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Abstract—This paper describes the main components of MiPad
(Multimodal Interactive PAD) and especially its distributed speech
processing aspects. MiPad is a wireless mobile PDA prototype that
enables users to accomplish many common tasks using a multi-
modal spoken language interface and wireless-data technologies.
It fully integrates continuous speech recognition and spoken lan-
guage understanding, and provides a novel solution for data entry
in PDAs or smart phones, often done by pecking with tiny styluses
or typing on minuscule keyboards. Our user study indicates that
the throughput of MiPad is significantly superior to that of the ex-
isting pen-based PDA interface.

Acoustic modeling and noise robustness in distributed speech
recognition are key components in MiPad’s design and implemen-
tation. In a typical scenario, the user speaks to the device at a dis-
tance so that he or she can see the screen. The built-in microphone
thus picks up a lot of background noise, which requires MiPad be
noise robust. For complex tasks, such as dictating e-mails, resource
limitations demand the use of a client–server (peer-to-peer) archi-
tecture, where the PDA performs primitive feature extraction, fea-
ture quantization, and error protection, while the transmitted fea-
tures to the server are subject to further speech feature enhance-
ment, speech decoding and understanding before a dialog is carried
out and actions rendered. Noise robustness can be achieved at the
client, at the server or both. Various speech processing aspects of
this type of distributed computation as related to MiPad’s poten-
tial deployment are presented in this paper. Recent user interface
study results are also described. Finally, we point out future re-
search directions as related to several key MiPad functionalities.

Index Terms—Client–server computing, distributed speech
recognition, error protection, mobile computing, noise robustness,
speech-enabled applications, speech feature compression, speech
processing systems.

I. INTRODUCTION

T
HE GRAPHICAL user interface (GUI) has significantly

improved computer human interface by using intuitive

real-world metaphors. However, it is still far from achieving

the ultimate goal of allowing users to interact with computers

without much training. In addition, GUI relies heavily on

a graphical display, keyboard and pointing devices that are

not always available. Mobile computers have constraints on

physical size and battery power, or present limitations due to
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hands-busy eyes-busy scenarios which make traditional GUI

a challenge. Spoken language enabled multimodal interfaces

are widely believed to be capable of dramatically enhancing

the usability of computers because GUI and speech have

complementary strengths. While spoken language has the

potential to provide a natural interaction model, the difficulty

in resolving the ambiguity of spoken language and the high

computational requirements of speech technology have so far

prevented it from becoming mainstream in a computer’s user

interface. MiPad, Multimodal Interactive PAD, is a prototype of

a wireless Personal Digital Assistant (PDA) that enables users

to accomplish many common tasks using a multimodal spoken

language interface (speech pen display). A key research

goal for MiPad is to seek out appropriate venues for applying

spoken language technologies to address the user interface

challenges mentioned above. One of MiPad’s hardware design

concepts is shown in Fig. 1.

MiPad intends to alleviate a prevailing problem of pecking

with tiny styluses or typing on minuscule keyboards in today’s

PDAs by adding speech capability through a built-in micro-

phone. Resembling more like a PDA and less like a telephone,

MiPad intentionally avoids speech-only interactions. MiPad is

designed to support a variety of tasks such as E-mail, voice-mail,

calendar, contact list, notes, web browsing, mobile phone, and

document reading and annotation. This collection of functions

unifies the various mobile devices into a single, comprehensive

communication and productivity tool. The idea is therefore sim-

ilar to other speech enabled mobile device efforts reported in

[3], [16], [21], [24]. While the entire functionality of MiPad

can be accessed by pen alone, we found a better user experi-

ence can be achieved by combining pen and speech inputs. The

user can dictate to an input field by holding the pen down on

it. Other pointing devices, such as a roller on the side of the

device, device for navigating among the input fields, can also

be employed to enable one handed operation. The speech input

method, called Tap & Talk, not only indicates where the rec-

ognized text should go but also serves as a push to talk button.

Tap & Talk narrows down the number of possible utterances for

the spoken language processing module. For example, selecting

the “To: field” on an e-mail application display indicates that

the user is about to enter a name. This dramatically reduces the

complexity of spoken language processing and cuts down the

speech recognition and understanding errors to the extent that

MiPad can be made practically usable despite the current lim-

itations of robust speech recognition and natural language pro-

cessing technology.

1063-6676/02$17.00 © 2002 IEEE
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Fig. 1. One of MiPad’s industrial design templates.

One key feature of MiPad is a general purpose “Command”

field to which a user can issue naturally spoken commands such

as “Schedule a meeting with Bill tomorrow at two o’clock.”

From the user’s perspective, MiPad not only recognizes but

understands the command by MiPad executing the necessary

actions conveyed in the spoken commands. In response to the

above command, MiPad will display a “meeting arrangement”

screen with related fields (such as date, time, attendees, etc.)

filled appropriately based on the user’s utterance. MiPad fully

implements Personal Information Management (PIM) functions

including email, calendar, notes, task, and contact list with a

hardware prototype based on Compaq’s iPaq PDA (3800 se-

ries). All MiPad applications are configured in a client–server

architecture as shown in Fig. 2. The client on the left side of

Fig. 2 is MiPad powered by Microsoft Windows CE operating

system that supports 1) sound capture, 2) front-end acoustic pro-

cessing including noise reduction, channel normalization, fea-

ture compression, and error protection, 3) GUI processing, and

4) a fault-tolerant communication layer that allows the system

to recover gracefully from network connection failures. Specif-

ically, to reduce bandwidth requirements, the client compresses

the wideband speech parameters down to a maximal 4.8 Kbps

bandwidth. Between 1.6 and 4.8 Kbps, we observed virtually no

increase in the recognition error on some tasks tested. A wireless

local area network (WLAN), which is currently used to simulate

a third generation (3G) wireless network, connects MiPad to a

host machine (server) where the continuous speech recognition

(CSR) and spoken language understanding (SLU) take place.

