
Distributed Smooth Projective Hashing

and Its Application to Two-Server Password
Authenticated Key Exchange

Franziskus Kiefer and Mark Manulis

Surrey Center for Cyber Security
Department of Computing, University of Surrey, UK

mail@franziskuskiefer.de, mark@manulis.eu

Abstract. Smooth projective hash functions have been used as building
block for various cryptographic applications, in particular for password-
based authentication.

In this work we propose the extended concept of distributed smooth
projective hash functions where the computation of the hash value is
distributed across n parties and show how to instantiate the underlying
approach for languages consisting of Cramer-Shoup ciphertexts.

As an application of distributed smooth projective hashing we build a
new framework for the design of two-server password authenticated key
exchange protocols, which we believe can help to “explain” the design of
earlier two-server password authenticated key exchange protocols.

Keywords: Smooth Projective Hash Functions, Two-Server PAKE.

1 Introduction

Smooth projective hashing allows to compute the hash value of an element from
a set in two different ways: either by using a secret hashing key on the element, or
utilising the public projection key and some secret information proving that the
particular element is part of a specific subset under consideration. In addition,
smooth projective hash values guarantee to be uniformly distributed in their
domain as long as the input element is not from a specific subset of the input
set. These features make them a quite popular building block in many protocols
such as CCA-secure public key encryption, blind signatures, password authenti-
cated key exchange, oblivious transfer, zero-knowledge proofs, commitments and
verifiable encryption.

Smooth projective hash functions (SPHF) are due to Cramer and Shoup [10]
who used them to construct CCA-secure public key encryption schemes and
analyse mechanisms from [9]. The first use of SPHFs in the construction of
a password authenticated key exchange (PAKE) protocol is due to Gennaro
and Lindell [11], who introduced additional requirements to the SPHF such as
pseudorandomness that was later extended in [15]. The SPHF-based approach
taken in [11] was further helpful in the “explanation” of the KOY protocol from
[14], where those functions were implicitly applied.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 199–216, 2014.
c© Springer International Publishing Switzerland 2014

200 F. Kiefer and M. Manulis

Abdalla et al. [1] introduced conjunction and disjunction of languages for
smooth projective hashing that were later used in the construction of blind
signatures [7,5], oblivious signature-based envelopes [7], and authenticated key
exchange protocols for algebraic languages [4]. Blazy et al. [7] demonstrate more
general use of smooth projective hashing in designing round-optimal privacy-
preserving interactive protocols.

We extend this line of work by considering divergent parametrised languages
in one smooth projective hash function that allows multiple parties to jointly
evaluate the result of the function. We propose the notion of (distributed) ex-
tended smooth projective hashing that enables joint hash computation for special
languages. Further, we propose a new two-server password authenticated key ex-
change framework using the new notion of distributed smooth projective hashing
and show how it helps to explain the protocol from [13]. Actually, the authors
of [2] already built a group PAKE protocol using smooth projective hashing in
a multi-party party protocol. However, they assume a ring structure such that
the smooth projective hashing is only used between two parties.

Organisation. We start by recalling smooth projective hash functions and in-
troduce useful definitions in Section 2. Our first contribution is the definition
of an extended smooth projective hash function SPHFx that handles divergent
parametrised languages in Section 3. Then we show how to distribute their com-
putation between multiple parties, introducing distributed SPHFx in Section 3.1
and give a concrete instantiation in Section 3.3. Finally, we propose a two-server
PAKE framework in Section 4 and analyse the two-server KOY protocol using
a variant of distributed SPHFx in Section 4.2.

2 Smooth Projective Hash Functions

First, we recall definitions from [5] for classical SPHF with some minor changes.
We stick with the framework from [5, Section 3] on cyclic groups G of prime
order and focus on languages of ciphertexts. This seems reasonable since it is
the preferred setting and allows a comprehensible description. An extension to
graded rings and general languages should be possible and is left open for future
work.

A language Laux is indexed by a parameter aux, consisting of global public
information and secret variable information aux′. In our setting of languages of
ciphertexts the public part of aux is essentially a common reference string crs

containing the public key pk of the used encryption scheme. The secret part aux′

contains the message that should be encrypted. By π we denote the crs trapdoor,
the secret key to pk. We denote L the encryption scheme used to generate words.
Unless stated otherwise we assume that L is a labelled CCA-secure encryption
scheme.

Distributed Smooth Projective Hashing and Its Application 201

Definition 1 (Languages of Ciphertexts). Let Laux ⊆ Set denote the lan-
guage of ciphertext under consideration. A ciphertext C is in the language Laux

if C ← EncLpk(�, aux′;w) for aux = (pk, aux′). Formally, a word C is in the

language Laux if and only if ∃λ ∈ Z1×k
p such that Θaux(C) = λ � Γ (C), where

Γ : Set �→ G
k×n and Θaux : Set �→ G

1×n for integers k, n.

We use the notation � and common matrix and vector operations on it from [5]:
for a ∈ G, r ∈ Zp : a� r = r � a = ar ∈ G.

Definition 2 (SPHF [5]). Let Laux denote a language such that C ∈ Laux

if there exists a witness w proving so. A smooth projective hash function for
ciphertext language Laux consists of the following four algorithms:

– KGenH(Laux) generates a hashing key kh ∈R Z1×n
p for language Laux.

– KGenP(kh, Laux, C) derives the projection key kp = Γ (C)�kh ∈ Gk×1, possibly
depending on C.

– Hash(kh, Laux, C) outputs the hash value h = Θaux(C)� kh ∈ G.
– PHash(kp, Laux, C, w) returns the hash value h = λ � kp ∈ G, with λ =

Ω(w,C) for some Ω : {0, 1}∗ �→ G1×k.

A SPHF has to fulfil the following three properties (formal definitions follow):

– Correctness : If C ∈ L, with w proving so, then Hash(kh, Laux, C) = PHash(kp,
Laux, C, w).

– Smoothness : If C 	∈ Laux, the hash value h is statistically indistinguishable
from a random element in G.

– Pseudorandomness : If C ∈ Laux, the hash value h is indistinguishable from
a random element in G.1

In a nutshell, smoothness ensures that the hash value always looks random in
G when computed on an element not in the language, while pseudorandomness
ensures that it looks random in G when computed on an element in the language.
The authors of [6] identify three different SPHF classes: word-independent key
and adaptive smoothness (KV-SPHF, first proposed in [15]), word-independent
key and non-adaptive smoothness (CS-SPHF, first proposed in [10]), and word-
dependent key (GL-SPHF, first proposed in [11]).

