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Abstract

Probabilistic inference on a big data scale is be-
coming increasingly relevant to both the machine
learning and statistics communities. Here we in-
troduce the first fully distributed MCMC algo-
rithm based on stochastic gradients. We argue
that stochastic gradient MCMC algorithms are
particularly suited for distributed inference be-
cause individual chains can draw mini-batches
from their local pool of data for a flexible amount
of time before jumping to or syncing with other
chains. This greatly reduces communication
overhead and allows adaptive load balancing.
Our experiments for LDA on Wikipedia and
Pubmed show that relative to the state of the art
in distributed MCMC we reduce compute time
from 27 hours to half an hour in order to reach
the same perplexity level.

1. Introduction

Probabilistic inference methods that can operate on a very
large data scale are becoming increasingly relevant in an
era that data volume grows exponentially. Two promis-
ing directions in this respect are stochastic gradient vari-
ational inference (Hoffman et al., 2010) and stochastic gra-
dient MCMC algorithms (Welling & Teh, 2011; Ahn et al.,
2012; Patterson & Teh, 2013). The main innovation for
both classes of algorithms is that only a small mini-batch of
data is necessary for every update, allowing many more up-
dates per time interval. In the context of MCMC this leads
to much shorter burn-in times and faster mixing speeds.

In this paper we are concerned with parallelizing stochas-
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tic gradient MCMC algorithms. The most straightfor-
ward, embarrassingly parallel implementation would be to
copy the full dataset to each worker, run separate Markov
chains and use their results as independent samples (see
e.g. (Wilkinson, 2006; Laskey & Myers, 2003; Ahn et al.,
2013)). However, the size of modern day datasets can be
so large that a single machine cannot store the full dataset.
In this case, one can still parallelize most MCMC algo-
rithms by performing data-specific computations (e.g. the
gradient of the log-probability for one data-case) locally on
each relevant worker and combining these computations in
a master server. The disadvantage of these methods is how-
ever that they lead to very high communication costs.

We argue that MCMC algorithms based on stochastic mini-
batches have a key property that make them ideally suited
for parallelization, namely that each Markov chain can in-
dependently generate samples for a variable amount of
time, which can later be combined. The reason is that each
chain can draw mini-batches from its local pool of data in
order to generate samples. Chains must jump to other ma-
chines (synchronously or asynchronously) in order to gen-
erate unbiased estimates of the posterior in the limit, but
the time spend on each worker is flexible provided that the
chain’s hyper-parameters are properly adjusted to remove
potential bias. This flexibility leads to less communication
(because chains can run longer on individual workers) and
entirely removes the problem that fast workers are blocked
by slower workers because they depend on their results in
order to proceed.

We present distributed stochastic gradient Langevin dy-
namics (D-SGLD) and apply it to topic modeling. In this
setting, we show that relative to the current fastest se-
quential MCMC sampler (Patterson & Teh, 2013), and the
fastest approximate distributed MCMC samplers (Newman
etal., 2007; Ahmed et al., 2012; Smola & Narayanamurthy,
2010), D-SGLD achieves equivalent perplexities at least an
order of magnitude faster.
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2. Preliminaries

Let X = {x1,...,zxn} be a dataset of N i.i.d. data points
assumed to be sampled from a parameterized distribution
p(z]0) where § € R? has a prior distribution p(f). We
are interested in collecting samples from the posterior dis-
tribution p(0|X) « p(X|0)p(0). As discussed above, we
assume that the dataset X is too large to reside in a sin-
gle machine. Therefore, it is partitioned into S subsets,
called shards: Xi,...,Xg such that X = U,X, and
N = >, Ns. We assign shard X, = {z1,... 2% } to
worker s, where s = 1,...,5. We refer to the posterior
distribution based on a specific shard as local posterior:

p(01X) o< p(X]0)p(6).

The score function or the gradient of the log likelihood
given a data point x is denoted by ¢g(6; x) = Vg log p(6; ).
We also denote a mini-batch of n data points by X" when
sampled from X and by X7 when sampled from shard X.
Additional time index ¢ is used sometimes to distinguish
mini-batches sampled over iterations: X¢',. The sum and
mean of scores over all elements of a set, X, are denoted
by G(0;X) = X ,cx 9(0;2) and §(0; X) = 37G(6; X)
respectively. We now review two approaches to scale up
MCMC algorithms; one by using mini-batches and the
other by using distributed computational resources.