The client takes approximately 450 KB of program space and

an additional 200 KB of runtime heap, and merely consumes

approximately 35% of CPU load with iPAQ’s 206 MHz Stron-

gARM processor. At the server side, as shown on the right side

of Fig. 2, MiPad applications communicate with the ASR and

SLU engines for coordinated context-sensitive Tap & Talk in-

teraction. Noise robustness processing also takes place at the

server since it allows for easy updating.

We now describe the rationale behind MiPad’s architecture.

Although customized system software and hardware have

been reported [3], [16] to bring extra benefits and flexibility

in tailoring applications to mobile environments, the MiPad

project utilizes only off-the-shelf hardware and software. Given

the rapid improvements in the hardware and system software

capabilities, we believe such an approach is a reasonable one.

Second, although speaker independent speech recognition has

made significant strides during the past two decades, we have

deliberately positioned MiPad as a personal device where the

user profile can be utilized to enrich applications and comple-

ment technological shortcomings. For speech, this means we

may use speaker dependent recognition, thereby avoiding the

challenges faced by other approaches [21], [24]. In addition to

enabling higher recognition accuracy, user specific information

can also be stored locally and speaker specific processing can

be carried out on the client device itself. This architecture

allows us to create user customized applications using generic

servers, thereby improving overall scalability.

The rest of the paper will describe details of MiPad with em-

phasis on the speech processing and the UI design consider-

ations. Various portions of this paper have been presented at

several conferences (ICSLP-2000 [1], [18], [28] ICASSP-2001

[5], [19], [25], Eurospeech-2001 [12] and ASRU-2001 Work-

shop [6]). The purpose of this paper is to combine these ear-

lier presentations on the largely isolated MiPad components into

a single coherent paper so as to highlight the important roles

of distributed speech processing in the MiPad design, and re-

port some more recent research results. The organization of this

paper is as follows. In Sections II and III, we describe our re-
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Fig. 2. MiPad’s client–server (peer-to-peer) architecture. The client is based on a Windows CE iPAQ, and the server is based on a Windows server. The
client–server communication is currently implemented on a wireless LAN.

cent work on front-end speech processing, including noise ro-

bustness and source/channel coding that underlie MiPad’s dis-

tributed speech recognition capabilities. The acoustic and lan-

guage models used for the decoding phase of MiPad contin-

uous speech recognition, together with the spoken language un-

derstanding component, are presented in Section IV. Finally,

MiPad’s user interface and user study results are described in

Section V, and a summary is provided in Section VI.

II. ROBUSTNESS TO ACOUSTIC ENVIRONMENTS

Immunity to noise and channel distortion is one of the most

important design considerations for MiPad. For this device to

be acceptable to the general public, it is desirable to remove

the need for a close-talking microphone. However, with the

convenience of using the built-in microphone, noise robustness

becomes a key challenge to maintaining desirable speech

recognition and understanding performance. Our recent work

on acoustic modeling for MiPad has focused on overcoming

this noise-robustness challenge. In this section we will present

most recent results in the framework of distributed speech

recognition (DSR) that the MiPad design has adopted.

A. Distributed Speech Recognition Considerations for

Algorithm Design

There has been a great deal of interest recently in standard-

izing DSR applications for a plain phone, PDA, or a smart

phone where speech recognition is carried out at a remote

server. To overcome bandwidth and infrastructure cost limita-

tions, one possibility is to use a standard codec on the device

to transmit the speech to the server where it is subsequently

decompressed and recognized. However, since speech recog-

nizers such as the one in MiPad only need some features of the

speech signal (e.g., Mel-cepstrum), bandwidth can be further

saved by transmitting only those features. ETSI has been

accepting proposals for Aurora [17], an effort to standardize a

DSR front-end that addresses the issues surrounding robustness

to noise and channel distortions at a low bit rate. Our recent

work on noise robustness for MiPad has been concentrated on

the Aurora tasks.

In DSR applications, it is easier to update software on the

server because one cannot assume that the client is always run-

ning the latest version of the algorithm. With this consideration

in mind, while designing noise-robust algorithms for MiPad, we

strive to make the algorithms front-end agnostic. That is, the

algorithms should make no assumptions on the structure and

processing of the front end and merely try to undo whatever

acoustic corruption has been shown during training. This con-

sideration also favors approaches in the feature rather than the

model domain.

Here, we describe one particular algorithm that has so far

given the best performance on the Aurora2 task and other Mi-

crosoft internal tasks. We called the algorithm SPLICE, short

for Stereo-based Piecewise Linear Compensation for Environ-

ments. In a DSR system, SPLICE may be applied either within

the front end on the client device, or on the server, or on both

with collaboration. Certainly a server side implementation has

some advantages as computational complexity becomes less of

an issue and continuing improvements can be made to benefit

even devices already deployed in the field. Another useful prop-

erty of SPLICE in the server implementation is that new noise

conditions can be added as they are identified by a server. This

can make SPLICE quickly adaptable to any new acoustic envi-

ronment with minimum additional resources.

B. Basic Version of SPLICE

SPLICE is a frame-based, bias removal algorithm for cep-

strum enhancement under additive noise, channel distortion or

a combination of the two. In [4], we reported the approximate

MAP formulation of the algorithm, and more recently in [5],

[11], [12] we described the MMSE formulation of the algorithm

with a much wider range of naturally occurring noises, including

both artificially mixed speech and noise, and naturally recorded

noisy speech.

SPLICE assumes no explicit noise model, and the noise char-

acteristics are embedded in the piecewise linear mapping be-

tween the “stereo” clean and distorted speech cepstral vectors.

The piecewise linearity is intended to approximate the true non-

linear relationship between the two. The nonlinearity between

the clean and distorted (including additive noise) cepstral vec-

tors arises due to the use of the logarithm in computing the cep-

stra. Stereo data refers to simultaneously recorded waveforms

both on clean and noisy speech. SPLICE is potentially able

to handle a wide range of distortions, including nonstationary
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distortion, joint additive and convolutional distortion, and non-

linear distortion (in time-domain) because the stereo data pro-

vides accurate estimates of the bias or correction vectors without

the need for an explicit noise model. One key requirement for

the success of the basic version of SPLICE described here is that

the distortion conditions under which the correction vectors are

learned from the stereo data must be similar to those corrupting

the test data. Enhanced versions of the algorithm described later

in this section will relax this requirement by employing a noise

estimation and normalization procedure.

