
Distributed Space-Time Coding in Wireless Relay

Networks

Y INDI JING AND BABAK HASSIBI∗

Department of Electrical Engineering

California Institute of Technology, Pasadena, CA 91125

April 27, 2006

Abstract

We apply the idea of space-time coding devised for multiple-antenna systems to the prob-

lem of communications over a wireless relay network with Rayleigh fading channels. We use

a two-stage protocol, where in one stage the transmitter sends information andin the other, the

relays encode their received signals into a “distributed”linear dispersion (LD)code, and then

transmit the coded signals to the receive node. We show that for high SNR the pairwise error

probability (PEP)behaves as
(

log P
P

)min{T,R}
, with T the coherence interval, that is, the num-

ber of symbol periods during which the channel keeps constant,R the number of relay nodes,

andP the total transmit power. Thus, apart from thelog P factor and assumingT ≥ R, the

system has the same diversity as a multiple-antenna system withR transmit antennas, which

is the same as assuming that theR relays can fully cooperate and have full knowledge of the

transmitted signal. We further show that for a network with a large number of relays and a fixed

total transmit power across the entire network, the optimal power allocation is for the trans-

mitter to expend half the power and for the relays to collectively expend the other half. We

also show that at low and high SNR, the coding gain is the same as that of a multiple-antenna
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1



system withR antennas. However, at intermediate SNR, it can be quite different, which has

implications for the design of distributed space-time codes.

1 Introduction

It is known that multiple antennas can greatly increase the capacity and reliability of a wireless

communication link in a fading environment using space-time codes [1, 2, 3, 4]. Recently, with

the increasing interests in ad hoc networks, researchers have been looking for methods to exploit

spatial diversity using antennas of different users in the network [5, 6, 7, 8, 9]. In [8], the authors

exploit spatial diversity using the repetition and space-time algorithms. The mutual information

and outage probability of the network are analyzed. However, in their model, the relays need

to decode their received signals. In [9], a network with a single relay under different protocols

is analyzed and second order spatial diversity is achieved.In [10], the authors use space-time

codes based on the Hurwitz-Radon matrices and conjecture a diversity factor aroundR/2 from

their simulations. Also, the simulations in [11] show that the use of Khatri-Rao codes lowers the

average bit error rate. In this paper, we consider a relay network with fading and apply a LD

space-time code [12] among the relays. The problem we are interested in is: “Can we increase the

reliability of a wireless network by using space-time codesamong the relays?”

More specifically, the focus of this paper is on the PEP analysis of wireless relay network. We

investigate in the diversity gain and coding gain that can beachieved in a wireless relay network

by having the relays cooperate distributively. Here, by diversity gain or diversity in brief, we mean

the negative of the exponent of the SNR or transmit power in the PEP formula at high SNR regime.

This definition is consistent with the diversity definition in multiple-antenna systems [4, 13]. It

determines how fast the PEP decreases with the SNR or transmit power. The same as before,

coding gain is the improvement in the PEP obtained by the codedesign.

The wireless relay network model we use is similar to those in[14, 15]. In [14], the authors

show that the capacity of the wireless relay network withR nodes behaves likelog R. In [15], a

power efficiency that behaves like
√

R is obtained. Both results are based on the assumption that

every relay knows its local channels so that they can work coherently. Therefore, for the results

of [14] and [15] to hold, the system should be synchronized atthe carrier level. In this paper,
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we assume that the relays do not know the channel information. All we need is a much more

reasonable assumption that the system is synchronized at the symbol level.

We use a two-step protocol for transmissions in the wirelessrelay network, where in the first

step the transmitter sends information and in the other, therelays encode their received signals into

a “distributed” LD code, and then transmit the coded signalsto the receive node. A key feature of

our work is that we do not require the relays to decode. Only simple signal processing is done at the

relays. This has two main benefits: first, the operations at the relays are considerably simplified,

and second, we can avoid imposing bottlenecks on the rate by requiring some relays to decode

(See e.g., [16]).

Our work shows that in a wireless relay network withR relays, coherence intervalT , and

a single transmit-and-receive pair, using LD space-time codes among the relays can achieve a

diversity of min{T,R}
(

1 − log log P
log P

)

, whereP is the total power used in the whole network.

WhenT ≥ R, the diversity gain is linear in the number of relays (size ofthe network) and is a

function of the total transmit power. WhenP is very large (log P ≫ log log P ), the diversity is

approximatelyR. The coding gain for very largeP is det (Sk − Sl)
∗(Sk − Sl), whereSk andSl

are codewords in the distributed space-time code. Therefore, at very high SNR, the same diversity

gain and coding gain are obtained as in the multiple-antennacase, which means that the system

works as if the relays can fully cooperate and have full knowledge of the transmit signal. We then

improve the diversity gain shown above and prove the optimality of the result. We also consider a

more general type of LD codes which includes Alamouti’s scheme as a special case. Although, the

same diversity gains are achieved, the coding gain can be improved. Simulations are also provided,

which verify our theoretical analysis.

The paper is organized as follows. In the following section,the network model and the two-

step protocol are introduced. The distributed space-time code is explained in Section 3 and the

PEP is calculated in Section 4. In Section 5, we derive the optimum power allocation based on the

PEP. Sections 6 contains the main results of our work. The diversity gain and the coding gain are

derived. To motivate our results, we first give a simple approximate derivation and then give the

more involved rigorous derivation. In Section 7, we slightly improve the diversity gain obtained

in Section 6 and prove the optimality of the new diversity result. A more general distributed

LD space-time code is discussed in Section 8, and in Section 9the diversity gain and coding
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gain for a special case are obtained, which coincide with those in Sections 6 and 7. We have

simulated the performances of relay networks with random distributed LD space-time codes and

have compared them with the performances of the same space-time codes used in multiple-antenna

systems. The details of the simulations and the figures are given in Section 10. Section 11 provides

the conclusion and future work. The proofs of the technical theorems and lemmas are given in the

appendices.

2 System Model

We first introduce some notation used in the paper. For a complex matrixA, Ā, At, andA∗ denote

the conjugate, the transpose, and the conjugate transpose of A, respectively.det A, rank A, and

tr A indicate the determinant, rank, and trace ofA, respectively.ARe andAIm are the real and

imaginary parts ofA. In denotes then × n identity matrix and0m,n is them × n matrix with all

zero entries. We often omit the subscripts when there is no confusion. log, log2, log10 indicate

the natural logarithm, the base-2 logarithm, and the base-10 logarithm.‖ · ‖ indicates the Frobe-

nius norm. g(x) = O(f(x)) means thatlimx→∞
g(x)
f(x)

is a constant.h(x) = o(f(x)) means that

limx→∞
g(x)
f(x)

= 0.