2.1. Mini-batch-based MCMC

The stochastic gradient Langevin dynamics (SGLD) pro-
posed by Welling and Teh (2011) is the first sequential
mini-batch-based MCMC algorithm. In SGLD, the param-
eters are updated as follows:

€
Oi1 0+ 5 {Viogp(0h) + Ng(0; X{')} + 1. (1)

Here €, is the step size and v; ~ N(0,¢) is the in-
jected Gaussian noise. The gradient of the log-likelihood,
G(0;; X), over the whole dataset is approximated by scal-
ing the mean score, g(6y; X7*) = £ > zexy 9(0; @), com-
puted based on a mini-batch X{* of size n < N. SGLD
does not use accept-reject tests because as the step size goes
to zero the acceptance rate tends to one. Therefore, SGLD
requires only O(n) computations to generate each sample,
unlike traditional MCMC algorithms that require O(N)
computations per iteration. Because computing g(6:, X}")
in parallel within a multi-core worker is straightforward,
throughout the paper we assume that each worker is single-
core.

We can generalize the SGLD update rule in Eqn. (1) by
replacing the mean score g(6;; X}*) to a general form of
score estimator f(6;, Z; X), where Z is a set of auxiliary
random variables associated with the estimator. According
to Welling & Teh (2011), an estimator f (6, Z; X) is guar-
anteed to converge to the correct posterior if (i) f(0:, Z; X)

is an unbiased estimator of §(0;; X) = & >, c ¢ 9(0s; @)
(assuming the variance of f is finite) and (ii) the step size
is annealed to zero by a schedule satisfying Y ,~ ¢, = 00
and >_;° | € < oo.

Definition 1. We define an estimator f (6, Z; X) as a valid
SGLD estimator if it is an unbiased estimator of §(6; X),
ie,Ez[f(0,7;X)] = g(0; X), where E denotes expec-
tation w.r.t. the distribution p(Z; X), and it has finite vari-
ance Vz[f(0,Z; X)] < cc.

For an alternative way to speed-up MCMC by using a mini-
batch-based Metropolis-Hastings (MH) test, refer to Korat-
tikara et al. (2014); Bardenet et al. (2014).

2.2. Distributed Inference in LDA

Distributing the workload using a cluster of workers is an-
other way of speeding up MCMC. In this paper we are
interested in topic models for which a number of dis-
tributed MCMC algorithms have already been developed
(our method is more generally applicable however). In ap-
proximate distributed LDA (AD-LDA) by Newman et al.
(2007) the computation cost per sample is reduced to (’)(%)
by allowing each worker to perform collapsed Gibbs sam-
pling only on its local shard. AD-LDA also corrects (ap-
proximately) the biases in the local copies of the global
states by allowing for regular global synchronization.

However, AD-LDA suffers from some shortcomings. First,
it becomes slower as the dataset size increases, unless ad-
ditional workers are provided. Second, due to the global
synchronization, it suffers from the “block-by-the-slowest”
problem, meaning that some workers are blocked until the
slowest worker finishes its task. Lastly, running parallel
chains usually adds large overhead. Yahoo-LDA (Y-LDA)
(Ahmed et al., 2012) performs asynchronous updates to
resolve the block-by-the-slowest problem. However, the
unbounded asynchronous updates could deteriorate perfor-
mance (Ho et al., 2013).