We assume a general nonlinear distortion of a clean cepstral

vector, , into a noisy one, . This distortion is approximated in

SPLICE by a set of linear distortions. The probabilistic formu-

lation of the basic version of SPLICE is provided below.

1) Basic Assumptions: The first assumption is that the noisy

speech cepstral vector follows a mixture distribution of Gaus-

sians

with (1)

where denotes the discrete random variable taking the values

1, 2, , , one for each region over which the piecewise linear

approximation between the clean cepstral vector and distorted

cepstral vector is made. This distribution, one for each separate

distortion condition (not indexed for clarity), can be thought as

a “codebook” with a total of codewords (Gaussian means)

and their variances.

The second assumption made by SPLICE is that the condi-

tional probability density function (PDF) for the clean vector

given the noisy speech vector, , and the region index, , is

a Gaussian with the mean vector being a linear function of the

noisy speech vector . In this paper, we take a simplified form

of this (piecewise) function by making the rotation matrix to be

identity one, leaving only the bias or correction vector. Thus, the

conditional PDF has the form

(2)

where the correction vector is and the covariance matrix of

the conditional PDF is .

2) SPLICE Training: Since the noisy speech PDF

obeys a mixture-of-Gaussian distribution, the standard EM

algorithm is used to train and . Initial values of the

parameters can be determined by a VQ clustering algorithm.

The parameters and of the conditional PDF

can be trained using the maximum likelihood criterion. Since the

variance of the distribution is not used in cepstral enhancement,

we only give the ML estimate of the correction vector below:

(3)

where

(4)

and denotes the time-frame index of the feature vector.

This training procedure requires a set of stereo (two channel)

data. One channel contains the clean utterance, and the other

channel contains the same utterance with distortion,. The two-

channel data can be collected, for example, by simultaneously

recording utterances with one close-talking and one far-field mi-

crophone. Alternatively, it has been shown in our research [10]

that a large amount of synthetic stereo data can be effectively

produced to approximate the realistic stereo data with virtually

no loss of speech recognition accuracy in MiPad tasks.

3) SPLICE for Cepstral Enhancement: One significant ad-

vantage of the above two basic assumptions made in SPLICE is

the inherent simplicity in deriving and implementing the rig-

orous MMSE estimate of clean speech cepstral vectors from

their distorted counterparts. Unlike the FCDCN algorithm [1],

no approximations are made in deriving the optimal enhance-

ment rule. The derivation is outlined below.

The MMSE is the following conditional expectation of clean

speech vector given the observed noisy speech:

(5)

Due to the second assumption of SPLICE, the above code-

word-dependent conditional expectation of (given and ) is

simply the bias-added noisy speech vector

(6)

where bias has been estimated from the stereo training data

according to (3). This gives the simple form of the MMSE esti-

mate as the noisy speech vector corrected by a linear weighted

sum of all codeword-dependent bias vectors already trained

(7)

While this is already efficient to compute, more efficiency can

be achieved by approximating the weights according to

otherwise.
(8)

This approximation turns the MMSE estimate to the approxi-

mate MAP estimate that consists of two sequential steps of oper-

ation. First, finding optimal codewords using the VQ codebook

based on the parameters ( ), and then adding the code-

word-dependent vector to the noisy speech vector. We have

found empirically in many of our initial experiments that the

above VQ approximation does not appreciably affect recogni-

tion accuracy while resulting in computational efficiency.

C. Enhancing SPLICE by Temporal Smoothing

In this enhanced version of SPLICE, we not only minimize

the static deviation from the clean to noisy cepstral vectors (as

in the basic version of SPLICE), but also seek to minimize the

dynamic deviation.

The basic SPLICE optimally processes each frame of noisy

speech independently. An obvious extension is to jointly process

a segment of frames. In this way, although the deviation from

the clean to noisy speech cepstra for an individual frame could

be undesirably greater than that achieved by the basic, static
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SPLICE, the overall deviation that takes into account the whole

sequence of frames and the mismatch of slopes will be reduced

compared with the basic SPLICE.

We have implemented the above idea of “dynamic SPLICE”

through temporally smoothing the bias vectors obtained from

the basic, static SPLICE.

We have achieved significant performance gains using an effi-

cient heuristic implementation. In our specific implementation,

the filter has a low-pass characteristic, with a system transfer

function of

(9)

This transfer function is the result of defining an objective

function as the posterior probability of the entire sequence of

the (hidden) true correction vectors given the entire sequence of

the observed speech vectors. The posterior probability is

After we apply a first-order Markov assumption to the , this

conditional distribution becomes

(10)

Each term in the product is given by

where is the covariance matrix for the time differential of

the correction vector, is the unsmoothed SPLICE output at

frame , given by (7), and is the covariance matrix of the

SPLICE output at frame given by

Optimization of the objective function in (10) gives the MAP

estimate for the smoothed correction vector sequence, which is

in the form of a second-order difference equation with the input

of unsmoothed correction vectors computed from the SPLICE

algorithm described above. This second-order difference equa-

tion can be equivalently put in the form of (9) in the -domain,

where the constants are functions of the variances related to

both the static and dynamic quantities of the correction vectors.

These variances were assumed to be time invariant, leading to

the two constant parameters in (9). These two parameters have

been empirically adjusted.

D. Enhancing SPLICE by Noise Estimation and Noise

Normalization

In this enhancement of SPLICE, different noise conditions

between the SPLICE training set and test set are normalized.

The procedure for noise normalization and for denoising is as

follows. Instead of building codebooks for noisy speech from

the training set, they are built from where is an estimated

noise from . Then the correction vectors are estimated from the

training set using the noise-normalized stereo data and

. The correction vectors trained in this new SPLICE will

be different from those in the basic version of SPLICE. This is

because the codebook selection will be different since is

changed to . For denoising in the test data, the noise-

normalized noisy cepstra are used to obtain the noise-

normalized MMSE estimate, and then the noise normalization

is undone by adding the estimated noise back to the MMSE

estimate.

