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ABSTRACT 

An overview of technologies concerned with distributing the 
execution of simulation programs across multiple processors 
is presented.  Here, particular emphasis is placed on discrete 
event simulations.  The High Level Architecture (HLA) de-
veloped by the Department of Defense in the United States 
is first described to provide a concrete example of a contem-
porary approach to distributed simulation.  The remainder of 
this paper is focused on time management, a central issue 
concerning the synchronization of computations on different 
processors.  Time management algorithms broadly fall into 
two categories, termed conservative and optimistic synchro-
nization.  A survey of both conservative and optimistic algo-
rithms is presented focusing on fundamental principles and 
mechanisms.  Finally, time management in the HLA is dis-
cussed as a means to illustrate how this standard supports 
both approaches to synchronization. 

1 INTRODUCTION 

Here, the term distributed simulation refers to distributing 
the execution of a single “run” of a simulation program 
across multiple processors. This encompasses several dif-
ferent dimensions.  One dimension concerns the motivation 
for distributing the execution.  One paradigm, often re-
ferred to as parallel simulation, concerns the execution of 
the simulation on a tightly coupled computer system, e.g., 
a supercomputer or a shared memory multiprocessor.  
Here, the principal reason for distributing the execution is 
to reduce the length of time to execute the simulation.  In 
principal, by distributing the execution of a computation 
across N processors, one can complete the computation up 
to N times faster than if it were executed on a single proc-
essor.  Another reason for distributing the execution in this 
fashion is to enable larger simulations to be executed than 
could be executed on a single computer.  When confined to 
a single computer system, there may not be enough mem-
ory to perform the simulation. Distributing the execution 
across multiple machines allows the memory of many 
computer systems to be utilized. 
 
A second, increasingly important motivation for dis-

tributed simulation concerns the desire to integrate several 
different simulators into a single simulation environment.  
One example where this paradigm is frequently used is in 
military training.  Tank simulators, flight simulators, com-
puter generated forces, and a variety of other models may 
be used to create a distributed virtual environment into 
which personnel are embedded to train for hypothetical 
scenarios and situations.  Another emerging area of in-
creasing importance is infrastructure simulations where 
simulators of different subsystems in a modern society are 
combined to explore dependencies among subsystems.  For 
example, simulations of transportation systems may be 
combined with simulations of electrical power distribution 
systems, computer and communication infrastructures, and 
economic models to assess the economic impact of natural 
or human-caused disasters.  In both these domains (mili-
tary and infrastructure simulations) it is far more economi-
cal to link existing simulators to create distributed simula-
tion environments than to create new models within the 
context of a single tool or piece of software.  The High 
Level Architecture (HLA) developed by the U.S. Depart-
ment of Defense defines an approach to integrate, or feder-
ate, separate, autonomous simulators into a single, distrib-
uted simulation system. 

Another dimension that differentiates distributed simu-
lation paradigms is the geographical extent over which the 
simulation executes.  Often distributed simulations are 
executed over broad geographic areas.  This is particularly 
useful when personnel and/or resources (e.g., databases or 
specialized facilities) are included in the distributed simu-
lation exercise.  Distributed execution eliminates the need 
for these personnel and resources to be physically co-
located, representing an enormous cost savings.  Distrib-
uted simulations operating over the Internet have create an 
enormous market for the electronic gaming industry.  At 
the opposite extreme, high performance simulations may 
execute on multiprocessor computers confined to a single 
cabinet or machine room.  Close proximity is necessary to 
reduce the delay for inter-processor communications that 
might otherwise severely degrade performance.  These 
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high performance simulations often require too much 
communication between processors, making geographi-
cally distributed execution too inefficient.  Historically, the 
term distributed simulation has often been used to refer to 
geographically distributed simulations, while parallel simu-
lation traditionally referred to simulations executed on a 
tightly coupled parallel computer, however, with new 
computing paradigms such as clusters of workstations and 
grid computing, this distinction has become less clear, so 
we use the single term distributed simulation here to refer 
to all categories of distributed execution. 

Two widely-used architectures for distributed simula-
tion are the client-server and the peer-to-peer approaches.  
As its name implies, the client-server approach involves 
executing the distributed simulation on one or more server 
computers (which may be several computers connected by 
a local area network) to which clients (e.g., users) can “log 
in” from remote sites.  The bulk of the simulation compu-
tation is executed on the server machines.  This approach is 
typically used in distributed simulations used for multi-
player gaming.  Centralized management of the simulation 
computation greatly simplifies management of the distrib-
uted simulation system, and facilitates monitoring of the 
system, e.g., to detect cheating.  On the other hand, peer-
to-peer systems have no such servers, and the simulation is 
distributed across many machines, perhaps interconnected 
by a wide area network.  The peer-to-peer approach is of-
ten used in distributed simulations used for defense. 

The remainder of this paper is organized as follows.  
First, an historical view of distributed simulation technol-
ogy and how it has evolved over the last twenty to thirty 
years is briefly presented.  The High Level Architecture is 
presented to introduce aspects of a contemporary approach 
to distributed simulation.  The remainder of this paper fo-
cuses on the synchronization problem, and time manage-
ment algorithms that have been developed to address this 
issue.  A more detailed, comprehensive treatment of these 
topics is presented in (Fujimoto 2000).  Certain sections of 
this tutorial borrow material presented in (Fujimoto 2001). 