Consider a wireless network withR + 2 nodes which are placed randomly and independently

according to some distribution. There is one transmit node and one receive node. All the otherR

nodes work as relays. Every node has a single antenna, which can be used for both transmission

and reception. Denote the channel from the transmitter to the ith relay asfi, and the channel from

theith relay to the receiver asgi. Assume thatfi andgi are independent complex Gaussian random

variables with zero-mean and unit-variance. If the fading coefficientsfi andgi are known to relay

i, it is proved in [14] and [15] that the capacity behaves likelog R and a power efficiency that

behaves like
√

R can be obtained. However, these results rely on the assumption that the relays

know their local connections, which requires the system to be synchronized at the carrier level.

In this paper, we make the much more practical assumption that the relays are only coherent at

the symbol level. We assume that the relays know only the statistical distribution of the channels.

However, we make the assumption that the receiver knows all the fading coefficientsfi andgi.

Its knowledge of the channels can be obtained by sending training signals from the relays and the
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transmitter. Many types of gains can be obtained from the network, for example, gains on the

capacity and gains on the error rate. In this paper, we focus on the improvement in the error rate,

more precisely, the pairwise error probability (PEP).
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Figure 1:Wireless relay network

Assume that the transmitter wants to send the signals = [s1, · · · , sT ]t in the codebook{s1, · · · , sL}
to the receiver, whereL is the cardinality of the codebook.s is normalized as

E s
∗
s = 1. (1)

The transmission is accomplished by the following two-stepstrategy, which is also shown in Fig

1. From time1 to T , the transmitter sends signals
√

P1Ts1, · · · ,
√

P1TsT to each relay. Based

on the normalization ofs, the average power used at the transmitter for every transmission isP1.

The received signal at theith relay at timeτ is denoted asri,τ , which is corrupted by both the

fadingfi and the noisevi,τ . From timeT +1 to 2T , theith relay sendsti,1, · · · , ti,T to the receiver.

We denote the received signal and noise at the receiver at time τ + T by xτ andwτ respectively.

Assume that the noises are independent complex Gaussian random variables with zero-mean and

unit-variance, that is, the distribution ofvi,τ , wτ areCN (0, 1).

We use the following notation:

vi =








vi,1

...

vi,T








, ri =








ri,1

...

ri,T








, ti =








ti,1
...

ti,T








, w =








w1

...

wT








, and x =








x1

...

xT








.

If we assume a coherence interval ofT , that isfi andgi keep constant forT transmissions, clearly

ri =
√

P1Tfis + vi and x =
R∑

i=1

giti + w. (2)
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There are two main differences between the wireless relay network given above and a multiple-

antenna system withR transmit antennas and one receive antenna [4, 13], althoughthey both

haveR independent transmission routes from the transmitter to the receiver. The first one is that

in a multiple-antenna system, antennas of the transmitter can cooperate fully. In the considered

network, they can cooperate only in a distributed fashion since the relays are different users. The

other difference is that in the network, the relays observe only noisy versions of the transmit signal.

3 Distributed Space-Time Coding

From the above description, it is clear that if the transmission rate is sufficiently low, then all the

relays can decode the transmit message. In this case, the relays can act as a multiple-antenna

system withR transmit antennas and therefore the communication from therelays to the receiver

can achieve a diversity order ofR. This approach, however, will require a substantial reduction

of the rate and we will therefore not consider it. We will instead focus on the achievable diversity

without requiring the relays to decode.1

In this paper, we use the idea of the LD space-time code [12] for multiple-antenna systems by

designing the transmit signal at every relay as a linear function of its received signal:2

ti,τ =

√

P2

P1 + 1

T∑

t=1

ai,τtri,t =

√

P2

P1 + 1
[ai,τ1, ai,τ2, · · · , ai,τT ]ri,

or in other words,

ti =

√

P2

P1 + 1
Airi, (3)

where

Ai =








ai,11 · · · ai,1T

...
. . .

...

ai,T1 · · · ai,TT








, for i = 1, 2, · · · , R.

While within the framework of LD codes, theT × T matricesAi can be quite arbitrary (apart

from a Frobenius norm constraint), to have a protocol that isequitable among different users and

1A combination of requiring some relays to decode and others to not, may also be considered. However, in the

interest of space, we shall not do so here.
2Note that the conjugate ofri does not appear in (3). The case withri is discussed in Section 8.
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among different time instants, we shall henceforth assume thatAi are unitary. As we shall presently

see, this also simplifies the analysis considerably.

Now let’s discuss the average transmit power at every relay.BecauseE tr ss∗ = 1, fi, vi,j are

CN (0, 1), andfi, si, vi,j are independent, the average received power at relayi is:

E r
∗
i ri = E

(
P1T |fi|2s∗s + v

∗
i vi

)
= (P1 + 1)T.

Therefore the average transmit power at relayi is

E t
∗
i ti =

P2

P1 + 1
E (Airi)

∗(Airi) =
P2

P1 + 1
E r

∗
i ri = P2T,

which explains our normalization in (3).P2 is the average transmit power for one transmission at

every relay.

Let us now focus on the received signal. Clearly from (2), the received signal can be calculated

to be

x =

√

P1P2T

P1 + 1
SH + W, (4)

where we have defined

S =
[

A1s · · · ARs

]

, H =








f1g1

...

fRgR








, and W =

√

P2

P1 + 1

R∑

i=1

giAivi + w. (5)

The T × R matrix S in equation (4) works like the space-time code in a multiple-antenna

system. We shall call it thedistributed space-time codeto emphasize that it has been generated in

a distributed way by the relays, without having access tos. H, which isR × 1, is the equivalent

channel matrix andW , which isT × 1, is the equivalent noise.W is clearly influenced by the

choice of the space-time code. Using the unitarity ofAi, it is easy to get the normalization ofS:

E tr S∗S = R.

4 Pairwise Error Probability

SinceAi are unitary andwj, vi,j are independent Gaussian,W is also Gaussian whengi are known.

It is easy to see thatE W = 0T,1 andVar W =
(

1 + P2

P1+1

∑R
i=1 |gi|2

)

IT . Thus,W is both spatially
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and temporally white. Assume thatsk is transmitted. DefineSk = [A1sk, · · · , ARsk]. Therefore,

Sk is an element in the distributed space-time code set. When both fi andgi are known,x|sk is

also Gaussian with mean
√

P1P2T
P1+1

SkH and variance
(

1 + P2

P1+1

∑R
i=1 |gi|2

)

IT . Thus,

P (x|sk) =
1

[

π
(

1 + P2

P1+1

∑R
i=1 |gi|2

)]T
e
−

�
x−

r
P1P2T
P1+1

SkH

�∗�
x−

r
P1P2T
P1+1

SkH

�
1+

P2
P1+1

PR
i=1

|gi|
2

.