In this work we focus on the strongest notion behind KV-SPHF: word-
independent key with adaptive smoothness. Unless stated otherwise all SPHFs
in the following are KV-SPHFs where the projection key is independent of the
ciphertext. This property enables our construction of extended SPHFs. The cor-
responding notion of adaptive smoothness with word-independent keys is defined
as follows. For any function f : Set\Laux �→ Gl×1 the following distributions are
statistically ε-close:

1 Note that this is not always a requirement or even possible. But as languages of
labelled CCA-secure ciphertexts are hard-on-average problems the corresponding
SPHF is also pseudorandom.

202 F. Kiefer and M. Manulis

{(kp, h) | kh R← KGenH(Laux); kp ← KGenP(kh, Laux);h ← Hash(kh, Laux, f(kp))}
ε
= {(kp, h) | kh R← KGenH(Laux); kp ← KGenP(kh, Laux);h ∈R G}
Gennaro and Lindell [11] introduced pseudorandomness of SPHFs to show that
Hash and PHash are the only way to compute the hash value even though the
adversary knows some tuples (kp, C, Hash(kh, Laux, C)) for C ∈ Laux. A SPHF is
pseudorandom if the hash values produced by Hash and PHash are indistinguish-
able from random without the knowledge of the uniformly chosen hash key kh or
a witness w, i.e. for all C ∈ Laux the following distributions are computationally
ε-close:

{(kp, C, h) | kh R← KGenH(Laux); kp ← KGenP(kh, Laux);h ← Hash(kh, Laux, C)}
ε
= {(kp, C, h) | kh R← KGenH(Laux); kp ← KGenP(kh, Laux);h ∈R G}
To define pseudorandomness of a SPHF we use an experiment based on those
from [11, Corollary 3.3] and [15].

Definition 3 (SPHF Pseudorandomness). For all PPT algorithms A there
exists a negligible function ε(·) such that

∣
∣
∣Pr[AEncLpk(·),Hash(·) = 1]− Pr[AEncLpk(·),U(·) = 1]

∣
∣
∣ < ε(λ).

– EncLpk(�, aux) with aux = (pk, aux′) returns elements C ∈ Laux encrypting
aux′ using pk, label � and encryption algorithm L.

– Hash(C) returns (KGenP(kh, Laux, C), Hash(kh, Laux, C)) for fresh kh ← KGenH
(Laux) if C has been output by EncLpk, nothing otherwise.

– U(C) returns (KGenP(kh, Laux, C), h) for fresh kh ← KGenH(Laux) and random
h ∈ G if C has been output by EncLpk, nothing otherwise.

While the authors of [5,6] have skipped the proof of pseudorandomness as it is
straightforward, we want to briefly give an intuition why their SPHF framework
is pseudorandom. The reasoning for pseudorandomness of SPHFs is actually
easy and always follows the same approach given in [11]. By replacing the cor-
rect ciphertexts in the simulation with ciphertexts C 	∈ Laux we can use the
smoothness of SPHFs to show their indistinguishability. The replacement itself
is covered by the hard-on-average subset membership problem, in the case of
ciphertexts their CCA-security. In [15] pseudorandomness in the case of hash
key and ciphertext reuse is added. We discuss this extension when defining con-
current pseudorandomness of our extended smooth projective hash functions in
the next section.

Encryption Schemes and SPHFs. We use SPHFs on labelled Cramer-
Shoup (CS) encryptions throughout this work as an example, i.e. L = CS.
Thus, we briefly recall its definition. Let C = (�,u, e, v) ← EncCS

pk (�,m; r) with

Distributed Smooth Projective Hashing and Its Application 203

u = (u1, u2) = (gr1 , g
r
2), e = hrgm1 and v = (cdξ)r with ξ = Hk(�,u, e) denote a

labelled Cramer-Shoup ciphertext. We assume m ∈ Zp and G is a cyclic group
of prime order p with generators g1 and g2 such that gm1 ∈ G. The CS public
key is defined as pk = (p,G, g1, g2, c, d,Hk) with c = gx1

1 gx2
2 , d = gy1

1 gy2

2 , h = gz1
and hash function Hk such that dk = (x1, x2, y1, y2, z) denotes the decryption

key. Decryption is defined as gm1 = DecCS
dk (C) = e/uz

1 if ux1+y1·ξ′
1 ux2+y2·ξ′

2 =
v with ξ′ = Hk(�,u, e). Benhamouda et al. propose a new perfectly smooth
SPHF for labelled Cramer-Shoup encryptions in [5]. Note that the witness for
C ∈ Laux is the used randomness w = r. The SPHF is den given by Definition

2 and the following variables: Γ (C) =

(
g1 1 g2 h c
1 g1 1 1 d

)

∈ G2×5, λ = (r, rξ) ∈
Z1×2
p for Ω(r, C) = (r, rξ), Θaux(C) = (u1, u

ξ
1, u2, e/m, v) ∈ G1×5 and kh =

(η1, η2, θ, μ, ν) ∈R Z1×5
p .

We further use El-Gamal (EG) encryptions. Let C = (u, e) ← EncEG
pk (m; r)

with u = gr and e = hrgm denote an El-Gamal ciphertext. Note that we assume
m ∈ Zp and G is a cyclic group of prime order p with generator g such that gm ∈
G. The El-Gamal public key is defined as pk = (p,G, g, h) with h = gz such that
dk = z denotes the decryption key. Decryption is given by gm = DecEG

dk (C) =
e/uz. A SPHF on El-Gamal ciphertexts can be build from Definition 2 using
the following variables: Γ (C) = (g, h)T ∈ G

2×1, λ = r ∈ Zp for Ω(r, C) = r,
Θaux(C) = (u, e/m) ∈ G1×2 and kh = (η, θ) ∈R Z1×2

p .

3 Extended Smooth Projective Hash Functions (SPHFx)

We introduce an extended notion of smooth projective hashing that allows us to
distribute the computation of the hash value. The new notion of extended SPHF
(SPHFx) is defined in the following setting: The parameter aux, a language is
indexed with, allows us to easily describe languages that differ only in the secret
part aux′. We consider a language Laux with words (ciphertexts) C that are
ordered sets of n ciphertexts (C0, . . . , Cx). The secret variable information aux′

is chosen from the additive group (P,+) = (Z+
p ,+) with a function h : P �→ Px.

Let LL
aux denote the language of ciphertexts encrypting the secret part aux′ from

aux with the public key pk from aux using encryption scheme L. For all Ci, i ∈
{1, . . . , x} it must hold that Ci ∈ LL

auxi
where auxi = (pk, aux′i) with aux′i =

h(aux′)[i]. For C0 it must hold that C0 ∈ LL
aux. Furthermore, the ciphertexts

must offer certain homomorphic properties such that there exists a modified
decryption algorithm Dec′ and a combining function g such that Dec′π(C0) =
Dec′π(g(C1, . . . , Cx)), where π denotes the secret key for the corresponding public
key pk from crs.

