
Distributed Software-based Attestation for Node Compromise Detection in
Sensor Networks

Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao
Department of Computer Science & Engineering

The Pennsylvania State University
University Park, PA 16802

Email: {yy5, xinrwang, szhu, gcao}@cse.psu.edu

Abstract
Sensors that operate in an unattended, harsh or hostile

environment are vulnerable to compromises because their
low costs preclude the use of expensive tamper-resistant
hardware. Thus, an adversary may reprogram them with
malicious code to launch various insider attacks.

Based on verifying the genuineness of the running pro-
gram, we propose two distributed software-based attesta-
tion schemes that are well tailored for sensor networks.
These schemes are based on a pseudorandom noise genera-
tion mechanism and a lightweight block-based pseudoran-
dom memory traversal algorithm. Each node is loaded with
pseudorandom noise in its empty program memory before
deployment, and later on multiple neighbors of a suspicious
node collaborate to verify the integrity of the code running
on this node in a distributed manner. Our analysis and sim-
ulation show that these schemes achieve high detection rate
even when multiple compromised neighbors collude in an
attestation process.

1. Introduction
Sensors that operate in an unattended, harsh or hostile

environment often suffer from break-in compromises, be-
cause their low costs do not allow the use of expensive
tamper-resistant hardware. Besides the exposure of secret
information (e.g., cryptographic keys), compromised sen-
sors may be reprogrammed with malicious code to launch
all kinds of insider attacks. Very desirably, if we can iden-
tify and further revoke those corrupted nodes in a timely
manner, the potential damages caused by them could be
minimized. Intrusion detection mechanisms such as watch-
dog [9] and reputation-based system [5] have been proposed
to detect abnormal nodes. However, these behavior-based
detections are error-prone, because they rely on accurate ob-
servation and reasoning of node’s misbehavior.

Recently, several software-based attestation tech-
niques [18, 17, 15, 11] have been proposed to verify the

integrity of the code running on an embedded device (e.g.,
sensor) without physical access to the device or assistance
of secure hardware. Basically, these techniques use a
challenge-response protocol between a trusted external
verifier and an interrogated device. Take SWATT [15] as an
example. A verifier in the transmission range of the device
sends a randomly generated number as the challenge.
Upon receiving this challenge, the interrogated device
traverses its memory in a pseudorandom fashion while
recursively computing a cryptographic checksum over each
traversed memory space, and responds to the verifier with
the final checksum. The verifier can validate the result
because it knows the expected memory image, so that it
can locally precompute the correct answer and estimate
an upper bound for the response time. The pseudorandom
memory traversal algorithm is designed in such a way that
a tampered device either responds with a wrong answer or
takes distinguishable longer time than a legitimate device
does, leaving itself being detected.

Current software-based attestation techniques, however,
cannot be directly applied in sensor networks due to several
limitations. For example, in unattended sensor networks,
it is not always possible to provide a trusted mobile ver-
ifier to enter the transmission range of a suspicious node
due to safety and security concerns. As an alternative, since
we trust the base station (BS) if there is one, the BS may
naturally become a remote verifier. However, the response
time evaluated by the BS could be affected by such fac-
tors as network channel collision. Moreover, it is unclear
when and how to trigger this attestation process; that is, how
could a verifier know when to attest which nodes? Even if
there are reliable reporting mechanisms, the dispatch and
authentication of a mobile verifier or the message propa-
gation may cause some delay, during which an adversary
probably has launched attacks or even subverted the whole
network through those compromised nodes.

To address the above challenges, we propose two dis-

tributed software-based attestation schemes, based on the
following observations. To reprogram a sensor without be-
ing caught in an attestation, the attacker needs to keep a
copy of the original code somewhere in its memory space;
also, for a compromised node, its neighbors are the first
and direct observers of its suspicious behaviors. Accord-
ingly, first noises (pseudorandom numbers) are filled into
the empty program memory of each node before deploy-
ment. Then, either the seed for generating the noise (as
of Scheme I) is distributed to multiple neighbors based on
threshold secret sharing [16], or a random digest of the
program memory content (as of Scheme II) is assigned to
each neighbor. When an attestation is triggered, multiple
neighbors of a suspicious node collaborate in a challenge-
response process and make a decision regarding the trust-
worthiness of this node in a distributed manner.

Our distributed schemes differ from the previous ones in
that (1) they only involve regular neighboring nodes and no
trusted verifier or BS is included, so the attestation could
be finished in a timely and distributed manner, and (2) they
do not rely on response time difference to distinguish be-
tween a benign node and a compromised node. These nice
features make them very attractive for unattended sensor
networks where a BS or trusted verifier could be the sin-
gle point of failure from both security and operation per-
spectives. For each scheme we perform extensive security
analysis and performance evaluation, which shows that our
schemes are very efficient and effective in detecting pro-
gram memory changes of compromised sensors.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the related work. Then, Section 3 states
our system model and assumptions. Block-based memory
traversal algorithm is presented in Section 4. In Section
5, we propose two distributed software-based attestation
schemes and analyze their security properties. Performance
evaluation and comparison are given in Section 6. After
that, some issues are discussed in Section 7. Finally, we
summarize our work and discuss future work in Section 8.

2. Related Work
Assuming that program and associated data are stored

in continuous memory locations, Spinellis [18] used cryp-
tographic hashes computed over two overlapped random
memory ranges (they together cover the entire memory
space) to check the integrity of installed software in a ma-
chine. Shaneck et al. [17] proposed remote software attesta-
tion by sending a piece of attestation code to a sensor node.
The attestation code is obfuscated to make static analysis
of the code difficult for adversaries. Though interesting, it
is however unclear how this idea could be implemented in
real sensors. In PIV (Program Integrity Verification) [11],
a new hash algorithm is generated for each attestation and
verification servers are widely distributed to verify hashes

received from attested nodes. Different from this work, our
schemes only involve regular nodes.

