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Abstract

In this paper, we study distributed stochastic optimization to minimize a sum of smooth and strongly-convex

local cost functions over a network of agents, communicating over a strongly-connected graph. Assuming that each

agent has access to a stochastic first-order oracle (SFO), we propose a novel distributed method, called S-AB,

where each agent uses an auxiliary variable to asymptotically track the gradient of the global cost in expectation.

The S-AB algorithm employs row- and column-stochastic weights simultaneously to ensure both consensus and

optimality. Since doubly-stochastic weights are not used, S-AB is applicable to arbitrary strongly-connected

graphs. We show that under a sufficiently small constant step-size, S-AB converges linearly (in expected mean-

square sense) to a neighborhood of the global minimizer. We present numerical simulations based on real-world

data sets to illustrate the theoretical results.

Index Terms
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I. INTRODUCTION

In the era of data deluge, where it is particularly difficult to store and process all data on a single device/node/processor,

distributed schemes are becoming attractive for inference, learning, and optimization. Distributed optimization

over multi-agent systems, thus, has been of significant interest in many areas including but not limited to machine

learning [1], [2], big-data analytics [3], [4], and distributed control [5], [6]. However, the underlying algorithms

must be designed to address practical limitations and realistic scenarios. For instance, with the computation and

data collection/storage being pushed to the edge devices, e.g., in Internet of Things (IoT), the data available for

distributed optimization is often inexact. Moreover, the ad hoc nature of setups outside of data centers requires

the algorithms to be amenable to communication protocols that are not necessarily bidirectional. The focus of

this paper is to study and characterize distributed optimization schemes where the inter-agent communication is

restricted to directed graphs and the information/data is inexact.

RX and UAK are with the Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155;

ran.xin@tufts.edu, khan@ece.tufts.edu. AKS is with the Bosch Center for Artificial Intelligence, Pittsburgh, PA;

anit.sahu@gmail.com. SK is with the Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,

PA, 15213; soummyak@andrew.cmu.edu. The work of UAK and RX has been partially supported by an NSF Career Award #

CCF-1350264. The work of SK has been partially supported by NSF under grant # CCF-1513936.

ar
X

iv
:1

90
3.

07
26

6v
2 

 [c
s.L

G
]  

9 
A

pr
 2

01
9



In particular, we study distributed stochastic optimization over directed graphs and propose the S-AB algorithm

to minimize a sum of local cost functions. The S-AB algorithm assumes access to a stochastic first-order

oracle (SFO), i.e., when an agent queries the SFO, it gets an unbiased estimate of the gradient of its local cost

function. In the proposed approach, each agent makes a weighted average of its own and its neighbors solution

estimates, and simultaneously incorporates its local gradient estimate of the global cost function. The exchange

of solution estimates is performed over a row-stochastic weight matrix. In parallel, each agent maintains its own

estimate of the gradient of the global cost function, by simultaneously incorporating a weighted average of its

and its neighbors’ gradient estimates and its local gradient tracking estimate. The exchange of gradient estimates

of the global cost function is performed over a column-stochastic weight matrix. Since doubly-stoachstic weights

are nowhere used, S-AB is an attractive solution that is applicable to arbitrary, strongly-connected graphs.

The main contributions of this paper are as follows: (i) We show that, by choosing a sufficiently small

constant step-size, α, S-AB converges linearly to a neighborhood of the global minimizer. This convergence

guarantee is achieved for continuously-differentiable, strongly-convex, local cost functions, where each agent

is assumed to have access to a SFO and the gradient noise has zero-mean and bounded variance. (ii) We

provide explicit expressions of the appropriate norms under which the row- and column-stochastic weight matrices

contract. With the help of these norms, we develop sharp and explicit convergence arguments.

We now briefly review the literature concerning distributed and stochastic optimization. Early work on deter-

ministic finite-sum problems includes [7]–[9], while work on stochastic problems can be found in [10], [11].

