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Abstract—Cognitive radio is a candidate technology for more
efficient spectrum utilization systems based on opportunistic
spectrum sharing. Because this new technology does not rely
on traditional license-based spectrum allocation policies, it could
disrupt existing systems if the spectrum utilization decision
is based on unreliable spectral estimation. Distributed sensing
methods have the potential to increase the spectral estimation
reliability and decrease the probability of interference of cognitive
radios to existing radio systems. In this paper, we consider
different aspects of the processing and fusion of spectrum sensing
information of cognitive radio systems. The use of cyclic feature-
based methods for distributed signal detection and classification
is discussed and recent results are presented.

I. INTRODUCTION

Aiming at more efficient spectrum utilization, the FCC is

currently revisiting traditional licensed-based policies and

moving toward the adoption of “spectrum sharing” strategies

such as ultra-wideband (UWB) and cognitive radio. While

UWB systems achieve a more efficient spectrum utilization by

overlaying existing narrowband systems, cognitive radios op-

portunistically find and use empty frequency bands. Cognitive

radios rely on the fact that a significant portion of the spectrum

allocated to licensed services show little usage over time. A

recent spectrum occupancy measurement project shows that

the average spectrum occupancy taken over multiple locations

is 5.2%, with a maximum occupancy of 13.1% [1].

Originally introduced by Mitola [2]-[3], cognitive radios

are capable of sensing their environment, learning about

their radio resources and user/application requirements, and

adapting behavior by optimizing their own performance in

response to user requests [4]. Cognitive radios are therefore

a powerful tool for solving the spectrum usage problem.

Such radios are capable of sensing spectrum occupancy, and,

in conformity with the rules of the FCC, opportunistically

adapting transmission to utilize empty frequency bands with-

out disrupting other systems. However, this departure from

traditional license-based spectrum allocation policies could

disrupt existing systems if the spectrum utilization decision

is based on unreliable spectral estimation.

One possible approach to increase the spectral estimation

reliability and decrease the probability of interference of cog-

nitive radios to existing radio systems is by using distributed
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spectrum sensing. In such a distributed approach, the spec-

trum occupancy is determined by the joint work of cognitive

radios, as opposed to being determined individually by each

cognitive radio. In this paper, we consider different aspects

of the processing and fusion of spectrum sensing information

of cognitive radio systems. A new system architecture that

combines cognitive radios and available resource maps is

also discussed. A major focus of this paper is on the use of

cyclic feature-based methods for distributed signal detection

and classification.

II. DISTRIBUTED SPECTRUM SENSING: OVERVIEW

In application scenarios involving geographically distributed

radios, such as a wireless communication system, distributed

spectrum sensing approaches are worth considering due to

the variability of the radio signal, as suggested in [5]-[7].

Such methods may significantly increase the reliability of the

spectrum estimation process, at the expense of computational

complexity and power/bandwidth usage for the transmission

of spectrum sensing information.

In this paper, we model the cognitive radio system with a

standard parallel fusion network commonly used in decentral-

ized detection problems, shown in Fig. 1. In this model, each

cognitive radio (CR node) obtains some relevant information

yi, i = 1, . . . , N , on the spectrum occupancy. Each CR

node processes this information and then sends a summary

of its own observations to a fusion center, in the form of a

message ui, i = 1, . . . , N , taking values in a finite alphabet.
The fusion center then generates a global spectrum usage

decision u0 based on the messages it has received [8]. The

objective in this Bayesian hypothesis testing problem is to

obtain the set of decision rules that minimize the average

cost of making a decision of the overall system. Taking a

person-by-person optimization methodology [9], and assuming

that the observations at the local detectors are conditionally

independent and that the local decisions are binary, the local

decision rules reduce to threshold tests given by
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needed in mesh net anyway, especially mobile ad hoc mesh net
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SkyTel provides a discussion herein as to its concept to use High Accuracy Location ("HALO") of the radios in a Cognitive Radio Network, to substantially improve and extend the Available Resoure Maps (AMRs) that are the focus of this paper on moving towards Cogntive Radio Systems or Networks (as opposed to simply Cognitive Radios). 
     There is no question that Cogntive Radio Newtorks are the future of wireless and are especially needed, and cost justified even now, for:
Smart Transport, Energy, Environment Radio (STEER) and complimentary wireless (e.g., precision agriculture and resouce manangemnet use and protection) for core infrastructure and wide-georgraphy industries for the US and all nations.
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Also, radios in a mesh net can receive and send more effectively, when their receivers-antennas are synchronized and coordinated, using mesh nets.
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Fig. 1. Block diagram of a parallel fusion network.

u
k = (u1, . . . , uk−1, uk+1, . . . , uN )T

and u
kj =

(u1, . . . , uk−1, uk = j, uk+1, . . . , uN )T
, j = 0, 1. The

fusion rule is also a threshold test, and is given by
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Thus, the person-by-person optimization solution to the binary

decentralized Bayesian hypothesis testing problem is given by

a system of nonlinear coupled equations. It is well-known

that the computational effort required to solve a system of

nonlinear coupled equations increases rapidly with the num-

ber of detectors. Tsitsiklis and Athans show in their classic

paper [10] that even the simplest problems of decentralized

decision making are hard from an algorithmic viewpoint, and

that it becomes an NP-complete problem if the measurements

at each sensor are not independent.