The maximum-likelihood (ML) decoding of the system can be easily seen to be

arg max
sk

P (x|sk) = arg min
sk

∥
∥
∥
∥
∥
x −

√

P1P2T

P1 + 1
SkH

∥
∥
∥
∥
∥

2

. (6)

SinceSk is linear insk, by splitting the real and imaginary parts, the decoding is equivalent to the

decoding of a real linear system. Therefore, sphere decoding can be used [17, 18].

Theorem 1 (Chernoff bound on the PEP). With the ML decoding in (6), the PEP, averaged over

the channel coefficients, of mistakingsk by sl has the following Chernoff bound:

P (sk → sl) ≤ E
fi,gi

e
−

P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
H∗(Sk−Sl)

∗(Sk−Sl)H
.

By integrating overfi, we can get the following inequality:

P (sk → sl) ≤ E
gi

det−1



IR +
P1P2T

4
(

1 + P1 + P2
∑R

i=1 |gi|2
)(Sk − Sl)

∗(Sk − Sl)diag {|g1|2, · · · , |gR|2}



 . (7)

Proof: See Appendix A.

Let’s compare (7) with the Chernoff bound on the PEP of a multiple-antenna system withR

transmit antennas and one receive antenna (the receiver knows the channel) [4, 13]:

P (sk → sl) ≤ det−1

[

IR +
PT

4R
(Sk − Sl)

∗(Sk − Sl)

]

.

The difference is that now we need to do the expectations overgi. Similar to the multiple-antenna

case, thefull diversitycondition can be obtained from (7). It is easy to see that ifSk − Sl drops

rank, the upper bound in (7) increases. Therefore, the Chernoff bound is minimized whenSk − Sl

is full-rank, or equivalently,det(Sk − Sl)
∗(Sk − Sl) 6= 0 for any1 ≤ k 6= l ≤ L.
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5 Optimum Power Allocation for Large R

In this section, we discuss the optimum power allocation between the transmitter and relays that

minimizes the PEP. Because of the expectations overgi, it is very difficult to obtain the exact

solution. We shall therefore recourse to a heuristic argument. Note thatg =
∑R

i=1 |gi|2 has the

gamma distribution [19]:

p(g) =
gR−1e−g

(R − 1)!
,

whose mean and variance are bothR. It is therefore reasonable to approximateg by its mean, i.e.,
∑R

i=1 |gi|2 ≈ R, especially for largeR. (By the law of large numbers, almost surelyg/R → 1

whenR → ∞.). Therefore, (7) becomes

P (sk → sl) . E
gi

det−1

[

IR +
P1P2T

4 (1 + P1 + P2R)
(Sk − Sl)

∗(Sk − Sl)diag {|g1|2, · · · , |gR|2}
]

, (8)

which is minimized when P1P2T
4(1+P1+P2R)

is maximized.

Assume that the total power consumed in the whole network isPT for transmissions ofT

symbols. Since for every transmission, the power used at thetransmitter and every relay areP1

andP2 respectively, we haveP = P1 + RP2. Therefore,

P1P2T

4 (1 + P1 + P2R)
=

P1(P − P1)T

4R(1 + P )
≤ P 2T

16R(1 + P )
,

with equality when

P1 =
P

2
and P2 =

P

2R
. (9)

Thus, the optimum power allocation is such that the transmitter uses half the total power and the

relays share the other half. So, for largeR, the relays spend only a very small amount of power to

help the transmitter.

With this optimum power allocation, whenP ≫ 1,

P1P2T

4
(

1 + P1 + P2
∑R

i=1 |gi|2
) ≈

P
2

P
2RT

4
(

P
2 + P

2R

∑R
i=1 |gi|2

) =
PT

8(R +
∑R

i=1 |gi|2)
.

(7) becomes

P (sk → sl) . E
gi

det −1

[

IR +
PT

8(R +
∑R

i=1 |gi|2)
(Sk − Sl)

∗(Sk − Sl)diag {|g1|2, · · · , |gR|2)}
]

.(10)

9



It is easy to see that the expected receive SNR of the system is P1P2T

4(1+P1+P2
PR

i=1 |gi|2)
. Therefore,

this optimal power allocation also maximizes the expected receive SNR for largeR. We should

emphasis that this power allocation only works for the wireless relay network described in Section

2, in which all channels are assumed to be i.i.d. Rayleigh and no path-loss is considered. It is

obvious that it may not be optimal when the path-loss effect of the channels is considered.

6 Derivation of the Diversity

As mentioned earlier, to obtain the diversity we need to compute the expectations in (7). Since

the calculation is detailed and gives little insight, to highlight the diversity result, we begin by

giving a simple approximate derivation which leads to the same diversity result. As discussed

in the previous section, whenR is large,
∑R

i=1 |gi|2 ≈ R with high probability. We use this

approximation.

DefineM = (Sk − Sl)
∗(Sk − Sl). We upper bound the PEP using the minimum nonzero

singular value ofM , which is denoted asσ2
min. From (10),

P (sk → sl) . E
gi

det−1

(

IR +
PTσ2

min

16R
diag {Irank M , 0}diag {|g1|2, · · · , |gR|2}

)

= E
gi

rank M∏

i=1

(

1 +
PTσ2

min

16R
|gi|2

)−1

=

[
∫ ∞

0

(

1 +
PTσ2

min

16R
x

)−1

e−xdx

]rank M

=

(
PTσ2

min

16R

)−rank M [

−e
16R

PTσ2
min Ei

(

− 16R

PTσ2
min

)]rank M

,

where

Ei(χ) =

∫ χ

−∞

et

t
dt, χ < 0

is the exponential integral function [20]. Whenχ < 0,

Ei(χ) = c + log(−χ) +
∞∑

k=1

(−1)kχk

k · k!
, (11)

wherec is the Euler constant. Therefore, whenlog P ≫ 1, e
− 16R

PTσ2
min = 1 + O

(
1
P

)
≈ 1 and

−Ei

(

− 16R
PTσ2

min

)

= log P + O(1) ≈ log P . Thus,

P (sk → sl) .

(
16R

Tσ2
min

)rank M ( log P

P

)rank M

=

(
16R

Tσ2
min

)rank M

P
−rank M

�
1− log log P

log P

�
. (12)
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WhenM is full rank, the diversity gain ismin{T,R}
(

1 − log log P
log P

)

. Therefore, similar to the

multiple-antenna case, there is no point in having more relays than the coherence interval [4, 13].

Thus, we will henceforth always assumeT ≥ R. The diversity gain is thereforeR
(

1 − log log P
log P

)

.

(12) also shows that the PEP is smaller for bigger coherence intervalT .

Now we give a rigorous derivation. Here is the main result.