Seshadri et al. [15] proposed SWATT in which a pseudo-
random memory traversal algorithm is used to compute the
checksum over all the traversed memory cells. According
to Coupon Collector’s Problem [10], as long as this process
iterates for more than O(m lnm) times where m is the mem-
ory size, the entire memory space of interrogated node can
be covered with a high probability. Our block-based mem-
ory traversal algorithm improves the cell-based algorithm
of SWATT in that for each traversal a block of cells rather
than one cell are accessed. Hence, less iterations and com-
putational cost are involved in the attested node. More im-
portant, based on this algorithm we propose two distributed
schemes where an attestation is fulfilled by multiple neigh-
bors instead of a trustable verifier as in SWATT.

Software-based attestation could also be used in com-
puter systems [14]. Seshadri et al. [14] took advantage of
SWATT-like pseudorandom memory traversal to construct a
trusted computing base, based on which hashes of executa-
bles were measured to provide untampered code execution.
Moreover, Wurster et al. [19] found that in an architecture
where code and data reads are separated, checksumming-
based tamper resistance is subject to such an attack that
checksum is computed over the original program whereas
the code that gets executed is actually the malicious ver-
sion. Similar situation exists in sensor networks where an
adversary keeps a copy of the original program in sensor’s
empty memory which is accessible during checksum com-
putations.

3. System Model and Assumptions
Network Model We consider a sensor network composed
of a large quantity of low-cost sensors that are constrained
by scarce resources in power, computation, communication
and storage (e.g., 128KB program memory and 4 KB RAM
in the case of Mica2 motes). We assume that sensors are
densely deployed in the network so that each node has mul-
tiple immediate neighbors and the neighbors can communi-
cate with each other. There is a way for sensors to discover
neighbors (e.g., by sending a HELLO message [22]) and to
establish a pairwise key shared with every neighbor [8].
Attack Model We assume that an attacker can capture a
(small) fraction of sensors, reprogram them with malicious
code, and redeploy them back into the network. Since in our
setting all the nodes are equally important and vulnerable to
compromises, we assume that every node is equally likely
to be compromised. Like all the previous schemes [18, 17,
15, 11], we assume that the attacker does not enlarge the
sensor’s memory; unlike the time delay based attestation
schemes [17, 15] that further assume the processor speed
and memory access rate are not increased, our schemes do
not make such assumptions.

Original Memory Layout
 (a)

Attacker's Memory Layout
 (b)

Expected Memory Layout
 after Adding Noise
 (c)

Attacker's Memory Layout
 after Adding Noise
 (d)

 Verif. C o d e F irmware Emp ty

Mo d ified Malic io us O riginal F irmware
Verif. C o d e C o d e Verif. C o d e

 Verif. C o d e F irmware No ise (P seud o rand o m Numb ers)

Mo d ified Malic io us No ise O riginal F irmware No ise
Verif. C o d e C o d e Verif. C o d e

Figure 1. Program memory layout before and
after adding noise.

Once compromised, sensors are under the full control of
the attacker. They may launch various attacks, including
passive attacks such as eavesdropping, and active attacks
such as false data injection. Detection of node’s abnormal
behavior (e.g., by watchdog [9]) may trigger our attestation
protocol; however, it is not necessarily the only condition.
For example, our attestation protocol may be executed with
a reasonably large (e.g., days) and random trigger interval
to reduce the attestation cost and also to prevent the time-of-
check-to-time-of-use (TOCTTOU) attack [1]. Furthermore,
we assume the compromised nodes in the same neighbor-
hood may collude by sharing their knowledge and resources
during an attestation.

Note that our main concern is sensor’s program space in-
stead of data space, because of the following reasons. Data
space is normally used to store current execution informa-
tion, such as program stack and temporary data. Therefore,
certain parts of the data memory cannot be overwritten by
the attacker. Otherwise, it may cause the sensor program to
crash. This not only largely reduces the amount of avail-
able space for the attacker, but also requires the attacker to
be very careful when considering where to put the copy of
the original code. If we also take into account the fact that
the size of data space is typically two orders of magnitude
smaller than that of the program space, we assume that the
attacker will not put original code to sensor’s data space.

4. Preliminaries
Besides the normal functioning code, a piece of verifi-

cation code is also loaded at the beginning of a sensor’s
program memory to support code attestation. As shown in
Figure 1(a)1, the original layout of memory contains the
verification code, firmware and some empty space. The
empty space exists because sensor nodes have fixed-size
code space that is usually not filled completely. Figure 1(b)
illustrates the modified layout of sensor’s memory by an at-
tacker, where some malicious code takes over the memory
space of the original code and the latter is moved to the
empty space. Our idea to prevent this attack is to proac-
tively fill the empty space of every node with pseudoran-

1This is a schematic figure. The actual layout may be slightly different.

dom numbers (also called noise, Figure 1(c)) before node
deployment. Noises are derived from a secret seed that
is unique for each node. The attacker does not know the
seed for generating the noise, thus is unable to compress the
noise to make empty space for his own malicious code. If
the attacker moves the original code to overwrite the noise
space (Figure 1(d)), our attestation schemes will guarantee
that once challenged the probability for the compromised
node to return a correct checksum is negligible.

In the following, we first present a specific noise gen-
eration method, then describe a block-based pseudoran-
dom memory traversal algorithm as the underlying mem-
ory traversal mechanism for our distributed software-based
attestation schemes.
Noise Generation To generate noises for our purpose, we
use the block cipher RC5 running in CTR (counter) mode
as Pseudo Random Number Generator (PRNG). The design
principle is for the attestor’s convenience in reconstructing
the attested node’s memory image. This is done by taking
a seed as the input and each time encrypting an incremental
counter, i.e., first encrypting a 0, then encrypting a 1, and so
on. We call this seed to the PRNG as noise-generation seed,
which contains information about all the generated noise.
Since each time we are outputted with an 8-byte noise, we
only need m′/8 counters to generate all the noise, if m′ is
empty memory size (in byte) to be filled.