2 HISTORICAL PERSPECTIVE 

Distributed simulation technology has developed largely 
independently in at least three separate communities: the 
high performance computing community, the defense 
community, and the Internet/gaming industry.  Each of 
these is briefly discussed next. 

Distributed simulation in the high performance com-
puting community originated in the late 1970’s and early 
1980’s, focusing on synchronization algorithms (now re-
ferred to as time management). Synchronization algorithm 
were designed, for the most part, in order for the distrib-
uted execution to produce exactly the same results as a se-
quential execution of the simulation program, except 
(hopefully) more quickly. Initial algorithms utilized what is 
know referred to as a conservative paradigm, meaning 
blocking mechanisms were used to ensure no synchroniza-
tion errors (out of order event processing) occurred.  Initial 
algorithms date back to the late 1970’s with seminal work 
by (Chandy and Misra 1978), and (Bryant 1977), among 
others, who are credited with first formulating the syn-
chronization problem and developing the first solutions.  
These algorithms are among a class of algorithms that are 
today referred to as conservative synchronization tech-
niques.  In the early 1980’s seminal work by Jefferson and 
Sowizral developed the Time Warp algorithm (Jefferson 
1985).  Time Warp is important because it defined funda-
mental constructs widely used in a class of algorithms 
termed optimistic synchronization.  Conservative and op-
timistic synchronization techniques form the core of a large 
body of work concerning parallel discrete event simulation 
techniques, and much of the subsequent work in the field is 
based on this initial research. 

The defense community’s work in distributed simula-
tion systems date back to the SIMNET (SIMulator NET-
working) project.  While the high performance computing 
community was largely concerned with reducing execution 
time, the defense community was concerned with integrat-
ing separate training simulations in order to facilitate inter-
operability and software reuse.  The SIMNET project 
(1983 to 1990) demonstrated the viability of using distrib-
uted simulations to create virtual worlds for training mili-
tary personnel for engagements (Miller and Thorpe 1995).  
This lead to the development of a set of standards for inter-
connecting simulators known as the Distributed Interactive 
Simulation (DIS) standards (IEEE Std 1278.1-1995 1995).  
The 1990’s also saw the development of the Aggregate 
Level Simulation Protocol (ALSP) that applied the 
SIMNET concept of interoperability and model reuse to 
wargame simulations (Wilson and Weatherly 1994).  
ALSP and DIS have since been replaced by the High Level 
Architecture whose scope spans the broad range of defense 
simulations, including simulations for training, analysis, 
and test and evaluation of equipment and components. 

A third track of research and development efforts 
arose from the Internet and computer gaming industry.  
Some of the work in this area can be traced back to a role-
playing game called dungeons and dragons and textual fan-
tasy computer games such as Adventure developed in the 
1970’s. These soon gave way to Multi-User Dungeon 
(MUD) games in the 1980’s.  Important additions such as 
sophisticated computer graphics helped created the video 
game industry that is flourishing today.  Distributed, multi-
user gaming is sometimes characterized as the “killer ap-
plication” where distributed simulation technology may 
have the greatest economic and social impact. 
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3 THE HIGH LEVEL ARCHITECTURE 

 The High Level Architecture (HLA) was developed in 
the mid 1990’s.  It is intended to promote reuse and inter-
operation of simulations. The HLA effort was based on the 
premise that no one simulation could satisfy all uses and 
applications for the Defense community. The intent of the 
HLA is to provide a structure that supports reuse of differ-
ent simulations, ultimately reducing the cost and time re-
quired to create a synthetic environment for a new purpose. 
An introduction to the HLA is presented in (Kuhl, Weath-
erly et al. 1999). 
 Though developed in the context of defense applica-
tion, the HLA was intended to have applicability across a 
broad range of simulation application areas, including edu-
cation and training, analysis, engineering and even enter-
tainment, at a variety of levels of resolution.  These widely 
differing application areas indicate the variety of require-
ments that were considered in the development and evolu-
tion of the HLA. 

The HLA does not prescribe a specific implementa-
tion, nor does it mandate the use of any particular set of 
software or programming language.  It was envisioned that 
as new technological advances become available, new and 
different implementations would be possible within the 
framework of the HLA.  

An HLA federation consists of a collection of interact-
ing simulations, termed federates. A federate may be a 
computer simulation, a manned simulator, a supporting 
utility (such as a viewer or data collector), or an interface 
to a live player or instrumented facility.  All object repre-
sentation stays within the federates.  The HLA imposes no 
constraints on what is represented in the federates or how it 
is represented, but it does require that all federates incorpo-
rate specified capabilities to allow the objects in the simu-
lation to interact with objects in other simulations through 
the exchange of data. 

Data exchange and a variety of other services are real-
ized by software called the Runtime Infrastructure (RTI).  
The RTI is, in effect, a distributed operating system for the 
federation. The RTI provides a general set of services that 
support the simulations in carrying out these federate-to-
federate interactions and federation management support 
functions. All interactions among the federates go through 
the RTI.   
 The RTI software itself and the algorithms and proto-
cols that is uses are not defined by the HLA standard.  
Rather, it is the interface to the RTI services that are stan-
dardized.  The HLA runtime interface specification pro-
vides a standard way for federates to interact with the RTI, 
to invoke the RTI services to support runtime interactions 
among federates and to respond to requests from the RTI.  
This interface is implementation independent and is inde-
pendent of the specific object models and data exchange 
requirements of any federation. 
The HLA is formally defined by three components: the 
HLA rules, the Object Model Template (OMT), and. the in-
terface specification.  Each of these is briefly described next. 