Theorem 2. Design the transmit signal at theith relay as in (3), and use the power allocation in

(9). Assume thatT ≥ R and the distributed space-time code has full diversity. ThePEP has the

following Chernoff bound:

P (sk → sl) ≤
R∑

r=0

(
8

PT

)r

Mr

(
1 − e−x

)R−r
r∑

j=0

BR+(R−k)x,x(j, r) [−Ei(−x)]r−j .

where

Mr =
∑

1≤i1<···<ir≤R

det −1[M ]i1,··· ,ir

with [M ]i1,··· ,ir ther × r matrix composed of thei1, · · · , ir rows and columns ofM and

BA,x(j, r) =




r

j





r∑

i1=1

r−i1∑

i2=1

· · ·
r−i1−···−ij−1∑

ij=1




r

i1



 · · ·




r − i1 − · · · − ij−1

ij





Γ(i1, x) · · ·Γ(ij , x)Ar−i1−···−ij . (13)

Proof: See Appendix B.

Corollary 1. If log P ≫ 1,

P (sk → sl) .
1

PR

R∑

r=0

(
8

T

)r

Mr

r∑

j=0

BR,0(r − j, r) logj P. (14)

Proof: Setx = 1
P

3. Whenlog P ≫ 1, since
[
R + (R − k) 1

P

]k
= Rk + o(1), −Ei

(
− 1

P

)
=

log P + o(1), 1− e−
1
P = 1

P
+ o

(
1
P

)
, andΓ

(
i, 1

P

)
= (i− 1)! + o(1), (14) is obtained from (13) by

omitting lower order terms ofP .

3Actually, this is not the optimal choice according to diversity gain. We can improve the diversity gain slightly by

choosing an optimal x. However, the coding gain of that case is smaller than the coding gain in (14). The details will

be discussed in Section 7.
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Corollary 2. If log P ≫ 1 andR ≫ 1,

P (sk → sl) .
1

PR

R∑

r=0

(
8R

T

)r

Mr logr P. (15)

Proof: WhenR ≫ 1, BR,0(0, r) >> BR,0(l, r) for all l > 0 sinceBR,0(0, r) = Rr is the term

with the highest order ofR. Therefore, (15) is obtained from (14).

Remarks:

1. The highest order term ofP in (14) is ther = j = R term:

det−1M

(
8R log P

TP

)R

= det−1M

(
8R

T

)R

P
−R

�
1− log log P

log P

�
, (16)

Therefore, as in (12), distributed space-time coding achieves diversity gainR
(

1 − log log P
log P

)

,

which is linear in the number of relays. WhenP is very large (log P ≫ log log P ), log log P
log P

≪
1, and a diversity gain aboutR is obtained. This is the same as the diversity gain of a

multiple-antenna system withR transmit antennas and one receive antenna. Therefore, the

relays work as if they fully cooperate and have full knowledge of the transmit signal. Gen-

erally, the diversity depends on the total transmit powerP .

2. Note that in Theorem 2, we assume thatT ≥ R. For the general case, the rank ofM will be

min{T,R} instead ofR. By a similar argument, diversitymin{T,R}
(

1 − log log P
log P

)

will be

obtained.

3. In a multiple-antenna system, if the transmit power (or SNR) is high, the PEP has the upper

bounddet −1M
(

4R
PT

)R
. Comparing this with the highest order term given in (16), we can

see the relay network has a performance that is

(3 + 10 log10 log P ) dB (17)

worse. The 3dB difference is because in the network, each thetransmitter and the relays use

a half of the total power. It can be easily seen that if the total power used in the network is

doubled, this 3dB difference will disappear. The second term, 10 log10 log P , is due to the

diversity difference of the two cases. This analysis is verified by simulations in Section 10.
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4. Corollary 2 also gives the coding gain for networks with large number of relays. When

log P ≫ 1, the dominant term in (15) is (16). The coding gain is therefore det−1 M , which

is the same as that of the multiple-antenna case. WhenP is not very large, the second term

in (15),
(

8R
T

)R−1∑R
i=1 det −1[M ]1,··· ,i−1,i+1,··· ,R

logR−1 P
P R , cannot be ignored and even thek =

3, 4, · · · terms have non-neglectable contributions. Therefore, to have good performance, we

want not onlydet M to be large but alsodet[M ]i1,··· ,ir to be large for all0 ≤ r ≤ R, 1 ≤
i1 < · · · < ir ≤ R. Note that

[M ]i1,··· ,ir = ([Si]i1,··· ,ir − [Sj ]i1,··· ,ir)
∗([Si]i1,··· ,ir − [Sj ]i1,··· ,ir),

where[Si]i1,··· ,ir = (Ai1si, · · · , Airsi) is the space-time code when only thei1, · · · , irth

relays are working. To have good performance when the transmit power is moderate, the

distributed space-time code should be “scale-free” in the sense that it is still a good dis-

tributed space-time code when some of the relays are not working. In general, for networks

with anyR, the same conclusion can be obtained from (14).

5. Now let’s look at the low total transmit power case, that is, theP ≪ 1 case. With the same

approximation
∑R

i=1 |gi|2 ≈ R, using the power allocation given in (9),

P1P2T

4
(

1 + P1 + P2
∑R

i=1 |gi|2
) ≈

P
2

P
2RT

4 (1 + P )
=

P 2T

16R
.

Therefore, (7) becomes

P (sk → sl) . E
gi

det−1

(

IR +
P 2T

16R
Mdiag {|g1|2, · · · , |gR|2}

)

= E
gi

[

1 +
P 2T

16R
tr
(
Mdiag {|g1|2, · · · , |gR|2}

)
+ o(P 2)

]−1

= E
gi

(

1 − P 2T

16R

R∑

i=1

mii|gi|2
)

+ o(P 2)

=

(

1 − P 2T

16R
trM

)

+ o(P 2),

wheremii is the(i, i)th entry ofM . Therefore, as in the multiple-antenna case, the coding

gain at low total transmit power istr M . The design criterion is to maximizetr M .

6. In our model, there is no direct link between the transmitter and the receiver. Consider now

that there is a direct fading channel between the transmitter and the receiver at step one.

13



It is easy to see that diversity1 + R
(

1 − log log P
log P

)

can be obtained if the new distributed

space-time code
[

s A1s · · · ARs

]

is fully diverse. If this direct channel exists during

the second step of transmission only, let the transmitter sends the same signals at step two.

Exactly the same distributed space-time code and thus the same diversity can be obtained.

For the case that independent fading channels exist for bothsteps, we design the signal sent

by the transmitter at step two asAR+1s with AR+1 a T × T unitary matrix. It is easy to

prove that diversity2 + R
(

1 − log log P
log P

)

can be obtained if the distributed space-time code
[

s A1s · · · AR+1s

]

is fully diverse.