Our research showed that the effectiveness of the above noise-

normalized SPLICE is highly dependent on the accuracy of the

noise estimate . We have investigated several ways of automat-

ically estimating the nonstationary noise in the Aurora2 data-

base. We describe below one algorithm that has given by far the

highest accuracy in noise estimation and at the same time by far

the best noise-robust speech recognition results.

E. Nonstationary Noise Estimation by Iterative Stochastic

Approximation

In [6], a novel algorithm is proposed, implemented, and

evaluated for recursive estimation of parameters in a nonlinear

model involving incomplete data. The algorithm is applied

specifically to time-varying deterministic parameters of addi-

tive noise in a mildly nonlinear model that accounts for the

generation of the cepstral data of noisy speech from the cepstral

data of the noise and clean speech. For computer recognition

of the speech that is corrupted by highly nonstationary noise,

different observation data segments correspond to very different

noise parameter values. It is thus strongly desirable to develop

recursive estimation algorithms, since they can be designed

to adaptively track the changing noise parameters. One such

design based on the novel technique of iterative stochastic ap-

proximation within the recursive-EM framework is developed

and evaluated. It jointly adapts time-varying noise parameters

and the auxiliary parameters introduced to piecewise linearly

approximate the nonlinear model of the acoustic environment.

The accuracy of the approximation is shown to have improved

progressively with more iteration.

The essence of the algorithm is the use of iterations to achieve

close approximations to a nonlinear model of the acoustic en-

vironment while at the same time employing the “forgetting”

mechanism to effectively track nonstationary noise. There is no

latency required for the execution of the algorithm since only

the present and the past noisy speech observations are needed to

compute the current frame’s noise estimate. Using a number of

empirically verified assumptions associated with the implemen-

tation simplification, the efficiency of this algorithm has been

improved close to real time for noise tracking. The mathemat-

ical theory, algorithm, and implementation detail of this iterative

stochastic approximation technique can be found in [6], [7].

Figs. 3–5 show the results of noise-normalized SPLICE de-

noising using the iterative stochastic algorithm for tracking non-

stationary noise in an utterance of the Aurora2 data, where the

SNR is 10 dB, 5 dB, and 0 dB, respectively. From top to bottom

we can see noisy speech, clean speech, and denoised speech, all

in the same spectrogram format. Most of the noise has been ef-

fectively removed, except for some strong noise burst located

around frames 150–158 in Fig. 5 where the instantaneous SNR

is significantly lower than zero.

The nonstationary noisy estimation algorithm discussed here

and its use in the noise-normalized SPLICE are critical factors

for the noise-robust speech recognition results presented in the

next section. We have recently extended the algorithm to repre-

sent the noise as time-varying random vectors in order to ex-

ploit the variance parameter and new prior information. The
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Fig. 3. Noise-normalized SPLICE denoising using the iterative stochastic algorithm for tracking nonstationary noise in an utterance of the Aurora2 data with an
average SNR = 10 dB. From top to bottom panels are noisy speech, clean speech, and denoised speech, all in the same spectrogram format.

algorithm has also been successfully extended from the max-

imum likelihood version to the new MAP version to take ad-

vantage of the noise prior information and to include a more

accurate environment model that captures more detailed prop-

erties of acoustic distortion [8].

F. Aurora2 Evaluation Results

Noise-robust connected digit recognition results obtained

using the best version of SPLICE are shown in Fig. 6 for the

full Aurora2 evaluation test data. Details of the Aurora2 task

have been described in [17]. Aurora2 is based on the TIDigits

database that is corrupted digitally by adding different types

of realistic, nonstationary noises at a wide range of SNRs (all

Sets A, B, and C) and optionally passing them through a linear

filter (Set C only). Sets-A and -B each consists of 1101 digit

sequences for each of four noise conditions and for each of

the 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB SNRs. The same is

for Set-C except there are only two noise conditions. All the

results in Fig. 6 are obtained with the use of cepstral mean nor-

malization (CMN) for all data after applying noise-normalized,

dynamic SPLICE to cepstral enhancement. The use of CMN

has substantially improved the recognition rate for Set-C. For

simplicity, we have assumed no channel distortion in the imple-

mentation of the iterative stochastic approximation algorithm

for noise estimation. This assumption would not be appropriate

for Set-C which contains unknown but fixed channel distortion.

This deficiency has been, at least partially, offset by the use

of CMN. All the recognition experiments reported here were

obtained using the standard Aurora recognition system [17]

instead of our internal recognition system.

The word error rate reduction achieved as shown in Fig. 6

is 27.9% for the multicondition training mode, and 67.4% for

the clean-only training mode, respectively, compared with the

results using the standard Mel cepstra with no speech enhance-

ment. In the multicondition training mode, the denoising algo-

rithm is applied to the training data set and the resulting de-

noised Mel-cepstral features are used to train the HMMs. In the

clean-only training mode, the HMMs are trained using clean

speech Mel-cepstra and the denoising algorithm is applied only

to the test set. The results in Fig. 6 represent the best perfor-

mance in the September-2001 Aurora2 evaluation in the cate-

gory of the clean speech training mode [20]. The experimental

results also demonstrated the crucial importance of using the

newly introduced iterations in improving the earlier stochastic

approximation technique, and showed a varying degree of sen-

sitivity, depending on the degree of noise nonstationarity, of

the noise estimation algorithm’s performance to the forgetting

factor embedded in the algorithm [7]. More recently, the success

of the noise-normalized SPLICE algorithm has been extended

from the Aurora2 task to the Aurora3 task [11].

