
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

DISTRIBUTED SIMULATION SYSTEMS

 Richard M. Fujimoto

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.

ABSTRACT

An overview of technologies concerned with distributing the
execution of simulation programs across multiple processors
is presented. Here, particular emphasis is placed on discrete
event simulations. The High Level Architecture (HLA) de-
veloped by the Department of Defense in the United States
is first described to provide a concrete example of a contem-
porary approach to distributed simulation. The remainder of
this paper is focused on time management, a central issue
concerning the synchronization of computations on different
processors. Time management algorithms broadly fall into
two categories, termed conservative and optimistic synchro-
nization. A survey of both conservative and optimistic algo-
rithms is presented focusing on fundamental principles and
mechanisms. Finally, time management in the HLA is dis-
cussed as a means to illustrate how this standard supports
both approaches to synchronization.

1 INTRODUCTION

Here, the term distributed simulation refers to distributing
the execution of a single “run” of a simulation program
across multiple processors. This encompasses several dif-
ferent dimensions. One dimension concerns the motivation
for distributing the execution. One paradigm, often re-
ferred to as parallel simulation, concerns the execution of
the simulation on a tightly coupled computer system, e.g.,
a supercomputer or a shared memory multiprocessor.
Here, the principal reason for distributing the execution is
to reduce the length of time to execute the simulation. In
principal, by distributing the execution of a computation
across N processors, one can complete the computation up
to N times faster than if it were executed on a single proc-
essor. Another reason for distributing the execution in this
fashion is to enable larger simulations to be executed than
could be executed on a single computer. When confined to
a single computer system, there may not be enough mem-
ory to perform the simulation. Distributing the execution
across multiple machines allows the memory of many
computer systems to be utilized.

A second, increasingly important motivation for dis-

tributed simulation concerns the desire to integrate several
different simulators into a single simulation environment.
One example where this paradigm is frequently used is in
military training. Tank simulators, flight simulators, com-
puter generated forces, and a variety of other models may
be used to create a distributed virtual environment into
which personnel are embedded to train for hypothetical
scenarios and situations. Another emerging area of in-
creasing importance is infrastructure simulations where
simulators of different subsystems in a modern society are
combined to explore dependencies among subsystems. For
example, simulations of transportation systems may be
combined with simulations of electrical power distribution
systems, computer and communication infrastructures, and
economic models to assess the economic impact of natural
or human-caused disasters. In both these domains (mili-
tary and infrastructure simulations) it is far more economi-
cal to link existing simulators to create distributed simula-
tion environments than to create new models within the
context of a single tool or piece of software. The High
Level Architecture (HLA) developed by the U.S. Depart-
ment of Defense defines an approach to integrate, or feder-
ate, separate, autonomous simulators into a single, distrib-
uted simulation system.

Another dimension that differentiates distributed simu-
lation paradigms is the geographical extent over which the
simulation executes. Often distributed simulations are
executed over broad geographic areas. This is particularly
useful when personnel and/or resources (e.g., databases or
specialized facilities) are included in the distributed simu-
lation exercise. Distributed execution eliminates the need
for these personnel and resources to be physically co-
located, representing an enormous cost savings. Distrib-
uted simulations operating over the Internet have create an
enormous market for the electronic gaming industry. At
the opposite extreme, high performance simulations may
execute on multiprocessor computers confined to a single
cabinet or machine room. Close proximity is necessary to
reduce the delay for inter-processor communications that
might otherwise severely degrade performance. These

Fujimoto

high performance simulations often require too much
communication between processors, making geographi-
cally distributed execution too inefficient. Historically, the
term distributed simulation has often been used to refer to
geographically distributed simulations, while parallel simu-
lation traditionally referred to simulations executed on a
tightly coupled parallel computer, however, with new
computing paradigms such as clusters of workstations and
grid computing, this distinction has become less clear, so
we use the single term distributed simulation here to refer
to all categories of distributed execution.

Two widely-used architectures for distributed simula-
tion are the client-server and the peer-to-peer approaches.
As its name implies, the client-server approach involves
executing the distributed simulation on one or more server
computers (which may be several computers connected by
a local area network) to which clients (e.g., users) can “log
in” from remote sites. The bulk of the simulation compu-
tation is executed on the server machines. This approach is
typically used in distributed simulations used for multi-
player gaming. Centralized management of the simulation
computation greatly simplifies management of the distrib-
uted simulation system, and facilitates monitoring of the
system, e.g., to detect cheating. On the other hand, peer-
to-peer systems have no such servers, and the simulation is
distributed across many machines, perhaps interconnected
by a wide area network. The peer-to-peer approach is of-
ten used in distributed simulations used for defense.

The remainder of this paper is organized as follows.
First, an historical view of distributed simulation technol-
ogy and how it has evolved over the last twenty to thirty
years is briefly presented. The High Level Architecture is
presented to introduce aspects of a contemporary approach
to distributed simulation. The remainder of this paper fo-
cuses on the synchronization problem, and time manage-
ment algorithms that have been developed to address this
issue. A more detailed, comprehensive treatment of these
topics is presented in (Fujimoto 2000). Certain sections of
this tutorial borrow material presented in (Fujimoto 2001).

2 HISTORICAL PERSPECTIVE

Distributed simulation technology has developed largely
independently in at least three separate communities: the
high performance computing community, the defense
community, and the Internet/gaming industry. Each of
these is briefly discussed next.

Distributed simulation in the high performance com-
puting community originated in the late 1970’s and early
1980’s, focusing on synchronization algorithms (now re-
ferred to as time management). Synchronization algorithm
were designed, for the most part, in order for the distrib-
uted execution to produce exactly the same results as a se-
quential execution of the simulation program, except
(hopefully) more quickly. Initial algorithms utilized what is
know referred to as a conservative paradigm, meaning
blocking mechanisms were used to ensure no synchroniza-
tion errors (out of order event processing) occurred. Initial
algorithms date back to the late 1970’s with seminal work
by (Chandy and Misra 1978), and (Bryant 1977), among
others, who are credited with first formulating the syn-
chronization problem and developing the first solutions.
These algorithms are among a class of algorithms that are
today referred to as conservative synchronization tech-
niques. In the early 1980’s seminal work by Jefferson and
Sowizral developed the Time Warp algorithm (Jefferson
1985). Time Warp is important because it defined funda-
mental constructs widely used in a class of algorithms
termed optimistic synchronization. Conservative and op-
timistic synchronization techniques form the core of a large
body of work concerning parallel discrete event simulation
techniques, and much of the subsequent work in the field is
based on this initial research.