3.1 HLA Rules 

The HLA rules summarize the key principles behind the 
HLA (IEEE Std 1516-2000 2000). The rules are divided 
into two groups: federation and federate rules.  Federations 
are required to define a Federation Object Model (FOM) 
specified in the Object Model Template (OMT) format.  
The FOM characterizes the information (objects) that are 
visible by more than one  federate.  During the execution 
of the federation, all object representation must reside 
within the federates (not the RTI). Only one federate may 
update the attribute(s) of any instance of an object at any 
given time. This federate is termed the owner of the attrib-
ute, and ownership may transfer from one federate to an-
other during the execution of the federation via the owner-
ship management services defined in the Interface 
Specification.  All information exchanges among the fed-
erates takes place via the RTI using the services defined in 
the HLA interface specification. 
 Additional rules apply to individual federates. Under the 
HLA, each federate must document their public information 
in a Simulation Object Model (SOM) using the OMT.  
Based on the information included in their SOM, federates 
must import and export information, transfer object attribute 
ownership, updates attributes and utilize the time manage-
ment services of the RTI when managing local time. 

3.2 Object Models  

HLA object models are descriptions of the essential shar-
able elements of the federation in ‘object’ terms.  The HLA 
is directed towards interoperability; hence in the HLA, ob-
ject models are intended to focus on description of the 
critical aspects of simulations and federations, which are 
shared across a federation.   The HLA puts no constraints 
on the content of the object models.  The HLA does require 
that each federate and federation document its object 
model using a standard object model template (IEEE Std 
1516.2-2000 2000).  These templates are intended to be the 
means for open information sharing across the community 
to facilitate reuse of simulations. 
 As mentioned earlier, the HLA specifies two types of 
object models: the HLA Federation Object Model (FOM) 
and the HLA Simulation Object Model (SOM). The HLA 
FOM describes the set of objects, attributes and interac-
tions, which are shared across a federation. The HLA SOM 
describes the simulation (federate) in terms of the types of 
objects, attributes and interactions it can offer to future 
federations.  The SOM is distinct from internal design in-
formation; rather it provides information on the capabilities 
of a simulation to exchange information as part of a federa-
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tion.  The SOM is essentially a contract by the simulation 
defining the types of information it can make available in 
future federations.  The availability of the SOM facilitates 
the assessment of the appropriateness of the federate for 
participation in a federation. 
 While the HLA does not define the contents of a SOM 
or FOM, it does require that a common documentation ap-
proach be used.  Both the HLA FOM and SOM are docu-
mented using a standard form called the HLA Object 
Model Template (OMT). 

3.3 The Interface Specification 

The HLA interface specification describes the runtime ser-
vices  provided to the federates by the RTI, and by the fed-
erates to the RTI (IEEE Std 1516.3-2000 2000).  There are 
six classes of services.   Federation management   services 
offer basic functions required to create and operate a fed-
eration.  Declaration management   services support effi-
cient management of data exchange through the informa-
tion provided by federates defining the data they will 
provide and will require during a federation execution.  
Object management services provide creation, deletion, 
identification and other services at the object level.  Own-
ership management  services supports the dynamic transfer 
of ownership of object/attributes during an execution.  
Time management services support synchronization of run-
time simulation data exchange.  Finally, data distribution 
management services support the efficient routing of data 
among federates during the course of a federation execu-
tion. The HLA interface specification defines the way 
these services are accessed, both functionally and in an ap-
plication programmer’s interface (API). 

4 TIME MANAGEMENT 

Time management is concerned with ensuring that the exe-
cution of the distributed simulation is properly synchro-
nized.  This is particularly important for simulations used 
for analysis (as opposed training where errors that are not 
perceptible to humans participating in the exercise may be 
acceptable).  Time management not only ensures that 
events are processed in a correct order, but also helps to 
ensure that repeated executions of a simulation with the 
same inputs produce exactly the same results.  Currently, 
time management techniques such as those described here 
are typically not used in training simulations, where incor-
rect event orderings and non-repeatable simulation execu-
tions can usually be tolerated. 

Time management algorithms usually assume the 
simulation consists of a collection of logical processes 
(LPs) that communicate by exchanging timestamped mes-
sages or events.  In the context of the HLA, each federate 
can be viewed as a single LP.  The goal of the synchroniza-
tion mechanism is to ensure that each LP processes events 
in timestamp order.  This requirement is referred to as the 
local causality constraint.  Ignoring events containing ex-
actly the same time stamp, it can be shown that if each LP 
adheres to the local causality constraint, execution of the 
simulation program on a parallel computer will produce 
exactly the same results as an execution on a sequential 
computer where all events are processed in time stamp or-
der.  This property also helps to ensure that the execution 
of the simulation is repeatable; one need only ensure the 
computation associated with each event is repeatable. 