The idea of SPHFx is to be able to use the SPHF functionality not only on
a single ciphertext, but on a set of ciphertexts with specific properties. Due to
the nature of the words considered in SPHFx they produce two different hash
values. One can think of the two hash values as h0 for C0 and hx for C1, . . . , Cx.
The hash value h0 can be either computed with knowledge of the hash key kh0
or with the witnesses w1, . . . , wx that C1, . . . , Cx are in LL

auxi
each. The hash

204 F. Kiefer and M. Manulis

value hx can be computed with knowledge of the hash keys kh1, . . . , khx or with
the witness w0 that C0 is in LL

aux.

Definition 4 (SPHFx). Let Laux denote a language such that C = (C0, C1, . . . ,
Cx) ∈ Laux if there exists a witness w = (w0, w1, . . . , wx) proving so and there
exist functions h(aux′) = (aux′1, . . . , aux′x) and g : Gl �→ Gl′ as described above.
An extended smooth projective hash function for language Laux with Γ ∈ Gk×n

consists of the following six algorithms:

– KGenH(Laux) generates a hashing key khi ∈ Z1×n
p for i ∈ {0, . . . , x} and lan-

guage Laux.
– KGenP(khi, Laux) derives the projection key kpi = Γ � khi ∈ G1×k for i ∈

{0, . . . , x}.
– Hashx(kh0, Laux, C1, . . . , Cx) outputs hash value hx = Θx

aux(C1, . . . , Cx)�kh0.
– PHashx(kp0, Laux, C1, . . . , Cx, w1, . . . , wx) returns hash value hx =

∏x
i=1(λ

i�
kp0), where λi = Ω(wi, Ci).

– Hash0(kh1, . . . , khx, Laux, C0) outputs hash value h0 =
∏x

i=1(Θ
0
aux(C0) � khi)

= Θ0
aux(C0)�

∑x
i=1 khi.

– PHash0(kp1, . . . , kpx, Laux, C0, w0) returns hash value h0 =
∏x

i=1(λ
0 � kpi),

with λ0 = Ω(w0, C0).

The correctness of the scheme can be easily verified by checking that Hashx =
PHashx and Hash0 = PHash0.

Security of SPHFx. We refine definitions of smoothness and pseudorandom-
ness to account for the two different hash functions. Therefore, we add both
hash values to the indistinguishable sets, as well as the vector of projection keys.
We start with the smoothness of the described SPHFx. The smoothness proven
in Theorem 1 follows directly from the proof given in [5, Appendix D.3] and
follows the same approach for smoothness proofs as in previous works on SPHF
[5,11,15]. Recall that we are only concerned with adaptive smoothness. Let kp
denote the vector of projection keys kpi for i = 0, . . . , x. For any functions f, f ′

to Set \ Laux the following distributions are statistically ε-close:

{(kp, h0, hx) | h0 ← Hash0(kh1, . . . , khx, Laux, f(kp0)); hx ← Hashx(kh0, Laux,

f ′(kp1, . . . , kpx)); ∀i ∈ {0, . . . , x} : khi
R← KGenH(Laux); kpi ← KGenP(khi, Laux)}

ε
={(kp, h0, hx) | h0 ∈R G; hx ∈R G; ∀i ∈ {0, . . . , x} : khi

R← KGenH(Laux);

kpi ← KGenP(khi, Laux)}.

Theorem 1 (SPHFx Smoothness). The SPHFx construction from Defini-
tion 4 on cyclic groups is statistically smooth.

Proof. We show that the logarithm of the projection keys kp and the logarithm
of the hash values h0 and hx are defined by linearly independent equations
and thus h0 and hx are uniform in G, given kp. To show that (kp, h0, hx) is

Distributed Smooth Projective Hashing and Its Application 205

uniformly distributed in Gk+2 for C 	∈ Laux, i.e. ε-close to (kp, g0, gx) for random
g0, gx ∈R G, we consider a word C = (C0, C1, . . . , Cx) 	∈ Laux and a projection
key kpj = Γ � khj such that one Cj does not fulfill the property Cj ∈ Lauxj , i.e.

∃j ∈ {0, . . . , x}, ∀λj ∈ Z1×k
p : Θauxj (Cj) 	= λj � Γ . From [5, Appendix D.3] it

follows directly that Θauxj (Cj)�khj is a uniformly distributed element in G, and
thus Θx

aux(C1, . . . , Cx) � kh0 and
∏x

i=1(Θ
0
aux(C0) � khi) is uniformly in G. The

projection key kp is uniformly at random in Gk anyway, given the randomness
of all khi. Note that any violation of Dec′π(C0) = Dec′π(g(C1, . . . , Cx)) implies
the existence of an index j such that Cj 	∈ Lauxj . ��
While smoothness is the foremost property of (extended) smooth projective hash
functions, in some cases like password authenticated key exchange pseudoran-
domness of the produced hash values has to be guaranteed too. Let kp denote
the vector of projection keys kpi for i = 0, . . . , x. A SPHFx is pseudorandom
if its hash values are computationally indistinguishable from random without
knowledge of the uniformly chosen hash keys kh or the witnesses w, i.e. for all
C = (C0, . . . , Cx) ∈ Laux the following distributions are computationally ε-close:

{(kp, C, h0, hx) | ∀i ∈ {0, . . . , x} : khi
R← KGenH(Laux); kpi ← KGenP(khi, Laux);

h0 ← Hash0(kh1, . . . , khx, Laux, C0); hx ← Hashx(kh0, Laux, C1, . . . , Cx)}
ε
= {(kp, C, h0, hx) | ∀i ∈ {0, . . . , x} : khi

R← KGenH(Laux); kpi ← KGenP(khi, Laux);

h0 ∈R G;hx ∈R G}
To prove pseudorandomness of an SPHFx we use modified experiments from [11]
given in Definition 5. The proof for the pseudorandomness of SPHFx follows the
line of argument from [11].

Definition 5 (SPHFx Pseudorandomness). A SPHFx Π is pseudorandom
if for all PPT algorithms A there exists a negligible function ε(·) such that

AdvPr
Π,A =

∣
∣
∣
∣
Pr[ExpPr

Π,A = 1]− 1

2

∣
∣
∣
∣
≤ ε(λ)

ExpPr
Π,A(λ) : Choose b ∈R {0, 1}, call b′ ← AΩL

pk(·)(λ, kp0, . . . , kpx) with kpi ←
KGenP(khi, Laux, Ci) and khi ← KGenH(Laux) for all i ∈ 0, . . . , x. Return b = b′.