The defense community’s work in distributed simula-
tion systems date back to the SIMNET (SIMulator NET-
working) project. While the high performance computing
community was largely concerned with reducing execution
time, the defense community was concerned with integrat-
ing separate training simulations in order to facilitate inter-
operability and software reuse. The SIMNET project
(1983 to 1990) demonstrated the viability of using distrib-
uted simulations to create virtual worlds for training mili-
tary personnel for engagements (Miller and Thorpe 1995).
This lead to the development of a set of standards for inter-
connecting simulators known as the Distributed Interactive
Simulation (DIS) standards (IEEE Std 1278.1-1995 1995).
The 1990’s also saw the development of the Aggregate
Level Simulation Protocol (ALSP) that applied the
SIMNET concept of interoperability and model reuse to
wargame simulations (Wilson and Weatherly 1994).
ALSP and DIS have since been replaced by the High Level
Architecture whose scope spans the broad range of defense
simulations, including simulations for training, analysis,
and test and evaluation of equipment and components.

A third track of research and development efforts
arose from the Internet and computer gaming industry.
Some of the work in this area can be traced back to a role-
playing game called dungeons and dragons and textual fan-
tasy computer games such as Adventure developed in the
1970’s. These soon gave way to Multi-User Dungeon
(MUD) games in the 1980’s. Important additions such as
sophisticated computer graphics helped created the video
game industry that is flourishing today. Distributed, multi-
user gaming is sometimes characterized as the “killer ap-
plication” where distributed simulation technology may
have the greatest economic and social impact.

Fujimoto

3 THE HIGH LEVEL ARCHITECTURE

 The High Level Architecture (HLA) was developed in
the mid 1990’s. It is intended to promote reuse and inter-
operation of simulations. The HLA effort was based on the
premise that no one simulation could satisfy all uses and
applications for the Defense community. The intent of the
HLA is to provide a structure that supports reuse of differ-
ent simulations, ultimately reducing the cost and time re-
quired to create a synthetic environment for a new purpose.
An introduction to the HLA is presented in (Kuhl, Weath-
erly et al. 1999).
 Though developed in the context of defense applica-
tion, the HLA was intended to have applicability across a
broad range of simulation application areas, including edu-
cation and training, analysis, engineering and even enter-
tainment, at a variety of levels of resolution. These widely
differing application areas indicate the variety of require-
ments that were considered in the development and evolu-
tion of the HLA.

The HLA does not prescribe a specific implementa-
tion, nor does it mandate the use of any particular set of
software or programming language. It was envisioned that
as new technological advances become available, new and
different implementations would be possible within the
framework of the HLA.

An HLA federation consists of a collection of interact-
ing simulations, termed federates. A federate may be a
computer simulation, a manned simulator, a supporting
utility (such as a viewer or data collector), or an interface
to a live player or instrumented facility. All object repre-
sentation stays within the federates. The HLA imposes no
constraints on what is represented in the federates or how it
is represented, but it does require that all federates incorpo-
rate specified capabilities to allow the objects in the simu-
lation to interact with objects in other simulations through
the exchange of data.

Data exchange and a variety of other services are real-
ized by software called the Runtime Infrastructure (RTI).
The RTI is, in effect, a distributed operating system for the
federation. The RTI provides a general set of services that
support the simulations in carrying out these federate-to-
federate interactions and federation management support
functions. All interactions among the federates go through
the RTI.
 The RTI software itself and the algorithms and proto-
cols that is uses are not defined by the HLA standard.
Rather, it is the interface to the RTI services that are stan-
dardized. The HLA runtime interface specification pro-
vides a standard way for federates to interact with the RTI,
to invoke the RTI services to support runtime interactions
among federates and to respond to requests from the RTI.
This interface is implementation independent and is inde-
pendent of the specific object models and data exchange
requirements of any federation.
The HLA is formally defined by three components: the
HLA rules, the Object Model Template (OMT), and. the in-
terface specification. Each of these is briefly described next.

3.1 HLA Rules

The HLA rules summarize the key principles behind the
HLA (IEEE Std 1516-2000 2000). The rules are divided
into two groups: federation and federate rules. Federations
are required to define a Federation Object Model (FOM)
specified in the Object Model Template (OMT) format.
The FOM characterizes the information (objects) that are
visible by more than one federate. During the execution
of the federation, all object representation must reside
within the federates (not the RTI). Only one federate may
update the attribute(s) of any instance of an object at any
given time. This federate is termed the owner of the attrib-
ute, and ownership may transfer from one federate to an-
other during the execution of the federation via the owner-
ship management services defined in the Interface
Specification. All information exchanges among the fed-
erates takes place via the RTI using the services defined in
the HLA interface specification.
 Additional rules apply to individual federates. Under the
HLA, each federate must document their public information
in a Simulation Object Model (SOM) using the OMT.
Based on the information included in their SOM, federates
must import and export information, transfer object attribute
ownership, updates attributes and utilize the time manage-
ment services of the RTI when managing local time.

3.2 Object Models

HLA object models are descriptions of the essential shar-
able elements of the federation in ‘object’ terms. The HLA
is directed towards interoperability; hence in the HLA, ob-
ject models are intended to focus on description of the
critical aspects of simulations and federations, which are
shared across a federation. The HLA puts no constraints
on the content of the object models. The HLA does require
that each federate and federation document its object
model using a standard object model template (IEEE Std
1516.2-2000 2000). These templates are intended to be the
means for open information sharing across the community
to facilitate reuse of simulations.
 As mentioned earlier, the HLA specifies two types of
object models: the HLA Federation Object Model (FOM)
and the HLA Simulation Object Model (SOM). The HLA
FOM describes the set of objects, attributes and interac-
tions, which are shared across a federation. The HLA SOM
describes the simulation (federate) in terms of the types of
objects, attributes and interactions it can offer to future
federations. The SOM is distinct from internal design in-
formation; rather it provides information on the capabilities
of a simulation to exchange information as part of a federa-

Fujimoto

tion. The SOM is essentially a contract by the simulation
defining the types of information it can make available in
future federations. The availability of the SOM facilitates
the assessment of the appropriateness of the federate for
participation in a federation.
 While the HLA does not define the contents of a SOM
or FOM, it does require that a common documentation ap-
proach be used. Both the HLA FOM and SOM are docu-
mented using a standard form called the HLA Object
Model Template (OMT).