As the testing functions at both the local detectors and

at the data fusion center have the form of a likelihood

ratio, the decision thresholds are the only free parameters.

Therefore, the distributed detection problem reduces to the

search of the optimal threshold. One possible way to find

these optimal thresholds is by using iterative computational

algorithms. For example, a nonlinear Gauss-Seidel iterative

algorithm derived in [11] allows for the solution of reasonably

large-sized problems, at the expense of requiring messages

to be transmitted among fusion center and CR nodes. Other

possible iterative algorithms can be found in [9].

III. DISTRIBUTED SIGNAL DETECTION USING

SINGLE-CYCLE DETECTORS

Cognitive radios must be able to detect spectrum usage with

no a priori knowledge of modulation format and characteris-

tics, such as the bandwidth, carrier frequency, and chip-rate,

of primary systems. The most conventional approach for the

detection of an unknown deterministic signal in AWGN is

the radiometer, which is simply a measure of received energy

in time and frequency. However, it is well-known that such

a method is highly susceptible to unknown and changing

noise levels and interference [12]. Cyclic-feature detection
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Fig. 2. Distributed detection of a known signal in AWGN using single-cycle
detectors (Eb/No = 3 dB).

techniques are an alternative approach for the unknown signal

detection problem that have many advantages, including signal

classification capabilities and reduced sensitivity to unknown

and changing background noise. Such techniques exploit tim-

ing or phase properties of digitally modulated signals, and have

been receiving a great deal of attention by the IEEE 802.22

work group [13].

Assume, for example, a basic cyclic-feature detector known

as a single-cycle detector. The test statistic of such a detector

is given by [14]
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where Sα
xT

(t, f) is the cyclic periodogram of the received

(cycloergodic) signal x (t), given by

Sα
xT

(t, f) =
1

T

(

∫ t+ T
2

t−T
2

x (u) e−j2π(f+ α
2 )udu

)

×

(

∫ t+ T
2

t−T
2

x∗ (u) ej2π(f−α
2 )udu

)

,(4)

and Sα
S (f) is the ideal spectral correlation function.

The performance of a single-cycle detector in a distributed

architecture, using the Gauss-Seidel algorithm for data fusion,

is shown in Fig. 2. It is seen that when signal detection is

performed using 10 sensors instead of using a single sensor,

the probability of detection increases from approximately 30%

to 60%, for a probability of false alarm equal to 10%.

IV. SIGNAL CLASSIFICATION USING CYCLOSTATIONARITY

In addition to frequency occupancy estimation, cognitive

radio systems may also need to classify the primary system

that occupies a given frequency band. For example, the

protection (in terms of allowable interference level) that a

cognitive radio system may provide to a primary user may

be dependent on the primary system. By taking advantage of



Fig. 3. Spectral coherence function of a BPSK signal.

Fig. 4. Spectral coherence function of a BFSK signal.

the inherent cyclostationarity existent in digital signals, cyclic-

feature algorithms have the potential to provide reliable signal

classification even at low signal-to-noise ratio scenarios.

Cyclic-feature algorithms for signal classification typically

use the spectral coherence function of the received signal,

defined as [15]

Cα
x (f)

∆
=

Sα
x (f)

[S0
x(f + α/2)S0

x(f − α/2)]1/2
. (5)

This function is of particular interest as it gives a normalized

measure of the cross-correlation between signal components

at frequencies f − α/2 and f + α/2. The magnitude of the
spectral coherence function ranges from 0 to 1, and is invariant

to linear transformations to the incoming signal.

In (5), the spectral correlation function Sα
x (f) is defined as

Sα
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∆f→0
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T→∞
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and the cyclic periodogram Sα
xT

(t, f) is given by (4).
The spectral coherence functions of BPSK and BFSK sig-

nals are shown in Figs. 3 and 4, respectively. It is seen that the

spectral coherence function corresponding to these modulation

techniques have distinct features that ultimately allow for
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Fig. 5. Cycle frequency domain profile of a BPSK signal.
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Fig. 6. Cycle frequency domain profile of a BFSK signal.

signal classification. It can be shown that most digital signals

and some analog signals have distinctive spectral coherence

functions.

It is shown in [16] that in order to ease the design of the

signal classification algorithm, it is convenient to define the

following cycle frequency domain profile function

I(α)
∆
= max

f
|Cα

x (f)| . (8)

The profile functions of BPSK and BFSK signals are shown

in Figs. 5 and 6, respectively. As described in [16], an efficient

signal classification algorithm is obtained by matching the

profile function I(α) of the received signal with a database
of profile functions of possible digital and analog modulation

schemes. The probability of correct classification for such an

algorithm is shown in Fig. 7, assuming a low signal-to-noise

ratio environment and a collection of five modulation schemes.