3. Distributed Stochastic Gradient Langevin
Dynamics (D-SGLD)

3.1. SGLD on Partitioned Datasets

We begin the exposition of our algorithm with the follow-
ing question: “Is an SGLD algorithm that samples mini-
batches from randomly chosen local shards valid?” The
number of possible combinations of mini-batches that can
be generated by this procedure is significantly smaller set
than that of the standard SGLD. The answer will clearly
depend on quantities like the shard sizes and shard selec-
tion probabilities. We now introduce an estimator g4 in the
proposition below as an answer to the above question (the
proof is provided in the supplementary material).
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Proposition 3.1. For each shard s = 1,...,S, given the
shard size, Ng, and the normalized shard selection fre-
quency, qs, such that Ny > 0, Zle Ns =N, g; € (0,1),
and Zle qs = 1, the following estimator is a valid SGLD
estimator,

def N
- Ny
where shard s is sampled by a scheduler h(Q) with fre-
quencies Q = {q1,...,qs}.

ga(0; X{) g9(6; X¢) )

For example, we can (1) choose a shard by sampling
s ~ h(Q) = Category (q1,---,qs), (2) sample a mini-
batch X' from the selected shard, (3) compute mean score
g(0; XI) using that mini-batch, and then (4) multiply the
mean score by K,V—q to correct the bias. Then, the resulting
SGLD update rule becomes

Ori1 < O; + 6—; {Vlogp(ﬂt) +
St

We can interpret this as a correction to the step sizes for the
g(0; X7 ) term. That is, the algorithm takes larger steps
for shards that are relatively larger in size and/or used less
frequently than others. This implies that every data-case
contributes equally to the mixing of the chain. Note that Q
represent free parameters that we can choose depending on
the system properties.

3.2. Traveling Worker Parallel Chains

Now assume that the shards are distributed between the
workers, so from now on selecting shard s is equivalent
to choosing worker s. We note that running the above algo-
rithm occupies only a single worker at a time. Therefore,
assuming single-core workers, it is possible to run C' (< S)
independent and valid SGLD chains in parallel, i.e., one
chain per worker.

This approach, however, has some shortcomings. First, the
communication cycle is still short O(n) because each chain
is required to jump to a new worker at every iteration. Sec-
ond, it can suffer from the block-by-the-slowest problem if
its next scheduled worker is still occupied by another chain
due to workers’ imbalanced response delays. The response
delay, denoted by dg, is defined as the elapsed time that
worker s spends to process a O(n) workload. In the fol-
lowing sections, we present our method to address these
issues.

3.2.1. DISTRIBUTED TRAJECTORY SAMPLING

To deal with the “short-communication-cycle” problem, we
propose to use trajectory sampling: instead of jumping
to another worker at every iteration, each chain c takes 7
consecutive updates in each visit to a worker. Then, af-
ter 7 updates, only the last (7th) state is passed to the next

Nst— n
g(9t;XSt)} +rvi. (3)

worker of the chain. Trajectory sampling reduces commu-
nication overhead by increasing the communication cycle
from O(n) to O(rn). Furthermore, instead of transferring
all samples collected over a trajectory to the master, we can
store them in a distributed way by caching each trajectory
at its corresponding worker. This keeps the packet size at
O(1) regardless of the trajectory length, and mitigates the
memory problem caused by storing many high-dimension
samples at a single machine.

In trajectory sampling for parallel chains, we employ a
scheduler h.(Q) for each chain ¢ to choose the next worker
from which the next trajectory is sampled. Note here that
the scheduler is now called with an interval 7. Because
there are a total of C' such schedulers (one per chain), the
schedulers should avoid two situations in order to be ef-
ficient: (1) collision (i.e., multiple chains visit a worker
at the same time), and (2) jump-in-place (i.e., jumping to
the current worker) can negatively affect mixing across
shards. One way to avoid these issues is to set Q uni-
form, and simply use a random permutation (or, cyclic ro-
tation) to assign chains to workers. That is, we can sam-
ple the chain-to-worker assignments by (s',...,s)
(h1(Q),...,hc(Q)) = RANDPERM(S). Here, s denotes
a worker that chain ¢ is scheduled to visit; we assume
C = S for simplicity.

~

Similar to the effect of step sizes in standard SGLD, trajec-
tory lengths can also be used to control the level of approx-
imation by trading off computation time with asymptotic
accuracy. As both the trajectory length and the annealed
step sizes {e; } can affect the equilibrium distribution of the
chain, we consider first that € is fixed. Then, with a long
trajectory, we can reduce the communication overhead at
the cost of some loss in asymptotic accuracy. In fact, it
is not difficult to see that in this case our method samples
from a mixture of local posteriors, + Zle pe(0]X;) atone
end of the spectrum where long trajectory lengths are used,
and it approaches the true posterior at the other end of the
spectrum with short trajectory lengths (e is small enough).