3.3 The Interface Specification

The HLA interface specification describes the runtime ser-
vices provided to the federates by the RTI, and by the fed-
erates to the RTI (IEEE Std 1516.3-2000 2000). There are
six classes of services. Federation management services
offer basic functions required to create and operate a fed-
eration. Declaration management services support effi-
cient management of data exchange through the informa-
tion provided by federates defining the data they will
provide and will require during a federation execution.
Object management services provide creation, deletion,
identification and other services at the object level. Own-
ership management services supports the dynamic transfer
of ownership of object/attributes during an execution.
Time management services support synchronization of run-
time simulation data exchange. Finally, data distribution
management services support the efficient routing of data
among federates during the course of a federation execu-
tion. The HLA interface specification defines the way
these services are accessed, both functionally and in an ap-
plication programmer’s interface (API).

4 TIME MANAGEMENT

Time management is concerned with ensuring that the exe-
cution of the distributed simulation is properly synchro-
nized. This is particularly important for simulations used
for analysis (as opposed training where errors that are not
perceptible to humans participating in the exercise may be
acceptable). Time management not only ensures that
events are processed in a correct order, but also helps to
ensure that repeated executions of a simulation with the
same inputs produce exactly the same results. Currently,
time management techniques such as those described here
are typically not used in training simulations, where incor-
rect event orderings and non-repeatable simulation execu-
tions can usually be tolerated.

Time management algorithms usually assume the
simulation consists of a collection of logical processes
(LPs) that communicate by exchanging timestamped mes-
sages or events. In the context of the HLA, each federate
can be viewed as a single LP. The goal of the synchroniza-
tion mechanism is to ensure that each LP processes events
in timestamp order. This requirement is referred to as the
local causality constraint. Ignoring events containing ex-
actly the same time stamp, it can be shown that if each LP
adheres to the local causality constraint, execution of the
simulation program on a parallel computer will produce
exactly the same results as an execution on a sequential
computer where all events are processed in time stamp or-
der. This property also helps to ensure that the execution
of the simulation is repeatable; one need only ensure the
computation associated with each event is repeatable.

Synchronization is particularly interesting for the case
of discrete event simulations. In this case, each LP can be
viewed as a sequential discrete event simulator. This
means each LP maintains local state information corre-
sponding to the entities it is simulating and a list of time
stamped events that have been scheduled for this LP, but
have not yet been processed. This pending event list in-
cludes local events that the LP has scheduled for itself as
well as events that have been scheduled for this LP by
other LPs. The main processing loop of the LP repeatedly
removes the smallest time stamped event from the pending
event list and processes it. Thus, the computation per-
formed by an LP can be viewed as a sequence of event
computations. Processing an event means zero or more
state variables within the LP may be modified, and the LP
may schedule additional events for itself or other LPs.
Each LP maintains a simulation time clock that indicates
the time stamp of the most recent event processed by the
LP. Any event scheduled by an LP must have a time
stamp at least as large as the LP’s simulation time clock
when the event was scheduled.

The time management algorithm must ensure that each
LP processes events in time stamp order. This is non-trivial
because each LP does not a priori know what events will
later be received from other LPs. For example, suppose the
next unprocessed event stored in the pending event list has
time stamp 10. Can the LP process this event? How does
the LP know it will not later receive an event from another
LP with time stamp less than 10? This question captures the
essence of the synchronization problem.

Much research has been completed to attack this prob-
lem. Time management algorithms can be classified as be-
ing either conservative or optimistic. Briefly, conservative
algorithms take precautions to avoid the possibility of
processing events out of time stamp order, i.e., the execu-
tion mechanism avoids synchronization errors. In the
aforementioned example where the next unprocessed event
has a time stamp of 10, the LP must first ensure it will not
later receive any additional events with time stamp less
than 10 before it can process this event. On the other hand,
optimistic algorithms use a detection and recovery ap-
proach. Events are allowed to be processed out of time
stamp order, however, a separate mechanism is provided to
recover from such errors. Each of these are described next.

Fujimoto

4.1 Conservative Time Management

The first synchronization algorithms were based on con-
servative approaches. The principal task of any conserva-
tive protocol is to determine when it is “safe” to process
an event. An event is said to be safe when can one guar-
antee no event containing a smaller time stamp will be
later received by this LP. Conservative approaches do
not allow an LP to process an event until it has been
guaranteed to be safe.

At the heart of most conservative synchronization al-
gorithms is the computation for each LP of a Lower Bound
on the Time Stamp (LBTS) of future messages that may
later be received by that LP. This allows the mechanism to
determine which events are safe to process. For example,
if the synchronization algorithm has determined that the
LBTS value for an LP is 12, then all events with time
stamp less than 12 are safe, and may be processed. Con-
versely, all events with time stamp larger than 12 cannot be
safely processed. Whether or not events with time stamp
equal to 12 can be safely processed depends on specifics of
the algorithm, and the rules concerning the order that
events with the same time stamp (called simultaneous
events) are processed. Processing of simultaneous events
is a complex subject matter that is beyond the scope of the
current discussion, but is discussed in detail in (Jha and
Bagrodia 2000). The discussion here assumes that each
event has a unique time stamp. It is straightforward to in-
troduce tie breaking fields in the time stamp to ensure
uniqueness (Mehl 1992).

4.1.1 Null Messages and Deadlock Avoidance

The algorithms described in (Bryant 1977; Chandy and
Misra 1978) were among the first synchronization algo-
rithms that were developed. They assume the topology in-
dicating which LPs send messages to which others is fixed
and known prior to execution. It is assumed each LP sends
messages with non-decreasing time stamps, and the com-
munication network ensures that messages are received in
the same order that they were sent. This guarantees that
messages on each incoming link of an LP arrive in time-
stamp order. This implies that the timestamp of the last
message received on a link is a lower bound on the time-
stamp of any subsequent message that will later be re-
ceived on that link. Thus, the LBTS value for an LP is
simply the minimum among the LBTS values of its incom-
ing links.