7. As mentioned in Section 2, the time slots for the two transmission steps of our protocol are

equal. In general, we can useT1 symbol periods for the first step andT2 for the second.Ai

should therefore beT2 × T1 unitary matrices. When the distributed space-time code is fully

diverse, we can prove that the achievable diversity ismin{T2, R}
(

1 − log log P
log P

)

. For the

case ofT1 < T2, althoughT1 symbols are sent from the transmitter, at mostT2 of them can

be independent for the distributed space-time code to be full diverse. Therefore, the is no

benefit in having a longer time interval for the first step. On the other hand, if we prolong the

second step and haveT2 > T1, the diversity can be improved when there are enough relays.

However, the symbol rate of transmissions decreases. Therefore, having equal time slots for

the two steps maximizes the symbol rate.

7 Improvement In Diversity Gain

In Theorem 2, we have chosenx = 1/P . Although this choice gives an upper bound on the PEP, it

is not the optimal choice in the sense that the diversity gainobtained from this upper bound is not

maximized. We can improve the diversity slightly.

Theorem 3. The best diversity gain that can be obtained using distributed space-time coding is

α0R, whereα0 is the solution of

α +
log α

log P
= 1 − log log P

log P
. (18)

14



For log P ≫ log log P , the PEP has the following upper bound

P (sk → sl) .

R∑

r=0

(
8

T

)r

Mr

r∑

l=0

BR(r − l, r)P−[α0R+(1−α0)(r−l)]. (19)

If R ≫ 1,

P (sk → sl) .

[
R∑

r=0

(
8R

T

)r

Mr

]

P−α0R. (20)

Proof: To save space, the proof of this theorem is omitted. For details, refer to [21].

There is no closed form for the solution of equation (18). Thefollowing theorem gives a region

of α0 and also gives some idea about how much improvement in diversity gain is obtained.

Theorem 4. For P > e,

1 − log log P

log P
< α0 < 1 − log log P

log P
+

log log P

log P (log P − log log P )
.

Proof: Refer to [21].

Theorem 4 indicates that the PEP Chernoff bound of the distributed space-time codes decreases

faster than
∑R

r=0

(
8R
T

)r
Mr

(
log P

P

)R
and slower than

∑R
r=0

(
8R
T

)r
Mr

(

(log P )
1− 1

log P−log log P

P

)R

. When

log P ≫ log log P , 1 − log log P
log P

is a very accurate approximation ofα0. The improvement in the

diversity is small.

Now let’s compare the new upper bound in (20) with the one in (15). A slightly better diversity

is obtained as discussed above. However, the coding gain in (20), which is
[
∑R

r=0

(
8R
T

)r
Mr

]−1

, is

smaller than the coding gain of (15), which isdet M . To compare the two, we assume thatR = T

and that the singular values ofM take their maximum value,
√

2. Therefore the coding gain of

(20) is




∑R

k=0




R

k



 4k





−1

= 5−R. The coding gain of (15) is4−R. The upper bound in (15) is

0.97dB better according to coding gain.

Therefore, whenP is large enough, the new upper bound is tighter than the previous one since

it has a larger diversity. Otherwise, the previous bound is tighter since it has a larger coding gain.
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8 The General Distributed Linear Dispersion Code

In this section, we work on a more general type of distributedlinear dispersion space-time codes

[12]. The transmit signal at theith relay is designed as,

ti =

√

P2

P1 + 1
(Airi + Biri), i = 1, 2, · · · , R, (21)

whereAi, Bi areT × T complex matrices. By separating the real and imaginary parts, we can

write (21) equivalently as



ti,Re

ti,Im



 =

√

P2

P1 + 1




Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re








ri,Re

ri,Im



 . (22)

Similar as before, for fairness and simplicity, we assume that the2T × 2T matrix,



Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re



 ,

is orthogonal. Therefore, the expected transmit power per transmission at every relay isP2.

After straightforward calculation, the following equivalent system equation can be obtained:

x̂ =

√

P1P2T

P1 + 1
Hŝ + W ,

where

H =
R∑

i=1




gi,ReIT −gi,ImIT

gi,ImIT gi,ReIT








Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re








fi,ReIT −fi,ImIT

fi,ImIT fi,ReIT



 ,

is the equivalent channel matrix and

W =




wRe

wIm



+

√

P2

P1 + 1

R∑

i=1




gi,ReIT −gi,ImIT

gi,ImIT gi,ReIT








Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re








vi,Re

vi,Im



 ,

is the equivalent noise. For anyT × 1 complex vectorx, the2T × 1 real vectorx̂ is defined as



xRe

xIm



.

Theorem 5 (ML decoder and PEP). Design the transmit signal at theith relay as in (21). The ML

decoding is

arg max
si

P (x|si) = arg min
si

∥
∥
∥
∥
∥
x̂ −

√

P1P2T

P1 + 1
Hŝi

∥
∥
∥
∥
∥

2

.
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Using the optimum power allocation given in (9), the PEP of mistakingsk with sl has the following

Chernoff upper bound:

P (sk → sl) ≤ E
gi

det −1/2

(

I2R + PT

8(R+
PR

k=1 |gk|2)

R∑

k=1

GkGt
k

)

, (23)

where

Gk =




gk,ReIT −gk,ImIT

gk,ImIT gk,ReIT








Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re








(sk − sl)Re −(sk − sl)Im

(sk − sl)Im (sk − sl)Re



 .

Proof: Refer to [21].

9 A Special Case

We have not yet been able to explicitly evaluate the expectation in (23). Our conjecture is that when

T ≥ R, the same diversity,R
(

1 − log log P
log P

)

, will be obtained. Here we give an analysis of a much

simpler, but far from trivial, case: for anyi, eitherAi = 0 or Bi = 0. That is, each relay sends a

signal that is linear in either its received signal or the conjugate of its received signal. It is clear

to see that Alamouti’s scheme is included in this case withR = 2, A1 = I2, B1 = 0, A2 = 0, and

B2 =




0 1

1 0



. The condition that




Ai,Re + Bi,Re −Ai,Im + Bi,Im

Ai,Im + Bi,Im Ai,Re − Bi,Re



 is orthogonal becomes

thatAi is unitary ifBi = 0 andBi is unitary ifAi = 0.

Theorem 6. Design the transmit signal at theith relay as in (21). Use the optimum power allo-

cation in (9). Further assume that for anyi = 1, · · · , R, eitherAi = 0 or Bi = 0. The PEP of

mistakingsi with sj has the following Chernoff upper bound:

P (sk → sl) . E
gi

det −1



IR +
PT

8
(

R +
∑R

i=1 |gi|2
)(Ŝk − Ŝl)

∗(Ŝk − Ŝl)diag {|g1|2, · · · , |gR|2}



 ,(24)

where

Ŝk =
[

A1sk + B1sk · · · ARsk + BRsk

]

(25)

is aT × R matrix, which is the distributed space-time code.
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Proof: Refer to [21].