Synchronization is particularly interesting for the case 
of discrete event simulations.  In this case, each LP can be 
viewed as a sequential discrete event simulator.  This 
means each LP maintains local state information corre-
sponding to the entities it is simulating and a list of time 
stamped events that have been scheduled for this LP, but 
have not yet been processed.  This pending event list in-
cludes local events that the LP has scheduled for itself as 
well as events that have been scheduled for this LP by 
other LPs. The main processing loop of the LP repeatedly 
removes the smallest time stamped event from the pending 
event list and processes it.  Thus, the computation per-
formed by an LP can be viewed as a sequence of event 
computations.  Processing an event means zero or more 
state variables within the LP may be modified, and the LP 
may schedule additional events for itself or other LPs.  
Each LP maintains a simulation time clock that indicates 
the time stamp of the most recent event processed by the 
LP.  Any event scheduled by an LP must have a time 
stamp at least as large as the LP’s simulation time clock 
when the event was scheduled. 

The time management algorithm must ensure that each 
LP processes events in time stamp order.  This is non-trivial 
because each LP does not a priori know what events will 
later be received from other LPs.  For example, suppose the 
next unprocessed event stored in the pending event list has 
time stamp 10.  Can the LP process this event?  How does 
the LP know it will not later receive an event from another 
LP with time stamp less than 10?  This question captures the 
essence of the synchronization problem. 

Much research has been completed to attack this prob-
lem.  Time management algorithms can be classified as be-
ing either conservative or optimistic. Briefly, conservative 
algorithms take precautions to avoid the possibility of 
processing events out of time stamp order, i.e., the execu-
tion mechanism avoids synchronization errors.  In the 
aforementioned example where the next unprocessed event 
has a time stamp of 10, the LP must first ensure it will not 
later receive any additional events with time stamp less 
than 10 before it can process this event.  On the other hand, 
optimistic algorithms use a detection and recovery ap-
proach.  Events are allowed to be processed out of time 
stamp order, however, a separate mechanism is provided to 
recover from such errors. Each of these are described next. 
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4.1 Conservative Time Management 

The first synchronization algorithms were based on con-
servative approaches.  The principal task of any conserva-
tive protocol is to determine when it is “safe” to process 
an event.  An event is said to be safe when can one guar-
antee no event containing a smaller time stamp will be 
later received by this LP.  Conservative approaches do 
not allow an LP to process an event until it has been 
guaranteed to be safe. 

At the heart of most conservative synchronization al-
gorithms is the computation for each LP of a Lower Bound 
on the Time Stamp (LBTS) of future messages that may 
later be received by that LP.  This allows the mechanism to 
determine which events are safe to process.  For example, 
if the synchronization algorithm has determined that the 
LBTS value for an LP is 12, then all events with time 
stamp less than 12 are safe, and may be processed.  Con-
versely, all events with time stamp larger than 12 cannot be 
safely processed.  Whether or not events with time stamp 
equal to 12 can be safely processed depends on specifics of 
the algorithm, and the rules concerning the order that 
events with the same time stamp (called simultaneous 
events) are processed.  Processing of simultaneous events 
is a complex subject matter that is beyond the scope of the 
current discussion, but is discussed in detail in (Jha and 
Bagrodia 2000).  The discussion here assumes that each 
event has a unique time stamp.  It is straightforward to in-
troduce tie breaking fields in the time stamp to ensure 
uniqueness (Mehl 1992). 

4.1.1 Null Messages and Deadlock Avoidance 

The algorithms described in (Bryant 1977; Chandy and 
Misra 1978) were among the first synchronization algo-
rithms that were developed.  They assume the topology in-
dicating which LPs send messages to which others is fixed 
and known prior to execution.  It is assumed each LP sends 
messages with non-decreasing time stamps, and the com-
munication network ensures that messages are received in 
the same order that they were sent.  This guarantees that 
messages on each incoming link of an LP arrive in time-
stamp order.  This implies that the timestamp of the last 
message received on a link is a lower bound on the time-
stamp of any subsequent message that will later be re-
ceived on that link.  Thus, the LBTS value for an LP is 
simply the minimum among the LBTS values of its incom-
ing links. 

Messages arriving on each incoming link are stored in 
first-in-first-out order, which is also timestamp order be-
cause of the above restrictions.  Local events scheduled 
within the LP can be handled by having a queue within 
each LP that holds messages sent by an LP to itself.  Each 
link has a clock that is equal to the timestamp of the mes-
sage at the front of that link’s queue if the queue contains a 
message, or the timestamp of the last received message if 
the queue is empty.  The process repeatedly selects the link 
with the smallest clock and, if there is a message in that 
link’s queue, processes it.  If the selected queue is empty, 
the process blocks.  The LP never blocks on the queue con-
taining messages it schedules for itself, however.  This pro-
tocol guarantees that each process will only process events 
in non-decreasing timestamp order. 

Although this approach ensures the local causality con-
straint is never violated, it is prone to deadlock.  A cycle of 
empty links with small link clock values (e.g., smaller than 
any unprocessed message in the simulator) can occur, result-
ing in each process waiting for the next process in the cycle.  
If there are relatively few unprocessed messages compared 
to the number of links in the network, or if the unprocessed 
events become clustered in one portion of the network, dead-
lock may occur very frequently. 