It is observed that except for the QPSK modulation (QPSK

has only cyclic feature for the symbol rate, and the strength

of cyclic feature accounting for the symbol rate is less than

the one due to carrier frequency), all other schemes have very

good probability of correct classification [16].

V. COGNITIVE RADIO SYSTEMS BASED ON AVAILABLE

RESOURCE MAPS

An unlicensed wireless WAN based on the combination

of cognitive radio and available resource maps (ARM) was
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recently proposed in [17], [18]. ARM-based cognitive radio

systems are based on the same operational principles of

conventional cellular networks, but with the following fun-

damental peculiarities:

• Spectrum is shared and a database (ARM) provides

spectrum availability,

• A public radio control channel (RCC) is used for session

setup, and

• Base transceiver stations (BTSs) report their spectrum

usage to the ARM through a wired control channel.

In this architecture, the system infrastructure provides the

framework for unlicensed spectrum access and spectrum bar-

tering. The ARM is a real-time map of all spectrum usage

updated and maintained by user equipment (UE) and BTSs.

Local frequency allocation is managed exclusively by an

ARM-based base station. ARM-based cognitive radio net-

works may operate as a shared resource (secondary user)

system in spectrum licensed to a primary system. In this case,

primary systems may be connected to the ARM to allow for

spectrum sharing and coordination.

In the ARM-based architecture, a RCC is used to coordinate

the spectrum access of all the UE in the system. Before any

radio transmission takes place, each UE and BTS announces its

intentions over the RCC. All UE and BTSs monitor the RCC

to ensure that all intended new communication links will not

interfere with them. In the case that a new session will create

harmful interference, objections are raised over the RCC to

signal that the new session may not use the resources it intends

to [17], [18].

It should be noted that, as opposed to conventional cognitive

radio systems, this new architecture has a central entity re-

sponsible for spectrum allocation and management. Therefore,

we believe that such an approach could, at least partially,

address existing concerns on the possible interference between

cognitive (secondary) and primary systems (compared, for

example, to ad-hoc cognitive radio networks). As an additional

interference protection layer, we envision that spectral sensing

can be incorporated into the original concept of ARM-based

systems as a method that would allow for (1) validation of the

data transmitted through the RCC, and (2) gathering of spec-

trum usage information from systems that are not connected

to the ARM (for example, other unlicensed systems). In this

configuration, the ARM could serve as the entity responsible

for spectrum sensing data fusion.

VI. CONCLUSIONS

Cognitive radio is a new and exciting technology that,

among other applications, has the potential to unlock the

spectrum necessary for the deployment of next generation high

data rate systems. However, for this concept to become a prac-

tical technology, research into the processing, transmission,

and fusion of spectrum sensing information is still necessary.

In this paper, different aspects of a distributed approach to

spectrum sensing were addressed and preliminary results were

presented. The use of cyclic feature-based methods for signal

detection and classification was discussed, and it was shown

Fig. 7. Probability of correct classification using a cyclic feature algorithm
described in [16].

that such methods provide reliable detection/classification even

at low signal-to-noise ratio scenarios.
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Text Box
SkyTel believes this sort of AMR-agumented Cognitive Radio (CR) network idea can be much fruther ehanced by the CR radios and network employing near-constant sub-foot-level High Accuracy Location (HALO) in the participating CR radios.  HALO determination can be used, with time-matched, near-constant spectrum-use sensing of each radio in all times of day and season.  These two correlated measurements can be used to build a map of the wireless network geographic region and how, on a cubic-foot to cubic-foot basis, the radio signals propagate and interacte (including co-channel [CC] and adjacent-channel [AC] RF multipath.  With known fixed-station tranceivers, and the mobile received moving in various patterns, this will of course result in a massive database, but those are not cheap to store, build on, and utilze.  The resolution / accuracy would improve over time, the more the above paried measurements take place over the whole Network region. (Continued below.)
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(Continued from above.)  If (as SkyTel Plans for its networks) the Network knew all authorized users, and they were all using this form of CR on the Network, then, after said Resolution/ Accuracy was sufficiently developed by the increasingly knowledgable Network, it would be able to instruct each radio at each place and time what spectrum it may use without interference to and from other users-- based upon past experiences.  This should subtantially (1) shorten the time of these determinations, and (2) decrease the resources (power and distributed-mesh radio reporting as described in this paper) needed by each mobile radio, for the determinations, (3) provide an alternative, historical source of this detemination to the real-time spectrum-use sensing of the radio, etc.  (4) It would be able to track all radios precisely and perform a "traffic cop" role as the radios move around the Network, and their authorized services and priorities change.  Thus, HALO may play a vital role in "Cogintive Radio Networks."
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