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Abstract

We apply the idea of space-time coding devised for multiple-antenna systenespimti
lem of communications over a wireless relay network with Rayleigh fadingrilanWe use
a two-stage protocol, where in one stage the transmitter sends informationtaedther, the
relays encode their received signals into a “distributet®ar dispersion (LD)ode, and then
transmit the coded signals to the receive node. We show that for high SNfRitlwvise error
probability (PEP)behaves aé%) mm{T’R}, with T' the coherence interval, that is, the num-
ber of symbol periods during which the channel keeps conskatite number of relay nodes,
and P the total transmit power. Thus, apart from tleg P factor and assuming > R, the
system has the same diversity as a multiple-antenna systenfRwiinsmit antennas, which
is the same as assuming that tReelays can fully cooperate and have full knowledge of the
transmitted signal. We further show that for a network with a large numbelayfsrand a fixed
total transmit power across the entire network, the optimal power allocatiam thd trans-

mitter to expend half the power and for the relays to collectively expend ther bdif. We

also show that at low and high SNR, the coding gain is the same as that of a maiftiplena
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system withR antennas. However, at intermediate SNR, it can be quite different, whih h

implications for the design of distributed space-time codes.

1 Introduction

It is known that multiple antennas can greatly increase #pacity and reliability of a wireless
communication link in a fading environment using spaceeticodes [1, 2, 3, 4]. Recently, with
the increasing interests in ad hoc networks, researcheesbieen looking for methods to exploit
spatial diversity using antennas of different users in thigvork [5, 6, 7, 8, 9]. In [8], the authors
exploit spatial diversity using the repetition and spaoeetalgorithms. The mutual information
and outage probability of the network are analyzed. Howewetheir model, the relays need
to decode their received signals. In [9], a network with gk&rrelay under different protocols
is analyzed and second order spatial diversity is achieved10], the authors use space-time
codes based on the Hurwitz-Radon matrices and conjectuneeesitly factor aroundz/2 from
their simulations. Also, the simulations in [11] show thag use of Khatri-Rao codes lowers the
average bit error rate. In this paper, we consider a relayor&twith fading and apply a LD
space-time code [12] among the relays. The problem we ageested in is: “Can we increase the
reliability of a wireless network by using space-time code®ng the relays?”

More specifically, the focus of this paper is on the PEP aimbyfswireless relay network. We
investigate in the diversity gain and coding gain that camadigeved in a wireless relay network
by having the relays cooperate distributively. Here, bydsity gain or diversity in brief, we mean
the negative of the exponent of the SNR or transmit powerarPEP formula at high SNR regime.
This definition is consistent with the diversity definitiam multiple-antenna systems [4, 13]. It
determines how fast the PEP decreases with the SNR or trapsmer. The same as before,
coding gain is the improvement in the PEP obtained by the ded&n.

The wireless relay network model we use is similar to thos@d4n 15]. In [14], the authors
show that the capacity of the wireless relay network witinodes behaves likeg R. In [15], a
power efficiency that behaves likéR is obtained. Both results are based on the assumption that
every relay knows its local channels so that they can worleaitly. Therefore, for the results

of [14] and [15] to hold, the system should be synchronizethatcarrier level. In this paper,



we assume that the relays do not know the channel informattdhwe need is a much more
reasonable assumption that the system is synchronized aythbol level.

We use a two-step protocol for transmissions in the wirelekss/ network, where in the first
step the transmitter sends information and in the otherelag's encode their received signals into
a “distributed” LD code, and then transmit the coded sigt@athe receive node. A key feature of
our work is that we do not require the relays to decode. Onhpke signal processing is done at the
relays. This has two main benefits: first, the operationseatetays are considerably simplified,
and second, we can avoid imposing bottlenecks on the ratedyirmg some relays to decode
(See e.g., [16]).

Our work shows that in a wireless relay network wihrelays, coherence intervdl, and
a single transmit-and-receive pair, using LD space-timdescamong the relays can achieve a
diversity of min{7’, R} <1 . %), where P is the total power used in the whole network.
WhenT" > R, the diversity gain is linear in the number of relays (sizeéh#f network) and is a
function of the total transmit power. Wheh is very large fog P > loglog P), the diversity is
approximatelyR. The coding gain for very larg® is det (Sy — S;)*(Sx — S;), whereS,, and.S;
are codewords in the distributed space-time code. Thexeddvery high SNR, the same diversity
gain and coding gain are obtained as in the multiple-anteasa, which means that the system
works as if the relays can fully cooperate and have full kmolgke of the transmit signal. We then
improve the diversity gain shown above and prove the optiynaf the result. We also consider a
more general type of LD codes which includes Alamouti’'s secb@s a special case. Although, the
same diversity gains are achieved, the coding gain can b@weg@. Simulations are also provided,
which verify our theoretical analysis.

The paper is organized as follows. In the following sectitwe, network model and the two-
step protocol are introduced. The distributed space-tiatke ¢s explained in Section 3 and the
PEP is calculated in Section 4. In Section 5, we derive themyph power allocation based on the
PEP. Sections 6 contains the main results of our work. Thersity gain and the coding gain are
derived. To motivate our results, we first give a simple aginate derivation and then give the
more involved rigorous derivation. In Section 7, we slighthprove the diversity gain obtained
in Section 6 and prove the optimality of the new diversityutes A more general distributed

LD space-time code is discussed in Section 8, and in Sectithre @iversity gain and coding



gain for a special case are obtained, which coincide witlséha Sections 6 and 7. We have
simulated the performances of relay networks with randaostributed LD space-time codes and
have compared them with the performances of the same spaeeddes used in multiple-antenna
systems. The details of the simulations and the figures aem g Section 10. Section 11 provides
the conclusion and future work. The proofs of the technicabtems and lemmas are given in the

appendices.