Null messages are used to avoid deadlock.  A null 
message with timestamp Tnull sent from LPA to LPB is a 
promise by LPA that it will not later send a message to LPB 
carrying a timestamp smaller than Tnull.  Null messages do 
not correspond to any activity in the simulated system; 
they are defined purely for avoiding deadlock situations.  
Processes send null messages on each outgoing link after 
processing each event.  A null message provides the re-
ceiver with additional information that may be used to de-
termine that other events are safe to process. 

Null messages are processed by each LP just like ordi-
nary non-null messages, except no activity is simulated by 
the processing of a null message.  In particular, processing 
a null message advances the simulation clock of the LP to 
the time stamp of the null message.  However, no state 
variables are modified and no non-null messages are sent 
as the result of processing a null message. 

How does a process determine the timestamps of the 
null messages it sends?  The clock value of each incoming 
link provides a lower bound on the timestamp of the next 
event that will be removed from that link’s buffer.  When 
coupled with knowledge of the simulation performed by 
the process, this bound can be used to determine a lower 
bound on the timestamp of the next outgoing message on 
each output link.  For example, if a queue server has a 
minimum service time of T, then the timestamp of any fu-
ture departure event must be at least T units of simulated 
time larger than any arrival event that will be received in 
the future. 

Whenever a process finishes processing a null or non-
null message, it sends a new null message on each outgo-
ing link. The receiver of the null message can then com-
pute new bounds on its outgoing links, send this informa-
tion on to its neighbors, and so on.  It can be shown that 
this algorithm avoids deadlock (Chandy and Misra 1978). 

The null message algorithm introduced a key property 
utilized by virtually all conservative synchronization algo-
rithms: lookahead.  If an LP is at simulation time T, and it 
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can guarantee that any message it will send in the future will 
have a time stamp of at least T+L regardless of what mes-
sages it may later receive, the LP is said to have a lookahead 
of L.  As we just saw, lookahead is used to generate the time 
stamps of null messages. One constraint of the null message 
algorithm is it requires that no cycle among LPs exist con-
taining zero lookahead, i.e., it is impossible for a sequence 
of messages to traverse the cycle, with each message sched-
uling a new message with the same time stamp. 

4.1.2 Exploiting Next Event Timestamp Information 

The main drawback with the null message algorithm is it 
may generate an excessive number of null messages. Con-
sider a simulation containing two LPs.  Suppose both are 
blocked, each has reached simulation time 100, and each 
has a lookahead equal to 1. Suppose the next unprocessed 
event in the simulation has a time stamp of 200.  The null 
message algorithm will result in null messages exchanged 
between the LPs with time stamp 101, 102, 103, and so on.  
This will continue until the LPs advance to simulation time 
200, when the event with time stamp 200 can now be proc-
essed.  A hundred null messages must be sent and proc-
essed between the two LPs before the non-null message 
can be processed. This is clearly very inefficient.  The 
problem becomes even more severe if there are many LPs. 

The principal problem is the algorithm uses only the 
current simulation time of each LP and lookahead to pre-
dict the minimum time stamp of messages it could generate 
in the future.  To solve this problem, we observe that the 
key piece of information that is required is the time stamp 
of the next unprocessed event within each LP.  If the LPs 
could collectively recognize that this event has time stamp 
200, all of the LPs could immediately advance from simu-
lation time 100 to time 200.  Thus, the time of the next 
event across the entire simulation provides critical infor-
mation that avoids the “time creeping” problem in the null 
message algorithm.  This idea is exploited in more ad-
vanced synchronization algorithms. 

Another problem with the null message algorithm 
concerns the case where each LP can send messages to 
many other LPs.  In the worst case, the LP topology is fully 
connected meaning each LP could send a message to any 
other.  In this case, each LP must broadcast a null message 
to every other LP after processing each event.  This also 
results in an excessive number of null messages. 

One early approach to solving these problems is an al-
ternate algorithm that allows the computation to deadlock, 
but then detects and breaks it (Chandy and Misra 1981).  
The deadlock can be broken by observing that the mes-
sage(s) containing the smallest timestamp is (are) always 
safe to process.  Alternatively, one may use a distributed 
computation to compute lower bound information (not 
unlike the distributed computation using null messages de-
scribed above) to enlarge the set of safe messages. 
Many other approaches have been developed.  Some 
protocols use a synchronous execution where the computa-
tion cycles between (i) determining which events are 
“safe’“ to process, and (ii) processing those events.  It is 
clear that the key step is determining the events that are 
safe to process each cycle.  Each LP must determine a 
lower bound on the time stamp (LBTS) of messages it 
might later receive from other LPs.  This can be deter-
mined from a snapshot of the distributed computation as 
the minimum among: 

• the simulation time of the next event within the 
LP if it is blocked, or the current time of the LP if 
it is not blocked, plus the LP’s lookahead and 

• the time stamp of any transient messages, i.e., any 
message that has been sent but has not yet been 
received at its destination. 

A barrier synchronization can be used to obtain the 
snapshot.  Transient messages can be “flushed” out of the 
system in order to account for their time stamps.  If first-in-
first-out communication channels are used, null messages 
can be sent through the channels to flush the channels, 
though as noted earlier, this may result in many null mes-
sages.  Alternatively, each LP can maintain a counter of the 
number of messages it has sent, and the number if has re-
ceived.  When the sum of the send and receive counters 
across all of the LPs are the same, and each LP has reached 
the barrier point, it is guaranteed that there are no more 
transient messages in the system.  In practice, summing the 
counters can be combined with the computation for com-
puting the global minimum value (Mattern 1993). 