There has been a wide range of research groups around the

world working on the same problem of noise-robust speech

recognition for mobile and other devices as we are interested

in; see [2], [9], [14], [15], [20], [22], [23] for selected ap-

proaches taken by some of these research groups. The general
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Fig. 4. Noise-normalized SPLICE denoising using the iterative stochastic algorithm for tracking nonstationary noise in an utterance of the Aurora2 data with an
average SNR = 5 dB. From top to bottom panels are noisy speech, clean speech, and denoised speech, all in the same spectrogram format.

approaches taken can be classified into either the model-do-

main or the feature-domain one, with respective strengths and

weaknesses. The approach reported in this paper is unique in

that it takes full advantage of the rich information embedded

in the stereo training data which most directly characterize

the relationship between the clean and noise speech feature

vectors. The approach is also unique in that a powerful noise

tracking algorithm is exploited to effectively compensate for

possible mismatch between the operating condition and the

condition under which the SPLICE parameters are trained. The

feature-domain approach we have taken is based on the special

DSR considerations for MiPad architecture.

III. FEATURE COMPRESSION AND ERROR PROTECTION

In addition to noise robustness, we recently also started work

on feature compression (source coding) and error protection

(channel coding) required by MiPad’s client–server architec-

ture. This work is intended to address the three key requirements

for successful deployment of distributed speech recognition as-

sociated with the client–server approach: 1) compression of cep-

stral features (via quantization) must not degrade speech recog-

nition performance; 2) the algorithm for source and channel

coding must be robust to packet losses, bursty or otherwise; and

3) the total time delay due to the coding, which results from a

combined quantization delay, error-correction coding delay, and

transmission delay, must be kept within an acceptable level. In

this section, we outline the basic approach and preliminary re-

sults of this work.

A. Feature Compression

A new source coding algorithm has been developed that con-

sists of two sequential stages. After the standard Mel-cepstra

are extracted, each speech frame is first classified to a phonetic

category (e.g., phoneme) and then is vector quantized (VQ)

using the split-VQ approach. The motivation behind this new

source coder is that the speech signal can be composed of piece-

wise-stationary segments, and therefore can be most efficiently

coded using one of many small codebooks that is tuned into a

particular segment. Also, the purpose of the source coding con-

sidered here is to reduce the effect of coding on the speech rec-

ognizer’s word error rate on the server-side of MiPad, which is

very different from the usual goal of source coding aiming at

maintaining perceptual quality of speech. Therefore, the use of

phone-dependent codebooks is deemed most appropriate since

phone distinction can be enhanced by using separate codebooks

for distinct phones. Phone distinction often leads to word dis-

tinction, which is the goal of speech recognition and also the

ultimate goal of the feature compression in MiPad.

One specific issue to be addressed in the coder design is bit

allocation, or the number of bits that must be assigned to the

subvector codebooks. In our coder, C0, C1–6, and C7–12 are

separate subvectors that are quantized independently.

Starting from 0 bits for each subvector codebook of each phone
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Fig. 5. Noise-normalized SPLICE denoising using the iterative stochastic algorithm for tracking nonstationary noise in an utterance of the Aurora2 data with an
average SNR = 0 dB. From top to bottom panels are noisy speech, clean speech, and denoised speech, all in the same spectrogram format.

Fig. 6. Full set of noise-robust speech recognition results in the September-2001 Aurora2 evaluation, using the dynamic and noise-normalized SPLICE with the
noise estimation obtained from iterative stochastic approximation; Sets A, B, and C are separate test sets with different noise and channel distortion conditions.
In (a) are the recognition rates using multicondition training mode where the denoising algorithm is applied to the training data set and the resulting denoised
Mel-cepstral features are used to train the HMMs. In (b) are the recognition rates using the “clean” training model where the HMMs are trained using clean speech
Mel-cepstra and the denoising algorithm is applied only to the test set. Reference curves in both (a) and (b) refer to the recognition rates obtained with no denoising
processing.

we can evaluate every possible combination of bits to subvec-

tors and select the best according to a certain criterion. To better

match the training procedure to the speech recognition task we

use the criterion of minimal word error rate (WER). That is, bit

assignment is the result of the following constrained optimiza-

tion:

(11)
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under the constraint of , where is the number of

bits assigned to the th subvector, is the total number of bits

to be assigned, and is the WER obtained using as

the assignment of the bits to subvectors. Full search requires us

to run a separate WER experiment for each one of the possible

combinations, computationally prohibitive, so we use a greedy

bit allocation technique. At each stage we add a bit at each one

of the subvectors and we keep the combination with the minimal

WER. We repeat the procedure for the next stage by starting at

the best combination of the previous step. By having subvec-

tors and total bits to assign the total number of combinations

is reduced from to .

The experiments carried out to evaluate the above phone-de-

pendent coder use the baseline system with a version of

Microsoft’s continuous-density HMM Whisper system. The

system uses 6000 tied HMM states (senones), 20 Gaussians per

state, Mel-cepstrum, delta cepstrum, and delta–delta cepstrum.

The recognition task is 5000-word vocabulary, continuous

speech recognition from Wall Street Journal data sources. A

fixed, bigram language model is used in all the experiments.

The training set consists of a total of 16 000 female sentences,

and the test set of 167 female sentences (2708 words). The

word accuracy with no coding for this test set was 95.7%.

With use of a perfect phone classifier, the coding using the

bit allocation of (4, 4, 4) for the three subvectors gives word

accuracy of 95.6%. Using a very simple phone classifier with a

Mahalanobis distance measure and with the same bit allocation

of (4, 4, 4), the recognition accuracy drops only to 95.0%. For

this high-performance coder, the bandwidth has been reduced

to 1.6 Kbps with the required memory being under 64 Kbytes.

B. Error Protection

A novel channel coder has also been developed to protect

MiPad’s Mel-cepstral features based on the client–server archi-

tecture. The channel coder assigns unequal amounts of redun-

dancy among the different source bits, giving a greater amount

of protection to the most important bits where the importance

is measured by the contributions of these bits to the word error

rate in speech recognition. A quantifiable procedure to assess

the importance of each bit is developed, and the channel coder

exploits this utility function for the optimal forward error correc-

tion (FEC) assignment. The FEC assignment algorithm assumes

that packets are lost according to a Poisson process. Simula-

tion experiments are performed where the bursty nature of loss

patterns are taken into account. When combined with the new

source coder, the new channel coder is shown to provide consid-

erable robustness to packet losses even under extremely adverse

conditions.