2 System Mod€

We first introduce some notation used in the paper. For a aammphtrix A, A, A*, andA* denote
the conjugate, the transpose, and the conjugate transposerespectively.det A, rank A, and
tr A indicate the determinant, rank, and traceAfrespectively. Ar. and A;,, are the real and
imaginary parts ofd. I,, denotes thex x n identity matrix and),, ,, is them x n matrix with all
zero entries. We often omit the subscripts when there is méus®n. log, log,, log,, indicate
the natural logarithm, the base-2 logarithm, and the b@sedarithm. || - || indicates the Frobe-

nius norm. g(xz) = O(f(z)) means thatim, ., % is a constanth(z) = o( f(z)) means that

limy, o % = 0.

Consider a wireless network with + 2 nodes which are placed randomly and independently
according to some distribution. There is one transmit nodkane receive node. All the othé&r
nodes work as relays. Every node has a single antenna, waichecused for both transmission
and reception. Denote the channel from the transmitteredlirelay asf;, and the channel from
theith relay to the receiver ag. Assume thayf; andg; are independent complex Gaussian random
variables with zero-mean and unit-variance. If the fadiogfficientsf; andg; are known to relay
1, it is proved in [14] and [15] that the capacity behaves like R and a power efficiency that
behaves like/R can be obtained. However, these results rely on the assumipiat the relays
know their local connections, which requires the systema®ynchronized at the carrier level.
In this paper, we make the much more practical assumptidrthiearelays are only coherent at
the symbol level. We assume that the relays know only thessta distribution of the channels.
However, we make the assumption that the receiver know$aealfading coefficients; and g;.

Its knowledge of the channels can be obtained by sendingrigasignals from the relays and the



transmitter. Many types of gains can be obtained from thevordt for example, gains on the
capacity and gains on the error rate. In this paper, we foaub®improvement in the error rate,

more precisely, the pairwise error probability (PEP).
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Figure 1:Wireless relay network

Assume that the transmitter wants to send the sigral(s, - - - , s7|* inthe codebooKsy, - - - ,s.}

to the receiver, wheré is the cardinality of the codebook.is normalized as
Es's=1. Q)

The transmission is accomplished by the following two-g&ptegy, which is also shown in Fig
1. From timel to T, the transmitter sends signal&P, T'sy, - - - ,+/P,Tsy to each relay. Based
on the normalization of, the average power used at the transmitter for every traassonmi isP; .
The received signal at thih relay at timer is denoted as; ., which is corrupted by both the
fading f; and the noise; .. From timeT"+ 1 to 27, theith relay sends; ;. - - - ,¢; 1 to the receiver.
We denote the received signal and noise at the receiver attimT by =, andw, respectively.
Assume that the noises are independent complex Gaussidonarariables with zero-mean and
unit-variance, that is, the distribution of ., w, areCN (0, 1).

We use the following notation:

Vi = : S S : ,  t= : , W= |, andx =

Vi, T TP T ty T wr T

If we assume a coherence intervallgfthat is f; andg; keep constant fof’ transmissions, clearly

R
r, =4/ PleiS + Vv, and x= Zgztz + w. (2)
=1
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There are two main differences between the wireless relayank given above and a multiple-
antenna system witli® transmit antennas and one receive antenna [4, 13], alththeyhboth
have R independent transmission routes from the transmitter@éaebeiver. The first one is that
in a multiple-antenna system, antennas of the transmistercooperate fully. In the considered
network, they can cooperate only in a distributed fashionesthe relays are different users. The

other difference is that in the network, the relays obsenkg moisy versions of the transmit signal.

3 Distributed Space-Time Coding

From the above description, it is clear that if the transrarssate is sufficiently low, then all the
relays can decode the transmit message. In this case, tys redn act as a multiple-antenna
system withR transmit antennas and therefore the communication frometlags to the receiver
can achieve a diversity order &f. This approach, however, will require a substantial reidact
of the rate and we will therefore not consider it. We will &t focus on the achievable diversity
without requiring the relays to decode.

In this paper, we use the idea of the LD space-time code [I2hidtiple-antenna systems by

designing the transmit signal at every relay as a lineartfonof its received signa:

T
B Py B Py
tir = P +1 P Qi rtTit = P+l [@;r1, Qi 72, " 7%TT]1“¢,

or in other words,

Py
ti =/ ——=Ar;, 3
BT 3
where
;11 v QT
A; = : : , fori=1,2,--- ,R.
;1 QT

While within the framework of LD codes, tHE x T" matricesA; can be quite arbitrary (apart

from a Frobenius norm constraint), to have a protocol thatjistable among different users and

1A combination of requiring some relays to decode and othersot, may also be considered. However, in the

interest of space, we shall not do so here.
°Note that the conjugate @f does not appear in (3). The case wiiftis discussed in Section 8.
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among different time instants, we shall henceforth assiaielt are unitary. As we shall presently
see, this also simplifies the analysis considerably.
Now let’s discuss the average transmit power at every rdagauses trss* = 1, f;, v; ; are

CN(0,1), andf;, s;, v; ; are independent, the average received power at fétay
Erir; =E (A T|fi]’s"s + viv;) = (P, + 1)T.

Therefore the average transmit power at relesy

PQ P2

which explains our normalization in (3} is the average transmit power for one transmission at
every relay.

Let us now focus on the received signal. Clearly from (2), g#eeived signal can be calculated

P BT
= H 4
X ‘/P1+1S + W, (4)

fig

R
. Py
S—[Als ARS},H— : ’andW_“Plel;nglszrw' (5)

fRIR

to be

where we have defined

The T x R matrix S in equation (4) works like the space-time code in a multgui¢enna
system. We shall call it thdistributed space-time code emphasize that it has been generated in
a distributed way by the relays, without having access té&/, which isR x 1, is the equivalent
channel matrix and?’, which isT" x 1, is the equivalent noisell is clearly influenced by the
choice of the space-time code. Using the unitaritylgfit is easy to get the normalization 6f

EtrS*S = R.

4 Pairwise Error Probability

SinceA; are unitary andv;, v; ; are independent Gaussiaf, is also Gaussian whejp are known.