Note that this is indeed the desired behavior when deal-
ing with massive datasets. That is, as N — oo, the lo-
cal posteriors become close to the true posterior and thus
the error decreases by the central limit theorem (provided
X is a uniform random partition of X): g(6; Xs) ~
N (E[g(0; z)],Cov[g(8; z)]/Ns). Therefore, as the dataset
increases, we can increase the trajectory length accordingly
without a significant loss in asymptotic accuracy. The fol-
lowing Corollary 3.2 states that for any finite 7, trajectory
sampling is a valid SGLD (assuming the step sizes decrease
to zero over time).

Corollary 3.2. A trajectory sampler with a finite T > 1,
obtained by redefining the worker (shard) selection process
h(Q) in Proposition 3.1 by the process h(Q, T) below, is a
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Figure 1. Illustration of adaptive load balancing. Each row represents a worker and the chains are represented by different colors. The
box filled by diagonal lines are block-time, and at the vertical dotted lines represent chains jumping to other workers. A sample is
collected at each arrow whose length represents the time required to collect the sample. In the present example, four workers have
different response delays, 3, 1, 2, and 4, respectively. In (a) 7 is set to a constant 7 = 3 for all workers, and in (b) with T = %5, the

trajectory plan becomes 7 = (4, 12,6,3), and in (c), T = (3,9,4.5,2.25) with 7 = 75,

valid SGLD sampler. h(Q,T) : for chain ¢ at iteration t,
choose the next worker s{, 1 by
. iL(Q), ift="krfork=0,1,2,...
Si41 =9 ¢ .
otherwise,

“4)

s¢,
where iL(Q) is an arbitrary scheduler with selection prob-
abilities Q.

3.2.2. ADAPTIVE LOAD BALANCING

Using trajectory sampling, we can mitigate the short-
communication-cycle problem. Moreover, if response de-
lays are balanced, we can set Q to be uniform and use a
random permutation scheduler to keep the block-by-the-
slowest delay small. However, for imbalanced response
delays, using uniform Q would lead to long block-by-the-
slowest delays (See, Fig. 1 (a)). In this section, we propose
a solution to balance the workloads by adapting Q to the
worker response delays.

The basic idea is to make the faster workers work longer
until the slower workers finish their tasks so that the overall
response times of the workers become as balanced as pos-
sible. For instance, twice longer trajectories can be used
for a worker that is twice as fast. More specifically, we
achieve this by (1) having uniform worker selection and (2)
setting the trajectory length 7, of worker s to 7, = ¢s7.5;
here, ¢, is set to d; 1/ Zle d ! (i.e., the relative speed of
worker s), and 7 is a user-defined mean trajectory length:
Elrs] = 3, £¢s7S = 7 (the expectation is w.rt. the
worker selection probability 1/.5).

In other words, we select a worker uniformly and perform
trajectory sampling of length 74, which is proportional to
the relative speed of the worker, ¢s. (If 75 is not an integer,
we can either adjust 7 to make it integer or take simply the
closest integer.) Note that using unequal trajectory lengths
across the workers remains a valid SGLD because the step
sizes are properly corrected by Eqn. (2) where g5 o 7.

This is illustrated in Figure 1 and stated in Corollary 3.3.

Corollary 3.3. Given 15, where 1 < 713 < o0 for
s = 1,...,8, the adaptive trajectory sampler, obtained

16

by redefining the worker (shard) selection process h(Q)
in Proposition 3.1 by the process h(Q,{7s}) below, is a
valid SGLD sampler. h(Q,{7s}) : for chain c at iteration
t, choose the next worker s¢ | by

(&)

. h(1/S), ift=kry fork=0,1,2,...
St41 =

55, otherwise,
where h(1/S) is a scheduler with uniform selection proba-
bilities.