ΩL
pk(�, aux) returns elements C = (C0, . . . , Cx) ∈ Laux with C0 ← EncLpk(�0,
aux′; r0) and Ci ← EncLpk(�i, aux

′
i; ri) for all i ∈ 1, . . . , x and pk ∈ aux

using encryption scheme L and according labels �i. It additionally returns
Hash0(kh1, . . . , khx, Laux, C0), Hashx(kh0, Laux, C1, . . . , Cx) if b = 0 or h0, hx

∈R G if b = 1.

The following theorem shows pseudorandomness of hash values in SPHFx.

Theorem 2 (SPHFx Pseudorandomness). The SPHFx construction from
Definition 4 on cyclic groups is pseudorandom if L is a CCA-secure labelled
encryption scheme.

206 F. Kiefer and M. Manulis

Proof. Pseudorandomness of SPHFx follows immediately from its smoothness
and the CCA-security of the used encryption scheme. First we change ΩL

pk such
that it returns the encryption of 0 for a random i ∈ 0, . . . , x. This change is not
noticeable by the adversary due to the CCA-security of the encryption scheme.
Assuming 0 is not a valid message, i.e. aux′ 	= 0 and auxi 	= 0 for all i ∈ 1, . . . , x,
the pseudorandomness of SPHFx follows from its smoothness. ��
The authors of [15] furthermore highlight that this definition of pseudorandom-
ness is not enough when used in PAKE protocols if the hash values are not bound
to a specific session by signatures or MACs. Therefore, they prove pseudoran-
domness under re-use of hash keys and ciphertexts. Taking into account re-use of
SPHFx values such as ciphertexts and keys we formalise the notion of concurrent
pseudorandomness for SPHFx following the approach from [15]. Let kp denote
the vector of projection keys kpi for i = 0, . . . , x. A SPHFx is pseudorandom
in concurrent execution if the hash values are computationally indistinguish-
able from random without knowledge of the uniformly chosen hash keys or the
witnesses, i.e. for fixed l = l(λ) the following distributions are computationally
ε-close:

{(kp1, . . . , kpl, C1, . . . , Cl, h0,1, . . . , h0,l, hx,1, . . . , hx,l) |
∀i ∈ {0, . . . , x}, j ∈ {1, . . . , l} : khi,j

R← KGenH(Laux); kpi,j ← KGenP(khi, Laux);

∀j ∈ {1, . . . , l} : h0,j ← Hash0(kh1,j , . . . , khx,j , Laux, C0,j);

hx,j ← Hashx(kh0,j , Laux, C1,j , . . . , Cx,j)}
ε
= {(kp1, . . . , kpl, C1, . . . , Cl, h0,1, . . . , h0,l, hx,1, . . . , hx,l) |

∀i ∈ {0, . . . , x}, j ∈ {1, . . . , l} : khi,j
R← KGenH(Laux); kpi,j ← KGenP(khi, Laux);

∀j ∈ {1, . . . , l} : h0,j ∈R G;hx,j ∈R G}

We extend Definition 5 to capture re-use of hash keys and ciphertexts. The cor-
responding experiment in Definition 6 generates l hash values to each ciphertext,
one for each hash key.

Definition 6 (SPHFx Concurrent Pseudorandomness). A SPHFx Π of-
fers concurrent pseudorandomness if for all PPT algorithms A and polynomials
l there exists a negligible function ε(·) such that

AdvPr
Π,A =

∣
∣
∣
∣
Pr[ExpPr

Π,A = 1]− 1

2

∣
∣
∣
∣
≤ ε(λ)

ExpPr
Π,A(λ) : Choose b ∈R {0, 1}, call b′ ← AΩL

pk(·)(λ, kp1, . . . , kpl) with kpj =

(kp0, . . . , kpx) where kpi ← KGenP(khi, Laux, Ci) and khi ← KGenH(Laux) for all
i ∈ 0, . . . , x and j ∈ 1, . . . , l. Return b = b′.

ΩL
pk(�, aux) returns elements C = (C0, . . . , Cx) ∈ Laux with C0 ← EncLpk(�0,
aux′; r0) and Ci ← EncLpk(�i, auxi; ri) for all i ∈ 1, . . . , x and pk ∈ aux

Distributed Smooth Projective Hashing and Its Application 207

using encryption algorithm L and according labels �i. It additionally returns
Hash0,j(kh1,j , . . . , kh

j
x, Laux, C0), Hashx,j(kh0,j , Laux, C1, . . . , Cx) if b = 0 or

h0,j , hx,j ∈ G if b = 1 for all j ∈ 1, . . . , l.

Using Definition 6 we prove the concurrent pseudorandomness of our construc-
tion, following the argument from [15, Lemma 1].

Lemma 1 (SPHFx Concurrent Pseudorandomness). The SPHFx con-
struction from Definition 4 on cyclic groups is pseudorandom on re-use of hash
and ciphertext values if L is a CCA-secure labelled encryption scheme.

Proof. Using a hybrid argument it is enough to show that the adversary can not
distinguish between experiment Exp1 where Ω returns random elements for the
first i hash values of the j-th query and all queries < j and correct hashes for all
subsequent queries and indices > i, and Exp2 where Ω returns random elements
for the first i + 1 hash values of the j-th query and all queries < j and correct
hashes for all subsequent queries and indices > i + 1. Having this in mind the
proof follows the same argument as the one for SPHFx pseudorandomness. We
briefly recall the argumentation there. We modify Exp1 to Exp′1 and Exp2 to Exp′2
such that Ω returns an encryption of 0 instead of correct encryptions for Cj . Note
that we assume 0 is not a valid message such that Cj 	∈ Laux in Exp′1. Due to
CCA-security of L this step is not recognisable by the adversary. Changing Exp′1
to Exp′2 the smoothness of SPHFx ensures that A can not distinguish between
the two experiments, which proves the lemma. ��

3.1 Distributed Computation of SPHFx

Using SPHFx is only reasonable in a distributed manner. We therefore consider
n = x + 1 entities participating in the distributed computation of the SPHFx

hash values h0, hx. Let Pi for i ∈ {1, . . . , x} denote parties, each knowing auxi
and computing the according ciphertext Ci and projection key kpi. Furthermore,
let P0 denote the participant knowing aux and computing C0 and kp0. We de-
fine protocols in this setting with the purpose that both P0 and P1 eventually
compute h0 and hx.