Counter mode offers a nice property that the (1-byte)
noise in each memory cell is individually accessible by di-
rectly encrypting the right counter and finding out the cor-
rect offset in the corresponding 8-byte value. As such, in
the block-based traversal algorithm introduced below, the
attestor keep only three variables in its data space during
memory traversal: the current checksum, the block value,
and the accessed memory cell within the block. This is
highly desirable because an attestor consumes little data
space to locally generate a correct answer for comparison.
Note if noise is generated by CBC mode, i.e., first encrypt-
ing the seed, then repeatedly applying encryption over the
previous output, the attestor will spend a lot of memory in
constructing the expected memory image of attested node
because all the noise must be generated sequentially. This
is infeasible in our schemes since an attestor is just a regular
sensor whose own program space is filled up with noise and
data space is limited.
Block-based Pseudorandom Memory Traversal There
are two types of memory traversals, sequential and pseudo-
random. In a sequential traversal scheme [11], a checksum
is computed over a block of memory and a checksum vec-
tor over all the blocks reflects integrity of the entire mem-
ory. This scheme, however, is ineffective against collusion
among nodes. Here is an example (Figure 2). Let the orig-
inal memory of a node u be divided into two halves, M1

and M2. Node u may store M1 and resort to its neighbor v

Node u

M1

M2

Node u

M1

Malicious

Code

Node v

M2

C2

(C1, C2)

Figure 2. Collusion between node u and v in
sequential memory traversal.

to store the other half M2. Thus, node u could use the other
half for malicious code. When challenged, node v computes
checksum C2 over M2, then passes C2 to node u, which lo-
cally computes C1 over M1 and returns the correct result
(C1,C2).

Pseudorandom memory traversal [15] is effective to de-
fend against the above attack because the order of mem-
ory access is unpredictable to the attacker. However, it
has much higher traversal overhead than a sequential al-
gorithm, because each memory cell is accessed multiple
times to cover the entire memory space of an attested node
with a high probability. Based on the Coupon Collector’s
problem, on average O(m lnm) traversals are needed for the
memory size of m; that is, O(lnm) traversals per cell. For
Mica2 mote [3] with 128KB program space, this means 11.7
traversals per cell. We call this algorithm cell-based pseu-
dorandom memory traversal, as shown in Figure 3(a). To
reduce the overhead, we propose a block-based pseudoran-
dom memory traversal algorithm (Algorithm 1), in which
we traverse memory block-by-block instead of cell-by-cell
and efficient ‘XOR’ operations are executed within blocks.
As shown in Figure 3(b), each block has b continuous mem-
ory cells.

Algorithm 1 Block-based Memory Traversal Algorithm
Input: it -number of iterations, j-current byte of checksum, b-block size,

m-memory size, A-traversed memory address;
Output: a checksum C(C0, · · · ,C7);
Procedure:
1: C is initialized as a 64-bit random number;
2: j is initialized to point to C0, the first byte of C;
3: for i = 1 to it/4 do
4: (A0,A1,A2,A3) = RC5i;
5: for k = 0 to 3 do
6: Cj = Cj + (Mem[Ak (mod m)] ⊕ ··· ⊕ Mem[Ak + b − 1

(mod m)]);
7: j = (j +1) mod 8;
8: end for
9: end for

10: return C;

In Algorithm 1, the PRNG used for memory traversal is
RC5 in counter mode. Taking a seed, each time RC5 out-
puts an 8-byte value which can be treated as four memory
addresses, since each memory address is 2-byte (e.g., Mica2
mote). Therefore, from one RC5 computation we get 4 ad-
dresses for memory traversals, so that the total number of

Cell-based Traversal
 (a)

Block-based Traversal
 (b)

1 2 543

1 23 4 5

Figure 3. Cell-based and block-based (b = 2)
pseudorandom memory traversal.

RC5 computations is actually it/4, if it is the number of
traversal iterations to cover the whole memory space. We
call this seed to the PRNG as memory-traversal seed, which
determines the order of pseudorandom memory traversals.
Using the same memory-traversal seed, in the following at-
testation, the attestor and the attested node should get the
same checksum results over the same memory content. Ev-
ery time we construct a 16-bit pseudorandom address for
memory read, we update the corresponding 8-bit checksum
based on the bitwise ‘XOR’ result of a block of cells. This
procedure is repeated until sufficient number of iterations
are finished to access each memory cell at least once.

We have a theorem governing the number of iterations
needed in Algorithm 1. (All the proofs are available
in [20].)
Theorem 4.1 In block-based pseudorandom memory
traversal, suppose b is block size, m is memory size, and
random variable Y represents the number of traversal
iterations needed to cover each memory cell at least once,
then E(Y) = O(m lnm

b) and Pr[Y > cm lnm
b] ≤ m1−c, where c

is a constant factor.
From Theorem 4.1, we can see that it ≈ O(m lnm

b). Also,
this theorem indicates that if we traverse the node’s mem-
ory in a block of b cells at a time, then the number of traver-
sal iterations is 1/b of that in cell-based traversal to ensure
each cell has the same level of possibility being accessed.
Although the total number of cells to be traversed is still
the same, the computational overhead is reduced through
efficient ‘XOR’ computations. Note that cell-based traver-
sal is a special case of block-based traversal where b = 1.
This does not mean it is absolutely better if b is larger. If
b = m then we traverse all the memory cells sequentially
by ‘XOR’ operations and update the checksum only once.
This is less secure because there is a high probability of col-
lision and an attacker may simply remember the XOR of all
cells. Therefore, there is a tradeoff between performance
and security, and we need choose an appropriate value of b.
For Mica2 mote, every read of program memory returns 16
bytes instead of 1 byte, it is therefore recommended that we
set b to be 16 (or its multiples).

