
Distributed-Something: scripts to leverage AWS
storage and computing for distributed workflows at
scale.
Erin Weisbart1 and Beth A. Cimini1,2

1. Broad Institute of MIT and Harvard, Cambridge MA, USA; Department: Imaging Platform
2. Corresponding author

On-demand computational infrastructure, such as that provided by Amazon Web Services
(AWS), is ideal for at-scale parallelizable workflows (especially workflows for which demand is
not constant but comes in occasional "spikes"), as neither computing power nor data storage
are limited by local availability and costs are limited to actual resource usage. However, cloud
infrastructure configuration is time-consuming and confusing, and cloud-native services that
automatically monitor and scale resources can increase the workflow price. Distributed-
Something (DS) is a collection of easy to use Python scripts that leverage the power of the
former, while minimizing the problems of the latter.

DS makes it possible for a user with moderate computational comfort to design a way to deploy
a new tool or program to the cloud, and for a user with relatively low computational comfort to
then deploy this tool at will. It simplifies the process of using AWS by scripting the majority of the
setup, triggering, and monitoring of jobs, requiring only minimal human readable config files to
be edited before the run, and simple, single-line commands to trigger each step. This increases
the ability of novice computationalists to be able to execute workflows and dramatically lowers
the barrier to creating a new workflow. Unlike most existing tools for running hosted
containerized analysis, it does not require learning new workflow languages (either for new-tool-
addition or end-user-deployment) and minimizes the understanding requirement of the AWS
components that are used (see Supplementary Table 1).

We originally sought to simplify large scale scientific image analysis using our CellProfiler
software, creating Distributed-CellProfiler1. Recognizing the utility of the framework, we herein
provide Distributed-Something as a fully customizable template for the distribution of any
Dockerized2 workflow. We show its extensibility with two example implementations of DS in the
open source bioimage ecosystem (though DS is in no way limited to bioimage analysis).

ImageJ is the most widely used open-source software for bioimage analysis3; Fiji is an open-
source distribution of ImageJ that comes bundled with libraries and plugins that extend ImageJ's
functionality4. Fiji scripts can be run at scale using Distributed-Fiji, allowing the user to take
advantage of its plugin ecosystem and its ability to run user-written scripts in many coding
languages. As with all DS implementations, the computational environment can be tailored to

each task (e.g. many small machines used to individually process thousands of files or a large
machine to perform a single task on many files (such as stitching)).

To increase shareability of especially large bioimage data, the Open Microscopy Environment5
team is creating next generation file formats, including .ome.zarr6, to make bioimaging data
more findable, accessible, interoperable and reusable (FAIR)7. We created Distributed-
OmeZarrCreator to simplify the conversion of large bioimage datasets to .ome.zarr’s and thus
encourage the adoption of this format and simplify sharing of bioimaging data via resources
such as the Image Data Resource (IDR)8.

DS coordinates 5 separate AWS resources. Data is stored on AWS in its Simple Storage
Service (S3) and “Spot Fleets” of Elastic Compute Cloud (EC2) instances (or virtual computers)
access that data, run the “Something” on that data, and upload the end product back to S3.
ECS (Elastic Container Services) places your customized Docker containers on the EC2
machines while Simple Queue Service (SQS) tracks the list of jobs, and Cloudwatch provides
logs and metrics on the services you are using, allowing for configuration optimization and
troubleshooting. One can easily customize DS code to download or upload data from/to cloud
and/or on-premises storage outside the AWS account used for processing.

DS shines in the simplicity of end-user execution: only two human-readable files must be edited
to configure individual DS runs: the Config file and the Job file. The Config file contains
information about naming, the number and size of machines to use, and the maximum price you
are willing to pay for the machines, minimizing computational costs. The Job file lists all of the
individual tasks to run in parallel by setting both metadata shared between tasks and the
metadata to parse individual tasks. An additional Fleet file contains information about AWS-
account-specific information but does not need to be edited after initial creation.

Three single-line python commands initiate all of the AWS architecture creation and
coordination and an optional fourth command provides additional monitoring and automated
clean-up of resources (detailed in Figure 1).

Implementing your own version of DS can be done in a matter of hours by someone with
moderate Python abilities. Creating a Distributed- version of a software that itself takes input
scripts (e.g. Distributed-Fiji) makes workflow customization possibilities near limitless with no
extra overhead. Over 1000 containers are already registered on BioContainers9 and,
conceptually, any could be put in the DS framework.

We believe DS will enable the scientific community to quickly, easily, and cost-effectively scale
their parallelizable workflows using AWS. As this is an open-source tool, we look forward to
contributions and implementations from within and outside the bioimage analysis community.

Figure 1
Distributed-Something uses four single-line commands to coordinate five separate AWS
services for the parallel processing of jobs by any Dockerized software. Three execution
commands prepare various aspects of AWS infrastructure. `setup` (A) prepares SQS and ECS.
`submitJobs` (B) sends jobs to SQS. `startCluster` (C) initiates and coordinates the spot fleet
request. After these commands, the Distributed-Something Docker automatically completes
setup (D) and jobs run. A fourth optional command, `monitor` (E), assists in downscaling and
cleaning up resources as they are no longer required. See online documentation at
https://distributedscience.github.io/Distributed-Something for a deeper discussion of each step.