While P0 can compute PHash0 and Hashx after receiving all Ci and kpi, com-
putation of Hash0 and PHashx can not be performed solely by the previously de-
scribed algorithms in this setting, without disclosing the witness or the hashing
key. To compute PHashx and Hash0, parties P1, . . . , Px have to collaborate since
they know only part of the input parameters. Distributed SPHFx defines pro-
tocols that allow secure calculation of h0 and hx. Intuitively distributed SPHFx

reaches the same security properties as SPHFx, namely smoothness and pseudo-
randomness in presence of a passive adversary, by additionally ensuring that no
protocol participant alone is able to compute the hash values. Note that while
we assume each Pi for i > 0 holds a key-pair and knows public keys of all other
Pi such that all communication between two Pi is secured by the receivers public
key, those keys are not authenticated, i.e. we do not assume a PKI.

208 F. Kiefer and M. Manulis

A distributed SPHFx protocol between n participants P0, . . . , Px computing
hx and h0 consists of three interactive protocols Setup, PHashDx and HashD0 . Let
Π denote the SPHFx algorithm that is being distributed.

– Setup(aux, P0, . . . , Px) initialises a new instance for each participant with
(aux, P0, P1, . . . , Px) for P0 and (auxi, Pi, P0, . . . , Px) for Pi, i ∈ {1, . . . , x}.
Eventually, all participants compute and broadcast projection keys kpi and
encryptions Ci ← EncLpk(�i, aux′i; ri) of their secret aux′i using Π.KGenH,
Π.KGenP and the associated encryption scheme L. Participants store incom-
ing kpi, Ci for later use. After receiving (kp1, C1, . . . , kpx, Cx), P0 computes
h0 ← Π.PHash0(kp1, . . . , kpx, Laux, C0, r0) and hx ← Π.Hashx(kh0, Laux, C1,
. . . , Cx).

– PHashDx is executed between parties P1, . . . , Px. Each Pi performs PHashDx
on input (kp0, auxi, C1, . . . , Cx, ri) such that P1 eventually holds hx while all
Pi for i > 1 do not learn anything about hx.

– HashD0 is executed between parties P1, . . . , Px. Each Pi performs HashD0 on
input (aux′i, khi, C0, . . . , Cx) such that P1 eventually holds h0 and all Pi for
i > 1 do not learn anything about h0.

A distributed SPHFx is said to be correct if PHashDx = PHashx and HashD0 =
Hash0 assuming that all messages are honestly computed and transmitted. The
security of the distributed SPHFx in presence of a passive adversary follows
immediately from smoothness and pseudorandomness of the SPHFx algorithms.

Remark 1. Note that we focus on asymmetric distribution here such that only
P1 computes the hash values. Building symmetric distribution protocols where
all parties Pi compute the hash values from this is straightforward but requires a
different security model. Likewise, it is possible to build asymmetric distribution
protocols where all Pi compute different hash values (we will see an example of
that later).

3.2 Security against Active Adversaries

Smooth projective hashing has not been used in a distributed manner before
such that it was not necessary to consider active adversaries. By introducing
distributed computation of hash values the HashD0 and PHashDx protocols are
exposed to active attacks. However, the adversary must still not be able to
distinguish real hash values from random elements, i.e. smoothness and pseudo-
randomness must hold. Therefore we introduce a security model for distributed
SPHFx smoothness and pseudorandomness, capturing active attacks in a multi-
user and multi-instance setting. Let {(P j

0 , P
k
1 , . . . , P

l
x)}P j

0∈P0,Pk
i ∈P i∈{1,...,x} de-

note all tuples (P j
0 , P

k
1 , . . . , P

l
x) such that P j

0 ∈ P0 knows aux and P k
1 , . . . , P

l
x ∈ P

each know according auxi. We say P0 is registered with (P1, . . . , Px). The addi-
tional indices j, k, l denote the instance of the respective participant (assigned
by oracles and modelled as counters to ensure their uniqueness).

Distributed Smooth Projective Hashing and Its Application 209

Definition 7 (SPHFx Security). A distributed SPHFx protocol Π is secure
(offers adaptive smoothness and concurrent pseudorandomness) if for all PPT
adversaries A there exists a negligible function ε(·) such that :

AdvSPHFx

Π,A (λ) =

∣
∣
∣
∣
Pr[ExpSPHFx

Π,A (λ) = 1]− 1

2

∣
∣
∣
∣
≤ ε(λ)

ExpSPHFx

Π,A (λ) : Choose b ∈R {0, 1}, call b′ ← ASetup(·),Send(·),Test(·)(λ, aux2, . . . ,
auxx,L, crs) and return b = b′.

– Setup(P0, . . . , Px) initialises new instances with (aux, P1, . . . , Px) for P0 reg-
istered with (P1, . . . , Px) and (aux1, P1, P0, . . . , Px) for P1 and returns ((kp0,
C0), (kp1, C1)) with Ci ← EncLpk(�, aux′i; ri) and khi ← Π.KGenH(Laux), kpi ←
Π.KGenP(khi, Laux)

– Send(Pa, Pb,m) sends message m with alleged originator Pb to Pa and re-
turns Pa’s resulting message m′ if any.

– Test(P j
i) for i ∈ {0, 1} returns two hash values (h0, hx). If the global bit b

is 0, the hash values are chosen uniformly at random from G, otherwise the
hash values are computed according to protocol specification Π.

Note that we assume without loss of generality that all participants P2, . . . , Px

are corrupted by the adversary, who knows their secrets. Furthermore, note that
A can query the Test oracle only once.

The active security notion for distributed computation of SPHFx covers
smoothness and pseudorandomess as defined before. The experiment is equiva-
lent to the computational smoothness definition when A computes and forwards
all messages honestly but changes at least one auxi. Note that this is actually a
stronger notion than smoothness as we require pseudorandomness of hash values
output by the projection function on a word not in the language. This is usually
not included in the smoothness definition, which is defined over the hash func-
tion. Further, Definition 7 is equivalent to Definition 6 when A computes and
forwards all messages honestly and does not change any auxi.

3.3 Instantiation – Distributed Cramer-Shoup SPHFx

We exemplify the SPHFx definition on the previously introduced Cramer-Shoup
encryption scheme. The ciphertexts are created as Ci = (u1,i, u2,i, ei, vi) ←
EncCS

pk (�i, aux
′
i; ri) for all i = 1, . . . , x with aux′i = h(aux′)[i] and C0 = (u1,0, u2,0,

e0, v0) ← EncCS
pk (�0, aux

′
0; r0), where �i consists of participating parties and the

party’s projection key. We define modified decryption as Dec′π(C) = e · u−z
1 .

The combining function g uses the homomorphic property of u1 and e of the CS
ciphertext such that g(C1, . . . , Cx) = (

∏x
i=1 u1,i,

∏x
i=1 ei) and aux′ =

∑x
i=1 aux

′
i.