Messages arriving on each incoming link are stored in
first-in-first-out order, which is also timestamp order be-
cause of the above restrictions. Local events scheduled
within the LP can be handled by having a queue within
each LP that holds messages sent by an LP to itself. Each
link has a clock that is equal to the timestamp of the mes-
sage at the front of that link’s queue if the queue contains a
message, or the timestamp of the last received message if
the queue is empty. The process repeatedly selects the link
with the smallest clock and, if there is a message in that
link’s queue, processes it. If the selected queue is empty,
the process blocks. The LP never blocks on the queue con-
taining messages it schedules for itself, however. This pro-
tocol guarantees that each process will only process events
in non-decreasing timestamp order.

Although this approach ensures the local causality con-
straint is never violated, it is prone to deadlock. A cycle of
empty links with small link clock values (e.g., smaller than
any unprocessed message in the simulator) can occur, result-
ing in each process waiting for the next process in the cycle.
If there are relatively few unprocessed messages compared
to the number of links in the network, or if the unprocessed
events become clustered in one portion of the network, dead-
lock may occur very frequently.

Null messages are used to avoid deadlock. A null
message with timestamp Tnull sent from LPA to LPB is a
promise by LPA that it will not later send a message to LPB
carrying a timestamp smaller than Tnull. Null messages do
not correspond to any activity in the simulated system;
they are defined purely for avoiding deadlock situations.
Processes send null messages on each outgoing link after
processing each event. A null message provides the re-
ceiver with additional information that may be used to de-
termine that other events are safe to process.

Null messages are processed by each LP just like ordi-
nary non-null messages, except no activity is simulated by
the processing of a null message. In particular, processing
a null message advances the simulation clock of the LP to
the time stamp of the null message. However, no state
variables are modified and no non-null messages are sent
as the result of processing a null message.

How does a process determine the timestamps of the
null messages it sends? The clock value of each incoming
link provides a lower bound on the timestamp of the next
event that will be removed from that link’s buffer. When
coupled with knowledge of the simulation performed by
the process, this bound can be used to determine a lower
bound on the timestamp of the next outgoing message on
each output link. For example, if a queue server has a
minimum service time of T, then the timestamp of any fu-
ture departure event must be at least T units of simulated
time larger than any arrival event that will be received in
the future.

Whenever a process finishes processing a null or non-
null message, it sends a new null message on each outgo-
ing link. The receiver of the null message can then com-
pute new bounds on its outgoing links, send this informa-
tion on to its neighbors, and so on. It can be shown that
this algorithm avoids deadlock (Chandy and Misra 1978).

The null message algorithm introduced a key property
utilized by virtually all conservative synchronization algo-
rithms: lookahead. If an LP is at simulation time T, and it

Fujimoto

can guarantee that any message it will send in the future will
have a time stamp of at least T+L regardless of what mes-
sages it may later receive, the LP is said to have a lookahead
of L. As we just saw, lookahead is used to generate the time
stamps of null messages. One constraint of the null message
algorithm is it requires that no cycle among LPs exist con-
taining zero lookahead, i.e., it is impossible for a sequence
of messages to traverse the cycle, with each message sched-
uling a new message with the same time stamp.

4.1.2 Exploiting Next Event Timestamp Information

The main drawback with the null message algorithm is it
may generate an excessive number of null messages. Con-
sider a simulation containing two LPs. Suppose both are
blocked, each has reached simulation time 100, and each
has a lookahead equal to 1. Suppose the next unprocessed
event in the simulation has a time stamp of 200. The null
message algorithm will result in null messages exchanged
between the LPs with time stamp 101, 102, 103, and so on.
This will continue until the LPs advance to simulation time
200, when the event with time stamp 200 can now be proc-
essed. A hundred null messages must be sent and proc-
essed between the two LPs before the non-null message
can be processed. This is clearly very inefficient. The
problem becomes even more severe if there are many LPs.

The principal problem is the algorithm uses only the
current simulation time of each LP and lookahead to pre-
dict the minimum time stamp of messages it could generate
in the future. To solve this problem, we observe that the
key piece of information that is required is the time stamp
of the next unprocessed event within each LP. If the LPs
could collectively recognize that this event has time stamp
200, all of the LPs could immediately advance from simu-
lation time 100 to time 200. Thus, the time of the next
event across the entire simulation provides critical infor-
mation that avoids the “time creeping” problem in the null
message algorithm. This idea is exploited in more ad-
vanced synchronization algorithms.

Another problem with the null message algorithm
concerns the case where each LP can send messages to
many other LPs. In the worst case, the LP topology is fully
connected meaning each LP could send a message to any
other. In this case, each LP must broadcast a null message
to every other LP after processing each event. This also
results in an excessive number of null messages.

One early approach to solving these problems is an al-
ternate algorithm that allows the computation to deadlock,
but then detects and breaks it (Chandy and Misra 1981).
The deadlock can be broken by observing that the mes-
sage(s) containing the smallest timestamp is (are) always
safe to process. Alternatively, one may use a distributed
computation to compute lower bound information (not
unlike the distributed computation using null messages de-
scribed above) to enlarge the set of safe messages.
Many other approaches have been developed. Some
protocols use a synchronous execution where the computa-
tion cycles between (i) determining which events are
“safe’“ to process, and (ii) processing those events. It is
clear that the key step is determining the events that are
safe to process each cycle. Each LP must determine a
lower bound on the time stamp (LBTS) of messages it
might later receive from other LPs. This can be deter-
mined from a snapshot of the distributed computation as
the minimum among:

• the simulation time of the next event within the
LP if it is blocked, or the current time of the LP if
it is not blocked, plus the LP’s lookahead and

• the time stamp of any transient messages, i.e., any
message that has been sent but has not yet been
received at its destination.

A barrier synchronization can be used to obtain the
snapshot. Transient messages can be “flushed” out of the
system in order to account for their time stamps. If first-in-
first-out communication channels are used, null messages
can be sent through the channels to flush the channels,
though as noted earlier, this may result in many null mes-
sages. Alternatively, each LP can maintain a counter of the
number of messages it has sent, and the number if has re-
ceived. When the sum of the send and receive counters
across all of the LPs are the same, and each LP has reached
the barrier point, it is guaranteed that there are no more
transient messages in the system. In practice, summing the
counters can be combined with the computation for com-
puting the global minimum value (Mattern 1993).