Itis easyto see th& W = 0, andVar W = (1 + Pfil f;l |gi\2> Ir. Thus,IW is both spatially
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and temporally white. Assume thst is transmitted. Defin&), = [A;sg, - , Agsk]. Therefore,
S is an element in the distributed space-time code set. Whén fhaindg; are known x|s;, is

also Gaussian with meap 2215, H and variance(l - SR |gz‘|2> Ir. Thus,

(o SRR su1) (o SRR s
P(Xlsk) = Te 1+%Z§:1‘g”2
R
[W (1 + Pier i=1 |gz|2>]

The maximum-likelihood (ML) decoding of the system can b&ilgaeen to be

P BT
P +1

arg max P (x[sg) = arg min ||x —
Sk Sk

2
SkHH . (6)

SinceS;, is linear insy, by splitting the real and imaginary parts, the decodingjis\valent to the

decoding of a real linear system. Therefore, sphere degadin be used [17, 18].

Theorem 1 (Chernoff bound on the PEPWith the ML decoding in (6), the PEP, averaged over
the channel coefficients, of mistakisgby s; has the following Chernoff bound:

_ P PoT
P(sp —s) < E e *0FPtR2Ti loil®)
T figi

H*(Sk—S1)*(Sk—=S1)H

By integrating overf;, we can get the following inequality:

P PT

R (Sk — S1)*(Sk — Sp)diag {|g1 %, -+, lgrI*}| . (7)
4 (1 +P+ Pyt ’9i|2)

P(spy — ;) <E det ! |:IR+
gi

Proof: See Appendix A. ]
Let's compare (7) with the Chernoff bound on the PEP of a miekgntenna system witk

transmit antennas and one receive antenna (the receiverskhe channel) [4, 13]:

PT
P(sp —s) <det ™' |Ip+ 7 Ok = S0 (S = S |-

The difference is that now we need to do the expectationsg@v&imilar to the multiple-antenna
case, thdull diversity condition can be obtained from (7). It is easy to see thay, it S; drops
rank, the upper bound in (7) increases. Therefore, the Chidroond is minimized whery;, — S;

is full-rank, or equivalentlydet (S, — S;)*(S, — S;) #O0foranyl < k #1 < L.



5 Optimum Power Allocation for Large R

In this section, we discuss the optimum power allocationvben the transmitter and relays that
minimizes the PEP. Because of the expectations gyeit is very difficult to obtain the exact
solution. We shall therefore recourse to a heuristic argumiBote thaty = Zfil l9;|* has the

gamma distribution [19]:
gR—le—g
p(g) = m,

whose mean and variance are baéthlt is therefore reasonable to approximatey its mean, i.e.,
Zf;l l9:|* ~ R, especially for largeR. (By the law of large numbers, almost surglyR — 1
whenR — o0.). Therefore, (7) becomes

P BT
4(1+ P+ PR)

P(sr —s1) S E’ det ' | Ip + (Sk — S)*(Sk — Sp)diag {|g1]*, -, lgrI*}| . (8)

which is minimized Whe% is maximized.

Assume that the total power consumed in the whole networR7isfor transmissions of’
symbols. Since for every transmission, the power used atramsmitter and every relay arg
and P, respectively, we have® = P, + RP,. Therefore,

PLP,T _h@P-P)T _ P2T

414+ P +PR)  4R(1+P) ~ 16R(1+P)

with equality when

P P
P = 5 and P, = ﬁ 9)

Thus, the optimum power allocation is such that the trartemitses half the total power and the
relays share the other half. So, for larfBethe relays spend only a very small amount of power to
help the transmitter.

With this optimum power allocation, wheld > 1,

P P,T £ET PT

~
~

prm— R .
4 (1 +P+ PR |9i|2) 4 (% + 9 T |gi!2) 8(R+ 221 19il%)

(7) becomes

PT
8(R+ 31 |gi?)

P (Sk — Sl) ,S ]gE) det -1 [R + (Sk — Sl)*(Sk — Sl)diag{]91]2, ety ’gRP)} (10)



H H 1 P1P2T
It is easy to see that the expected receive SNR of the syste Py o) Therefore,
this optimal power allocation also maximizes the expectseive SNR for large?. We should
emphasis that this power allocation only works for the veisslrelay network described in Section
2, in which all channels are assumed to be i.i.d. Rayleigh angdath-loss is considered. It is

obvious that it may not be optimal when the path-loss effétt® channels is considered.

6 Derivation of the Diversity

As mentioned earlier, to obtain the diversity we need to asiaphe expectations in (7). Since
the calculation is detailed and gives little insight, toHlight the diversity result, we begin by
giving a simple approximate derivation which leads to theealiversity result. As discussed
in the previous section, wheR is Iarge,zl}i1 l9;|*> ~ R with high probability. We use this
approximation.

Define M = (S, — S;)*(Sx — S;). We upper bound the PEP using the minimum nonzero

singular value of\/, which is denoted as?,,,,. From (10),

n*
2

) PTo2,
P(sp —s) S gdet ! <IR+ 16}“{ndlag{lrankMaO}dlag{|gl| oo ,|9R|2}>

PTo? . -1
— E 1 min 22
o 1;[1 ( T 6R |g‘>

% PTo2. \ !
1 min 7Id
A

_ PTO'mm —rank M . pq}fézm - 16R rank M
16R " PTo2, ’

rank M

where
X et
Ei(X):/ —dt,  x <0

— 00

is the exponential integral function [20]. When< 0,

Ei(x) = ¢+ log(— Z ?( (11)
k=

__16R

wherec is the Euler constant. Therefore, wheg P > 1, e *""min = 1+ O (%) ~ 1 and
—Ei ( e ) = log P + O(1) = log P. Thus,

16R rank M IOg P rank M 16R rank M rank M (1_ lolg IO%P)
To? P “\7s2 P - (12)
min

min

P (s — sy)

N

10



loglog P

oe P ) Therefore, similar to the

When M is full rank, the diversity gain isnin{7, R} (

multiple-antenna case, there is no point in having moreysetlaan the coherence interval [4, 13]
log log P
1— gl

Thus, we will henceforth always assuffie> R. The diversity gain is thereforg (
(12) also shows that the PEP is smaller for bigger coheretteevalT.
Now we give a rigorous derivation. Here is the main result.
Theorem 2. Design the transmit signal at thigh relay as in (3), and use the power allocation in

(9). Assume thdl’ > R and the distributed space-time code has full diversity. F&® has the

following Chernoff bound:

i) M, (1 —e

R T
o\ R—r . . -
P (Sk — Sl) = r=0 <PT ) ZBR+(R—I§)x,I(]7T) [—El(—]))] 7.