5. Proposed Schemes
We propose two distributed software-based attestation

schemes based on the block-based pseudorandom memory

f(x)

......

v1

v2

v3

v4

v5

vn
vk

vh

1, f(1)
H(Su)

2, f(2)
H(Su)

3, f(3)
H(Su)

4, f(4)
H(Su)

5, f(5)
H(Su)

k, f(k)
H(Su)

n, f(n)
H(Su)

u

......

Su

...
...

(a) Share distribution

......

v1

v2
v3

v4

v5

vn
vk

vh

1, f(1)

2, f(2)

3, f(3)
4, f(4)

5, f(5)

k, f(k)

u

......

...
...

f(x) => Su = f(0)

(b) Seed recovery

.....
.

v1

v2
v3

v4

v5

vn
vk

vh

u

...... ...
...

Cu = Cexp?

Rn Cu

(c) Attestation

Figure 4. Scheme I: A Basic Threshold Secret Sharing Scheme.

traversal algorithm and analyze their security properties.

5.1. Scheme I: A Basic Threshold Secret
Sharing Scheme

There are three basic steps in the first scheme: noise gen-
eration, secret share distribution, secret seed recovery and
attestation. First, the empty memory space of each node,
say u, is filled with pseudorandom numbers derived from
a unique noise-generation seed Su. This is finished off-
line before node deployment. Then, after node deployment,
node u distributes one share of its noise-generation seed to
each of its neighbors. Later, when an attestation is triggered
against node u, neighbors collaborate to recover Su, recon-
struct the memory image of node u, and attest its memory
content through pseudorandom memory traversals. Since
we already introduce the technique for noise generation in
the previous section, next we discuss details of secret share
distribution as well as secret seed recovery and attestation.
Secret Share Distribution We assume that it takes an at-
tacker at least a time period Tmin to compromise a sen-
sor [22, 4]. Besides the noise that are filled into the empty
memory space, the noise-generation seed is also preloaded
into sensor’s memory. After a sensor node u is deployed,
e.g., by aerial scattering, it does the following:

• It discovers neighbors (e.g., by sending a HELLO mes-
sage) and meanwhile it starts a timer which will expire
after Tmin. It also establishes a pairwise key with each
neighbor on the fly2.

• It splits Su into multiple shares and sends a separate
share to each neighbor; a hash value H(Su) computed
by one-way hash function H is also included in the
message, which enables every neighbor to easily verify
the correctness of a recovered seed in the future while
preventing a neighbor from deriving Su from H(Su).

• When the timer expires, it removes Su from memory.

If we rely on a trusted verifier or BS, it is relatively
easy to recover the memory image and validate the re-
sponse. In our setting, however, no nodes are absolutely

2Since then, all the messages transmitted between two nodes will be
encrypted by corresponding pairwise keys, unless mentioned otherwise.

trustable. To address this issue, we adopt Shamir’s (k,n)
threshold secret sharing [16, 2] for every node to distribute
shares of the noise-generation seed to multiple neighbors,
which will later collaborate in recovering the seed for at-
testation. In our case, n is the number of neighbors and k
(1 ≤ k ≤ n) is a system threshold which relates to the net-
work density and reflects a tradeoff between security and
performance. More specifically, node u distributes secret
shares to its neighbors as follows. First, node u randomly
picks up k − 1 constants denoted by a1,a2, . . . ,ak−1 in a
prime finite field Zp and constructs a univariate polynomial
f (x) = Su +a1x+a2x2 + ...+ak−1xk−1, where Su = f (0) is
the noise-generation seed. Then, as shown in Figure 4(a),
a tuple (i, f(i)) is distributed to neighbor vi (1 ≤ i ≤ n) se-
curely.

Note that we assume there exists a lower bound on the
time interval Tmin that is necessary for an adversary to
compromise a sensor node [22], and that the time Test for
a newly deployed sensor node to discover its immediate
neighbors and to distribute secret shares of noise-generation
seed is smaller than Tmin. Based on real experiments, Deng
et al. [4] showed that it is possible for an experienced at-
tacker to obtain copies of all the memory and data of a
Mica2 mote in tens of seconds or minutes after a node is
captured. Zhu et al. [21] showed through experiments that
Test is in the order of several seconds for a network of a rea-
sonable node density (up to 20 neighbors). Therefore, we
believe that it is a reasonable assumption in practice that
Tmin > Test . As a result, within time Tmin after deployment,
each node stores a pairwise key, a secret share and a hash
value for every neighbor. These are kept in data space, so
we do not need to verify this part of node u’s memory.
Secret Seed Recovery and Attestation An attestation is
triggered if a sufficient number (e.g., more than half) 3 of
neighbors detect the abnormal behavior of node u. Then, all
the neighbors v1,v2, . . . ,vn of node u elect a cluster head4,
denoted by vh(1 ≤ h ≤ n), among themselves based on an

3In this way, few number of colluded malicious neighbors cannot ac-
cuse an honest node u by exhausting its energy for attestation.

4It is called cluster head hereafter although there are no topological
clusters here.

appropriate election algorithm [13]. The role of cluster head
is rotated among all the neighbors for each attestation due
to security and performance (load balance) reasons. The
current cluster head vh sends an authenticated challenge
Rn, which is a random number, to node u. While node u
computes the response over its own memory space by it
traversals based on our block-based algorithm with Rn as
the memory-traversal seed, vh does the following:

• It collects k secret shares from neighbors of node u, so
that the polynomial f (x) is uniquely determined (by
Lagrange interpolation) and Su is recovered by evalu-
ating this polynomial at 0, as shown in Figure 4(b).