Some alternatives to FEC coding are also explored, including

the use of multiple transmissions, interleaving, and interpola-

tion. We conclude from this preliminary work that the final

choice of channel coder should depend on the relative impor-

tance among delay, bandwidth, and burstiness of noise.

Our preliminary work on the compression and error pro-

tection aspects of distributed speech recognition has provided

clear insight into the tradeoffs we need to make between source

coding, delay, computational complexity and resilience to

packet losses. Most significantly, the new algorithms developed

have brought down the Mel-cepstra compression rate to as low

as 1.6 Kbps with virtually no degradation in word error rate

compared with no compression. These results are currently

being incorporated into the next version of MiPad.

IV. CONTINUOUS SPEECH RECOGNITION AND UNDERSTANDING

While the compressed and error-protected Mel-cepstral

features are computed in the MiPad client, major computation

for continuous speech recognition (decoding) resides in the

server. The entire set of the language model, hidden Markov

models (HMMs), and lexicon that are used for speech decoding

all reside in the server, which processes the Mel-cepstral

features transmitted from the client. Denoising operations such

as SPLICE that extract noise-robust Mel-cepstra can reside

either on the server or the client, though we implemented it on

the server for convenience.

MiPad is designed to be a personal device. As a result, speech

recognition uses speaker-adaptive acoustic models (HMMs)

and a user-adapted lexicon to improve recognition accuracy.

The continuous speech recognition engine and its HMMs are a

hybrid that combines the best features of Microsoft’s Whisper

and HTK. Both MLLR and MAP adaptation are used to adapt

the speaker-independent acoustic model for each individual

speaker. We used 6000 senones, each with 20-component

mixture Gaussian densities. The context-sensitive language

model is used for relevant semantic objects driven by the

user’s pen tapping action, as described in Section IV. As

speech recognition accuracy remains as a major challenge for

MiPad usability, most of our recent work on MiPad’s acoustic

modeling has focused on noise robustness as described in

Section II. The work on language modeling for improving

speech recognition accuracy has focused on language model

portability, which is described in this section.

The speech recognition engine in MiPad uses the unified lan-

guage model [25] that takes advantage of both rule-based and

data-driven approaches. Consider two training sentences:

“Meeting at three with John Smith.” versus

“Meeting at four PM with Derek.”

Within a pure -gram framework, we need to estimate

John three with and Derek PM with

individually. This makes it very difficult to capture the obviously

needed long-span semantic information in the training data. To

overcome this difficulty, the unified model uses a set of Context

Free Grammars (CFGs) that captures the semantic structure of

the domain. For the example listed here, we may have CFGs for

NAME and TIME respectively, which can be derived from

the factoid grammars of smaller sizes. The training sentences

now look like:

“Meeting at three:TIME with John Smith:NAME ,”

and

“Meeting at four PM:TIME with Derek: NAME .”

With parsed training data, we can now estimate the -gram

probabilities as usual. For example, the replacement of

John three with NAME TIME with

makes such “ -gram” representation more meaningful and

more accurate.
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TABLE I
CROSS-DOMAIN SPEAKER-INDEPENDENT SPEECH RECOGNITION PERFORMANCE WITH

THE UNIFIED LANGUAGE MODEL AND ITS CORRESPONDING DECODER

Inside each CFG, however, we can still derive

John Smith NAME and four PM TIME

from the existing -gram ( -gram probability inheritance)

so that they are appropriately normalized [25]. This unified

approach can be regarded as a generalized n-gram in which

the vocabulary consists of words and structured classes. The

structured class can be simple, such as DATE , TIME ,

and NAME , if there is no need to capture deep structural

information. It can be made complicated also in order to contain

deep structured information. The key advantage of the unified

language model is that we can author limited CFGs for each

new domain and embed them into the domain-independent

-grams. In short, CFGs capture domain-specific structural

information that facilitates language model portability, while

the use of -grams makes the speech decoding system robust

against catastrophic errors.

Most decoders can only support either CFGs or word

-grams. These two ways of representing sentence probabil-

ities were mutually exclusive. We modified our decoder so

that we can embed CFGs in the -gram search framework to

take advantage of the unified language model. An evaluation

of the use of the unified language model is shown in Table I.

The speech recognition error rate with the use of the unified

language model is demonstrated to be significantly lower than

that with the use of the domain-independent trigram. That is,

incorporating the CFG into the language model drastically

improves cross-domain portability. The test data shown in

Table I are based on MiPad’s PIM conversational speech.

The domain-independent trigram language model is based on

Microsoft Dictation trigram models used in Microsoft Speech

SDK 4.0. In Table I, we also observe that using the unified

language model directly in the decoding stage produces about

10% fewer recognition errors than doing -best re-scoring

using the identical language model. This demonstrates the

importance of using the unified model in the early stage of

speech decoding.

The spoken language understanding (SLU) engine used in

MiPad is based on a robust chart parser [26] and a plan-based di-

alog manager [27], [28]. Each semantic object defined and used

for SLU is either associated with a real-world entity or an action

that the application takes on a real-entity. Each semantic object

has slots that are linked with their corresponding CFG. In con-

trast to the sophisticated prompting response in voice-only con-

versational interface, the response is a direct graphic rendering

of the semantic object on MiPad’s display. After a semantic ob-

ject got updated, the dialog manager fulfills the plan by exe-

cuting application logic and error repair strategy.

One of the critical tasks in SLU is semantic grammar au-

thoring. It is necessary to collect a large amount of real data

to enable the semantic grammar to yield a decent coverage. For

spontaneous PIM application, MiPad SLU engine’s slot parsing

error rate in the general Tap and Talk field is above 40%. About

half of these errors are due to the free-form text that are related

to email or meeting subjects.