Our method can deal with temporal imbalances as well.
To this end, the master needs to monitor the changes in
response delays; when a substantial change is detected, a
new trajectory plan can replace the old one. Note that al-
though this online adaptation affects the Markov property,
it can still converge to correct target distribution assuming
that the adaptation satisfies the Corollary 3.3 and the re-
sponse delays converge fast enough. Refer to Andrieu &
Thoms (2008) for the details of the “fast enough” condi-
tion. Pseudo code for the proposed D-SGLD method is
presented in Algorithm 1.

3.2.3. VARIANCE REDUCTION BY CHAIN COUPLING

Here, we introduce one approach that could reduce the
variance of the gradient estimator in Eqn (2) by having
some interactions among the chains. The basic idea is
to “tie” a group of chains by averaging their correspond-
ing samples. More specifically, consider R < S chains
forming a group and staying at a state ; at time t, i.e.,
07 =0, forr =1,..., R. After an update using the stan-
dard SGLD update rule in Eqn. (1), we have R different
states 0} T PR 05_1. By averaging the new states, we have

1 R . .
Ory1 = 7 2y 0f 11, Which is

N
975 + % VIng(et) +

R > glbsx)p +o (6)

"L‘GUTX{’;T

Here we used & Y2 Vlogp(d;) = Vlogp(6;) and
LS 07 = 6, noting that 0} = 6, for all r. Note that
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Figure 2. Bias correction and trajectory length effects.

Algorithm 1 D-SGLD Pseudo Code
1: function MASTER(S, C, T)
2 while sampling do
3 Monitor response delays {d}
4: if {d,} are changed enough then
5: Adapt 75 + 7Sd; Y Y5 do Y, s
6.
7
8
9

end if
Assign workers (s!,...,5%) ~ RANDPERM(S)
for each chain c parallel do
: 0. < SAMPLE_TRAI(s, ¢, 0., Ts) (line 13)

10: end for

11:  end while

12: end function

13: function SAMPLE_TRAJ(c, 0, 75)

14:  Initialize 61 < 6

150 fort=1:7,do

16: Sample a mini-batch X7 and noise v ~ N(0, ¢)
17: Obtain ¢; 11 by Eqn. (3) (set g5 = %)
18:  end for

19:  Set trajectory, T, + (61,...,0,.-1)

20:  Store (append) trajectory, ©¢ < [©¢, T¢]
21:  Send the last state 6 to the master

22: end function

although the averaged noise v; = % Zf’:l vy has smaller
variance AV (0, %) than the standard SGLD, we can recover
a valid SGLD with additional noise' 7, ~ N(0, £7te,)
so that 7y + 1y ~ N(0,¢). By the central limit theo-

rem, the variance of the estimator of g(6;; X) reduces from

Corfaltie)] , CovlaOia)]

Although this approach leads to a valid SGLD with reduced
variance in the gradient estimation, unfortunately it is diffi-
cult to perform the trajectory sampling in this case since it
requires communication among chains at each update. One
way to bypass this issue is to employ the averaging strategy
only at the end of each trajectory during the burn-in period.
Alternatively, we can also gradually reduce the number of
chains being coupled. Note that although coupling chains

!The correction cannot be used for the LDA experiments be-
cause for SGRLD the noise term depends on current state 6; .

imposes algorithmic dependency, it is weaker than other
algorithms (e.g., AD-LDA) that require synchronizations
for all workers since (i) the number of dependent chains,
R, in our method is relatively small (R < S5), and (ii) the
response delays are already balanced by the adaptive tra-
jectory sampling.

4. Experiments
4.1. Simple Demonstration

We first illustrate our proposed method based on sam-
pling from a multivariate normal posterior distribution ob-
tained by assuming a normal prior N (p,; p10, Xo) on the d-
dimension mean y,, of a normal distribution N (z; piy, X5)
from which we have observed N samples. Because this is
a conjugate prior, the posterior distribution is also a normal
distribution.

To examine the bias correction effect, we allocated a total
of 20,000 data points to a cluster of 20 workers. Further-
more, we made the shard sizes { N, } highly imbalanced by
setting Ny = 500 for 10 workers and setting Ny = 1500 for
the remaining 10 workers. Then, to impose a higher level
of imbalance, we also used the small shards 7 times more
often than the large shards by setting the trajectory lengths
for the small shards to 70 and those for the large shards to
10. We set the step size ¢ to 10~7 and the mini-batch size
to n = 300.