• It verifies whether the recovered noise-generation seed
is valid by comparing its hash value with the locally
kept H(Su). If they do not match, it requests secret
shares from another set of k neighbors until a correct
noise-generation seed is reconstructed.

• It locally computes the expected memory traversal
checksum Cexp, based on Su and Rn. Specifically, from
the recovered noise-generation seed Su, it knows the
expected memory image of node u (our counter-mode
based noise generation enables it to readily regener-
ate the noise for each empty space traversal upon node
u). Then, taking Rn as the memory-traversal seed, our
block-based memory traversal algorithm outputs the
correct checksum Cexp after it traversals.

• It compares Cexp with the responded checksum Cu

from node u and concludes that the interrogated node
u has been compromised if these two checksums are
different, as shown in Figure 4(c).

Security Analysis We analyze the security properties of
Scheme I in terms of the detection rate (i.e., the probability
for neighbors to successfully detect a compromised node).
First, we have a lemma discussing under what conditions
Scheme I is able to detect a compromised node.

Lemma 5.1 Scheme I is able to successfully detect a com-
promised node u, if: (1) cluster head is trustable; (2) cluster
head obtains ≥ k correct shares of noise-generation seed Su

from neighbors of node u; (3) the attacker does not obtain
≥ k shares to recover the seed Su.

Next, we derive the detection rate of Scheme I, based on
Lemma 5.1.

Theorem 5.2 Assuming that the probability for each node
in the network to be compromised is the same and equals to
p0(0 < p0 < 1), then the detection rate of Scheme I is

Pbs(k,n)=
{

∑n−1
i=k−1

(n−1
i

)
(1− p0)i+1 pn−1−i

0 , if n < 2k

∑n−1
i=n−k

(n−1
i

)
(1− p0)i+1 pn−1−i

0 , if n ≥ 2k.

When n = 15, the detection rate of Scheme I is shown
in Figure 5, from which we can see that if p0 is larger (i.e.,
nodes in the network have a higher possibility to be compro-
mised), then Pbs is lower. In addition, suppose p0 is fixed,

0
5

10
15 0

0.1
0.2

0.3
0.4

0.5

0

0.2

0.4

0.6

0.8

1

p
0
: 0.05~0.5

n=15

k: 1~15

P
bs

Figure 5. Detection rate of Scheme I.

then Pbs has a peak value with k = n+1
2 (if n is an odd in-

teger) or k = � n+1
2 �,� n+1

2 	 (if n is an even integer), and Pbs

is symmetric when k is larger or smaller than these values.
This means when we choose the values of k and n we should
make k as close to half of n as possible so that Scheme I has
a higher detection rate. For example, suppose p0 is 0.05
and n = 15, the detection rates when k equals to 7, 8 are
both about 95%.

Scheme I could be enhanced if we are able to prevent
the attacker from obtaining more than k secret shares. We
can adopt proactive secret sharing [6] to periodically up-
date shares of Su without changing Su itself. As a re-
sult, even if an attacker has managed to obtain as many as
k − 1 secret shares (the threshold is k), a proactive share
renewal process will render them useless. Specifically, af-
ter a certain time period, a (k− 1)-degree polynomial g(x)
is randomly selected by node u over Zp, satisfying that
g(0)= 0. After the neighbor vi receives the distributed share
(i,g(i)), it renews the share it kept by (i, f (i)+ g(i)). Since
f (0)+ g(0) = Su + 0 = Su, the noise-generation seed Su is
not changed upon this renewal.

We note that in this scheme a compromised neighbor
may contribute an erroneous share. The cluster head will
need to pick another set of k shares to redo the seed recov-
ery, thus consuming additional energy. This problem could
be solved if a node has some additional data memory space.
For example, besides storing H(Su), each neighbor of node
u also stores a hash of every secret share. This will allow
it to easily verify the received shares from other neighbors
when it becomes the cluster head, thus compromised neigh-
bors are deterred from contributing wrong shares. We will
investigate more practical tradeoffs in our future work.

5.2. Scheme II: A Majority Voting Based
Attestation Scheme

In Scheme I, the cluster head can reconstruct the noise-
generation seed and hence has a way to know the expected
memory content of the attested node. Based on this knowl-
edge, the cluster head is able to send a random challenge
at will for each attestation. This prevents the attested node
from precomputing the response based on prediction. How-

......

v1

v2

v3

v4

v5

vn
v6

v7

u
(C1,R1)

(C
2 ,R

2)

(C
3 , R

3)

(C4,
R 4)

(C
5 , R

5)

(C
6 , R

6)

(C
7 , R

7)

(C
n
, R

n
)

(a) Information distribution

......

v1

v2

v3

v4

v5

vn v6
v7

u

(C2, R2)

(C1, R1)

(C3, R3)

(C4, R4)

(C5, R5)

(C6, R6)

(C7, R7)(Cn, Rn)

C3R3

C4

R4

C5

R5

C6

R6
C7 R7

Cn

Rn

C1

R1

C2

R2

(b) Attestation

Figure 6. Scheme II: A Majority Voting based
Attestation Scheme.

ever, as we have seen, the compromise of the cluster head
may result in a wrong decision about the attested node.
Also, once a noise-generation seed is disclosed (e.g., due to
neighbor compromises), an attacker may replace the noise
with malicious code in a sensor that is later compromised.

To address the above problems, we consider two strate-
gies. First, instead of relying on some specific cluster head
to make decisions, we make use of a majority voting scheme
among neighbors. Second, instead of distributing and re-
covering the noise-generation seed, each neighbor is dis-
tributed with and keeps a challenge as well as the corre-
sponding response. During an attestation, each neighbor
sends the challenge and waits for the response from the at-
tested node. If the received response is different from the lo-
cal one, then the attested node is considered compromised.