J=0

where
—1
M, = Z det ~[M];, .. i,
1<ii<-<ir<R
1, rows and columns aof/ and

with [M];, .. ;. ther x r matrix composed of the, - - -
ror—ij L R L r r—1] —— ij—l
ij

Bag(j,r) = ( ) DD > 4
11=1142=1 i;=1 11
D(ir, @) - T(ij,x) AT 774, (13)
Proof: See Appendix B. O
Corollary 1. If log P > 1,
1 a8\ A

P(s, —s) < PR ; (T) M, ;BRVO(T — j,r)log’ P. (24)
1), ~Bi () =

Proof: Setz = 1133. Whenlog P > 1, since[R + (R — k)+]" = R* + o(1)
log P+o0(1),1—e 7 =L +0(L),andl (i, 1) = (i — 1)! + o(1), (14) is obtained from (13) by
[

omitting lower order terms aof
3Actually, this is not the optimal choice according to divsrgain. We can improve the diversity gain slightly by

choosing an optimal x. However, the coding gain of that caserialler than the coding gain in (14). The details will

be discussed in Section 7.
11



Corollary 2. If log P> 1andR > 1,

R

1 r

P (s — sp) ,Sﬁ E < > M, log" P. (15)
r=0

Proof: WhenR > 1, Br¢(0,7) >> Bro(l,r) forall [ > 0 sinceBg(0,7) = R" is the term
with the highest order oR. Therefore, (15) is obtained from (14). n

Remarks:

1. The highest order term df in (14) is ther = j = R term:

log P _loglog P
det ~ 1M <8RT3§ > — det ~'M (?) PR ), (16)

Therefore, as in (12), distributed space-time coding agsieiversity gairi? (1 — k)igolTogPP>’

which is linear in the number of relays. Wheris very large fog P > log log P), loﬁfg‘)ﬁép <

1, and a diversity gain abouk is obtained. This is the same as the diversity gain of a
multiple-antenna system witR transmit antennas and one receive antenna. Therefore, the
relays work as if they fully cooperate and have full knowledyd the transmit signal. Gen-

erally, the diversity depends on the total transmit power

2. Note that in Theorem 2, we assume that R. For the general case, the rankMfwill be
min{7, R} instead ofR. By a similar argument, diversityin{7", R} ( 10%){;“) will be

obtained.

3. In a multiple-antenna system, if the transmit power (oR$M high, the PEP has the upper
bounddet ~' M (%)R. Comparing this with the highest order term given in (16), \&a ¢

see the relay network has a performance that is
(34 10log,olog P) dB a7)

worse. The 3dB difference is because in the network, eactnahemitter and the relays use
a half of the total power. It can be easily seen that if thel fptsver used in the network is
doubled, this 3dB difference will disappear. The seconthtéf log,,log P, is due to the

diversity difference of the two cases. This analysis isfiadiby simulations in Section 10.
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4. Corollary 2 also gives the coding gain for networks wittganumber of relays. When
log P >> 1, the dominant term in (15) is (16). The coding gain is themrefzt ' M, which
is the same as that of the multiple-antenna case. Whimnot very large, the second term
in (15), (%)R_1 S det UMy i1 ,Rlogi#, cannot be ignored and even the-
3,4, - -- terms have non-neglectable contributions. Thereforeate lgood performance, we
want not onlydet M to be large but alsdet[M];, ... ;. to be large forall < r < R,1 <
11 < --- <1, < R. Note that

where[S;]i, ... = (Aiysi, -+, Ais;) is the space-time code when only the- - - ,i,th

relays are working. To have good performance when the triaqmwer is moderate, the
distributed space-time code should be “scale-free” in #1ese that it is still a good dis-
tributed space-time code when some of the relays are notimgprkn general, for networks

with any R, the same conclusion can be obtained from (14).

5. Now let’s look at the low total transmit power case, thathe P < 1 case. With the same

approximatioan’;1 lg;|* ~ R, using the power allocation given in (9),

P P,T SoxT  P2T

~

4(1+P1+P22£1 ’%‘2) 4(1 +P) 16R

Therefore, (7) becomes

P2
P(sg —s) S E det 7' ( Ip + —Mdlag{|gl| o ,|gR|2}
gi 16R
P27 !
= B |14 Jgptr (Mrdiag i P loe) + olP)

T R
- 1<1‘16321mu!91 >+oP2>

P2T
= (1- tr M P?
< 16R r > +O( )7

wherem;; is the (i, i)th entry of M. Therefore, as in the multiple-antenna case, the coding

gain at low total transmit power is M. The design criterion is to maximize M .

6. In our model, there is no direct link between the trangmdind the receiver. Consider now

that there is a direct fading channel between the tranandtid the receiver at step one.

13
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It is easy to see that diversity+ R (1 — %) can be obtained if the new distributed
space-time cod% s Ais - Ags ] is fully diverse. If this direct channel exists during
the second step of transmission only, let the transmittedlséhe same signalat step two.
Exactly the same distributed space-time code and thus the daversity can be obtained.
For the case that independent fading channels exist fordtefis, we design the signal sent
by the transmitter at step two a&z, s with Az, a’T’ x T unitary matrix. It is easy to
prove that diversity + R (1 — %) can be obtained if the distributed space-time code
[ s Ais -+ Apgyis } is fully diverse.