Recently, gradient tracking has been proposed where the local gradient at each agent is replaced by the estimate

of the global gradient [12]–[15]. Methods for directed graphs that are based on gradient tracking [14]–[21]

rely on separate iterations for eigenvector estimation that may impede the convergence. This issue was recently

resolved in [22], [23], see also [24]–[27] for the follow-up work, where eigenvector estimation was removed

with the help of a unique approach that uses both row- and column-stochastic weights. Ref. [22] derives linear

convergence of the finite-sum problem when the underlying functions are smooth and strongly-convex, however,

since arbitrary norms are used in the analysis, the convergence bounds are not sharp. Recent related work on

time-varying networks and other approaches can be found in [28]–[32], albeit, without gradient tracking. Of

significant relevance is [33], where a similar setup with gradient tracking is considered over undirected graphs.

We note that S-AB generalizes [33] and the analysis in [33] relies on the weight matrix contraction in 2-norm

that is not applicable here.

We now describe the rest of the paper. Section II describes the problem, assumptions, and some auxiliary

results. We present the convergence analysis in Section III and the main result in Section IV. Finally, Section V

provides the numerical experiments and Section VI concludes the paper.

Basic Notation: We use lowercase bold letters for vectors and uppercase italic letters for matrices. We use In

for the n × n identity matrix, and 1n for the column of n ones. For an arbitrary vector, x, we denote its ith

element by [x]i and its smallest element by x and its largest element by x. Inequalities involving matrices and



vectors are to be interpreted componentwise. For a matrix, X , we denote ρ(X) as its spectral radius and X∞ as

its infinite power (if it exists), i.e., X∞ = limk→∞X
k. For a primitive, row-stochastic matrix, A, we denote its

left and right eigenvectors corresponding to the eigenvalue of 1 by πr and 1n, respectively, such that π>r 1n = 1

and A∞ = 1nπ
>
r . Similarly, for a primitive, column-stochastic matrix, B, we have B∞ = πc1

>
n .

II. PROBLEM FORMULATION AND AUXILIARY RESULTS

Consider n agents connected over a directed graph, G = (V , E), where V = {1, · · · , n} is the set of agents,

and E is the collection of ordered pairs, (i, j), i, j ∈ V , such that agent j can send information to agent i. We

assume that (i, i) ∈ E , ∀i. The agents solve the following problem:

P1 : min
x∈Rp

F (x) ,
1

n

n∑
i=1

fi(x), (1)

where each fi : Rp → R is known only to agent i. We now formalize the assumptions.

Assumption 1: Each local objective, fi, is µ-strongly-convex, i.e., ∀i ∈ V and ∀x,y ∈ Rp. Thus, we have

fi(y) ≥ fi(x) +∇fi(x)>(y − x) +
µ

2
‖x− y‖22.

Under Assumption 1, the optimal solution for Problem P1 exists and is unique, which we denote as x∗.

Assumption 2: Each local objective, fi, is l-smooth, i.e., its gradient is Lipschitz-continuous: ∀i ∈ V and ∀x,y ∈

Rp, we have, for some l > 0,

‖∇fi(x)−∇fi(y)‖2 ≤ l‖x− y‖2.

We make the following assumption on the agent communication graph, which guarantees the existence of a

directed path from each agent i to each agent j.

Assumption 3: The graph, G, is strongly-connected.

We consider distributed iterative algorithms to solve Problem P1, where each agent is able to call a stochastic

first-order oracle (SFO). At iteration k and agent i, given xik ∈ Rp as the input, SFO returns a stochastic

gradient in the form of gi(x
i
k, ξ

i
k) ∈ Rp, where ξik ∈ Rm are random vectors, ∀k ≥ 0, ∀i ∈ V . The stochastic

gradients, gi(xik, ξ
i
k), satisfy the following standard assumptions:

Assumption 4: The set of random vectors {ξik}k≥0,i∈V are independent of each other, and

(1) Eξik
[
gi(x

i
k, ξ

i
k)|xik

]
= ∇fi(xik),

(2) Eξik
[∥∥gi(xik, ξik)−∇fi(xik)∥∥22 |xik] ≤ σ2.