The following variables define the Cramer-Shoup SPHFx:

210 F. Kiefer and M. Manulis

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)

∈ G
2×5, λ = (r, rξ) ∈ Z

1×2
p

Θ0
aux(C0) = (u1, u

ξ
1, u2, e/aux

′, v) ∈ G
1×5

Θx
aux(C1, . . . , Cx) = (

x∏

i=1

u1,i,
x∏

i=1

uξi
1,i,

x∏

i=1

u2,i,
x∏

i=1

ei/aux
′,

x∏

i=1

vi) ∈ G
1×5

Using them in the SPHFx Definition 4 yields the Cramer-Shoup SPHFx. In-
stead of aiming for absolute generality we describe the distributed Cramer-Shoup
SPHFx for x = 2 such that both participants P1 and P2 compute and broadcast
(kpi, Ci), while P0 computes and broadcasts (kp0, C0). Let × denote element
wise multiplication, e.g., for El-Gamal ciphertexts C1 = (u1, e1), C2 = (u2, e2),
C1 × C2 is defined as (u1u2, e1e2). PHash

D
x and HashD0 protocols are defined as

follows:

– PHashDx is executed between P1 and P2. P2 computes hx,2 = λ � kp0 =

(kp0[1] · kp0[2]ξ2)r2 and sends it to P1. Eventually, P1 holds hx = hx,2 · (λ�
kp0) = kp0[1]

r1+r2 · kp0[2]ξ1·r1+ξ2·r2 . Note that P1 always performs checks
that kp0 ∈ G and G � hx

2 	= 0.
– HashD0 is executed between P1 and P2 such that P1 eventually holds h0. Let

Pi for i ∈ {1, 2} denote the participating party knowing (auxi, ski, khi =
(η1, η2, θ, μ, ν), pk1, pk2, C0 = (u1, u2, e, v, ξ)).

• P1 computes m0 ← EncEG
pk1

(g−μ
1 ; r) and c′1 ← EncEG

pk1
(g

aux′1
1 ; r′), and sends

(m0, c
′
1) to P2.

• Receiving (m0, c
′
1) from P1, P2 computes

m1 ← (m0)
aux′2 × (c′1)

−μ × EncEG
pk1

(g
−μ·aux′2
1 · uη1+ξη2

1 · uθ
2 · eμ · vν ; r′′)

and sends it to P1.
• Receiving m1, P1 computes the hash value

h0 = g
−μ·aux′1
1 · DecEG

sk1
(m1) · uη1+ξη2

1 · uθ
2 · eμ · vν .

Security of Distributed Cramer-Shoup SPHFx. We show now that the
proposed distributed Cramer-Shoup SPHFx is secure. The intuition behind the
proof is that the pseudorandomness of hx can be reduced directly to the DDH
problem in G while pseudorandomness of h0 value follows from the smoothness
and pseudorandomness of the underlying SPHFx scheme.

Theorem 3 (Cramer-Shoup SPHFx Security). The distributed Cramer-
Shoup SPHFx instantiation is secure against active adversaries according to
Definition 7 when the DDH assumption in the used group G holds and L = CS
is CCA-secure.

Distributed Smooth Projective Hashing and Its Application 211

Proof. First, note that the theorem follows immediately from smoothness and
pseudorandomness in the passive case if the adversary queries Test(P0). We
therefore focus on Test(P1) queries. We start with the pseudorandomness of hx,
i.e. for all g it holds that Pr[hx = g] = 1/|G|. Consider an attacker A on input
(λ, aux2,L, crs) and let Exp0 denote the original SPHFx experiment.

Exp1 : We change Test such that a uniformly at random chosen element gx ∈R G

is returned for hx.

Claim.
∣
∣
∣Adv

Exp0
Π,A − Adv

Exp1
Π,A

∣
∣
∣ ≤ ε(λ)

Proof. The hash value hx in Exp0 is computed as hx = (kp
′
0
[1] · kp′0[2]ξ1)r1 · hx,2

with adversarially generated hx,2 and kp
′
0. Indistinguishability of hx and gx, and

thus the claim, follows immediately as long as the DDH assumption in G holds
(using DDH triple (kp

′
0
[1] · kp′0[2]ξ1 , gr1 , hx) and (kp

′
0
[1] · kp′0[2]ξ1 , gr1 , gx)). Note

that P1 aborts if either hx,2 	∈ G or kp
′
0 	∈ G2. ��

To show the security (concurrent pseudorandomness and adaptive smoothness)
of h0 we define two Send queries that allow execution of the protocol: (m1, c

′
1) ←

Send1(P2, P1, (kp
′
0
, C′

0, kp
′
2
, C′

2)) starts the protocol execution between P1 and P2

and provides the attacker with (m1, c
′
1). Using these messages the adversary (P2)

computes a message m2 and sends it to P1 with Send2(P2, P1,m2). This reflects
the execution of a single protocol run of HashD0 such that P1 eventually computes
h0. In contrast to the passive and classical SPHF proofs we can not replace the
ciphertexts with encryptions of words not in the language. However, this is not
necessary as t is in fact the Hash computation of the classical Cramer-Shoup
SPHF without cancelling the message, i.e. t = h ·mμ.

Exp2 : We change Test such that a uniformly at random chosen element g0 ∈R G

is returned for h0.

Claim.
∣
∣
∣Adv

Exp1
Π,A − Adv

Exp2
Π,A

∣
∣
∣ ≤ ε(λ)

Proof. The hash value h0 in Exp1 is computed as h0 = g−μ1·aux′1 · DecEG
sk1

(m2) · t
with t = u

η1,1+ξ0η2,1

1,0 uθ1
2,0e

μ1

0 vν10 where m2 and C′
0 = (u1,0, u2,0, e0, v0) may be

adversarially generated. The value t is actually the Hash value of the classical
Cramer-Shoup SPHF without cancelled message, or in other words t is the result
of a SPHF Hash computation for language L(crs,0) such that any C′

0, encrypting
some correct aux′ 	= 0, is not in this language. Due to smoothness of the Hash

function [6] t is indistinguishable from a uniformly at random chosen element. If
the adversary encrypted 0 in C′

0 pseudorandomness of Hash takes effect. There-
fore h0 = d·t is indistinguishable from a random group element for all d ∈ G. ��

In Exp2 the adversary always gets random group elements in answer to his Test
query. Therefore, he can not do better than guessing bit b. ��

212 F. Kiefer and M. Manulis

4 Two-Server PAKE from Distributed SPHFx

In this section we present a new two-server PAKE framework as an application
of our distributed SPHFx concept. Moreover, we show that the two-server PAKE
protocol by Katz et al. [13] can be considered as a variant of our framework using
a “mix” of distributed SPHFx for Cramer-Shoup and El-Gamal ciphertexts.