To determine which events are safe, the distance be-
tween LPs is sometimes used (Ayani 1989; Lubachevsky
1989; Cai and Turner 1990). This “distance” is the mini-
mum amount of simulation time that must elapse for an
event in one LP to directly or indirectly affect another LP,
and can be used by an LP to determine bounds on the time-
stamp of future events it might receive from other LPs. This
assumes it is known which LPs send messages to which
other LPs. Other techniques focus on maximizing exploita-
tion of lookahead, e.g., see (Meyer and Bagrodia 1999;
Xiao, Unger et al. 1999). Full elaboration of these and other
technique is beyond the scope of the present discussion.

Another thread of research in synchronization algo-
rithms concerns relaxing ordering constraints in order to
improve performance. Some approaches amount to simply
ignoring out of order event processing (Sokol and Stucky
1990; Rao, Thondugulam et al. 1998). Use of time inter-
vals, rather than precise time stamps, to encode uncertainty
of temporal information in order to improve the perform-
ance of time management algorithms have also been pro-
posed (Fujimoto 1999) (Beraldi and Nigro 2000). Use of
causal order rather than time stamp order for distributed
simulation applications has also been studied (Lee, Cai et
al. 2001).

Fujimoto

4.2 Optimistic Time Management

In contrast to conservative approaches that avoid violations
of the local causality constraint, optimistic methods allow
violations to occur, but are able to detect and recover from
them. Optimistic approaches offer two important advan-
tages over conservative techniques. First, they can exploit
greater degrees of parallelism. If two events might affect
each other, but the computations are such that they actually
don’t, optimistic mechanisms can process the events con-
currently, while conservative methods must sequentialize
execution. Second, conservative mechanism generally rely
on application specific information (e.g., distance between
objects) in order to determine which events are safe to
process. While optimistic mechanisms can execute more
efficiently if they exploit such information, they are less
reliant on such information for correct execution. This al-
lows the synchronization mechanism to be more transpar-
ent to the application program than conservative ap-
proaches, simplifying software development. On the other
hand, optimistic methods may require more overhead com-
putations than conservative approaches, leading to certain
performance degradations.

The Time Warp mechanism (Jefferson 1985) is the
most well known optimistic method. When an LP receives
an event with timestamp smaller than one or more events it
has already processed, it rolls back and reprocesses those
events in timestamp order. Rolling back an event involves
restoring the state of the LP to that which existed prior to
processing the event (checkpoints are taken for this pur-
pose), and “unsending” messages sent by the rolled back
events. An elegant mechanism called anti-messages is
provided to “unsend” messages.

An anti-message is a duplicate copy of a previously
sent message. Whenever an anti-message and its matching
(positive) message are both stored in the same queue, the
two are deleted (annihilated). To “unsend” a message, a
process need only send the corresponding anti-message. If
the matching positive message has already been processed,
the receiver process is rolled back, possibly producing ad-
ditional anti-messages. Using this recursive procedure all
effects of the erroneous message will eventually be erased.

Two problems remain to be solved before the above ap-
proach can be viewed as a viable synchronization mecha-
nism. First, certain computations, e.g., I/O operations, can-
not be rolled back. Second, the computation will continually
consume more and more memory resources because a his-
tory (e.g., checkpoints) must be retained, even if no roll-
backs occur; some mechanism is required to reclaim the
memory used for this history information. Both problems
are solved by global virtual time (GVT). GVT is a lower
bound on the timestamp of any future rollback. GVT is
computed by observing that rollbacks are caused by mes-
sages arriving “in the past.” Therefore, the smallest time-
stamp among unprocessed and partially processed messages
gives a value for GVT. Once GVT has been computed, I/O
operations occurring at simulated times older than GVT can
be committed, and storage older than GVT (except one state
vector for each LP) can be reclaimed.

GVT computations are essentially the same as LBTS
computations used in conservative algorithms. This is be-
cause rollbacks result from receiving a message or anti-
message in the LP’s past. Thus, GVT amounts to comput-
ing a lower bound on the time stamp of future messages (or
anti-messages) that may later be received.

Several algorithms for computing GVT (LBTS) have
been developed, e.g., see (Samadi 1985; Mattern 1993),
among others. Asynchronous algorithms compute GVT
“in background” while the simulation computation is pro-
ceeding, introducing the difficulty that different processes
must report their local minimum at different points in time.
A second problem is one must account for transient mes-
sages in the computation, i.e., messages that have been sent
but not yet received. Mattern describes an elegant solution
to these problems using consistent cuts of the computation
and message counters, discussed earlier (Mattern 1993).

A pure Time Warp system can suffer from overly op-
timistic execution, i.e., some LPs may advance too far
ahead of others leading to excessive memory utilization
and long rollbacks. Many other optimistic algorithms have
been proposed to address these problems. Most attempt to
limit the amount of optimism. An early technique involves
using a sliding window of simulated time (Sokol and
Stucky 1990). The window is defined as [GVT, GVT+W]
where W is a user defined parameter. Only events with
time stamp within this interval are eligible for processing.
Another approach delays message sends until it is guaran-
teed that the send will not be later rolled back, i.e., until
GVT advances to the simulation time at which the event
was scheduled. This eliminates the need for anti-messages
and avoids cascaded rollbacks, i.e., a rollback resulting in
the generation of additional rollbacks (Dickens and Rey-
nolds 1990; Steinman 1992). An approach that also a local
rollback mechanism to avoid anti-messages using a con-
cept called lookback (somewhat analogous to lookahead in
conservative synchronization protocols) is described in
(Chen and Szymanski 2002; Chen and Szymanski 2003).
A technique called direct cancellation is sometimes used to
rapidly cancel incorrect messages, thereby helping to re-
duce overly optimistic execution (Fujimoto 1989; Zhang
and Tropper 2001).

Another problem with optimistic synchronization con-
cerns the amount of memory that may be required to store
history information. Several techniques have been devel-
oped to address this problem. For example, one can roll
back computations to reclaim memory resources (Jefferson
1990; Lin and Preiss 1991). State saving can be performed
infrequently rather than after each event (Lin, Preiss et al.
1993; Palaniswamy and Wilsey 1993). The memory used

Fujimoto

by some state vectors can be reclaimed even though their
time stamp is larger than GVT (Preiss and Loucks 1995).

Early approaches to controlling Time Warp execution
used user-defined parameters that had to be tuned to opti-
mize performance. Later work has focused on adaptive
approaches where the simulation executive automatically
monitors the execution and adjusts control parameters to
maximize performance. Examples of such adaptive control
mechanisms are described in (Ferscha 1995; Das and Fu-
jimoto 1997), among others.