In Fig. 2 (a) and (b), the black dotted circles represent
the 2-d marginal covariance centered at the mean of the
20 local posteriors. Note that these are rescaled such that
small circles represent the local posteriors based on small
shards, whereas the large circles represent the local poste-
riors based on large shards. Also, the red circle represents
the true posterior, and the dotted blue circle represents the
empirical distribution based on our samples. As we can
see, our algorithm corrects the bias. We have evaluated our
method for various dimensions (up to d = 100) and found
similar results.

The effect of trajectory lengths is also tested in Fig. 2 (c)
and (d) using two different trajectory lengths, 7 = 10, 000
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and 7 = 200, for a cluster of 4 workers. Here, the shard
size was set to 2,000 for each worker, the trajectory lengths
were kept the same for all workers, and the step size, e,
was set to 2 x 1075, As described in section 3.2.1, we
can see that D-SGLD samples from a mixture of the local
posteriors with long trajectory lengths and becomes close
to the standard SGLD posterior as the length decreases.

4.2. Distributed Latent Dirichlet Allocation

Next, we evaluate our method based on an important dis-
tributed inference problem, namely, large-scale LDA, by
comparing the following algorithms:

(a) AD-LDA: In AD-LDA, to obtain a single sample, each
worker s performs collapsed Gibbs iterations only on the
full local shard (and is thus approximate), and then syn-
chronizes its local topic assignments nj,, (for topic k and
word w) at the master to obtain the global state ny,, based
on the update 1y, < Npw + Zf:l (ngw —nj,,). Then, the
local state is updated by the new global state, nj,, < Np.
It is shown that in practice AD-LDA shows comparable
perplexities to the standard collapsed Gibbs sampling.

(b) Async-LDA (Y-LDA): Unlike AD-LDA, Y-LDA
(Ahmed et al., 2012; Smola & Narayanamurthy, 2010) per-
forms asynchronous updates for the global state by the up-
date, ny o < Mg + Zle(fzzw —nj.,,)- Here, Ay, is
a copy of the old local state at the time of previous syn-
chronization. Because Y-LDA is a specific implementa-
tion optimized along with many other dimensions, we im-
plemented an algorithm called Async-LDA which replaces
the update of AD-LDA with the asynchronous update of
Y-LDA. Async-LDA was used to compare with the load
balancing ability of D-SGLD.

(c) SGRLD: Stochastic gradient Riemannian Langevin dy-
namics (SGRLD) (Patterson & Teh, 2013) is a specific
SGLD sampler designed to sample from the probability
simplex using Riemannian manifold. For LDA, SGRLD
achieved fast mixing rate and resulted in the state-of-the-art
performance. Note that SGRLD runs on a single machine
without communication overhead. Specifically, SGRLD
samples from a W -dimension topic probability simplex 6y,
and the mean score §(0x.; X{*) in the update rule is ob-
tained by

_ 1 Ndkw  Ndk-
Ori XP) = = 3 ey | _ Ddke | (g
g( g ’ ) n dEX" d‘ dﬂ’ |: okw ok :| ( )

where the expectation is computed by running a collapsed
Gibbs sampler on the topic assignments z, in each docu-
ment d separately. Refer to Patterson & Teh (2013) for the
full update equation.

Following Patterson & Teh (2013), we set the mini-batch
size to 50 documents, and for each update of Eqn. (7) we

ran 100 Gibbs iterations for each document in the mini-
batch. The step-sizes were annealed by a schedule ¢, =
a(l+t/b)~¢. As we fixed b = 1000 and ¢ = 0.6, the entire
schedule was set by a which we choose by running parallel
chains with different a’s and then choosing the best.

(d) D-SGLD: Our algorithm, D-SGLD for LDA, is built
upon SGRLD. To use SGRLD as our base sampler, we only
need to multiply the bias correction factor ]i,V;s to Eqn. (7).
We used cyclic rotation as the chain-to-worker scheduler
and set the trajectory length 7 = 10 for all workers while
we kept other parameters the same as for SGRLD by de-
fault.