(24) is exactly the same as (10) except that now the distributed space-time code iŝS instead of

S. Therefore, by the same argument, the following theorem canbe obtained.

Theorem 7. Design the transmit signal at theith relay as in (21). Use the optimum power alloca-

tion in (9). AssumeT ≥ R and the distributed space-time code has full diversity. Define

M̂ = (Ŝk − Ŝl)
∗(Ŝk − Ŝl). (26)

If log P ≫ 1, the PEP has the following Chernoff bound:

P (sk → sl) .

R∑

r=0

(
8

T

)r

M̂r

r∑

l=0

BR(r − l, r)
logl P

PR
,

where

M̂r =
∑

1≤i1<···<ir≤R

det −1[M̂ ]i1,··· ,ir .

The best diversity gain that can be obtained isα0R. Whenlog P ≫ log log P ,

P (sk → sl) .

[
R∑

r=0

(
8

T

)r

Mr

R∑

l=0

BR(r − l, r)

]

P−[α0R+(1−α0)(k−l)].

Proof: The same as the proofs of Theorems 2 and 3.

Therefore, the same diversity gain is obtained as in Section6. The coding gain forlog P ≫ 1 is

det M̂ . WhenP is not very large, we want not onlydet M̂ to be large but alsodet[M̂ ]i1,··· ,ir to be

large for all0 ≤ r ≤ R, 1 ≤ i1 < · · · < ir ≤ R. That is, to have good performance for a general

transmit power, the distributed space-time code should have be “scale-free” in the sense that it is

still a good code when some of the relays are not working. We can see from Theorem 7 that this

general code does not improve the diversity gain of the system. However, from the definition of

the new code in (25), it can improve the coding gain by code optimization.

10 Simulations

In this section, we give the simulated performances of the distributed space-time codes for different

values of the coherence intervalT , number of relaysR, and total transmit powerP . The fading
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coefficients between the transmitter and the relays,fi, and between the receiver and the relays,

gi, are modeled as independent complex Gaussian random variables with zero-mean and unit-

variance. The fading coefficients keep constant forT channel uses. The noises at the relays and

the receiver are also modeled as independent zero-mean unit-variance Gaussian additive noise. The

block error rate (BLER), which corresponds to errors in decoding the vector of transmit signalss,

and the bit error rate (BER), which corresponds to errors in decodings1, · · · , sT , is demonstrated

as the error events of interest. Note that a BLER may correspond to only a few bit errors.

The transmit signal at each relay is designed as in (3). We should remark that our goal here is

to compare the performances of LD codes implemented distributively over wireless networks with

the performances of the same codes in multiple-antenna systems. Therefore the actual design of

the LD codes and their optimality is not an issue here: all that matters is that the codes should be

the same.4 Therefore, we generateAi randomly based on the isotropic distribution on the space of

T × T unitary matrices. (It is certainly conceivable that the performance in the following figures

can be improved by several dBs ifAi are chosen optimally.)

The signalss1, · · · , sT are designed as independentN2-QAM signals. Both the real and imag-

inary parts ofsi are equal probably chosen from theN -PAM signal set:
√

6

T (N2 − 1)
{−(N − 1)/2, · · · , − 1/2, 1/2, · · · , (N − 1)/2},

whereN is a positive integer. The coefficient
√

6
T (N2−1)

is used for the normalization ofs given in

formula (1). The number of possible transmit signals isN2T . The rate of the code is, therefore,5

1

2T
log2 N2T = log2 N.

In the simulation of multiple-antenna systems, the number of transmit antennas isR and the

number of receive antennas is one. We also model the channelsand noises as independent zero-

mean unit-variance complex Gaussian random variables. As discussed before, the space-time code

is theT×R matrixS =
[

A1s · · · ARs

]

. The rate of the space-time code is therefore2 log2 N .

In both systems, we use sphere decoding [17, 18] to obtain theML results.

4The question of how to design optimal codes is an interestingone, but is beyond the scope of this paper.
5Due to the half-duplex protocol,2T channel uses are needed for transmissions ofT symbols.
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10.1 Performance of wireless networks with different T and R

In Fig. 2, we compare the BER of relay networks for different coherence intervalsT and number

of relaysR. From the plot we can see that the biggerR, the faster the BER curve decreases, which

verifies our analysis that the diversity is linear inR whenT ≥ R. However, the slopes of the BER

curves of networks withT = R = 5 andT = 10, R = 5 are the same when the transmit power is

high. This verifies our result that the diversity only depends onmin{T,R}, which is alwaysR in

our examples. Having a larger coherence interval but the same number of relays does not improve

the diversity. According to the analysis in Sections 6, increasingT can improve the coding gain.

From the plot, we can see that the BER of the network withT = 10, R = 5 is about 1dB lower

than that of the network withT = R = 5.

10.2 Performance comparisons of distributed space-time codes with space-

time codes

In this subsection, we compare the performance of distributed space-time codes with those of

space-time codes in two ways. In one, we assume that the average total transmit powerfor both

systems is the same. (This is done since the noise and channelvariances are everywhere normalized

to unity.) In other words, the total transmit power in the network (summed over the transmitter and

R relays) is the same as the transmit power of the multiple-antenna system. In the other, we assume

that the averageSNR at the receiveris the same. Assuming that the total transmit power isP , in the

distributed scheme, the average receive SNR can be calculated to be P 2

4(1+P )
, and in the multiple-

antenna setting it isP . Thus, we need roughly a6 dB increase in power to make the SNR of the

relay network identical to that of the multiple-antenna system.

In the first example,T = R = 5 andN = 2. The BER and BLER curves are shown in Fig.

3 and 4. Fig. 3 shows the BER and BLER of the two systems with respect to the total transmit

power. Fig. 4 shows the BER and BLER of the two systems with respect to the receive SNR. From

the figures we can see that the performance of the multiple-antenna system is always better than

that of the relay network at any power or SNR. This is what we expecte because in the multiple-

antenna system, antennas of the transmitter can fully cooperate and have perfect information of

the transmit signal. Also we can see from Fig. 3 that the BER andBLER curves of the multiple-
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antenna system decrease faster than those of the relay network. However, the differences of the

slopes of the BER and BLER curves of the two systems are diminishing as the total transmit power

goes higher. We can see this more clearly in Fig. 4. At low SNR regime, the BER and BLER

curves of the multiple-antenna system decrease faster thanthose of the relay network. As SNR

goes higher, the differences of the slopes of the BER and BLER curves vanishes, which indicates

that the two systems have about the same diversity. This verifies our analysis of the diversity.

Fig. 5 and Fig. 6 show the performances of the two systems withT = R = 10 andN = 2.

Fig. 5 shows the BER and BLER of the two systems with respect to the total transmit power. Fig.

6 shows the BER and BLER of the two systems with respect to the receive SNR. We can see from

the figures that the slopes of the BER and BLER curves for the wireless relay network approach

the slopes of the BER and BLER curves of the multiple-antenna systems when the transmit power

increases.