. As mentioned in Section 2, the time slots for the two trassion steps of our protocol are

equal. In general, we can u%g symbol periods for the first step afid for the second A4;
should therefore b&, x T} unitary matrices. When the distributed space-time codellis fu
diverse, we can prove that the achievable diversityis{75, R} (1 - %). For the
case ofl} < Ts, althoughT; symbols are sent from the transmitter, at niBGsbf them can

be independent for the distributed space-time code to beliftdrse. Therefore, the is no
benefit in having a longer time interval for the first step. @adother hand, if we prolong the
second step and hatg > T1, the diversity can be improved when there are enough relays.
However, the symbol rate of transmissions decreases. foineyéaving equal time slots for

the two steps maximizes the symbol rate.

| mprovement In Diversity Gain

In Theorem 2, we have chosen= 1/P. Although this choice gives an upper bound on the PEP, it

is not the optimal choice in the sense that the diversity ghtained from this upper bound is not

maximized. We can improve the diversity slightly.

Theorem 3. The best diversity gain that can be obtained using distaugpace-time coding is

ao R, whereay is the solution of

log _1 log log P

= —_— . 18
ar log P log P (18)

14



For log P > loglog P, the PEP has the following upper bound

R r r
8

> . —[laoR+(1—ap)(r—1)]

P(sy —s) S ;:0 <T> M, ZEO Br(r —1,r)p~l 0 . (19)
If R > 1,
E /8RN

P (s —s) < [;:O: (?) M, | PR, (20)
Proof: To save space, the proof of this theorem is omitted. Forldetafer to [21]. n

There is no closed form for the solution of equation (18). fidlewing theorem gives a region

of ap and also gives some idea about how much improvement in divgan is obtained.

Theorem 4. For P > e,

log log P log log P loglog P
l—-———<ay<1- .
log P log P log P(log P — loglog P)
Proof: Refer to [21]. O

Theorem 4 indicates that the PEP Chernoff bound of the didg&ibspace-time codes decreases

-t )
faster thary ", (32)" M, (*°52)" and slower thad" ™ (32)" M, (“ng) e gp) . When

P P

log P > loglog P, 1 — lolgo{TogPP IS a very accurate approximation @f. The improvement in the
diversity is small.

Now let's compare the new upper bound in (20) with the one &).(A slightly better diversity
is obtained as discussed above. However, the coding ga2®jnwhich is[Zfzo (82)" MT} _1, is
smaller than the coding gain of (15), whichdist M. To compare the two, we assume tiiat T’

and that the singular values of take their maximum valuey2. Therefore the coding gain of
-1

R
(20)is |20, 4% =57F, The coding gain of (15) ig~". The upper bound in (15) is
k

0.97dB better according to coding gain.
Therefore, wherP is large enough, the new upper bound is tighter than the quswne since

it has a larger diversity. Otherwise, the previous boun@jigt¢r since it has a larger coding gain.
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8 TheGeneral Distributed Linear Dispersion Code

In this section, we work on a more general type of distribuiteelar dispersion space-time codes

[12]. The transmit signal at thi¢h relay is designed as,

Py .
ti: a4 Az ) Bz_17 :1727"'7 ) 21
VP1+1< ri + BiT;), i R (21)

where A;, B; areT x T complex matrices. By separating the real and imaginary jpasscan

write (21) equivalently as

tz’ e P Az e+Bi e _Az m+Bz m I'; Re
Nt _ 2 R R g g R ‘ (22)

tirm P+ Aitm +Bitm  Aire — Bige T im

Similar as before, for fairness and simplicity, we assunag tthe27" x 27 matrix,
Ai,Re + Bi,Re _Ai,lm + Bi,lm
Aitm + Birm  Aire — BiRe
is orthogonal. Therefore, the expected transmit powerrpestnission at every relay i3.

After straightforward calculation, the following equiealt system equation can be obtained:

. | PT
X = Pl+1Hs+W,

2 Z 9i.relr  —GimIr Aige + Bige —Aiim + Bim fireIr  —firmIT
i—1 | GitmIT  GimelT Aitm + Bitm  Aire — Bire firmIr  firelr

is the equivalent channel matrix and

R
WRe P2 Z gi,ReIT _gi,Im]T Ai,Re + Bi,Re _Ai,]m + Bi,]m Vi Re

P, 1
Wim 1 i=1 gi,lmIT gi,ReIT Ai,lm+Bi,1m Ai,Re—Bi,Re Vi Im

W:

is the equivalent noise. For affy x 1 complex vectork, the27 x 1 real vectorx is defined as
XRe
XIim
Theorem 5 (ML decoder and PEP)Design the transmit signal at théh relay as in (21). The ML
decoding is

P PT
P +1

arg max P (x|s;) = argmin ||X — Hs;
S; S;
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Using the optimum power allocation given in (9), the PEP otakimgs, with s; has the following
Chernoff upper bound:

R
-1/2 PT t
P (Sk — Sl) S ]32 det (IQR + —8(R+ZkR:1 gkz)l{;gkgk> ) (23)

9k,rRedr =G, rm 1T Aige + Bige —Aiim + Bim (Sk —S1)re —(Sk — S1)m

gk,]m[T gk,Re[T Ai,lm + B’i,lm A’i,Re - Bi,Re (Sk - Sl)lm (Sk - Sz)Re

Proof: Refer to [21]. n

9 A Special Case

We have not yet been able to explicitly evaluate the expiectat (23). Our conjecture is that when

T > R, the same diversityR <1 — %) will be obtained. Here we give an analysis of a much

simpler, but far from trivial, case: for any eitherA; = 0 or B; = 0. That is, each relay sends a
signal that is linear in either its received signal or thejagate of its received signal. It is clear

to see that Alamouti’'s scheme is included in this case Witk 2, A, = I,, B; = 0, A, = 0, and

By = . The condition thatl =~ " = T I

10 Ai,[m + Bi,lm Ai,Re - Bi,Re
that A; is unitary if B; = 0 and B; is unitary if A, = 0.

is orthogonal becomes

Theorem 6. Design the transmit signal at th¢h relay as in (21). Use the optimum power allo-
cation in (9). Further assume that for any= 1,--- | R, eitherA;, = 0 or B; = 0. The PEP of

mistakings; with s, has the following Chernoff upper bound:

PT

- (Sk — S)* (S — Sp)diag {|g1]% -+, lgrl*} | ,(24)
8 (R + Zz‘:1 |9i|2>

P(s; —s;) SEdet ™ |Iz+
9i

where
S = [ Aisi + Bis; -+ Apgsk + BrSi ] (25)

isaT x R matrix, which is the distributed space-time code.
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Proof: Refer to [21]. ]
(24) is exactly the same as (10) except that now the disaibspace-time code iinstead of

S. Therefore, by the same argument, the following theorenmbeambtained.

Theorem 7. Design the transmit signal at thiéh relay as in (21). Use the optimum power alloca-

tionin (9). Assumé& > R and the distributed space-time code has full diversity. fiefi
M = (S, — S)* (S, — S)). (26)

If log P > 1, the PEP has the following Chernoff bound:

R

lo P
P(Sk—>Sl) S Z(—) MZBR ?;R y

r=0
where
Mr = Z det _1[M]Z‘17.A.7ir.
1<ip<-<ir<R

The best diversity gain that can be obtaineds:. Whenlog P > loglog P,

P(sp—s) S [i (;)TMTZZ;BR(T—W)

r=0

P [aoR+(1—a0)(k=0)]

Proof: The same as the proofs of Theorems 2 and 3. n
Therefore, the same diversity gain is obtained as in Se6tidine coding gain folog P > 1is
det M. WhenP is not very large, we want not onliet M to be large but alsdet[M],, ... ;. to be
large forall0 <r < R,1 <1 < --- <1, < R. That is, to have good performance for a general
transmit power, the distributed space-time code shoulé bav‘scale-free” in the sense that it is
still a good code when some of the relays are not working. Wesea from Theorem 7 that this
general code does not improve the diversity gain of the systdowever, from the definition of

the new code in (25), it can improve the coding gain by codevopation.

10 Simulations

In this section, we give the simulated performances of teeiduted space-time codes for different

values of the coherence intervBA|] number of relaysk, and total transmit poweP. The fading
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coefficients between the transmitter and the reldgysand between the receiver and the relays,
g;, are modeled as independent complex Gaussian random leariafih zero-mean and unit-
variance. The fading coefficients keep constantffazthannel uses. The noises at the relays and
the receiver are also modeled as independent zero-meavauigihce Gaussian additive noise. The
block error rate (BLER), which corresponds to errors in deegdie vector of transmit signas

and the bit error rate (BER), which corresponds to errors iodieg s, - - - , s, iS demonstrated
as the error events of interest. Note that a BLER may corresfmanly a few bit errors.

The transmit signal at each relay is designed as in (3). Weldwemark that our goal here is
to compare the performances of LD codes implemented digitvédy over wireless networks with
the performances of the same codes in multiple-antennaragstTherefore the actual design of
the LD codes and their optimality is not an issue here: ali thatters is that the codes should be
the samé. Therefore, we generaté; randomly based on the isotropic distribution on the space of
T x T unitary matrices. (It is certainly conceivable that thefpenance in the following figures
can be improved by several dBsAf are chosen optimally.)

The signalss,, - - - , s7 are designed as independéit-QAM signals. Both the real and imag-

inary parts ofs; are equal probably chosen from thePAM signal set:

6

m{—w —1)/2,-+, —1/2,1/2,-- (N —1)/2},

whereN is a positive integer. The coeﬁiciegtﬁ is used for the normalization efgiven in
formula (1). The number of possible transmit signald’&’. The rate of the code is, therefore,

1
5T log, N*'' = log, N.

In the simulation of multiple-antenna systems, the numlbéramsmit antennas i& and the
number of receive antennas is one. We also model the chaamnelsoises as independent zero-
mean unit-variance complex Gaussian random variablesis&ssked before, the space-time code
istheT x R matrix.S = [ Ais -+ Ags ] . The rate of the space-time code is therefokez, N.

In both systems, we use sphere decoding [17, 18] to obtaikitheesults.

4The question of how to design optimal codes is an interestireg but is beyond the scope of this paper.
SDue to the half-duplex protoca” channel uses are needed for transmissior’s &fmbols.

19



10.1 Performance of wireless networkswith different 7" and R

In Fig. 2, we compare the BER of relay networks for differerte@nce interval$’ and number

of relaysR. From the plot we can see that the bigggithe faster the BER curve decreases, which
verifies our analysis that the diversity is linearifrwhenT > R. However, the slopes of the BER
curves of networks with’ = R = 5 and7" = 10, R = 5 are the same when the transmit power is
high. This verifies our result that the diversity only depepdmin{7, R}, which is alwaysR in

our examples. Having a larger coherence interval but theesammber of relays does not improve
the diversity. According to the analysis in Sections 6, @asingl’ can improve the coding gain.
From the plot, we can see that the BER of the network Witk 10, R = 5 is about 1dB lower
than that of the network witlhi' = R = 5.

10.2 Performance comparisons of distributed space-time codes with space-

time codes

In this subsection, we compare the performance of disgtspace-time codes with those of
space-time codes in two ways. In one, we assume that thegavetal transmit powerfor both
systems is the same. (This is done since the noise and cheamiaglces are everywhere normalized
to unity.) In other words, the total transmit power in thewatk (summed over the transmitter and
R relays) is the same as the transmit power of the multiplerara system. In the other, we assume
that the averag8NR at the receives the same. Assuming that the total transmit powét,ig the
distributed scheme, the average receive SNR can be caddulabemp—fp), and in the multiple-
antenna setting it i$ . Thus, we need roughly @dB increase in power to make the SNR of the
relay network identical to that of the multiple-antennateys

In the first example]’ = R = 5 and N = 2. The BER and BLER curves are shown in Fig.
3 and 4. Fig. 3 shows the BER and BLER of the two systems with ctspehe total transmit
power. Fig. 4 shows the BER and BLER of the two systems with ddpéhe receive SNR. From
the figures we can see that the performance of the multigknaa system is always better than
that of the relay network at any power or SNR. This is what weeetgbecause in the multiple-

antenna system, antennas of the transmitter can fully catgpand have perfect information of

the transmit signal. Also we can see from Fig. 3 that the BERBIER curves of the multiple-
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antenna system decrease faster than those of the relayrketiWowever, the differences of the
slopes of the BER and BLER curves of the two systems are dimngsts the total transmit power
goes higher. We can see this more clearly in Fig. 4. At low SB§me, the BER and BLER
curves of the multiple-antenna system decrease fasterttioge of the relay network. As SNR
goes higher, the differences of the slopes of the BER and BLE®swanishes, which indicates
that the two systems have about the same diversity. ThiBagdur analysis of the diversity.