Assumption 4 is satisfied in many scenarios, for example, when the gradient noise, gi(x
i
k, ξi) − ∇fi(xik), is

independent and identically distributed (i.i.d.) with zero-mean and finite second moment, while being independent

of xik. However, Assumption 4 allows for general gradient noise processes dependent on agent i and the current

iterate xik. Finally, we denote by Fk the σ-algebra generated by the set of random vectors {ξit}0≤t≤k−1,i∈V .



A. The S-AB algorithm

We now describe the proposed algorithm, S-AB, to solve Problem P1. Each agent i maintains two state

vectors, xik and yik, both in Rp, where k is the number of iterations. The variable xik is the estimate of the global

minimizer x∗, while yik is the global gradient estimator. The S-AB algorithm, initialized with arbitrary xi0’s and

with yi0 = gi(x
i
0, ξ

i
0), ∀i ∈ V , is given by the following:

xik+1 =

n∑
j=1

aijx
j
k − αy

i
k, (2a)

yik+1 =

n∑
j=1

bijy
j
k + gi(x

i
k+1, ξ

i
k+1)− gi(x

i
k, ξ

i
k), (2b)

where the weight matrices A = {aij} and B = {bij} are row- and column-stochastic, respectively, and follow

the graph topology, i.e., aij > 0 and bij > 0, iff (i, j) ∈ E . We next write the algorithm in a compact vector

form for the sake of analysis.

xk+1 = Axk − αyk, (3a)

yk+1 = Byk + g(xk+1, ξk+1)− g(xk, ξk), (3b)

where we use the following notation:

xk ,


x1
k
...

xnk

 , yk ,


y1
k
...

ynk

 , g(xk, ξk) ,


g1(x

1
k, ξ

1
k)

...

gn(x
n
k , ξ

n
k )

 ,
and A = A⊗ Ip,B = B ⊗ Ip.

Note that when the variance, σ, of the stochastic gradients is 0, we recover the AB or the push-pull algorithm

proposed in [22], [23]. In the following, we assume p = 1 for the sake of simplicity. The analysis can be extended

to the general case of p > 1 with the help of Kronecker products.

B. Auxiliary Results

We now provide some auxiliary results to aid the convergence analysis of S-AB. We first develop explicit

norms regarding the contractions of the weight matrices, A and B. Since both A and B are primitive and

stochastic, we use their non-1n Perron vectors, πr and πc, respectively, to define two weighted inner products

as follows: ∀x,y ∈ Rn,

〈x,y〉πr
, x>diag(πr)y,

〈x,y〉πc
, x>diag(πc)−1y.



The above inner products are well-defined because the Perron vectors, πr and πc, are positive and thus respectively

induce a weighted Euclidean norm as follows: ∀x ∈ Rn,

‖x‖πr
,
√

[πr]1x21 + · · ·+ [πr]nx2n = ‖diag(
√
πr)x‖2 ,

‖x‖πc
,

√
x21

[πc]1
+ · · ·+ x2n

[πc]n
=
∥∥diag(

√
πc)
−1x

∥∥
2
.

We denote ||| · |||πr
and ||| · |||πc

as the matrix norms induced by ‖·‖πr
and ‖·‖πc

, respectively, i.e., ∀X ∈ Rn×n,

see [34],

|||X |||πr
=
∣∣∣∣∣∣diag(

√
πr)X diag(

√
πr)
−1 ∣∣∣∣∣∣

2
, (4)

|||X |||πc
=
∣∣∣∣∣∣diag(

√
πc)
−1X diag(

√
πc
∣∣∣∣∣∣

2
. (5)

It can be verified that the corresponding norm equivalence relationships between ‖ · ‖2, ‖ · ‖πr
, and ‖ · ‖πc

are

given by

‖ · ‖πr
≤ πr

0.5‖ · ‖2, ‖ · ‖2 ≤ πc
0.5‖ · ‖πc

,

‖ · ‖πc
≤ πc

−0.5‖ · ‖2, ‖ · ‖2 ≤ πr
−0.5‖ · ‖πr

.