In Fig. 5, at the BER of10−5, the transmit power used in the network is about of 24.5 dB.

Our analysis of (17) indicates that the performance of the relay network should be10.5dB worse.

Reading from the plot, we get a8dB difference. This verifies the correctness and tightness of our

upper bound.

Finally, we give an example withT 6= R. In this example,T = 10, R = 5 andN = 2.

Performances of both the relay network and the multiple-antenna system with respect to the total

transmit power are shown in Fig. 7. The same phenomenon can beobserved.

11 Conclusion and Future Work

In this paper, we propose the use of LD space-time codes in a wireless relay network. We assume

that the transmitter and relays do not know the channel realizations but only their statistical distri-

bution. The ML decoding and PEP at the receiver are analyzed.The main result is that diversity

min{T,R}
(

1 − log log P
log P

)

can be achieved, which shows that whenT ≥ R and the average total

transmit power is very high (log P ≫ log log P ), the relay network has almost the same diversity as

a multiple-antenna system withR transmit antennas and one receive antenna. We further show that

the leading order term in the PEP behaves as
(

8R log P
PT

)R
det −1(Sk−Sl)

∗(Sk−Sl), which compared

to
(

4R
PT

)R
det −1(Sk − Sl)

∗(Sk − Sl), the PEP of a space-time code, shows the loss of performance
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due to the fact that the code is implemented distributively and the relays have no knowledge of the

transmit symbols. We also observe that the high SNR coding gain, det(Sk − Sl)
∗(Sk − Sl), is the

same as what arises in space-time coding. The same is true at low SNR wheretr (Sk−Sl)
∗(Sk−Sl)

should be maximized.

We then continue investigating the diversity gain of distributed space-time coding. At high

total transmit power, we improve the diversity gain achieved in Section 6 slightly (by an order no

larger thanO
(

log log P
log2 P

)

). Furthermore, we discuss a more general type of distributed space-time

linear dispersion codes: the transmit signal from each relay is a linear combination of both its

received signal and the conjugate of its received signal. For a special case, which includes the

Alamouti’s scheme, the same diversity gains can be obtained. Simulation results on randomly

generated distributed space-time codes are demonstrated,which verifies our results.

There are several directions for future work that can be envisioned. One is to study the outage

capacity of our scheme. Another is to determine whether the diversity,min{T,R}
(

1 − log log P
log P

)

,

can be improved by other coding methods. We conjecture that it cannot. Another interesting

question is to study the design of distributed space-time codes. For this the PEP expression (15)

in Corollary 2 should be useful. In fact, relay networks provide an opportunity for the design of

space-time codes with a large number of transmit antennas, sinceR can be quite large. Finally, it

should be interesting to see whether differential space-time coding techniques can be generalized

to the distributed setting. We believe that Cayley codes [22]are a suitable candidate for this.

A Proof of Theorem 1

Proof: The PEP of mistakingsk by sl has the following Chernoff upper bound [23, 13]:

P (sk → sl) ≤ E eλ(ln P (x|sl)−ln P (x|sk)).

Sincesk is transmitted,x =
√

P1P2T
P1+1

SkH + W . From (6),

ln P (x|sl) − ln P (x|sk)

= −

[
P1P2T
P1+1 H∗(Sk − Sl)

∗(Sk − Sl)H +
√

P1P2T
P1+1 H∗(Sk − Sl)

∗W +
√

P1P2T
P1+1 W ∗(Sk − Sl)H

]

1 + P2
P1+1

∑R
i=1 |gi|2

.
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Therefore,

P (sk → sl) ≤ E
fi,gi,W

e
− λ

1+
P2

P1+1

PR
i=1

|gi|
2

h
P1P2T

P1+1
H∗(Sk−Sl)

∗(Sk−Sl)H+
q

P1P2T

P1+1
H∗(Sk−Sl)

∗W+
q

P1P2T

P1+1
W ∗(Sk−Sl)H

i
= E

fi,gi

e
−

λ(1−λ)
P1P2T
1+P1

1+
P2

1+P1

PR
i=1

|gi|
2

H∗(Sk−Sl)
∗(Sk−Sl)H ∫ e

−

�
λ

r
P1P2T
P1+1

(Sk−Sl)H+W

�∗�
λ

r
P1P2T
P1+1

(Sk−Sl)H+W

�
1+

P2
P1+1

PR
i=1

|gi|
2

[

π
(

1 + P2
P1+1

∑R
i=1 |gi|2

)]T
dW

= E
fi,gi

e
−

λ(1−λ)P1P2T

1+P1+P2
PR

i=1
|gi|

2 H∗(Sk−Sl)
∗(Sk−Sl)H

.

Chooseλ = 1
2

which maximizesλ(1− λ) = 1
4

and therefore minimizes the right-hand side of the

above formula. We have

P (sk → sl) ≤ E
fi,gi

e
−

P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
H∗(Sk−Sl)

∗(Sk−Sl)H
. (A.1)

This is the first upper bound in Theorem 1. To obtain the secondupper bound we need to calculate

the expectation overfi. Notice thatH = Gf , whereG = diag {g1, · · · , gR} andf = [f1, · · · , fR]t.

(A.1) becomes

P (sk → sl) ≤ E
fi,gi

e
−

P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
f∗G∗(Sk−Sl)

∗(Sk−Sl)Gf

= E
gi

∫
1

πR
e
−

P1P2T

4(1+P1+P2
PR

i=1
|gi|

2)
f∗G∗(Sk−Sl)

∗(Sk−Sl)Gf

e−f∗fdf

= E
gi

det



IR +
P1P2T

4
(

1 + P1 + P2
∑R

i=1 |gi|2
)G∗(Sk − Sl)

∗(Sk − Sl)G





−1

= E
gi

det



IR +
P1P2T

4
(

1 + P1 + P2
∑R

i=1 |gi|2
)(Sk − Sl)

∗(Sk − Sl)diag {|g1|2, · · · , |gR|2}





−1

as desired.

B Proof of Theorem 2

Proof: Before proving the theorem, we first give a lemma that is needed.

Lemma 1. If A is a constant,

∫ ∞

x
· · ·
∫ ∞

x

(

A +
k∑

i=1

λi

)k
e−λ1 · · · e−λk

λ1 · · ·λk
dλ1 · · · dλk =

k∑

j=0

BA,x(j, k) [−Ei(−x)]k−j , (B.1)

whereΓ(α, χ) =
∫∞

χ
e−ttα−1dt is the incomplete gamma function [20].
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Proof: See Appendix C.

From (10), we need to upper bound

∫ ∞

0
· · ·
∫ ∞

0
det



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}





−1

e−λ1 · · · e−λRdλ1 · · · dλR,

where we have definedλi = |gi|2. Therefore,λi is a random variable with exponential distribution

pλi
(x) = e−x. We upper bound this by breaking every integral into two parts: the integration from

0 to an arbitrary positive numberx and the integration fromx to ∞, and then upper bound every

one of the resulting2R terms. That is,

P (sk → sl)

.