The advantages of this scheme are three-fold. First,
neighbors do not need compute any responses locally,
greatly reducing the computational overhead involved in the
attestors. Second, although a compromised neighbor knows
which cells it will traverse, it does not know which cells will
be traversed by other neighbors. Hence, the attacker cannot
decide which cells are safe to modify for sure. Third, based
on majority voting, an innocent node will not be identified
as compromised due to one or a few compromised neigh-
bors. Next, we provide the details of information distribu-
tion and attestation in this scheme.
Information Distribution Before deployment, noise is
preloaded into each node’s empty memory space. Each
node is also preloaded with n tuples of (Ci, Ri) (1 ≤ i ≤ n, n
is no less than the estimated maximum number of neigh-
bors), where Ci is a challenge and Ri is the correspond-
ing response. Each tuple is generated by an offline server
as follows. Taking a random challenge Ci as the memory-
traversal seed, node u’s memory is traversed it times based
on our block-based pseudorandom memory traversal algo-
rithm and a checksum Ri is returned. After deployment,
every node (say u) discovers neighbors, securely delivers to
each neighbor vi(1≤ i ≤ n) a randomly picked tuple (shown
in Figure 6(a)) within Tmin, and finally erases all the tuples
after Tmin.

Note that the number of traversal iterations it in this

scheme is different from that in the previous scheme. Sup-
pose that the memory size of node u is m, then it should be
O(m lnm

bn) or above, so that all the neighbors may corporately
traverse each of node u’s memory cells at least once.
Attestation Later on, if more than half of neighbors agree
to attest node u, neighbors attest node u in sequence (to pre-
vent channel collisions), as shown in Figure 6(b). Specif-
ically, each neighbor vi securely sends node u its chal-
lenge Ci and waits for the response. Then, taking the chal-
lenge Ci, node u traverses its memory accordingly based on
the block-based pseudorandom memory traversal algorithm
with it iterations, and reports the resulted checksum as the
response. Note that sequence numbers must be added to
both the challenge and response messages before encryp-
tions to prevent replay attacks. After that, neighbor vi com-
pares this checksum with the one it keeps locally (Ri) and
makes its own decision about node u. Finally, if the number
of neighbors who have negative opinions exceeds the ma-
jority (i.e., � n+1

2 �), then node u will be identified as com-
promised. In this way, each neighbor of node u has its inde-
pendent judgement about node u’s memory integrity.
Security Analysis According to the Byzantine generals
problem [12, 7], if a compromised neighbor cannot modify
opinions from other neighbors (i.e., a faulty neighbor may
lie on its own behalf, or refuse to relay results received from
others, but it cannot alter other’s results without betraying
itself as faulty), then all the honest neighbors can finally
reach an agreement about node u’s code memory integrity
by employing authentication mechanisms. In our case, the
pairwise keys shared and known only between two nodes
could provide the same functionality.

The choice of it (i.e., the number of memory traver-
sal iterations) reflects a tradeoff between performance and
accuracy: if it is larger, then the overhead is higher, but
the decisions from neighbors is more reliable, because if
it = O(m lnm

b), then every neighbor will make node u tra-
verse each memory cell at least once with a high probability
and hence obtain a sound opinion about node u’s memory.
However, the total traversal cost involved in node u will be
n times of that in Scheme I. On the other hand, if we re-
duce the number of iterations (e.g., to less than O(m lnm

bn)), it
is possible that neighbors fail to detect the modified part of
the attested node’s code memory.

The detection rate of Scheme II is formalized by the fol-
lowing theorem.
Theorem 5.3 Assuming that the probability for each node
in the network to be compromised is the same and equals
to p0(0 < p0 < 1). For Scheme II with regard to node
u, suppose mc is the number of changed memory cells of
node u, m is node u’s memory size, and we choose it =
m lnm

bn , then the detection rate of Scheme II is Pvs(n,mc,m) =
∑n

i=� n+1
2 �[(

n
i)(1− p0)i pn−i

0 ∑i
j=� n+1

2 �(
i
j)p j

h(1− ph)i− j], where

ph = 1− (m−mc
m)

m lnm
n is the probability for an honest neigh-

0

20

40

60

80

100

0
0.1

0.2
0.3

0.4
0.5
0

0.5

1

m
c
: 1~100

n=15, m=128K

p
0
: 0.05~0.5

P
vs

(a) Pvs: different mc, fixed n

0 0.1 0.2 0.3 0.4 0.50

10

20

0.2

0.4

0.6

0.8

1

n: 1~20p
0
: 0.05~0.5

P
vs

(b) Pvs: different n, fixed mc(> 0)

Figure 7. Detection rate of Scheme II.

bor to detect the compromised node u.
The detection rate of Scheme II with different mc and

fixed n is shown in Figure 7(a). Even if the attacker changes
only 3 bytes, Pvs is already increased to 99% when p0 =
0.05. In this case, ph is also as high as 90%. The detection
rate of Scheme II with different n and fixed mc can be seen
in Figure 7(b). Pvs vibrates as the total number of neighbors
n changes, since n alternates between odd and even numbers
in majority voting.

6. Performance Evaluation
We first analyze the performance of our schemes, then

we conduct simulations to show that our schemes can effec-
tively detect changed memory content of sensor nodes.