We next establish the contraction of the A and B matrices with the help of the above arguments.

Lemma 1: Let Assumption 3 hold. Consider the weight matrices A,B in (3). We have: ∀x ∈ Rn,

‖Ax−A∞x‖πr
≤ σA ‖x−A∞x‖πr

, (6)

‖Bx−B∞x‖πc
≤ σB ‖x−B∞x‖πc

, (7)

with σA , |||A−A∞ |||πr
<1 and σB , |||B −B∞ |||πc

<1.

The proof of Lemma 1 is available in the Appendix. It can be further verified that

σA = σ2

(
diag(

√
πr)Adiag(

√
πr)
−1
)
,

σB = σ2

(
diag(

√
πc)
−1Bdiag(

√
πc)
)
,

|||A |||πr
= |||A∞ |||πr

= ||| In −A∞ |||πr
= 1,

|||B |||πc
= |||B∞ |||πc

= ||| In −B∞ |||πc
= 1,

where σ2(·) is the second largest singular value of a matrix.

In the following, Lemma 2 provides some simple results on the stochastic gradients, Lemma 3 uses the l-

smoothness of the cost functions, while Lemmas 4 and 5 are standard in convex optimization and matrix analysis.

To present these results, we define three quantities:

yk ,
1

n
1>nyk, h(xk) ,

1

n
1>n∇f(xk), x̂k , π>r xk, g(xk, ξk) ,

1

n
1>n g(xk, ξk),

where∇f(xk) , [∇f1(x1
k)
>, . . . ,∇fn(xnk)>]>. The following statements use standard arguments and their formal

proofs are omitted due to space limitations. Similar results can be found in [13], [22], [33].



Lemma 2: Consider the iterates {yk}k≥0 generated by S-AB in (3b) and let Assumptions 2 and 4 hold. Then

the following hold, ∀k ≥ 0:

(1) yk = g(xk, ξk)

(2) E [yk|Fk] = h(xk)

(3) E
[
‖yk − h(xk)‖22

∣∣Fk] ≤ σ2

n

Lemma 3: Consider the iterates {xk}k≥0 generated by the S-AB algorithm in (2) and let Assumptions 2 hold.

Then the following holds, ∀k ≥0:

‖h(xk)−∇F (x̂k)‖2 ≤
l√
n
‖xk − 1nx̂k‖2.

Lemma 4 ( [35]): Let Assumptions 1 and 2 hold. Recall that the global objective function, F , is µ-strongly-

convex and l-smooth. If 0 < α < 1
l , we have: ∀x ∈ Rp,

‖x−∇F (x)− x∗‖2 ≤ (1− αµ)‖x− x∗‖2,

where x∗ is the global minimizer of F .

Lemma 5 ( [34]): Let X ∈ Rn×n be non-negative and x ∈ Rn be a positive vector. If Xx < ωx with ω > 0,

then ρ(X) < ω.

III. CONVERGENCE ANALYSIS

In this section, we analyze the S-AB algorithm and establish its convergence properties for which we present

Lemmas 6-9. The proofs for these lemmas are provided in the Appendix. First, in Lemma 6, we bound ‖yk‖22.