To determine which events are safe, the distance be-
tween LPs is sometimes used (Ayani 1989; Lubachevsky 
1989; Cai and Turner 1990).  This “distance” is the mini-
mum amount of simulation time that must elapse for an 
event in one LP to directly or indirectly affect another LP, 
and can be used by an LP to determine bounds on the time-
stamp of future events it might receive from other LPs.  This 
assumes it is known which LPs send messages to which 
other LPs.  Other techniques focus on maximizing exploita-
tion of lookahead, e.g., see (Meyer and Bagrodia 1999; 
Xiao, Unger et al. 1999).  Full elaboration of these and other 
technique is beyond the scope of the present discussion. 

Another thread of research in synchronization algo-
rithms concerns relaxing ordering constraints in order to 
improve performance.  Some approaches amount to simply 
ignoring out of order event processing (Sokol and Stucky 
1990; Rao, Thondugulam et al. 1998).  Use of time inter-
vals, rather than precise time stamps, to encode uncertainty 
of temporal information in order to improve the perform-
ance of time management algorithms have also been pro-
posed (Fujimoto 1999) (Beraldi and Nigro 2000).  Use of 
causal order rather than time stamp order for distributed 
simulation applications has also been studied (Lee, Cai et 
al. 2001). 
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4.2 Optimistic Time Management 

In contrast to conservative approaches that avoid violations 
of the local causality constraint, optimistic methods allow 
violations to occur, but are able to detect and recover from 
them.  Optimistic approaches offer two important advan-
tages over conservative techniques.  First, they can exploit 
greater degrees of parallelism.  If two events might affect 
each other, but the computations are such that they actually 
don’t, optimistic mechanisms can process the events con-
currently, while conservative methods must sequentialize 
execution.  Second, conservative mechanism generally rely 
on application specific information (e.g., distance between 
objects) in order to determine which events are safe to 
process.  While optimistic mechanisms can execute more 
efficiently if they exploit such information, they are less 
reliant on such information for correct execution.  This al-
lows the synchronization mechanism to be more transpar-
ent to the application program than conservative ap-
proaches, simplifying software development.  On the other 
hand, optimistic methods may require more overhead com-
putations than conservative approaches, leading to certain 
performance degradations. 

The Time Warp mechanism (Jefferson 1985) is the 
most well known optimistic method.  When an LP receives 
an event with timestamp smaller than one or more events it 
has already processed, it rolls back and reprocesses those 
events in timestamp order.  Rolling back an event involves 
restoring the state of the LP to that which existed prior to 
processing the event (checkpoints are taken for this pur-
pose), and “unsending” messages sent by the rolled back 
events.  An elegant mechanism called anti-messages is 
provided to “unsend” messages. 

An anti-message is a duplicate copy of a previously 
sent message.  Whenever an anti-message and its matching 
(positive) message are both stored in the same queue, the 
two are deleted (annihilated).  To “unsend” a message, a 
process need only send the corresponding anti-message.  If 
the matching positive message has already been processed, 
the receiver process is rolled back, possibly producing ad-
ditional anti-messages.  Using this recursive procedure all 
effects of the erroneous message will eventually be erased. 

Two problems remain to be solved before the above ap-
proach can be viewed as a viable synchronization mecha-
nism.  First, certain computations, e.g., I/O operations, can-
not be rolled back.  Second, the computation will continually 
consume more and more memory resources because a his-
tory (e.g., checkpoints) must be retained, even if no roll-
backs occur; some mechanism is required to reclaim the 
memory used for this history information.  Both problems 
are solved by global virtual time (GVT).  GVT is a lower 
bound on the timestamp of any future rollback.  GVT is 
computed by observing that rollbacks are caused by mes-
sages arriving “in the past.”  Therefore, the smallest time-
stamp among unprocessed and partially processed messages 
gives a value for GVT.  Once GVT has been computed, I/O 
operations occurring at simulated times older than GVT can 
be committed, and storage older than GVT (except one state 
vector for each LP) can be reclaimed. 

GVT computations are essentially the same as LBTS 
computations used in conservative algorithms.  This is be-
cause rollbacks result from receiving a message or anti-
message in the LP’s past.  Thus, GVT amounts to comput-
ing a lower bound on the time stamp of future messages (or 
anti-messages) that may later be received.   

Several algorithms for computing GVT (LBTS) have 
been developed, e.g., see (Samadi 1985; Mattern 1993), 
among others.  Asynchronous algorithms compute GVT 
“in background” while the simulation computation is pro-
ceeding, introducing the difficulty that different processes 
must report their local minimum at different points in time.  
A second problem is one must account for transient mes-
sages in the computation, i.e., messages that have been sent 
but not yet received.  Mattern describes an elegant solution 
to these problems using consistent cuts of the computation 
and message counters, discussed earlier (Mattern 1993). 