6.1. Performance Analysis

We quantify the overhead of our schemes from three as-
pects: computation, communication and storage.
Computational Cost In Scheme I, for the attested node,
there are n (k − 1)-degree polynomial evaluations and one
hash computation to distribute shares to n neighbors. Also,
there are O(m lnm

b) memory traversals involved during at-
testation. For neighbors, to recover and validate the noise-
generation seed, there are one (k−1)-degree polynomial in-
terpolation, one (k− 1)-degree polynomial evaluation and
one hash computation. In attestation, O(m lnm

b) memory
traversals are needed to cover the whole memory of the
attested node. In Scheme II, since (challenge, response)
pairs are generated offline, there are only O(m lnm

b) memory
traversals involved in the attested node.
Communication Overhead Suppose Ls, Lh and Lc are the
lengths of a secret seed or share (they have the same length
in our schemes), hash value, and checksum, respectively.
In Scheme I, the message overhead includes: secret share
distribution of n(Ls + Lh), secret seed recovery by the clus-
ter head of at least (k− 1)Ls, and the attestation overhead
of Ls + Lc. For Scheme II, the message overhead includes:
challenge and response distribution of n(Ls + Lc) and the
attestation overhead of n(Ls + Lc).
Storage Requirement In Scheme I, each node needs to
store secret shares for its n neighbors with the storage cost

of n(Ls + Lh) bytes. Also, it costs neighbors of the at-
tested node n(Ls + Lh) bytes to store all the secret shares.
In Scheme II, it costs neighbors n(Ls +Lc) bytes to store all
the challenges and responses for the attested node.
Comparison of Two Schemes Obviously, Scheme II has
lower computation overhead than Scheme I. The length of
checksum is 8-byte in our algorithm (Lc = 8 bytes). Sup-
pose we choose Ls and Lh to be 8-byte, too. Then, the stor-
age overhead of these two schemes are almost the same.
Moreover, Scheme II has higher communication overhead
than Scheme I.

From the above analysis and comparison, we have the
following observation and conclusion. Scheme II has better
security properties, but it also has higher communication
overhead. Scheme I has lower communication overhead but
relatively higher computational cost. As such, which one to
use should be based on specific resource configurations and
application requirements.

6.2. Simulation results
We conduct simulations to verify the effectiveness of our

schemes in detecting memory cells changed by the attacker.
The attacker in our simulation randomly selects a memory
cell, beginning from which the attacker changes the content
of mc continuous memory cells. From the simulation re-
sults we find that in practice the overhead to detect changed
memory cells can further be largely reduced because the
number of traversal iterations needed to detect the modifi-
cation is actually much less than expected. The number of
iterations to access each memory cell at least once could be
used to detect even one byte of memory change. In practice,
however, the attacker needs many more continuous memory
cells (e.g., several hundred bytes) to inject malicious code
that can really do harm.

In the simulation of Scheme I, the size of modified mem-
ory content mc is changed from 30 to 200 in bytes and
each point obtained in the figure is the average value of
100 rounds. As shown in Figure 8, although the num-
ber of iterations needed to cover the entire memory space
is O(m lnm) = 1505K when memory size m is 128K, in
Scheme I the actual traversal iterations for the cluster head

40 60 80 100 120 140 160 180 200
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

m
c
: # of changed continuous memory cells#

of
 it

er
at

io
ns

 to
 d

et
et

ec
t c

ha
ng

ed
 m

em
or

y m=128K, round=100
cell−based

block−based (b=16)

block−based (b=32)

Figure 8. Number of iterations for cluster head
to detect changed cells in Scheme I.

0
2000

4000
6000

8000

0

200

400

60040

60

80

100

of iterations for each neighbor

m=128K, b=16, n=20

of changed cells

fr
ac

ti
o

n
 o

f
n

ei
g

h
b

o
rs

 d
et

ec
ti

n
g

 c
o

m
p

ro
m

is
e(

%
)

Figure 9. Fraction of neighbors successfully de-
tecting changed cells in Scheme II.

to detect changed memory content with size as small as 30-
byte is only about 3200 if block size b = 16. If we increase
the block size to 32, then the number of iterations to detect
this change is even smaller: about 2100 iterations to detect
the changed 30 bytes, while in this case we need 4900 iter-
ations in cell-based traversal.

In the simulation of Scheme II, we fix the memory size
m to be 128K, block size b to be 16, and the number of
neighbors n to be 20. With the number of changed continu-
ous memory cells varying from 50 to 500, we examine the
fraction of neighbors that can successfully detect the mod-
ified memory part, under different number of traversal iter-
ations for each neighbor (as shown in Figure 9). When the
size of changed memory is small (e.g. mc = 50), the value
of O(m lnm)

bn = 6272 gives a good lower bound to make sure
every neighbor can detect the change. Nevertheless, if we
have some knowledge on the number of changed memory
cells, we may adjust or even reduce the number of memory
traversal iterations accordingly. In fact, when 500 bytes of
memory have been modified, there are only 1000 traversal
iterations needed to guarantee that all the neighbors can de-
tect this modification. In this case, to tolerate a certain num-
ber of compromised neighbors (e.g., less than half), major-
ity voting is a good idea as long as more than half of neigh-
bors are honest.

7. Further Discussions
Next, we discuss some important issues regarding our

schemes.
Inaccuracy in Neighbor Number Estimation In Scheme
II, our discussion implicitly assumed that a node knows
in advance the number of neighbors n when preloaded the
challenge/response pairs. In real networks, the actual num-
ber of neighbors may be different from what we have pre-
dicted. As such, we should adjust it dynamically so that
the cell traversal probability and the number of iterations
do not vary much. One simple approach to addressing this

is as follows. Suppose we know that the maximum num-
ber of neighbors in the network is nmax = 16, then node u is
preloaded with nmax challenge/response tuples. If the actual
number n = 9, node u may send � nmax

n � = 2 tuples to each
neighbor. Later on during an attestation, u will make two
traversals for each neighbor. Note that after node u erases
these nmax tuples, some empty space will be created. As
such, instead of zeroizing the space, node u could fill it with
some noises that are generated on-the-fly based on the noise
generation seed and then erase the seed. For correctness,
the offline generation of nmax responses should be based on
these noises, not the challenge/response tuples.

Topology Changes In the description of our schemes, we
mainly consider a static network model. For some sensor
networks, nodes may be added and die during the network
lifetime. Here we discuss the influence of network topology
changes on our schemes.