Fig. 5 and Fig. 6 show the performances of the two systemsivith R = 10 and N = 2.
Fig. 5 shows the BER and BLER of the two systems with respectetadtial transmit power. Fig.
6 shows the BER and BLER of the two systems with respect to tleve&NR. We can see from
the figures that the slopes of the BER and BLER curves for thdegsaelay network approach
the slopes of the BER and BLER curves of the multiple-antensgersys when the transmit power
increases.

In Fig. 5, at the BER ofil0~°, the transmit power used in the network is about of 24.5 dB.
Our analysis of (17) indicates that the performance of theyrneetwork should b&0.5dB worse.
Reading from the plot, we get&B difference. This verifies the correctness and tightnéssio
upper bound.

Finally, we give an example witll" # R. In this example]]" = 10, R = 5 and N = 2.
Performances of both the relay network and the multiplerama system with respect to the total

transmit power are shown in Fig. 7. The same phenomenon cabdezved.

11 Conclusion and Future Work

In this paper, we propose the use of LD space-time codes inedess relay network. We assume
that the transmitter and relays do not know the channelza#dns but only their statistical distri-
bution. The ML decoding and PEP at the receiver are analykkd.main result is that diversity
min{7T, R} (1 - %) can be achieved, which shows that when> R and the average total
transmit power is very highdg P > log log P), the relay network has almost the same diversity as
a multiple-antenna system wifhtransmit antennas and one receive antenna. We further $ladw t
the leading order term in the PEP behaveéé‘é%‘;%—P)R det ~1(S,—5))*(Sk—S;), which compared

to (%)R det ~1(Sx — S;)*(S, — 9), the PEP of a space-time code, shows the loss of performance
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due to the fact that the code is implemented distributively #the relays have no knowledge of the
transmit symbols. We also observe that the high SNR codiimg det (S, — S;)*(Sx — S)), is the
same as what arises in space-time coding. The same is tave 8NR wherer (S, —5,)*(Sk—S))
should be maximized.

We then continue investigating the diversity gain of disited space-time coding. At high
total transmit power, we improve the diversity gain achéeireSection 6 slightly (by an order no
larger thanO (%) ). Furthermore, we discuss a more general type of distribspace-time
linear dispersion codes: the transmit signal from eachyrsla linear combination of both its
received signal and the conjugate of its received signal. aFgpecial case, which includes the
Alamouti’s scheme, the same diversity gains can be obtairg&thulation results on randomly
generated distributed space-time codes are demonstvatexdh verifies our results.

There are several directions for future work that can bestowed. One is to study the outage
capacity of our scheme. Another is to determine whether ithergity, min{7’, R} (1 — %),
can be improved by other coding methods. We conjecture thannot. Another interesting
guestion is to study the design of distributed space-tinteeso For this the PEP expression (15)
in Corollary 2 should be useful. In fact, relay networks pd@/an opportunity for the design of
space-time codes with a large number of transmit antenime® B can be quite large. Finally, it
should be interesting to see whether differential spane-toding techniques can be generalized

to the distributed setting. We believe that Cayley codes §22]a suitable candidate for this.

A Proof of Theorem 1

Proof: The PEP of mistaking; by s; has the following Chernoff upper bound [23, 13]:
P (Sk — Sl) < Ee/\(lnP(X\Sl)*lnP(xhk)).

Sinces; is transmittedx = / 122L.5,. H + W. From (6),

InP (x|s;) — InP (x]sg)
IEELH*(S), — 81)*(Sk — S)H + 1/ JHEEH* (Sk — S)*W + 4/ SR W (S, — S)H

R
1+ Pfil Z¢=1 \91‘\2
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Therefore,

P P;T
Pr+1

A PIPyT 4 * P PT 7k *
2 SR g2 [ prar 7 (Sk=81)" (Sk—=S) H\ | Sy H (S =5) "W+
P(sp —s) < E e Pr+l =10
fi,95,W

W*(Sk—Sl)H]

P PT * P PyT
(A Iglfl (sk—sl)H+W) ()\ ;131 (Sk—SZ)H+W)

P PyT
A(1—A)ﬁ

- -1 @ ‘2
P

E e g Sf lol?
fisgi

aw

P
H*(Sk—sz)*(sk—sz)H/ e L pdr S 1

T
R
7 (1+ 22 8 1)

_MH*S_S *(S, —SH
= FE e 1+P +Py SR 19,12 (Se=50)" (Sk—51) )

fi,9:

Choose\ = ; which maximizes\(1 — \) = ; and therefore minimizes the right-hand side of the

above formula. We have

P1PyT * *
P(Sk N Sl) < E 6_4(1+P1+I312§1R21\9H2)H (S =51) (Sk_Sl)H' (A_l)
o fhgl
This is the first upper bound in Theorem 1. To obtain the secppeér bound we need to calculate
the expectation ovef;. Notice thatd = Gf, whereG = diag {¢g1,-- ,gr}andf = [f1,--- , fr]".