Practical implementation of optimistic algorithms re-
quires that one must be able to roll back all operations, or
be able to postpone them until GVT advances past the
simulation time of the operation. Care must be taken to
ensure operations such as memory allocation and dealloca-
tion are handled properly, e.g., one must be able to roll
back these operations. Also, one must be able to roll back
execution errors. This can be problematic in certain situa-
tions, e.g., if an optimistic execution causes portions of the
internal state of the Time Warp executive to be overwritten
(Nicol and Liu 1997).

Another approach to optimistic execution involves the
use of reverse computation techniques rather than rollback
(Carothers, Perumalla et al. 1999). Undoing an event
computation is accomplished by executing the inverse
computation, e.g., to undo incrementing a state variable,
the variable is instead decremented. The advantage of this
technique is it avoids state saving, which may be both time
consuming and require a large amount of memory. In
(Carothers, Perumalla et al. 1999) a reverse compiler is de-
scribed to automatically generate inverse computations.

Synchronization is a well-studied area of research in the
distributed simulation field. There is no clear consensus
concerning whether optimistic or conservative synchroniza-
tion perform better; indeed, the optimal approach usually
depends on the application. In general, if the application has
good lookahead characteristics and programming the appli-
cation to exploit this lookahead is not overly burdensome,
conservative approaches are the method of choice. Indeed,
much research has been devoted to improving the lookahead
of simulation applications, e.g., see (Deelman, Bagrodia et
al. 2001). Otherwise, optimistic synchronization offers
greater promise. Disadvantages of optimistic synchroniza-
tion include the potentially large amount of memory that
may be required, and the complexity of optimistic simula-
tion executives. Techniques to reduce memory utilization
further aggravate the complexity issue.

4.3 Time Management in the HLA

The HLA provides a set of services to support time man-
agement. A principal consideration in defining these ser-
vices was the observation that different federates may use
different local time management mechanisms and have dif-
ferent requirements for message ordering and delay. Two
major categories emerged. One class of simulations were
designed to created virtual environments for training and
test and evaluation (e.g., hardware-in-the-loop) applica-
tions. The execution of these simulations is paced by wall-
clock time, and synchronization algorithms to guarantee
time stamp ordering of events are typically not used.
Achieving low, predictable delays to transmit messages are
important. A second class of simulations are those that re-
quire synchronization algorithms, in part to ensure proper
ordering of events, and in part as a means to ensure that
executions are repeatable, i.e., multiple executions of the
same simulation with the same inputs yield exactly the
same results. These simulations may use event stepped or
time stepped execution mechanisms locally. It was envi-
sion that some federates may be executing on a parallel
processor, and may be using conservative or optimistic
synchronization mechanisms within their federate. The
HLA time management services were designed to accom-
modate this wide variety of applications.

There are two principal elements of the HLA time
management services: message ordering, and time advance
mechanisms. The HLA supports two types of ordering: re-
ceive ordered communication, and time stamp order. With
receive ordered communication, no guarantees are pro-
vided by the RTI concerning the order that messages are
delivered to a federate; they are essentially delivered in the
order that they are received. This minimizes the latency to
transmit messages through the RTI, and is the ordering
typically used for real-time training exercises and test and
evaluation applications. With time stamp ordering, each
message is assigned by the sender a time stamp, and mes-
sages are delivered to the federate in time stamp order. In
some situations the RTI may need to buffer the message in
order to guarantee that it won’t later receive a message
with a smaller time stamp before delivering it to the feder-
ate. Thus, the latency for transmitting messages may be
larger when using time stamp ordering. Time stamp order
is normally used for analysis applications which are often
not paced by wallclock time where correct ordering of
events and repeatable execution are important.

The HLA time advance mechanisms are realized by a
set of services for advancing simulation (or logical) time.
A protocol is defined where federates request a time ad-
vance, and the RTI issues a Time Advance Grant when the
request can be honored. The RTI ensures that a federate is
not advanced to simulation time T, until it can guarantee
that no time stamp ordered messages with later arrive with
time stamp less than T.

Both time stamp ordering and the time advance
mechanisms rely on computation of a lower bound on the
time stamp (LBTS) of messages that will later arrive for a
federate. To compute LBTS values, federates provide the
following information: its current simulation time, a single
lookahead value for the federate (L), and guarantees con-
cerning the generation of future events. Regarding the lat-

Fujimoto

ter, when a federate invokes the Time Advance Request(T)
service to request its simulation time be advanced to T, it
makes an unconditional guarantee that no messages will
later be sent with time stamp less than T+L. This service is
typically used by time stepped federates. As noted earlier,
use of only unconditional guarantees leads to the looka-
head creep problem. To address this issue, federates also
provide conditional guarantees. Specifically, when a fed-
erate invokes the service Next Event Request (T), it condi-
tionally guarantees that no future messages will be sent
with time stamp less than T, provided the federate does not
receive additional messages with time stamp less than T.
This service is typically used by event driven federates,
where T is specified as the time of the next local event
within the federate.

The HLA time management services define additional
services to support optimistic execution. Optimistic execu-
tion requires that the federate must be able to process
events even though messages with a smaller time stamp
may later arrive. For this purpose, the Flush Queue service
is defined that delivers all available time stamp ordered
messages to the federate. In addition, some mechanism is
required to implement anti-messages in Time Warp. This
is accomplished through the Retract service. When a fed-
erate invokes Retract, it cancels a previously sent message.
If the message has already been delivered, the retraction
request is forwarded to the receiving federate, who must
then cancel the original event. Finally, the Flush Queue
service includes specification of time stamp information
and advances a federates simulation time much like the
Next Event Request service. This is used to advance
Global Virtual Time for the federation. It should be noted
that it is the federate’s responsibility to implement its own
rollback, e.g., using a state saving/restoration or a reverse
execution mechanism.