With a single server storing the password, password authenticated key ex-
change (PAKE) protocols have an intrinsic single point of failure. As soon as the
server’s database, storing the client’s secrets, gets compromised the attacker can
impersonate the client to this server, and most likely also to others considering
that users tend to reuse their passwords across multiple services. Mechanisms
have been proposed to solve the problem of server compromise [12,19]. However,
as long as only one server is used, PAKE protocols are prone to offline dictionary
attacks on the server side. Two-server PAKE (2PAKE) protocols can solve this
problem by splitting the password in two parts such that a malicious or compro-
mised server can be used to recover only one part of the password. Raimondo and
Gennaro [17] proposed a t-out-of-n threshold PAKE, which is not suitable for
the 2PAKE setting as it requires t < n/3. Another t-out-of-n threshold PAKE
was proposed in a PKI-based setting with random oracles [16]. Brainard and
Juels [8] proposed two-server password based authentication without security
proof. Szydlo and Kaliski [18] later modified constuctions from [8] and proved
their security in a simulation-based model. The first two-server PAKE in the
password-only setting, i.e. without a PKI, is due to Katz et al. [13], based on
the KOY protocol from [14]. We consider the same setting as [13] in which the
client computes two independent session keys with the two servers.

4.1 A New Two-Server PAKE Framework

Using distributed SPHFx we can build efficient 2PAKE protocols. We consider
the same setting as 2KOY [13], in particular a client that negotiates independent
session keys with both servers that hold pw1 + pw2 = pw. We omit the second
server in the description of the protocol in Figure 1 as the framework is symmetric
in the sense that the second server S2 performs like S1. The framework follows
the same principle as the latest PAKE frameworks from SPHFs. In particular it
can be seen as a two-server variant of the PAKE protocol from [15].

You can think of the two-server protocol as the execution of two distributed
SPHFx protocols, one between (C, S1, S2) and one between (C, S2, S1) where
servers S2 and S1 swap roles, such that (C, S1) and (C, S2) eventually hold
common hash values that can be used to generate a shared session key sk1
and sk2. The only overlap between the two SPHFx executions is the Hashx
computation. The reuse of C1, C2 in Hashx functions is covered by the concurrent
pseudorandomness.

2PAKE Framework. The servers encrypt their password shares under a public
key pk stored in the crs using a CCA-secure labelled encryption scheme and dis-
tribute this ciphertext together with two appropriate projection keys for a secure

Distributed Smooth Projective Hashing and Its Application 213

C S1

pk, pw pk, pw1, sk1, pk2

kh0,1 ← KGenH(Laux), kh0,2 ← KGenH(Laux) kh1,1 ← KGenH(Laux), kh1,2 ← KGenH(Laux)

kp0,1 ← KGenP(kh0,1), kp0,2 ← KGenP(kh0,2) kp1,1 ← KGenP(kh1,1), kp1,2 ← KGenP(kh1,2)

�0,1 = (C, S1, S2), �0,2 = (C, S2, S1) �1 = (S1, C, S2)

C0,1 ← EncLpk(�0,1, pw; r0,1), C0,2 ← EncLpk(�0,2, pw; r0,2) kp0,1, C0,1, kp0,2, C0,2 C1 ← EncLpk(�1, pw1, r1) kp2,1, kp2,2, C2

kp1,1, kp1,2, C1

h0,1 ← PHash0(kp1, kp2, Laux, C0,1, r0,1) h0,1 ← HashD0 (C0,1, kh1,1, pw1, sk1, pk2)

h0,2 ← PHash0(kp1, kp2, Laux, C0,2, r0,2) hx,1 ← PHashDx (kp1,1, C1, r1)

hx,1 ← Hashx(kh0,1, Laux, C1, C2) HashD0 (C0,2, kh1,2, pw1, sk1, pk2)

hx,2 ← Hashx(kh0,2, Laux, C1, C2) PHashDx (kp1,2, C1, r1)

sk1 = h0,1hx,1, sk2 = h0,2hx,2 sk1 = h0,1hx,1

Fig. 1. Two-Server PAKE framework using SPHFx

Dashed lines denote broadcast messages

distributed SPHFx, (kp1,1, kp1,2, C1) and (kp2,1, kp2,2, C2). The client computes
two independent encryptions of the password and generates two independent ac-
cording projection keys (kp0,1, C0,1, kp0,2, C0,2). The previously described SPHFx

allows us to send all kpi, Ci in one round and therefore reach optimality for this
step. Using these values, the client can compute session keys as product of the
two hash values h0,1, hx,1 for sk1, which is shared with S1 and from h0,2, hx,2

for sk2 that is shared with S2.
Subsequently, the two servers perform the HashD0 and PHashDx protocols such

that S1 and S2 eventually hold hash values h0,1 and hx,1, h0,2 and hx,2 respec-
tively, to compute sk1, sk2 respectively. Eventually, C holds sk1 = h0,1 · hx,1

and sk2 = h0,2 ·hx,2, S1 holds sk1 = h0,1 ·hx,1 and S2 holds sk2 = h0,2 ·hx,2. An
instantiation of the framework using labelled Cramer-Shoup encryption and the
aforementioned distributed SPHFx yields a secure 2PAKE protocol. Note that
this actually requires two SPHFx executions.

Security. We use the well-known game based PAKE model first introduced by
Bellare et al. [3] in it’s two-server variant from [13]. For a formal description
of the model we refer to [13]. The security of the two-server PAKE framework
follows directly from the CCA-security of the used encryption scheme and the
security of the distributed SPHFx.

Theorem 4. Let (KGenH, KGenP, PHash0, Hashx, Hash
D
0 , PHashDx) be a secure dis-

tributed SPHFx and (KGen, Enc, Dec) a CCA-secure labelled encryption scheme,
then the proposed framework in Figure 1 is a secure two-server PAKE protocol.

Proof (sketch). Let Π denote a secure instantiation of the 2PAKE framework.
To prove security of Π we introduce three experiments such that the adversary
in the last experiment Exp3 can not do better than guessing the password as all

messages are password independent, i.e. Adv
Exp3
Π,A ≤ q/|D| for q active attacks.

We initially focus on the AKE-security of sk1.