A pure Time Warp system can suffer from overly op-
timistic execution, i.e., some LPs may advance too far 
ahead of others leading to excessive memory utilization 
and long rollbacks.  Many other optimistic algorithms have 
been proposed to address these problems. Most attempt to 
limit the amount of optimism.  An early technique involves 
using a sliding window of simulated time (Sokol and 
Stucky 1990).  The window is defined as [GVT, GVT+W] 
where W is a user defined parameter.  Only events with 
time stamp within this interval are eligible for processing. 
Another approach delays message sends until it is guaran-
teed that the send will not be later rolled back, i.e., until 
GVT advances to the simulation time at which the event 
was scheduled. This eliminates the need for anti-messages 
and avoids cascaded rollbacks, i.e., a rollback resulting in 
the generation of additional rollbacks (Dickens and Rey-
nolds 1990; Steinman 1992).  An approach that also a local 
rollback mechanism to avoid anti-messages using a con-
cept called lookback (somewhat analogous to lookahead in 
conservative synchronization protocols) is described in 
(Chen and Szymanski 2002; Chen and Szymanski 2003).  
A technique called direct cancellation is sometimes used to 
rapidly cancel incorrect messages, thereby helping to re-
duce overly optimistic execution (Fujimoto 1989; Zhang 
and Tropper 2001). 

Another problem with optimistic synchronization con-
cerns the amount of memory that may be required to store 
history information.  Several techniques have been devel-
oped to address this problem.  For example, one can roll 
back computations to reclaim memory resources (Jefferson 
1990; Lin and Preiss 1991).  State saving can be performed 
infrequently rather than after each event (Lin, Preiss et al. 
1993; Palaniswamy and Wilsey 1993).  The memory used 
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by some state vectors can be reclaimed even though their 
time stamp is larger than GVT (Preiss and Loucks 1995). 

Early approaches to controlling Time Warp execution 
used user-defined parameters that had to be tuned to opti-
mize performance.  Later work has focused on adaptive 
approaches where the simulation executive automatically 
monitors the execution and adjusts control parameters to 
maximize performance.  Examples of such adaptive control 
mechanisms are described in (Ferscha 1995; Das and Fu-
jimoto 1997), among others. 

Practical implementation of optimistic algorithms re-
quires that one must be able to roll back all operations, or 
be able to postpone them until GVT advances past the 
simulation time of the operation.  Care must be taken to 
ensure operations such as memory allocation and dealloca-
tion are handled properly, e.g., one must be able to roll 
back these operations.  Also, one must be able to roll back 
execution errors.  This can be problematic in certain situa-
tions, e.g., if an optimistic execution causes portions of the 
internal state of the Time Warp executive to be overwritten 
(Nicol and Liu 1997). 

Another approach to optimistic execution involves the 
use of reverse computation techniques rather than rollback 
(Carothers, Perumalla et al. 1999).  Undoing an event 
computation is accomplished by executing the inverse 
computation, e.g., to undo incrementing a state variable, 
the variable is instead decremented.  The advantage of this 
technique is it avoids state saving, which may be both time 
consuming and require a large amount of memory.  In 
(Carothers, Perumalla et al. 1999) a reverse compiler is de-
scribed to automatically generate inverse computations. 

Synchronization is a well-studied area of research in the 
distributed simulation field.  There is no clear consensus 
concerning whether optimistic or conservative synchroniza-
tion perform better; indeed, the optimal approach usually 
depends on the application.  In general, if the application has 
good lookahead characteristics and programming the appli-
cation to exploit this lookahead is not overly burdensome, 
conservative approaches are the method of choice.  Indeed, 
much research has been devoted to improving the lookahead 
of simulation applications, e.g., see (Deelman, Bagrodia et 
al. 2001).  Otherwise, optimistic synchronization offers 
greater promise.  Disadvantages of optimistic synchroniza-
tion include the potentially large amount of memory that 
may be required, and the complexity of optimistic simula-
tion executives. Techniques to reduce memory utilization 
further aggravate the complexity issue. 

4.3 Time Management in the HLA 

The HLA provides a set of services to support time man-
agement.  A principal consideration in defining these ser-
vices was the observation that different federates may use 
different local time management mechanisms and have dif-
ferent requirements for message ordering and delay.  Two 
major categories emerged.  One class of simulations were 
designed to created virtual environments for training and 
test and evaluation (e.g., hardware-in-the-loop) applica-
tions.  The execution of these simulations is paced by wall-
clock time, and synchronization algorithms to guarantee 
time stamp ordering of events are typically not used.  
Achieving low, predictable delays to transmit messages are 
important.  A second class of simulations are those that re-
quire synchronization algorithms, in part to ensure proper 
ordering of events, and in part as a means to ensure that 
executions are repeatable, i.e., multiple executions of the 
same simulation with the same inputs yield exactly the 
same results.  These simulations may use event stepped or 
time stepped execution mechanisms locally.  It was envi-
sion that some federates may be executing on a parallel 
processor, and may be using conservative or optimistic 
synchronization mechanisms within their federate.  The 
HLA time management services were designed to accom-
modate this wide variety of applications. 