While the HLA was originally developed to combine
different simulators, other work has explored using HLA as
an approach to parallelize sequential simulations. The cen-
tral idea is to use HLA to federate a simulation with itself.
Early work using this approach, though not in the context
of HLA, is described in (Nicol and Heidelberger 1996) for
queueing network simulations. Recent work using HLA to
parallelize a commercial air traffic control simulation is
described in (Bodoh and Wieland 2003). This concept has
also been applied to parallelizing existing sequential simu-
lators of communication networks (Bononi, D’Angelo et
al. 2003; Perumalla, Park et al. 2003). Other work, also
aimed at simulating communication networks, parallelizes
sequential simulations using a fixed point computation
paradigm (Szymanski, Liu et al. 2003). Self-federated
HLA-based distributed simulations for supply chain analy-
sis is described in (Turner, Cai et al. 2000).
5 CONCLUSIONS

Beginning with research and development efforts in the
1970’s, research in distributed simulation systems has ma-
tured over the years. Much of the early research in this
area was motivated purely by performance considerations.
As processor speeds have continued to increase at an ex-
ponential pace, performance alone has become less of a
motivating factor in recent years. For many problems such
as simulation of large-scale networks such as the Internet,
performance remains a principal motivating objective,
however, much interest in this technology today stems
from the promises of cost savings resulting from model re-
use. Standards such as IEEE 1516 for the High Level Ar-
chitecture demonstrate the widespread interest in use of
distributed simulation technology for this purpose.

What is the future for the technology? It is interesting
to speculate. One potential path is to focus on applications.
High performance computing remains a niche market that
targets a handful of important, computation intensive ap-
plications. For more broader impacts in society, one must
look to the entertainment and gaming industry, where dis-
tributed simulation technology has seen the most wide-
spread deployment, and impact in society. Another view is
to observe that software is often driven by advances in
hardware technology, and look to emerging computing
platforms to define the direction the technology will turn.
In this light, ubiquitous computing stands out as an emerg-
ing area where distributed simulation may be headed. For
example, execution of distributed simulations on handheld
computers necessitates examination of power consumption
because battery life is a major constraint in such systems.
Grid computing is still another emerging approach where
distributed simulations may emerge and have an impact.

ACKNOWLEDGMENTS

The author gratefully acknowledges support for distributed
simulation research from the National Science Foundation
under grants EIA-0219976 and ECS-0225447.

REFERENCES

Ayani, R. (1989). A Parallel Simulation Scheme Based on
the Distance Between Objects. Proceedings of the SCS
Multiconference on Distributed Simulation, Society
for Computer Simulation. 21: 113-118.

Beraldi, R. and L. Nigro (2000). Exploiting Temporal Un-
certainty in Time Warp Simulations. Proceedings of
the 4th Workshop on Distributed Simulation and Real-
Time Applications: 39-46.

Bodoh, D. J. and F. Wieland (2003). Performance Experi-
ments with the High Level Architecture and the Total
Airport and Airspace Model (TAAM). Proceedings of

Fujimoto

the 17th Workshop on Parallel and Distributed Simu-
lation: 31-39.

Bononi, L., G. D’Angelo, et al. (2003). HLA-Based Adap-
tive Distributed Simulation of Wireless Mobile Sys-
tems. Proceedings of the 17th Workshop on Parallel
and Distributed Simulation: 40-49.

Bryant, R. E. (1977). Simulation of packet communica-
tions architecture computer systems. MIT-LCS-TR-
188.

Cai, W. and S. J. Turner (1990). An Algorithm for Distrib-
uted Discrete-Event Simulation -- the “Carrier Null
Message” Approach. Proceedings of the SCS Multi-
conference on Distributed Simulation, SCS Simulation
Series. 22: 3-8.

Carothers, C. D., K. Perumalla, et al. (1999). “Efficient
Optimistic Parallel Simulation Using Reverse Compu-
tation.” ACM Transactions on Modeling and Com-
puter Simulation 9(3).

Chandy, K. M. and J. Misra (1978). “Distributed Simula-
tion: A Case Study in Design and Verification of Dis-
tributed Programs.” IEEE Transactions on Software
Engineering SE-5(5): 440-452.

Chandy, K. M. and J. Misra (1981). “Asynchronous Dis-
tributed Simulation via a Sequence of Parallel Compu-
tations.” Communications of the ACM 24(4): 198-205.

Chen, G. and B. K. Szymanski (2002). Lookback: A New
Way of Exploiting Parallelism in Discrete Event
Simulation. Proceedings of the 16th Workshop on
Parallel and Distributed Simulation: 153-162.

Chen, G. and B. K. Szymanski (2003). Four Types of
Lookback. Proceedings of the 17th Workshop on Par-
allel and Distributed Simulation: 3-10.

Das, S. R. and R. M. Fujimoto (1997). “Adaptive Memory
Management and Optimism Control in Time Warp.”
ACM Transactions on Modeling and Computer Simu-
lation 7(2): 239-271.

Deelman, E., R. Bagrodia, et al. (2001). Improving Looka-
head in Parallel Discrete Event Simulations of Large-
Scale Applications using Compiler Analysis. Proceed-
ings of the 15th Workshop on Parallel and Distributed
Simulation: 5-13.

Dickens, P. M. and J. Reynolds, P. F. (1990). SRADS With
Local Rollback. Proceedings of the SCS Multiconfer-
ence on Distributed Simulation. 22: 161-164.

Ferscha, A. (1995). Probabilistic Adaptive Direct Opti-
mism Control iin Time Warp. Proceedings of the 9th
Workshop on Parallel and Distributed Simulation:
120-129.

Fujimoto, R. M. (1989). “Time Warp on a Shared Memory
Multiprocessor.” Transactions of the Society for Com-
puter Simulation 6(3): 211-239.

Fujimoto, R. M. (1999). Exploiting Temporal Uncertainty
in Parallel and Distributed Simulations. Proceedings
of the 13th Workshop on Parallel and Distributed
Simulation: 46-53.
Fujimoto, R. M. (2000). Parallel and Distributed Simula-
tion Systems, Wiley Interscience.

Fujimoto, R. M. (2001). Parallel and Distributed Simula-
tion. Proceedings of the Winter Simulation Confer-
ence.

IEEE Std 1278.1-1995 (1995). IEEE Standard for Distrib-
uted Interactive Simulation -- Application Protocols.
New York, NY, Institute of Electrical and Electronics
Engineers, Inc.

IEEE Std 1516-2000 (2000). IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture (HLA)
-- Framework and Rules. New York, NY, Institute of
Electrical and Electronics Engineers, Inc.

IEEE Std 1516.2-2000 (2000). IEEE Standard for Model-
ing and Simulation (M&S) High Level Architecture
(HLA) -- Object Model Template (OMT) Specification.
New York, NY, Institute of Electrical and Electronics
Engineers, Inc.

IEEE Std 1516.3-2000 (2000). IEEE Standard for Model-
ing and Simulation (M&S) High Level Architecture
(HLA) -- Interface Specification. New York, NY, Insti-
tute of Electrical and Electronics Engineers, Inc.