In particular, to see the effect of the variance reduction
(i.e., sample averaging), we implemented three differ-
ent versions of D-SGLD, (i) Complete Coupling (D-CC),
(i) Complete Independent (D-CI), and (iii) Hybrid (D-
Hybrid). D-CC couples all chains; whereas, D-CI runs in-
dependent chains without any interaction among them. D-
Hybrid partitions the chains into groups and the averaging
is performed only for the chains in the same group. When
the variance reduction is used, it was performed at the end
of each trajectory; we did not inject any additional noise
for correction.

Additionally, we used the following settings for all al-
gorithms. The predictive perplexities were computed on
1000 separate holdout set, with a 90/10 (training/test) split,
and LDA’s hyper-parameters were set to « = (.01 and
£ = 0.0001 following Patterson & Teh (2013). The num-
ber of topics K was set to 100. Parallelism within a worker
is not considered, although D-SGLD can be easily paral-
lelized within a worker.

We evaluate these methods based on the following datasets:
(1) Wikipedia corpus, which contains 4.6M articles of ap-
proximately 811M tokens in total. We used the same vo-
cabulary of 7702 words as used by Hoffman et al. (2010).
(ii) PubMed Abstract corpus contains 8.2M articles of ap-
proximately 730M tokens in total. After removing stop-
words and low occurrence (less than 300) words, we ob-
tained a vocabulary of 39,987 words. For our Python im-
plementation, each of the datasets has 47GB memory foot-
print.

Perplexity. We first compare the above algorithms in terms
of the convergence in perplexity over wall-clock time on 20
homogeneous workers dedicated to the given task only. For
D-Hybrid, we set the number of groups, G, to 5 and 3 for
Wikipedia and Pubmed respectively. For Wikipedia, we set
the group size to R = 4. For Pubmed, we set the sizes of
the three groups to 7,7, and 6. To examine the effect of the
variance reduction strategy, it was continued until the end
of the experiment, as opposed to stopping at some point.
The step size parameter a was set to 0.0001 for Wikipedia
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Figure 3. Perplexity. Left: Wikipedia, Right: Pubmed.

y [ D-SGLD [ SGRLD | AD-LDA

Wikipedia 2.6 hr. 27.7 hr.
Pubmed 16.7 hr. 27.7 hr.

10 min.
33 min.

Table 1. Required time to reach the perplexity that AD-LDA ob-
tains after running 10° seconds (27.7 hours).

and to 0.0005 for Pubmed.

In Fig. 3 (a) and (b), we first see that all the variants
of D-SGLD significantly outperform both AD-LDA and
SGRLD. Note that AD-LDA ran in an ideal setting where
each worker has equal workloads (in terms of shard size)
resulting in negligible block-by-the-slowest delays. As
shown in Table 1, D-SGLD required substantially shorter
times than AD-LDA and SGRLD to reach the same per-
plexity level that AD-LDA achieves after running 10° sec-
onds (27.7 hours) indicated by the black horizontal dotted
line. Throughout the experiments, Async-LDA always per-
formed worse than AD-LDA given balanced workloads.

For the three different versions of D-SGLD, we see that D-
CC and D-Hybrid (which use the sample averaging) con-
verge faster than D-CI (which uses independent chains).
However, when we couple too many chains as shown in D-
CC, it could lead to some lose of accuracy (possibly, due
to the bias by the coupling). Hence, in the following ex-
periments, we only use hybrid D-SGLD; a proper group
configuration is chosen by cross-validation. Fig. 4 shows
other effects of the group configuration by increasing group
size (R) and number of groups (G).

Dataset size. In D-SGLD the computation cost per sample
O(n) is independent of N. AD-LDA, on the other hand,
becomes slower as N increases. To see the effect of IV,
we examined the algorithms on random subsets of the full
dataset with different sizes, 100K, 1000K, and full, using
20 homogeneous workers. For N=[100K, 1000K, full],
the initial step sizes a were set to respectively a=[0.005,
0.0005, 0.0001] for Wikipedia and a=[0.01, 0.005, 0.0005]
for Pubmed.