In general, node removal is less a concern in our schemes
than node addition. Scheme I works well if some neigh-
bors die, as long as the number of neighbors is still more
than the threshold value. The removal of neighbors is not
a problem in Scheme II as long as the fraction of honest
neighbors is still larger than one half. When a new node
is added, it discovers its neighbors and then distributes its
shares to the neighbors, following the same procedure as
before. The challenge arises from getting shares from its
neighbors which have done their secret share distributions.
According to our protocols, these neighbors have erased
their own noise seeds, thus they do not have any additional
share to give out to this new node.

To (partially) address the problem, we may apply the fol-
lowing idea. Node deployment is divided into multiple in-
tervals and there is an interval key for each interval. Nodes
deployed in interval Ti carry the interval key Ki as well as
all the past interval keys. When a node is deployed, it gen-
erates more shares than its actual number of neighbors; the
extra shares could be encrypted with its interval key and

store locally. The node erases the interval keys after Tmin,
thus it cannot decrypt the share itself. However, a new node
deployed either in the same time interval or later carries the
interval key used in the encryption, so it can decrypt the
share. In this way, a new node may collect one encrypted
share from each neighbor and joins the neighbor for later at-
testation operations. Note that the security assumption here
is the same as in our schemes; that is, a node will not be
compromised within Tmin. We will study this approach in
more details and investigate more secure solutions in our
future work.

8. Conclusion and Future work
The detection of node compromise is a critical but chal-

lenging problem for resource-constrained sensors deployed
in an unattended or hostile environment. Recent work on
software-based code attestation has shed light on accurately
identifying compromised nodes. However, they are not
readily applied into regular sensor networks due to one
or another limitations. We have presented two distributed
schemes towards making software-based attestation more
practical. Our schemes do not depend on response time
measurement by mobile verifiers or the base station. In-
stead, neighbors of a suspicious node collaborate in the at-
testation process to make a joint decision.

To the best of our knowledge, this is the first paper to
address the compromised node detection issue in a totally
distributed way. As an initial work, we do not expect to
solve all the problems. In the future, we will further inves-
tigate solutions for noise-generation seed update and net-
work topology change (i.e., nodes join and leave the net-
work). Another issue we have not addressed yet is how to
schedule the message transmissions of neighbors (for secret
share distribution and collection) to minimize channel col-
lision. Finally, we will study how to apply our schemes to
different sensor memory architectures.

Acknowledgment We thank the anonymous reviewers
for their valuable comments. This work was supported by
US Army Research Office (ARO) under grant W911NF-
05-1-0270, and by the National Science Foundation (NSF)
under grants CNS-0524156, CNS-0627382, and CAREER
NSF-0643906.

References

[1] Time-of-check-to-time-of-use(TOCTTOU).
http://en.wikipedia.org/wiki/Time-of-check-to-time-of-
use.

[2] P. C. v. O. Alfred J. Menezes and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.
http://www.cacr.math.uwaterloo.ca/hac/.

[3] Crossbow Technology, Inc. Mica Motes.
http://www.xbow.com.

[4] J. Deng, R. Han, and S. Mishra. A practical study of transi-
tory master key establishment for wireless sensor networks.
In SecureComm 2005, pages 289–299, September 2005.

[5] S. Ganeriwal and M. Srivastava. Reputation-based frame-
work for high integrity sensor networks. In SASN’04, 2004.

[6] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage.
In CRYPTO ’95, pages 339–352, 1995.

[7] L. Lamport, R. Shostak, and M. Pease. The Byzantine Gen-
erals Problem. In ACM Transactions on Programming Lan-
guages and Systems, volume 4, pages 382–401, July 1982.

[8] D. Liu, P. Ning, and R. Li. Establishing pairwise keys in dis-
tributed sensor networks. ACM Transactions on Information
and System Security, 8(1):41–77, February 2005.

[9] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating rout-
ing misbehavior in mobile ad hoc networks. In MobiCom,
pages 255–265, 2000.

[10] M. Mitzenmacher and E. Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cam-
bridge University Press, 2005.

[11] T. Park and K. G. Shin. Soft tamper-proofing via program in-
tegrity verification in wireless sensor networks. IEEE Trans.
Mob. Comput., 4(3):297–309, 2005.

[12] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults. In Journal of ACM, volume 27,
pages 228–234, April 1980.

[13] M. Pirretti, S. Zhu, V. Narayanan, P. McDaniel, M. Kan-
demir, and R. Brooks. The sleep deprivation attack in sensor
networks: analysis and methods of defense. In ICA DSN,
October 2005.

[14] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing ex-
ecution of code on legacy platforms. In SOSP, pages 1–15,
October 2005.

[15] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT: SoftWare-based ATTestation for embedded de-
vices. In IEEE Symposium on Security and Privacy, 2004.

[16] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[17] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote
software-based attestation for wireless sensors. In ESAS,
July 2005.

[18] D. Spinellis. Reflection as a mechanism for software in-
tegrity verification. ACM Trans. Inf. Syst. Secur., 3(1), 2000.

[19] G. Wurster, P. C. van Oorschot, and A. Somayaji. A generic
attack on checksumming-based software tamper resistance.
In SP’ 2005, pages 127–138.

[20] Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed software-
based attestation for node compromise detection in sensor
networks. Technical report, Department of Computer Sci-
ence and Engineering, The Pennsylvania State University,
2007. http://www.cse.psu.edu/ yy5.

[21] S. Zhu, S. Setia, and S. Jajodia. LEAP+: Efficient secu-
rity mechanisms for large-scale distributed sensor networks.
http://www.cse.psu.edu/ szhu/papers/leap.pdf, to appear in
ACM TOSN.

[22] S. Zhu, S. Setia, and S. Jajodia. LEAP: efficient security
mechanisms for large-scale distributed sensor networks. In
CCS ’03, pages 62–72, 2003.

