used with appropriate stopping conditions for
KNN or range search.

Sample: This is the sampling-based method described in
Section 6.1 which is dedicated to range query processing.

Sahin: To compare with state of the art, we have im-
plemented the method described in Section 2.1 by Sahin et.
el [29]. In order to fairly compare against this method, we
follow the same index creation of Section 4 where replicas of
the data are maintained by smaller rings. We have experi-
mented with different number of reference vector sizes and
different number of references for publishing indices. We re-
port here the best performance results which achieve a fair
load balance as well. The reference vector size is set to 32
and reference points are selected uniformly at random from
the whole data set. To achieve a fair load balance, we em-
ployed multi-level reference sets as described in the initial
work, however increasing the number of references used for
publishing the indices proved to be more effective. There-
fore only one level of references is used and the number of
references used for publishing indices is set to 4. The initial
work of [29] employs the Simple query processing method
as explained in 2.1. In addition to that we also experi-
mented processing queries with our Linear method. The
MProbe method is not applicable here, as it depends on the
LSH buckets. Processing range queries are not discussed in
[29]; we also experimented only the KNN queries with this
method.
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Figure 4: Recall versus number of DHT lookups for
different data placement methods employing Simple
query processing for the Flickr data set.

Measures of Interest
Gini Coefficient: As for a measure of load imbalances we
consider the Gini coefficient of the load distribution, that is

defined as G = 1 − 2
∫ 1

0
L(x)dx where L(x) is the Lorenz

curve of the underlying distribution. Pitoura et al [27] show
that the Gini coefficient is the most appropriate statistical
metric for measuring load distribution fairness. The Gini
coefficient, apart from the other three measures, is query in-
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Figure 5: Recall versus number of DHT lookups for
different data placement methods employing Simple
query processing for the Corel data set.

dependent and measured once for each benchmark to report
on the storage load distribution.

Number of Network Hops: We count the number of
network hops during the query execution. Network hops are
one of the most critical parameters in making distributed al-
gorithms applicable in large-scale wide-area networks. Each
DHT lookup causes logn/2 or logN/2 network hops (i.e.,
local or global DHT). Hence, we count the number of local
and global lookups and translate this to the overall number
of network hops. The cost for local query execution is con-
sidered to be negligible in our scenario, as the network cost
is clearly the dominating factor: One single network hop
in a wide-area costs in average around 100ms, which over-
rules the I/O cost, induced by a standard hard disk, with
approximately 8ms for disk seek time plus rotation latency
and 100MB/s transfer rate for sequential accesses, in case
of local disk access.

Relative Recall: For the effectiveness metric, we report
on the relative recall, i.e., the number of relevant data points
among returned data points. The relevance is defined by
the full-scan run over the entire data set to determine the
K nearest points to a query point for KNN queries. For
range queries, all data points in range r of the query point
are relevant. It should be noted that since we are ranking
all candidate objects and returning only the top K in KNN
queries and only the points within distance r of the query
point in range queries, precision is equal to relative recall
and we do report it separately.

Error Ratio: Given that LSH is an approximate algo-
rithm, we also measured the Error Ratio which measures the
quality of approximate nearest neighbor search as defined in

[17]. 1
K

∑K
i=1

dLSHi
dtruei

where dLSHi is the distance of query

point to its i-th nearest neighbor found by LSH and dtruei
is its distance to its true i-th nearest neighbor. Since this
measure does not add new insight over relative recall and
due to space constraints we do not report it here.

7.2 Experimental Results
We first investigate the effect of employing ξsum and ξlsh

on the load distribution and compare this against the Sahin
data placement. As seen in Table 2 for both Flickr and
Corel data sets, the Gini coefficients of all different load
distributions fall in the range of [0.4, 0.6] which is a strong
indicator of a fair load distribution [26].
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Data set Sahin ξsum ξlsh
Flickr 0.42 0.52 0.41
Corel 0.40 0.46 0.57

Table 2: Gini Coefficient when distributing 2 repli-
cas of the data sets
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Figure 6: Recall versus number of DHT lookups
for the Flickr data set representing Linear with the
three different placement methods and MProbe with
ξsum and ξlsh.

7.2.1 KNN query Results
We now show the results obtained for the KNN search.

Figures 4 and 5 show the obtained recall when queries are
processed by the Simple method. We have varied the num-
ber of hash tables (or respectively replicas for Sahin) from
2 to 40 for the Flickr data set and from 2 to 10 for the Corel
data set. For the Corel dataset ξsum achieves better recall
compared to Sahin and ξlsh. ξsum and ξlsh obtain better
recalls for number of replicas more than 24 for the Flickr
data set which has higher dimensionality . We observe that
the obtained recall for all three placement methods with the
Simple query processing algorithm is quite low even when
increasing the number of hash tables (replicas). It should be
noted that while employing the Simple method for process-
ing queries, the number of incurred network hops for answer-
ing each query is equal to number of hash tables (replicas)
times logN/2, where N is the number of peers in the global
DHT. In this case, only one peer is visited in each local DHT
maintaining a hash table (replica) of the data set.