After collecting additional MiPad data, we are able to reduce

the SLU parsing error by more than 25%, which might still be

insufficient to be useful. Fortunately, with our imposed context

constraints in the Tap and Talk interface, where slot-specific lan-

guage and semantic models can be leveraged, most of today’s

SLU technology limitations can be overcome.

V. MiPad USER INTERFACE DESIGN AND EVALUATION

As mentioned previously, MiPad does not employ speech

synthesis as an output method. This design decision is moti-

vated mainly by the following two reasons. First, despite the

significant progress in synthesis technologies, especially in the

area of concatenated waveforms, the quality of synthesized

speech has remained unsatisfactory for large scale deployments.

This is also evident as the majority of commercial telephony

speech applications still rely heavily on pre-recorded speech,

with synthesized speech playing a minor role. The most critical

drawback of speech output, however, is perhaps not with the

quality of synthesized speech, which hopefully can be further
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improved, but with the nonpersistent or volatile nature of

speech presentation. The human user must process the speech

message and memorize the contents of the message in real time.

There is no known user interface design that can elegantly assist

the human user for the cases where the speech waveform cannot

be easily heard and understood, or there is simply too much

information to be absorbed. In contrast, a graphical display can

render a large amount of information persistently for leisure

consumption, avoiding the aforementioned problems.

MiPad takes advantage of the graphical display in UI design.

The graphical display simplifies dramatically the dialog man-

agement. For instance, MiPad is able to considerably streamline

the confirmation and error repair strategy as all the inferred user

intentions are confirmed implicitly on the screen. Whenever an

error occurs, the user can correct it through the GUI or speech

modalities that are appropriate and appear more natural to the

user. Thanks to the display persistency, users are not obligated

to correct errors immediately after they occur. The display also

allows MiPad to confirm and ask the user many questions in a

single turn. Perhaps the most interesting usage of the display,

however, is the Tap & Talk interface.

A. Tap & Talk Interface

Because of MiPad’s small form-factor, the present pen-based

methods for getting text into a PDA (Graffiti, Jot, soft keyboard)

are potential barriers to broad market acceptance. Speech is gen-

erally not as precise as a mouse or a pen to perform position-re-

lated operations. Speech interaction can also be adversely af-

fected by unexpected ambient noise, despite the use of denoising

algorithms in MiPad. Moreover, speech interaction could be am-

biguous without appropriate context information. Despite these

disadvantages, speech communication is not only natural but

also provides a powerful complementary modality to enhance

the pen-based interface if the strengths of using speech can be

appropriately leveraged and the technology limitations be over-

come. In Table II, we elaborate several cases which show that

pen and speech can be complementary and used effectively for

handheld devices. The advantage of pen is typically the weak-

ness of speech and vice versa.

Through usability studies, we also observed that users tend

to use speech to enter data and pen for corrections and pointing.

Three examples in Table III illustrate that MiPad’s Tap and Talk

interface can offer a number of benefits. MiPad has a field that is

always present on the screen as illustrated in MiPad’s start page

in Fig. 7(a) (the bottom gray window is always on the screen).

Tap & Talk is a key feature of the MiPad’s user interface de-

sign. The user can give commands by tapping the Tap & Talk

field and talking to it. Tap & Talk avoids the speech detec-

tion problem that is critical to the noisy environments encoun-

tered in MiPad’s deployments. The appointment form shown on

MiPad’s display is similar to the underlying semantic objects.

By tapping on the attendees field in the calendar card shown in

Fig. 7(b), for example, the semantic information related to po-

tential attendees is used to constrain both CSR and SLU, leading

to a significantly reduced error rate and dramatically improved

throughput. This is because the perplexity is much smaller for

TABLE II
COMPLEMENTARY STRENGTHS OF PEN AND SPEECH AS INPUT MODALITIES

each slot-dependent language and semantic model. In addition,

Tap & Talk functions as a user-initiative dialog-state specifica-

tion. The dialog focus that leads to the language model is en-

tirely determined by the field tapped by the user. As a result,

even though a user can navigate freely using the stylus in a pure

GUI mode, there is no need for MiPad to include any special

mechanism to handle spoken dialog focus and digression.

B. Visual Feedback for Speech Inputs

Processing latency is a well recognized issue in user interface

design. This is even more so for MiPad in which distributed

speech recognition is employed. In addition to the recognition

process itself, the wireless network further introduces more

latency that sometimes is not easily controllable. Conventional

wisdom for UI design dictates that filling the time with visual

feedback not only significantly improves the usability, but also

prevents users from adversely intervening an ongoing process

that cannot be easily recoverable. For these reasons, MiPad

adopts a visual feedback for speech inputs. In addition, we have

designed the visual feedback to help the user avoid a common

cause for recognition error—waveform clipping. As the user

speaks, MiPad displays a running graphical volume meter

reflecting the loudness of the recorded speech right beneath the

input field being dictated to. When the utterance is beyond the

normal dynamic range, red bars are shown to instruct the user to

lower the voice volume. When MiPad detects the end of a user

utterance and sends the speech feature to the host computer

for processing, a progress bar is overlaid on top of the volume

meter. Although the underlying speech application program

interface (SAPI) can raise an event whenever the recognizer

exits a word node on the grammar, we found channeling back

this event to MiPad consumes too much network traffic, which

seems to outweigh the benefits of a detail and precise progress

report. As a result, the current implementation employs a best

attempt estimate on the recognition and understanding progress,

not unlike the progress bar commonly seen in a Web browser.

The progress estimation is computed solely on the client side

with no network traffic involved. Before the outcome is served

back to MiPad, the user can click a cancel button next to the

status bar to stop the processing at the host computer. If the

status bar vanishes without changing the display, it indicates

that the utterance has been rejected either by the recognizer or

by the understanding system. MiPad’s error repair strategy is

entirely user initiative: the user can decide to try again or do

something else.



616 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 8, NOVEMBER 2002

Fig. 7. Concept design for (a) MiPad’s first card and (b) MiPad’s calendar card.