(∫ x

0
+

∫ ∞

x

)

· · ·
(∫ x

0
+

∫ ∞

x

)

det



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}





−1

e−λ1 · · · e−λRdλ1 · · · dλ

=
R∑

r=0

∑

1≤i1<···<ir≤R

Ti1,··· ,ir ,

where

Ti1,··· ,ir =

∫

· · ·
∫

thei1, · · · ir th integrals

are fromx to∞,

all others are from0 to x

det



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}





−1

e−λ1 · · · e−λRdλ1 · · · dλR.

Without loss of generality, we calculateT1,··· ,r, which is

∫ ∞

x
· · ·
∫ ∞

x
︸ ︷︷ ︸

r

∫ x

0
· · ·
∫ x

0
︸ ︷︷ ︸

R−r

det



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}





−1

e−λ1 · · · e−λRdλ1 · · · dλR.

SinceM > 0, for any0 < λr+1, · · · , λR < x,

det



IR +
PT

8
(

R +
∑R

i=1 λi

)Mdiag {λ1, · · · , λR}





> det

[

IR +
PT

8 (R + (R − r)x +
∑r

i=1 λi)
Mdiag {λ1, · · · , λr, 0, · · · , 0}

]

> det

{
PT

8 [R + (R − r)x +
∑r

i=1 λi]
[M ]1,··· ,rdiag {λ1, · · · , λr}

}

=

{
PT

8 [R + (R − r)x +
∑r

i=1 λi]

}r

det[M ]1,··· ,rλ1 · · ·λr.
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Therefore,

T1,··· ,r <

(
8

PT

)r

det−1[M ]1,··· ,r

∫ x

0
· · ·
∫ x

0
e−λr+1 · · · e−λRdλr+1 · · · dλR

∫ ∞

x
· · ·
∫ ∞

x

[

R + (R − k)x +
r∑

i=1

λi

]r
e−λ1 · · · e−λr

λ1 · · ·λr
dλ1 · · · dλr.

Using Lemma 1,

T1,··· ,r <

(
8

PT

)r

det−1[M ]1,··· ,r

(
1 − e−x

)R−r
k∑

j=0

BR+(R−k)x,x(j, r) [−Ei(−x)]r−j
.

In general,

Ti1,··· ,ir <

(
8

PT

)r

det−1[M ]i1,··· ,ir

(
1 − e−x

)R−r
k∑

j=0

BR+(R−r)x,x(j, r) [−Ei(−x)]r−j .

Therefore,

P (sk → sl) ≤
R∑

r=0

(
8

PT

)r



∑

1≤i1<···<ir≤R

det−1[M ]i1,··· ,ir




(
1 − e−x

)R−r
r∑

j=0

BR+(R−k)x,x(j, r) [−Ei(−x)]r−j .

C Proof of Lemma 1

Proof: We want to explicitly evaluate

I ≡
∫ ∞

x
· · ·
∫ ∞

x

(

A +
k∑

i=1

λi

)k
e−λ1e−λ2 · · · e−λk

λ1 · · ·λk
dλ1 · · · dλk.

Consider the expansion of
(

A +
∑k

i=1 λi

)k

into monomial terms. We have

(

A +
k∑

i=1

λi

)k

=
k∑

j=0




∑

1≤l1<···<lj≤k

k∑

i1=1

k−i1∑

i2=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)λ
i1
l1

λi2
l2
· · ·λij

lj
Ak−i1−···−ij



 ,

wherej denotes how manyλ’s are present,l1, . . . , lj are the subscripts of thej λ’s that appears,

im ≥ 1 indicates thatλlm is taken to theimth power ( the summation should be
∑

i1,...,ij≥1P
im≤k

, which is

equivalent to
∑k

i1=1

∑k−i1
i2=1 · · ·

∑k−i1−···−ij−1

ij=1 . if we sumi1 first, theni2, etc. ), and finally

C(i1, . . . , ij) =

(
k

i1

)(
k − i1

i2

)

· · ·
(

k − i1 − · · · − ij−1

ij

)
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counts how many times the termλi1
l1
λi2

l2
· · ·λij

lj
Ak−i1−···−ij appears in the expansion.

Thus we have

I =
k∑

j=0

∑

1≤l1<···<lj≤k

k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)I(j; l1, . . . , lj ; i1, . . . , ij)

where

I(j; l1, . . . , lj ; i1, . . . , ij) ≡
∫ ∞

x
· · ·
∫ ∞

x
λi1

l1
λi2

l2
· · ·λij

lj
Ak−i1−···−ij

e−λ1 · · · e−λk

λ1 · · ·λk
dλ1 · · · dλk.

We compute

I(j; l1, . . . , lj ; i1, . . . , ij) = Ak−i1−···−ij

(
j
∏

m=1

∫ ∞

x
λim−1

lm
e−λlm dλlm

)
∏

i6=i1,...ij

∫ ∞

x

e−λi

λi
dλi

= Ak−i1−···−ij

(
j
∏

m=1

Γ(im, x)

)

[−Ei(−x)]k−j
.

Note that the result is independent ofl1, . . . , lj. Finally adding the terms up, we have

I =
k∑

j=0

∑

1≤l1<···<lj≤k

k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)A
k−i1−···−ij [−Ei(−x)]k−j

j
∏

m=1

Γ(im, x)

=

k∑

j=0








∑

1≤l1<···<lj≤k

1









k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

C(i1, . . . , ij)A
k−i1−···−ijΓ(i1, x) · · ·Γ(ij , x)









[−Ei(−x)]k−j

=
k∑

j=0





(
k

j

) k∑

i1=1

· · ·
k−i1−···−ij−1∑

ij=1

(
k

i1

)

· · ·
(

k − i1 − · · · − ij−1

ij

)

Γ(i1, x) · · ·Γ(ij , x)Ak−i1−···−ij





[−Ei(−x)]k−j

≡
k∑

j=0

BA,x(j, k) [−Ei(−x)]k−j
.

Thus ends the proof.
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Figure 2:The BER comparison wireless networks with differentT andR.
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Figure 3: The comparison of the relay network

with the multiple-antenna system withT = R = 5

and the same total transmit power.
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Figure 4: The comparison of the relay network

with the multiple-antenna system withT = R = 5

and the same receive SNR.
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Figure 5: The comparison of the relay network

with the multiple-antenna system withT = R = 10

and the same total transmit power.
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Figure 6: The comparison of the relay network

with the multiple-antenna system withT = R = 10

and the same receive SNR.
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Figure 7:The comparison of the relay network with the multiple-antenna system withT = 10, R = 5 and

the same total transmit power.
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