Figures 6 and 7 show recall versus number of network hops
for three placement methods, this time using Linear and
MProbe processing algorithms respectively for the Flickr and
Corel data sets. We see a big increase in recall compared to
when processing queries using Simple for both data sets and
all three placement methods. We have varied the number of
hash tables (replicas) exactly like the previous experiment,
from 2 to 40 for Flickr, and from 2 to 10 for Corel. We show
on the x-axis the number of network hops incurred which
corresponds to the number of hash tables (replicase) and
number of times the query is forwarded in each local DHT
maintaining a hash table (replica). As can be seen for both
data sets, the combination of ξsum and ξlsh with the Linear
processing algorithm achieves the best recall while incurring
not many network hops. This confirms that ξsum and ξlsh
preserve the locality, i.e., they group buckets with similar
content to the same or neighboring peers. ξsum and ξlsh
achieve similar recall in both data sets, while Sahin’s qual-
ity of result degrade drastically when processing the Flickr
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Figure 7: Recall versus number of DHT lookups
for the Corel data set representing Linear with the
three different placement methods and MProbe with
ξsum and ξlsh.

data set. This observation again shows better scalability
of our algorithm with respect to data dimensionality, which
is due to LSH characteristics. MProbe achieves better recall
compared to Simple, but does not perform as well as Linear :
number of incurred network hops is more, as each forward
in a local DHT maintaining a hash table results in logn/2
hops, where n is the number of peers maintaining that ring.
We have also summarized these results in Tables 3 and 4 to
better compare these methods with respect to network load
(number of times the data is replicated in the network). For
example let us consider the 13th and 15th rows of Table 3.
With Linear the ξlsh data placement achieves more than
twice better recall at the expense of only 0.01 more num-
ber of network hops while having the same network load as
Sahin. The best achieved recall is shown in bold in both
tables.

Relative Recall in % (#Network Hops)
placement l Simple MProbe Linear

Sahin 2 13.65% (19) - 17.00% (34)
ξsum 2 6.90%(19) 8.50%(27) 18.65%(19)
ξlsh 2 6.70% (19) 8.10% (43) 17.65% (36)

Sahin 10 17.60% (99) - 25.80% (185)
ξsum 10 12.45% (99) 21.40% (262) 38.90% (190)
ξlsh 10 8.95% (99) 14.95% (266) 30.60% (183)

Sahin 20 20.10% (199) - 34.95% (375)
ξsum 20 17.40% (199) 34.05% (522) 62.05% (384)
ξlsh 20 16.70% (199) 28.60% (471) 64.95% (378)

Sahin 30 21.85% (298) - 39.70% (559)
ξsum 30 24.20% (298) 46.60% (781) 78.30% (587)
ξlsh 30 29.25% (298) 43.95% (664) 90.10% (579)

Sahin 40 22.95% (398) - 41.65% (746)
ξsum 40 29.55% (398) 55.60% (1032) 87.35% (779)
ξlsh 40 30.50% (398) 48.05% (921) 91.95% (762)

Table 3: Measuring recall and number of network
hops for different number of hash tables, for different
placement and processing methods the Flickr data
set.

7.2.2 Range query Results
We now report the results obtained for range searches. For

each data set the radius of the range query is chosen such
that the number of possible results are reasonable, i.e. for
Flickr this ranges from 27 to 562, while for Corel it ranges
from 17 to 194. Figure 8 shows a general view of the effect
of varying the range on recall. As discussed also in Section
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Relative Recall in % (#Network Hops)
placement l Simple MProbe Linear

Sahin 2 22.95% (16) - 37.85% (32)
ξsum 2 17.65% (16) 19.95% (19) 44.49% (26)
ξlsh 2 15.95% (16) 17.50% (21) 36.80% (26)

Sahin 10 34.80% (83) - 60.70% (163)
ξsum 10 60.79% (83) 65.35% (94) 94.55% (134)
ξlsh 10 34.85% (83) 45.60% (118) 77.84% (134)

Table 4: Measuring recall and number of network
hops for different number of hash tables, for different
placement and processing methods the Corel data
set.
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Figure 8: The effect of varying the range on recall.
The results are shown for #hash tables=20 and ξsum
as the placement function for the Corel data set.