TABLE III
THREE EXAMPLES SHOWING BENEFITS TO COMBINE SPEECH AND PEN FOR MIPAD USER INTERFACE

C. User Study Results

Our ultimate goal is to make MiPad produce real value to

users. It is necessary to have a rigorous evaluation to measure

the usability of the prototype. Our major concerns are:

“Is the task completion time much better?” and

“Is it easier to get the job done?”

For our user studies, we set out to assess the performance of

the current version of MiPad (with PIM features only) in terms

of task-completion time, text throughput, and user satisfaction.

In this evaluation, computer-savvy participants who had little

experience with PDAs or speech recognition software used the

partially implemented MiPad prototype. The tasks we evaluated

include creating a new appointment and creating a new email.

Each participant completed half the tasks using the tap and talk

interface and half the tasks using the regular pen-only the iPad

interface. The ordering of tap and talk and pen-only tasks was

random but statistically balanced.

1) Is Task Completion Time Much Better?: Twenty subjects

were included in the experiment to evaluate the tasks of creating

a new email, and creating a new appointment. Task order was

randomized. We alternated tasks for different user groups using

either pen-only or Tap & Talk interfaces. The text throughput is

calculated during e-mail paragraph transcription tasks. On av-

erage it took the participants 50 s to create a new appointment

with the Tap & Talk interface and 70 s with the pen-only inter-

face. This result is statistically significant with ,

. Time savings were about 30%. For transcribing an

email it took 2 min and 10 s with Tap & Talk and 4 min and 21

s with pen-only. This difference is also statistically significant,

, . These time savings were about 50%.

Error correction for the Tap & Talk interface remains as one of

the most unsatisfactory features. In our user studies, calendar

access time using the Tap & Talk methods is about the same as

pen-only methods, which suggests that pen-based interaction is

suitable for simple tasks.



DENG et al.: DISTRIBUTED SPEECH PROCESSING IN MiPad’S MULTIMODAL USER INTERFACE 617

Fig. 8. User study on task completion times of email transcription and of
making appointment, showing comparisons of the pen-only interface with the
Tap and Talk interface. The standard deviation is shown above the bar of each
performed task.

2) Is It Easier to Get The Job Done?: Fifteen out of the 16

participants in the evaluation stated that they preferred using

the Tap & Talk interface for creating new appointments and all

16 said they preferred it for writing longer emails. The pref-

erence data is consistent with the task completion times. Error

correction for the Tap & Talk interface remains as one of the

most unsatisfactory features. On a seven-point Likert scale, with

one being “disagree” and seven being “agree,” participants re-

sponded with a 4.75 that it was easy to recover from mistakes.

Fig. 8 summarizes the quantitative user study results on task

completion times of email transcription and of making appoint-

ment, showing comparisons of the pen-only interface with the

Tap & Talk interface. The standard deviation is shown above the

bar of each performed task.

VI. SUMMARY

This paper describes work in progress in the development
of a consistent human–computer interaction model and corre-
sponding component technologies for multimodal applications.
Our current applications comprise mainly PIM functions. De-
spite this incomplete implementation, we have observed that
speech and pen have the potential to significantly improve user
experience in our preliminary user study. Thanks to the multi-
modal interaction, MiPad also offers a far more compelling user
experience than standard voice-only telephony interaction.

Though Moore’s law also tells us that all the processing may
be done in the device itself in the future, the success of the
current MiPad depends on an always-on wireless connection.
With upcoming 3G wireless deployments in sight, the critical
challenge for MiPad remains the accuracy and efficiency of
our spoken language systems since it is likely that MiPad will
be used in noisy environments with no availability of a close-
talking microphone, and the server also needs to support a large
number of MiPad clients.

To meet this challenge, much of our recent work has focused
on the noise-robustness and transmission efficiency aspects of
the MiPad system. In this paper, we first described our new
front-end speech processing algorithm development, based on

the SPLICE technology, and some evaluation results. We then
outlined some recent work on speech feature compression and
error protection necessary to enable distributed speech recog-
nition in MiPad. Various other MiPad system components, in-
cluding user interface, HMM-based speech modeling, unified
language model, and spoken language understanding, are also
discussed. The remaining MiPad system components, i.e., di-
alog management, as well as its interaction with the spoken lan-
guage understanding component, are not included in this paper;
readers are referred to [27] and [28] for a detailed discussion of
this topic.

Future development of spoken language systems in a mobile
environment beyond MiPad will require us and the rest of
the research community to face much greater challenges than
we have encountered during the development of MiPad. One
promising future direction for noise robustness which we
will pursue includes intelligent combination of nonparametric
approaches (such as SPLICE) and parametric approaches that
take advantage of accurate knowledge of the physical nature
of speech distortion. For example, knowledge of the phase
relationship between the clean speech and the corrupting noise
has been shown to be beneficial in providing better prior
information in robust statistical feature extraction than the
environment models which do not take account of the phase
information [8], [13]. A combination of accurate acoustic
environment models and knowledge about the speech distortion
learned directly from stereo data will enable the recognizer’s
front end to effectively combat wider types and levels of speech
distortion than our current algorithms can handle.

For future speech recognition technology to be usable in
a mobile environment, it is necessary to break from the con-
strained vocabulary tasks as well as the relatively constrained
speaker style. For example, in order to enable users to freely
dictate e-mails, especially to friends and relatives, it may be
difficult to constrain the vocabulary size and the strict dicta-
tion-like speaking style. More powerful speech recognition
technology may be needed to achieve final success in such
applications.

In the speech understanding and dialog management areas,
we expect the multimodal integration in mobile environments
to play a more dominant role than in the current MiPad. For
example, the understanding component must be able to infer
users’ intention by integrating signals from a variety of input
media. Cross-modality reference resolution becomes a key issue
here. However, the increase in input modalities, together with
a larger speech lexicon, will require understanding algorithms
that deal more effectively with even higher perplexity. We an-
ticipate that better dialog contextual management supplemented
with external models of user preference will prove beneficial in
successfully handling such a high-perplexity problem.
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