Lemma 6: Let Assumptions 1-4 hold. Then the iterates {yk}k≥0 in (3) follow:

E
[
‖yk‖22

∣∣Fk] ≤ 4n‖πc‖22l2

πr
‖xk − 1nx̂k‖2πr

+ 4n2‖πc‖22l2 ‖x̂k − x∗‖22

+ 4πcE
[
‖yk −B∞yk‖2πc

∣∣Fk]+ 4n‖πc‖22σ2. (8)

Next in Lemmas 7-9, we bound the following three quantities in expectation, conditioned on the σ-algebra Fk:

(i) ‖xk+1−1nx̂k+1‖2πr
, the consensus error in the network; (ii) ‖x̂k+1−x∗‖22, the optimality gap; and, (iii) ‖yk+1−

B∞yk+1‖2πc
, the gradient tracking error. We then show that the norm of a vector composed of these three quantities

converges linearly to a ball around the optimal when the step-size α is fixed and sufficiently small. The first

lemma below is on the consensus error.

Lemma 7: Let Assumption 3 hold. Then the consensus error in the network follows: ∀k ≥ 0,

E
[
‖xk+1 − 1nx̂k+1‖2πr

∣∣Fk] ≤ 1 + σ2A
2

‖xk − 1nx̂k‖2πr
+

2πrα
2

1− σ2A
E
[
‖yk‖22

∣∣Fk] . (9)

The next lemma is on the optimality gap.



Lemma 8: Let Assumptions 1-4 hold. If 0 < α < 1
nπ>

r πcl
, the optimality gap in the network follows: ∀k ≥ 0,

E
[
‖x̂k+1 − x∗‖22

∣∣Fk] ≤ 3απ>r πcl
2

µπr
‖xk − 1nx̂k‖2πr

+

(
1− µnπ>r πcα

2

)
‖x̂k − x∗‖22

+
3α‖πr‖22πc
µnπ>r πc

E
[
‖yk −B∞yk‖2πc

|Fk
]

+
3
(
π>r πc

)2
nα2σ2

2
. (10)

Finally, we quantify the gradient tracking error.

Lemma 9: Let Assumptions 2-4 hold. The gradient tracking error follows:

E
[
‖yk+1 −B∞yk+1‖2πc

|Fk
]
≤ 16l2

πr πc(1− σ2B)
‖xk − 1nx̂k‖2πr

+
1 + σ2B

2
E
[
‖yk −B∞yk‖2πc

|Fk
]

+
4l2α2

πc(1− σ2B)
E
[
‖yk‖22 |Fk

]
+

2nlσ2α

πc
+

4nσ2

πc
. (11)

With the help of the above lemmas, we define a vector, tk ∈ R3, i.e.,

tk =


E
[
‖xk − 1nx̂k‖2πr

]
E
[
‖x̂k − x∗‖22

]
E
[
‖yk −B∞yk‖2πc

]
.


By substituting the bound on E[‖yk‖22|Fk] from Lemma 6 in Lemmas 7-9, and taking the full expectation of

both sides, it can be verified that tk follows the dynamical system below.

tk+1 ≤


1+σ2

A

2 + a1α
2 a2α

2 a3α
2

a4α 1− a5α a6α

a7 + a8α
2 a9α

2 1+σ2
B

2 + a10α
2

 tk +


b1α

2

b2α
2

b3 + b4α+ b5α
2

 ,
, Gαtk + bα, (12)

where the constants are given by

a1 =
8πrn‖πc‖22l2
πr(1−σ2

A) , a8 =
16nl4‖πc‖22
πr πc(1−σ2

B) ,

a2 =
8πrn2‖πc‖22l2

1−σ2
A

, a9 =
16n2l4‖πc‖22
πc(1−σ2

B) ,

a3 =
8πr πc

1−σ2
A
, a10 =

16πcl2

πc(1−σ2
B) ,

a4 =
3π>

r πcl2

µπr
, b1 =

8πrn‖πc‖22σ2

1−σ2
A

,

a5 =
µnπ>

r πc

2 , b2 =
3(π>

r πc)
2nσ2

2 ,

a6 =
3‖πr‖22πc

µnπ>
r πc

, b3 =
4nσ2

πc
,

a7 =
16l2

πc πr(1−σ2
B) , b4 =

2nlσ2

πc
,

b5 =
16nl2‖πc‖22σ2

πr πc(1−σ2
B) .