6.1 recall in the Simple method can fall when the radius of
range increases. An example of this effect is shown in Figure
8. However, our Sampling method proves to be effective at
maintaining high recall as the radius changes. Tables 5 and
7 show the results for ξsum, while Tables 6 and 8 report
on ξlsh for the two data sets. Clearly, Sample performs very
well at achieving good recall for different choices of the range
in both data sets. Our Linear method obtains smaller recall
compared to Sample, however the number of network hobs
incurred by this method is considerably less than Sample.
The best achieved recalls are shown in bold.

Relative Recall in % (#Network Hops)
range l Simple Linear Sample

2000 2 60.98% (17) 77.55% (24) 80.09% (41)
2000 10 81.04% (83) 95.95% (119) 95.00% (200)

2150 2 49.48% (17) 70.17% (25) 75.26% (43)
2150 10 74.10% (83) 96.01% (124) 95.47% (211)

2300 2 42.68% (17) 72.10% (26) 78.02% (47)
2300 10 68.87% (83) 95.82% (130) 96.54% (224)

Table 5: Measuring recall and number of network
hops for different range radius’ and number of hash
tables, for different processing methods under com-
parison with ξsum as the placement function for the
Corel data set.

8. CONCLUSIONS
We have presented a robust and scalable solution to the

distributed similarity search problem over high dimensional
data. Having investigated the characteristics of the existing
centralized LSH based methods, we have devised an algo-
rithm to distribute the p-stable LSH method considering
the requirements that arise in distributed settings. Our pro-
posed locality preserving mapping, brings together two con-

Relative Recall in % (#Network Hops)
range l Simple Linear Sample

2000 2 51.88% (17) 63.22% (24) 70.73% (42)
2000 10 66.95% (83) 82.86% (116) 93.16% (210)

2150 2 40.05% (17) 54.03% (24) 61.52% (44)
2150 10 54.31% (83) 77.98% (120) 91.99% (222)

2300 2 33.23% (17) 50.39% (25) 61.40% (48)
2300 10 49.36% (83) 76.46% (124) 94.13% (239)

Table 6: Measuring recall and number of network
hops for different range radius’ and number of hash
tables, for different processing methods under com-
parison with ξlsh as the placement function for the
Corel data set.

Relative Recall in % (#Network Hops)
range l Simple Linear Sample

200 2 79.38% (20) 80.67% (26) 81.32% (53)
200 10 80.82% (100) 85.00% (138) 86.54% (264)
200 20 82.02% (199) 87.06% (275) 89.98% (530)
200 30 84.03% (299) 89.96% (414) 93.04% (795)
200 40 86.45% (399) 92.92% (553) 95.88% (1060)

225 2 61.82% (20) 63.14% (27) 64.02% (54)
225 10 64.85% (100) 70.44% (141) 72.75% (269)
225 20 67.82% (199) 75.42% (282) 79.09% (540)
225 30 70.66% (299) 80.70% (423) 85.63% (812)
225 40 74.29% (399) 84.85% (566) 89.99% (1086)

250 2 41.63% (20) 44.10% (29) 45.45% (56)
250 10 44.58% (100) 53.51% (149) 57.45% (282)
250 20 47.69% (199) 60.30% (296) 66.15% (567)
250 30 51.26% (299) 66.95% (449) 73.89% (857)
250 40 55.20% (399) 72.73% (600) 80.16% (1147)

275 2 22.00% (20) 26.36% (34) 28.70% (66)
275 10 25.59% (100) 40.21% (177) 43.99% (330)
275 20 29.81% (199) 49.33% (351) 55.87% (659)
275 30 33.77% (299) 58.03% (530) 67.12% (999)
275 40 37.47% (399) 64.36% (707) 74.62% (1335)

300 2 11.80% (20) 18.94% (46) 22.98% (89)
300 10 14.92% (100) 36.50% (234) 43.14% (434)
300 20 18.85% (199) 48.42% (466) 57.06% (870)
300 30 23.16% (299) 59.27% (707) 68.77% (1329)
300 40 27.55% (399) 66.62% (947) 76.55% (1784)

Table 7: Measuring recall and number of network
hops for different range radius’ and number of hash
tables, for different processing methods under com-
parison with ξsum as the placement function for the
Flickr data set.

tradictory conditions of efficient and high quality similarity
search in distributed se1ttings: Enabling probabilistic place-
ment of similar data on the same peer or neighboring peers,
while achieving a fair load balancing. We have shown how
to create the index, leveraging our proposed mapping and
its characteristics. We have theoretically proved the locality
preserving properties of our mapping and devised efficient
algorithms for both K-nearest neighbor and range queries.
To our knowledge this is the first work enabling similarity
range queries over LSH indices. Our experimental evaula-
tion shows major performance gains compared to state-of-
the-art. We believe that our approach is thus well-positioned
to become a fundamental building block towards applying
LSH based methods in real world, distributed applications.
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