214 F. Kiefer and M. Manulis

Exp1 is identical to the two-server AKE-security experiment except that the
simulator knows π, the decryption key to pk in the crs (only a syntactical
change) and the following changes: If C0,1 or C1, handed to S1 or C are adver-
sarially generated and encrypt the correct password(share), the simulator stops
and A wins the experiment. If C0,1, C1 or C2, handed to S1 or C encrypt a
wrong password(share), the key for that session is drawn uniformly at random
from G. The first change only increases the adversarial advantage and the second
one introduces a negligible gap according to the adaptive smoothness of the used
SPHFx.

Exp2 performs like Exp1 except that it draws the session key at random from
G if all Ci handed to C and S1 are oracle generated or encrypt the correct
password and no session key has been chosen for the partner in that session
(otherwise that previously drawn key is used). This introduces a negligible gap
between advantages in Exp1 and Exp2 due to the concurrent pseudorandomness
of the used SPHFx.

Exp3 acts like Exp2 except that it returns encryptions of 0 for C0,1 and C1

(note that 0 is not a valid password). This step is covered by the CCA-security
of the used encryption scheme.

AKE-security of sk1 follows as all messages are password independent in Exp3
unless the adversary guesses the correct password. Using the same sequence of
experiments but considering C and S2 instead of C and S1, AKE-security of sk2
follows. ��

4.2 2-Server KOY (2KOY) [13]

We can now “explain” the use of SPHF in 2KOY from [13]; similar to [11] that
“explained” the original KOY protocol from [14]. We define encryption schemes
and distributed SPHFx used in 2KOY, highlight changes to our framework and
discuss implications of this on the security of 2KOY.

The crs contains a public key pk for Cramer-Shoup encryption as well as a
public key g3 for El-Gamal encryption. Since [13] uses El-Gamal encryptions on
the server side, we have to use a combination of Cramer-Shoup and El-Gamal
based SPHFx in 2KOY. Instead of using Cramer-Shoup encryptions and SPHFx,
the client computes projection keys for an El-Gamal distributed SPHFx, which
is based on the aforementioned SPHF on El-Gamal ciphertexts.

Likewise, the servers compute projection keys for a Cramer-Shoup distributed
GL-SPHFx and El-Gamal encryptions of their password shares.2 The client sends
the projection keys in a third round together with a signature on the session
transcript to the servers. Eventually, the client computes hash values using the
PHash0 function of the GL-SPHFx scheme on CS ciphertexts and the Hashx func-
tion of the SPHFx scheme on El-Gamal ciphertexts. Further, the servers execute
the HashD0 protocol of the distributed GL-SPHFx scheme on CS ciphertexts and
the PHashDx protocol of the distributed SPHFx scheme on El-Gamal ciphertexts.

2 Note that an additional signature on the session transcript in round three ensures
“non-malleability” of these ciphertexts.

Distributed Smooth Projective Hashing and Its Application 215

Security of 2KOY. Security of the protocol against passive adversaries follows
immediately from [13, Theorem 1] as we do not change the protocol. However,
the authors of [13] need additional mechanisms to prove their protocol secure
against an active adversary. They add witness-indistinguishable Σ-protocols to
the PHashDx and HashD0 protocols that prove correctness of their messages. With-
out giving a proof it should be clear that Theorem 4 also holds for the 2KOY
instantiation without additional mechanisms. Examining the proof of [13, The-
orem 2] shows that the additional steps are only necessary to conduct the proof
without actually giving additional security. This shows the power of distributed
SPHFx as they allow for much simpler proofs of multi-party protocols. Further-
more, with our framework the protocol ceomes more efficient than 2KOY as it
needs only two rounds instead of three and does not need correctness proofs in
the distributed hash and projection protocols.

5 Conclusion

We introduced the notion of extended (distributed) smooth projective hashing
and gave an instantiation using Cramer-Shoup ciphertexts. Distributed smooth
projective hashing can be used as building block in threshold and multi-party
protocols. As an example, we built a two-server PAKE framework using a dis-
tributed smooth projective hash function. This two-server PAKE framework
yields the most efficient two-server PAKE protocols today. The framework also
allows us to explain and simplify the two-server PAKE protocol from [13].

While we focused on two-server password authenticated key exchange as ap-
plication of distributed SPHF in this work, (distributed) extended smooth pro-
jective hash functions is an interesting building block for future work on other
multi-party and threshold protocols.

Acknowledgments. This research was supported by the German Science Foun-
dation (DFG) through the project PRIMAKE (MA 4957).

References

1. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth Projective Hashing for Con-
ditionally Extractable Commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009)

2. Abdalla, M., Pointcheval, D.: A Scalable Password-Based Group Key Exchange
Protocol in the Standard Model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 332–347. Springer, Heidelberg (2006)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient
UC-SecureAuthenticatedKey-Exchange for Algebraic Languages. In:Kurosawa,K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg
(2013)

216 F. Kiefer and M. Manulis

5. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
Smooth Projective Hash Functions and One-Round Authenticated Key Exchange.
Cryptology ePrint Archive, Report 2013/034 (2013), http://eprint.iacr.org/

6. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
Techniques for SPHFs and Efficient One-Round PAKE Protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013)

7. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-Optimal privacy-preserving pro-
tocols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 94–111. Springer, Heidelberg (2012)

8. Brainard, J., Juels, A.: A new two-server approach for authentication with short
secrets. In: USENIX 2003. SSYM 2003, vol. 12, p. 14. USENIX Association (2003)

9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

10. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

11. Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key
Exchange. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)

12. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A Method for Making Password-Based
Key Exchange Resilient to Server Compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

13. Katz, J., MacKenzie, P., Taban, G., Gligor, V.: Two-server password-only authen-
ticated key exchange. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 1–16. Springer, Heidelberg (2005)

14. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

15. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

16. MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-
authenticated key exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 385–400. Springer, Heidelberg (2002)

17. Raimondo, M.D., Gennaro, R.: Provably secure threshold password-authenticated
key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 507–523. Springer, Heidelberg (2003)

18. Szydlo,M.,Kaliski,B.:Proofs forTwo-ServerPasswordAuthentication. In:Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 227–244. Springer, Heidelberg (2005)

19. Wu, T.: RFC 2945 - The SRPAuthentication and Key Exchange System (September
2000)

http://eprint.iacr.org/

	Distributed Smooth Projective Hashingand Its Application to Two-Server PasswordAuthenticated Key Exchange
	1 Introduction
	2 Smooth Projective Hash Functions
	3 Extended Smooth Projective Hash Functions (SPHFx)
	3.1 Distributed Computation of SPHFx
	3.2 Security against Active Adversaries
	3.3 Instantiation – Distributed Cramer-Shoup SPHFx

	4 Two-Server PAKE from Distributed SPHFx
	4.1 A New Two-Server PAKE Framework
	4.2 2-Server KOY (2KOY) [13]

	5 Conclusion
	References