(A.1) becomes

P(sp—s) < E ef4<1+P1+I;12P§‘;1\gnZ)f*G*(S’“*Sl)*(S’“S”Gf
T fogi
P PT * V¥ *
= E / iRe_ 4(1+P1+1312 %ﬁ:l Igz‘2)f ¢ (Sk_Sl) (Sk_Sl)Gfe_f*fdf
9i s
- -1
P, P,T
= Edet [Ip+ 12 - G*(Sk — S)*(Sk — S)G
o a1+ P+ R (0P
_ -1
PP, T . .
= Edet |Ip+ L - (Sk — S1)*(Sk — Sdiag {|g1[*, - , lgrl*}
o a1+ P+ R (0P
as desired. O

B Proof of Theorem 2

Proof: Before proving the theorem, we first give a lemma that is needed

Lemmal. If Ais a constant,

k

oo oo k Foa Y
e 1. c.e k . . .
/ T / (A + Z /\i> ﬁd)\l s dAg = Z BA,x(Ja k) [_El(_x)]k 7y (B.1)
r * i=1

=0

wherel'(a, x) = fxoo e~ 't~ 1dt is the incomplete gamma function [20].
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Proof: See Appendix C. n
From (10), we need to upper bound
-1

/ / det |Ip + Mdiag {\1,--- ,Ag}| e M- e Rd)---dAp,
o (R ey

where we have definek} = |g;|?. Therefore\; is a random variable with exponential distribution
P, () = e~*. We upper bound this by breaking every integral into twogatte integration from
0 to an arbitrary positive numberand the integration from to oo, and then upper bound every
one of the resulting” terms. That is,

P (Sk — Sl)
-1
S + + det |Ig + - Mdiag {\1,--- ,Agr}| e e BdA - d
0 T 0 T 8 (R + 2i=1 /\Z>
R
= > > T
r=01<i;<---<ir<R
where
-1
PT . - Y
Ty i = det | Ir + 7 Mdiag {1, ,Ar} e Meem "Bl - d)p.
the: i -th integral 8(R+Zi:1)\i>
€iq, - - - i,-th integrals

are fromz to oo,

all others are fron to =

Without loss of generality, we calculaf® ... ,., which is

—1
/ / / / det |Ir + Mdiag {\1,--- ,Ar}| e M- e Rd\ .- dAg.
@ z JoJo 8<R+Zf;1)\i)
r R—r

SinceM > 0, forany0 < A\.;1, -+ ,Ag < x,
det |:IR+ P Mdiag {1, - - ,)\R}]
8<R—|—Zf:1 )\i)
> det [IR—I- 8(R—|—(R—]:)j;c—i—Zgzl)\i)Mdiag{/\l’.“ D VR ,0}}
> det{g[R+(R_]:)1;;+z§:1>\i] (M]y....diag {\1, - - ,/\r}}

PT
{8[R+ (R—r)o+ 32 Ai

} } det[M]L..A’T)\l e A
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Therefore,

8 T _ x xT _ _
Ty, < <PT> det 1[M]17...7T/0 /0 e e RGNy - dAR

T

00 e r e~ M .. e A
/ R+ (R-k)z+> A\ A
: : o AW
Using Lemma 1,
8 \" R i
-1 —x —-r . . r—1q
T,.r»< <PT> det "My, (1—€e™7) ZBR+(R_]€)$7$(],T) [—Ei(—=x)]"".

Jj=0

In general,

. k
8 — R—r . . r—q
Ty i < <PT> det “'[M];, ... 4 C(1—e) ZBRHR,T)MJ(],T) [—Ei(—z)]"7.
j=0

Therefore,

R r r
Sk - Sl Z ( ) ( Z det _I{M]il,--- ,ir> (1 - e_CE)R_T Z BR—I—(R—k)z,:E(jv T) [_Ei(_x)]r_j :

1<ii<-<ir<R Jj=0

]

C Proof of Lemmal

Proof: We want to explicitly evaluate

e~ Me= A2 Lo~k
I_/ /<A+Z)\> ¢ ‘A: dAp -+ d)g.

k
Consider the expansion aéfA + Zle )\i> into monomial terms. We have

k K k k k—i;  k—i1——ij_1 . ‘
<A+ ZAZ> => ( S S S Gl ipAnaE - .)\;jAkil...ij) 7
=1

7=0 \1<li<-<lj<kii=1lip=1 ij=1
where; denotes how many’s are present,, ..., [; are the subscripts of the)'s that appears,
im > 1indicates that\,  is taken to the,,th power ( the summation should bed "~ , which is

ey >1
> im<k
. i be—iq — e . L g . .
equivalent tto”l:1 ZZ;; e Zij:’{ Y=t if we sumi, first, thenis, etc. ), and finally

i) = <Zk1> <k1_2“> <k—i1 _i.j.._ij—1>
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counts how many times the ter)&flf )\fj e )\Z Ak—ii—-=ij gppears in the expansion.

Thus we have

k—iy——ij_1

k k
I:Z Z Z Z C(’L'l,...,ij)I(j;ll,...,lj;’il,...,ij)

J=0 1<l <-<l<k i1=1 i;=1

/x/x )‘ll)‘IQ"')‘le 1 Jﬁd)\l"‘d)\k-

“&

<.

S~—
Il

I(]7l17,l],21, )

We compute
k—i . J oo i1 A OoefAi
I(Gsh, ... lsdr,. .. ,0) = A" b H/x )\ZZ e MmodN, H/x y dA;
m=1 1#41,...05
= Ak-hi—y (H I‘(im,x)> [—Ei(—x)]"7.
m=1
Note that the result is independentlgf. . ., [;. Finally adding the terms up, we have
k k k—i1——ij_1 4 ' J
=% > > > Clia,....ipAF T [—Ei(—2)" [ D(im, 2)
J=0 1<l <--<l;<ki1=1 ij=1 m=1
[ k k—iy1——ij_1 4 '
= > oo [ Do DD Clis i AT (i, @) - Td, )
7=0 L 1Sl1<---<lj§k i1=1 ij:1

(5);: 3 (k)...<kil,.'Hij1>F(i1,x)--'F(ij,:ﬁ)Ak“"'iJ]

I

<
Il
=)

ij=1

k
> Bau(j k) [-Ei(-x)]* 7.
j=0

Thus ends the proof. n
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Figure 2:The BER comparison wireless networks with differéhand R.
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Figure 3: The comparison of the relay network Figure 4: The comparison of the relay network

with the multiple-antenna system with= R = 5

and the same total transmit power.
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Figure 5: The comparison of the relay network Figure 6: The comparison of the relay network

with the multiple-antenna system with= R = 10

and the same total transmit power.
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