Supplementary Table 1

Software End user input
format

Cost Strengths Weaknesses Code Availability Complete
workflow
examples
available

Ease of
use for
developers

Ease of
use for
end users

Distribut
ed-
Somethi
ng

- Human
readable
metadata files

Compute
plus
monitoring
($0.0001
/hour
/machine)

- New tools can
be added with
only Python in ~1
hr
- Automatic job
AND container-
level
introspection,
tagged by job
parameters
- Automatic
machine
monitoring

- CLI only
- Only perfectly parallel
single-stage tasks
- Infrastructure
teardown requires a
script, must be run by
the user or set on an
automatic schedule

Open-source, single
codebase

Few Moderate Easy

Terra - Workflow
Description
Language

Compute - Uses data
stored in Google
Cloud, Azure, or
AWS
- Web interface
- Run batch jobs
or interactive
notebooks

- Workflow language
required for end-users

Open-source, across
many codebases

Many Moderate Moderate

Galaxy - Drag-and-
drop nodes

None to
end users
(cost

- Very easy for
end users
- Automated

- Scaling dependent on
bandwidth of your
Galaxy host

Open-source, across
many codebases

Many Challengin
g

Easiest

borne by
hosters)

logging and
historical
introspection
- Run batch jobs
or interactive
notebooks

- Creating a wrapper
can be challenging for
new developers due to
custom XML

AWS
Batch

- Individual
jobs can be
submitted in
console
- Scripting
needed to add
jobs at scale

Compute
only,
monitoring
optional

- Automatically
optimizes
compute settings
- Set up
infrastructure via
console or CLI

- No built-in container-
level introspection
- More expensive
cluster-level
introspection due to
need for custom metrics
- Documentation
encourages Fargate
over EC2 which is
~10% more expensive.

Proprietary Few Moderate Moderate

AWS
Parallel
Cluster

- Scripting Compute
only,
monitoring
optional

- Automatically
optimizes
compute settings
if using AWS
Batch
- Easy to move to
for slurm users if
using slurm

- If using slurm, more
difficult for end-users to
monitor job progress
(requires SSH into the
head node)
- If using AWS Batch,
see above

Open source, single
codebase

Few Moderate Moderate

Amazon
Genomi
cs CLI

- Workflow
Description
Language
- Nextflow

Compute
plus
"overhead"
($4/day)

- Easy connection
to AWS Registry
of Open Data
(RODA)
resources

- Workflow language
required for end-users
- Less control of the
infrastructure used for
jobs

Open source, single
codebase

Few Moderate Moderate

Works Cited

1. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology.

PLoS Biol. 16, e2005970 (2018).

2. Merkel, D. Docker: lightweight Linux containers for consistent development and

deployment. Linux J. 2014, 2 (2014).

3. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image

data. BMC Bioinformatics 18, 529 (2017).

4. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9, 676–682 (2012).

5. Swedlow, J. R., Goldberg, I., Brauner, E. & Sorger, P. K. Informatics and

quantitative analysis in biological imaging. Science 300, 100–102 (2003).

6. Moore, J. et al. OME-NGFF: a next-generation file format for expanding bioimaging

data-access strategies. Nat. Methods 18, 1496–1498 (2021).

7. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management

and stewardship. Sci Data 3, 160018 (2016).

8. Williams, E. et al. The Image Data Resource: A Bioimage Data Integration and

Publication Platform. Nat. Methods 14, 775–781 (2017).

9. da Veiga Leprevost, F. et al. BioContainers: an open-source and community-driven

framework for software standardization. Bioinformatics 33, 2580–2582 (2017).

Code Availability
Distributed-Something is available at
https://github.com/DistributedScience/Distributed-Something
Distributed-CellProfiler is available at
https://github.com/DistributedScience/Distributed-CellProfiler
Distributed-Fiji is available at https://github.com/DistributedScience/Distributed-Fiji
Distributed-OmeZarrCreator is available at
https://github.com/DistributedScience/Distributed-OmeZarrCreator

Acknowledgements
We thank Juan Caicedo and Shantanu Singh for creating the original Distributed-CellProfiler,
Callum Tromans-Coia, Josh Moore, and Sébastien Besson for their assistance with DOZC, and
other members of the Cimini and Carpenter-Singh labs for their feedback on this project and
manuscript. This study was supported by Calico Life Sciences LLC, NIH P41 GM135019, and
grant number 2020-225720 from the Chan Zuckerberg Initiative DAF. The funders had no role in
study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations
1. Broad Institute of MIT and Harvard, Cambridge MA, USA; Department: Imaging Platform

Beth A. Cimini, Erin Weisbart

Contributions
B.A.C. conceived the project, wrote DS and DF, assisted in writing DCP, and revised the
manuscript.
E.W. wrote the manuscript, wrote DOZC, and assisted with DS and DF.

Corresponding author
Correspondence to Beth Cimini

Ethics declarations

Competing interests
The authors declare no competing interests.