There are two principal elements of the HLA time 
management services: message ordering, and time advance 
mechanisms.  The HLA supports two types of ordering: re-
ceive ordered communication, and time stamp order.  With 
receive ordered communication, no guarantees are pro-
vided by the RTI concerning the order that messages are 
delivered to a federate; they are essentially delivered in the 
order that they are received.  This minimizes the latency to 
transmit messages through the RTI, and is the ordering 
typically used for real-time training exercises and test and 
evaluation applications.  With time stamp ordering, each 
message is assigned by the sender a time stamp, and mes-
sages are delivered to the federate in time stamp order.  In 
some situations the RTI may need to buffer the message in 
order to guarantee that it won’t later receive a message 
with a smaller time stamp before delivering it to the feder-
ate.  Thus, the latency for transmitting messages may be 
larger when using time stamp ordering.  Time stamp order 
is normally used for analysis applications which are often 
not paced by wallclock time where correct ordering of 
events and repeatable execution are important. 

The HLA time advance mechanisms are realized by a 
set of services for advancing simulation (or logical) time.  
A protocol is defined where federates request a time ad-
vance, and the RTI issues a Time Advance Grant when the 
request can be honored.  The RTI ensures that a federate is 
not advanced to simulation time T, until it can guarantee 
that no time stamp ordered messages with later arrive with 
time stamp less than T. 

Both time stamp ordering and the time advance 
mechanisms rely on computation of a lower bound on the 
time stamp (LBTS) of messages that will later arrive for a 
federate.  To compute LBTS values, federates provide the 
following information: its current simulation time, a single 
lookahead value for the federate (L), and guarantees con-
cerning the generation of future events.  Regarding the lat-
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ter, when a federate invokes the Time Advance Request(T) 
service to request its simulation time be advanced to T, it 
makes an unconditional guarantee that no messages will 
later be sent with time stamp less than T+L.  This service is 
typically used by time stepped federates.  As noted earlier, 
use of only unconditional guarantees leads to the looka-
head creep problem.  To address this issue, federates also 
provide conditional guarantees.  Specifically, when a fed-
erate invokes the service Next Event Request (T), it condi-
tionally guarantees that no future messages will be sent 
with time stamp less than T, provided the federate does not 
receive additional messages with time stamp less than T.  
This service is typically used by event driven federates, 
where T is specified as the time of the next local event 
within the federate. 

The HLA time management services define additional 
services to support optimistic execution.  Optimistic execu-
tion requires that the federate must be able to process 
events even though messages with a smaller time stamp 
may later arrive.  For this purpose, the Flush Queue service 
is defined that delivers all available time stamp ordered 
messages to the federate.  In addition, some mechanism is 
required to implement anti-messages in Time Warp.  This 
is accomplished through the Retract service.  When a fed-
erate invokes Retract, it cancels a previously sent message.  
If the message has already been delivered, the retraction 
request is forwarded to the receiving federate, who must 
then cancel the original event.  Finally, the Flush Queue 
service includes specification of time stamp information 
and advances a federates simulation time much like the 
Next Event Request service.  This is used to advance 
Global Virtual Time for the federation.  It should be noted 
that it is the federate’s responsibility to implement its own 
rollback, e.g., using a state saving/restoration or a reverse 
execution mechanism. 

While the HLA was originally developed to combine 
different simulators, other work has explored using HLA as 
an approach to parallelize sequential simulations.  The cen-
tral idea is to use HLA to federate a simulation with itself.  
Early work using this approach, though not in the context 
of HLA, is described in (Nicol and Heidelberger 1996) for 
queueing network simulations.  Recent work using HLA to 
parallelize a commercial air traffic control simulation is 
described in (Bodoh and Wieland 2003).  This concept has 
also been applied to parallelizing existing sequential simu-
lators of communication networks (Bononi, D’Angelo et 
al. 2003; Perumalla, Park et al. 2003).  Other work, also 
aimed at simulating communication networks, parallelizes 
sequential simulations using a fixed point computation 
paradigm (Szymanski, Liu et al. 2003).  Self-federated 
HLA-based distributed simulations for supply chain analy-
sis is described in (Turner, Cai et al. 2000). 
5 CONCLUSIONS 

Beginning with research and development efforts in the 
1970’s, research in distributed simulation systems has ma-
tured over the years.  Much of the early research in this 
area was motivated purely by performance considerations.  
As processor speeds have continued to increase at an ex-
ponential pace, performance alone has become less of a 
motivating factor in recent years.  For many problems such 
as simulation of large-scale networks such as the Internet, 
performance remains a principal motivating objective, 
however, much interest in this technology today stems 
from the promises of cost savings resulting from model re-
use.  Standards such as IEEE 1516 for the High Level Ar-
chitecture demonstrate the widespread interest in use of 
distributed simulation technology for this purpose. 

What is the future for the technology?  It is interesting 
to speculate.  One potential path is to focus on applications.  
High performance computing remains a niche market that 
targets a handful of important, computation intensive ap-
plications.  For more broader impacts in society, one must 
look to the entertainment and gaming industry, where dis-
tributed simulation technology has seen the most wide-
spread deployment, and impact in society.  Another view is 
to observe that software is often driven by advances in 
hardware technology, and look to emerging computing 
platforms to define the direction the technology will turn.  
In this light, ubiquitous computing stands out as an emerg-
ing area where distributed simulation may be headed.  For 
example, execution of distributed simulations on handheld 
computers necessitates examination of power consumption 
because battery life is a major constraint in such systems.  
Grid computing is still another emerging approach where 
distributed simulations may emerge and have an impact. 
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