Jefferson, D. (1985). “Virtual Time.” ACM Transactions
on Programming Languages and Systems 7(3): 404-
425.

Jefferson, D. R. (1990). Virtual Time II: Storage Manage-
ment in distributed Simulation. Proceedings of the
Ninth Annual ACM Symposium on Principles of Dis-
tributed Computing: 75-89.

Jha, V. and R. Bagrodia (2000). “Simultaneous Events and
Lookahead in Simulation Protocols.” ACM Transac-
tions on Modeling and Computer Simulation 10(3):
241-267.

Kuhl, F., R. Weatherly, et al. (1999). Creating Computer
Simulation Systems: An Introduction to the High Level
Architecture for Simulation, Prentice Hall.

Lee, B.-S., W. Cai, et al. (2001). A Causality Based Time
Management Mechanism for Federated Simulations.
Proceedings of the 15th Workshop on Parallel and
Distributed Simulation: 83-90.

Lin, Y.-B. and B. R. Preiss (1991). “Optimal Memory
Management for Time Warp Parallel Simulation.”
ACM Transactions on Modeling and Computer Simu-
lation 1(4).

Lin, Y.-B., B. R. Preiss, et al. (1993). Selecting the Check-
point Interval in Time Warp Simulations. Proceedings
of the 7th Workshop on Parallel and Distributed Simu-
lation: 3-10.

Lubachevsky, B. D. (1989). “Efficient Distributed Event-
Driven Simulations of Multiple-Loop Networks.”
Communications of the ACM 32(1): 111-123.

Mattern, F. (1993). “Efficient Algorithms for Distributed
Snapshots and Global Virtual Time Approximation.”
Journal of Parallel and Distributed Computing 18(4):
423-434.

Fujimoto

Mehl, H. (1992). A Deterministic Tie-Breaking Scheme for

Sequential and Distributed Simulation. Proceedings of
the Workshop on Parallel and Distributed Simulation,
Society for Computer Simulation. 24: 199-200.

Meyer, R. A. and R. L. Bagrodia (1999). Path Lookahead:
A Data Flow View of PDES Models. Proceedings of
the 13th Workshop on Parallel and Distributed Simu-
lation: 12-19.

Miller, D. C. and J. A. Thorpe (1995). “SIMNET: The Ad-
vent of Simulator Networking.” Proceedings of the
IEEE 83(8): 1114-1123.

Nicol, D. and P. Heidelberger (1996). “Parallel Execution
for Serial Simulators.” ACM Transactions on Model-
ing and Computer Simulation 6(3): 210-242.

Nicol, D. M. and X. Liu (1997). The Dark Side of Risk.
Proceedings of the 11th Workshop on Parallel and
Distributed Simulation: 188-195.

Palaniswamy, A. C. and P. A. Wilsey (1993). An Analyti-
cal Comparison of Periodic Checkpointing and Incre-
mental State Saving. Proceedings of the 7th Workshop
on Parallel and Distributed Simulation: 127-134.

Perumalla, K. S., A. Park, et al. (2003). Scalable RTI-
Based Parallel Simulation of Networks. Proceedings
of the 17th Workshop on Parallel and Distributed
Simulation: 97-104.

Preiss, B. R. and W. M. Loucks (1995). Memory Manage-
ment Techniques for Time Warp on a Distributed
Memory Machine. Proceedings of the 9th Workshop
on Parallel and Distributed Simulation: 30-39.

Rao, D. M., N. V. Thondugulam, et al. (1998). Unsynchro-
nized Parallel Discrete Event Simulation. Proceedings
of the Winter Simulation Conference: 1563-1570.

Samadi, B. (1985). Distributed Simulation, Algorithms and
Performance Analysis. Computer Science Department.
Los Angeles, California, University of California, Los
Angeles.

Sokol, L. M. and B. K. Stucky (1990). MTW: Experimen-
tal Results for a Constrained Optimistic Scheduling
Paradigm. Proceedings of the SCS Multiconference on
Distributed Simulation. 22: 169-173.

Steinman, J. S. (1992). “SPEEDES: A Multiple-
Synchronization Environment for Parallel Discrete
Event Simulation.” International Journal on Com-
puter Simulation: 251-286.

Szymanski, B. K., Y. Liu, et al. (2003). Parallel Network
Simulation under Distributed Genesis. Proceedings of
the 17th Workshop on Parallel and Distributed Simu-
lation: 61-68.

Turner, S. J., W. T. Cai, et al. (2000). Adapting a Supply-
Chain Simulation for HLA. Proceedings of the 4th
IEEE Workshop on Distributed Simulation and Real-
Time Applications: 71-78.

Wilson, A. L. and R. M. Weatherly (1994). The Aggregate
Level Simulation Protocol: An Evolving System. Pro-
ceedings of the 1994 Winter Simulation Conference:
781-787.

Xiao, Z., B. Unger, et al. (1999). Scheduling Critical
Channels in Conservative Parallel Simulation. Pro-
ceedings of the 13th Workshop on Parallel and Dis-
tributed Simulation: 20-28.

Zhang, J. L. and C. Tropper (2001). The Dependence List
in Time Warp. Proceedings of the 15th Workshop on
Parallel and Distributed Simulation: 35-45.

AUTHOR BIOGRAPHY

RICHARD M. FUJIMOTO is a professor with the Col-
lege of Computing at the Georgia Institute of Technology.
He received the Ph.D. and M.S. degrees from the Univer-
sity of California (Berkeley) in 1980 and 1983 (Computer
Science and Electrical Engineering) and B.S. degrees from
the University of Illinois (Urbana) in 1977 and 1978
(Computer Science and Computer Engineering). He has
been an active researcher in the parallel and distributed
simulation community since 1985 and has published nu-
merous papers and a book entitled on this subject. He
served as the technical lead in defining the time manage-
ment services for the DoD High Level Architecture (HLA).
Fujimoto is Co-Editor-in-Chief for Simulation: Transac-
tions of the Society for Modeling and Simulation Interna-
tional as well as an area editor for ACM Transactions on
Modeling and Computer Simulation. He also served lead-
ership roles in the organization of several conferences in
the distributed simulation field..He can be contacted by e-
mail at <fujimoto@cc.gatech.edu>

mailto:fujimoto@cc.gatech.edu>
mailto:fujimoto@cc.gatech.edu