As shown in Fig. 5, for Wikipedia, D-SGLD showed sim-
ilar convergence in perplexity (they increase slightly as
the size of datasets decreases) while providing better re-
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Figure 4. Group size and number of groups. Top: group size, Bot-
tom: number of groups, Left: Wikipedia, Right: Pubmed.
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Figure 5. Dataset size. Left: Wikipedia, Right: Pubmed

sults than AD-LDA in all settings. However, for Pubmed,
which has a larger vocabulary and is expected to have a
larger number of topics, D-SGLD was not better than AD-
LDA for the small (100K) dataset while still had better
performance for larger datasets. In fact, SGRLD seemed
to work less efficiently (and so does D-SGLD) for rather
small datasets as shown by Patterson & Teh (2013) based
on the NIPS corpus. Nevertheless, we found that (results
not shown here) D-SGLD outperforms a single SGRLD
based on a 100K dataset.

Number of workers. We also varied the number of work-
ers while fixing the dataset size to the full. In Fig. 6, we
show the results for three cluster sizes, S = [20,40, 60].
As expected, AD-LDA improves linearly by increasing the
number of workers (i.e., by reducing local shard sizes). For
D-SGLD, we fixed G to 5 and increased only the group size
R to0 4,8,12. Although more workers imposed more com-
munication overhead during sample averaging, D-SGLD
showed its scalability by keeping the performance at a sim-
ilar level (for Pubmed, it is improved). From this result,
we calculated the number of workers required by AD-LDA
to show a similar speed as D-SGLD with 20 workers. As
shown in the Fig. 6, AD-LDA needs 2000 workers for
Wikipedia and 800 workers for Pubmed to obtain a sim-
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Figure 6. Number of workers. Left: Wikipedia, Right: Pubmed
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Figure 7. Load balancing. Left: Wikipedia, Right: Pubmed.

ilar speed as D-SGLD. (This simple calculation does not
include the communication overhead.)

Load balancing. We also examined D-SGLD’s ability to
balance the workloads and thus mitigate the block-by-the-
slowest problem on 20 workers. To do this, we added
dummy delays to half of the workers to make them D times
slower. We denote this setting by (1: D) and used three set-
tings: D = [1,5,10]. The actual response delays then be-
came equal, for example, by setting the trajectory length to
10 for slow workers and to D x 10 for fast ones. The initial
step size a was set to 0.005 for all settings of Wikipedia
and to 0.001 for all settings of Pubmed. Here, we used
100K Wikipedia and 1000K Pubmed corpus because the
Async-LDAs (as well as AD-LDA) were too slow for the
full datasets. As shown in Fig. 7, D-SGLD with load-
balancing through adaptive trajectory sampling converges
much faster than those without load-balancing; it also con-
verges faster than Async-LDA.

Number of topics. We tested the effect of the number of
topics K by examining K=[100,200,300,400,500] on 20
homogeneous workers. As shown in Fig.8, although the
packet size increases for large K, D-SGLD consistently
outperforms SGRLD for all K.

5. Conclusion

We have introduced a novel algorithm, “distributed
stochastic gradient Langevin dynamics (D-SGLD)”. Us-
ing D-SGLD, the advantages of the sequential mini-batch-
based MCMC are extended to distributed computing envi-
ronments. We showed that (i) by adding a proper correction
term, our algorithm prevents the local-subset-bias while
(i1) reducing communication overhead through trajectory
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Figure 8. Number of topics. Top: Wikipedia, Bottom: Pubmed.
Right: Perplexity after 10* updates (that is, the end points of each
line in the left plots).

sampling and adaptive load balancing. Furthermore, (iii)
it improved convergence speed using a variance reduction
strategy. Finally, in several experiments for LDA, we have
shown at least an order of magnitude faster convergence
speed of D-SGLD over the state of the art both in sequen-
tial mini-batch-based MCMC and distributed MCMC. We
believe that D-SGLD is just one example of a much larger
class of powerful MCMC algorithms that combine sam-
pling updates based on mini-batches with distributed com-
putation.
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