IV. MAIN RESULT

In this section, we analyze the inequality on tk to establish the convergence of S-AB.

Theorem 1: Consider the S-AB algorithm in (2) and let Assumptions 1-4 hold. Suppose the step-size α satisfies

the following the condition:

0 < α < min


1

lnπ>r πc
,

(
1− σ2A

)√(
1− σ2B

) (
π>r πc

)
lκ ‖πr‖2 ‖πc‖2

√
384hrhc(n ‖πc‖22 + 64)

,

(
1− σ2B

) (
π>r πc

)
lκ ‖πr‖2 ‖πc‖2

√
24
(
n ‖πc‖22 + 48hc

)
 ,

where hr = πr/πr, hc = πc/πc and κ = l/µ. Then, ρ(Gα) < 1, the vector (I3 − Gα)−1bα has non-negative

components, and we have that

lim sup
k→∞

tk ≤ (I3 −Gα)−1bα

lim sup
k→∞

E
[
‖xk − 1nx̂k‖2πr

]
≤
[
(I3 −Gα)−1bα

]
1

lim sup
k→∞

E
[
‖x̂k − x∗‖22

]
≤
[
(I3 −Gα)−1bα

]
2
,

where the above convergence is geometric with exponent ρ(Gα).

Proof: The goal is to find the range of α such that ρ(Gα) < 1. In the light of Lemma 5, it suffices to

solve for the range of α such that Gαδ < δ holds for some positive vector δ = [δ1, δ2, δ3]
>. We now expand

this element-wise matrix inequality as follows:(
1+σ2

A

2 + a1α
2
)
δ1 + a2α

2δ2 + a3α
2δ3 < δ1

a4αδ1 + (1− a5α)δ2 + a6αδ3 < δ2(
a7 + a8α

2
)
δ1 + a9α

2δ2 +
(
1+σ2

B

2 + a10α
2
)
δ3 < δ3

which can be reformulated as:

(a1δ1 + a2δ2 + a3δ3)α
2 < 1−σ2

A

2 δ1 (13)

a4δ1α− a5δ2α+ a6δ3α < 0 (14)

(a8δ1 + a9δ2 + a10δ3)α
2 < 1−σ2

B

2 δ3 − a7δ1. (15)

We first note that in order for (14) to hold, δ1, δ2, δ3 suffice to satisfy:

δ2 >
a4δ1 + a6δ3

a5
(16)

Next, for the right handside of (15) to be positive, δ1, δ3 suffice to satisfy:

0 < δ1 <
1− σ2B
2a7

δ3 (17)

In order to obtain an explicit upper bound on the step-size, α, such that (13)-(15) hold when 0 < α < α, we

set δ1, δ2, δ3 as the following which satisfies (16) and (17):

δ1 = 1, δ2 =
2

a5

(
a4 +

4a6a7
1− σ2B

)
, δ3 =

4a7
1− σ2B

. (18)



Then we plug the values of δ1, δ2, δ3 in (18) into (13) and (14) to solve an upper bound on the step-size, α.

From (13), we get: (
a1 +

2a2
a5

(
a4 +

4a6a7
1− σ2B

)
+

4a3a7
1− σ2B

)
α2 <

1− σ2A
2

(19)

One can further verify that:

a1 +
2a2
a5

(
a4 +

4a6a7
1− σ2B

)
+

4a3a7
1− σ2B

<
192hrhc ‖πr‖22 ‖πc‖

2
2 l

2κ2(64 + n ‖πc‖22)(
1− σ2A

) (
1− σ2B

)
(π>r πc)

2

We use the above inequality in (19) to obtain an upper bound on α:

α <

(
1− σ2A

) (
π>r πc

)
lκ ‖πr‖2 ‖πc‖2

√ (
1− σ2B

)
384hrhc(64 + n ‖πc‖22)

(20)

Similarly, from (15), we get: (
a8
a7

+
2a9
a5a7

(
a4 +

4a6a7
1− σ2B

)
+

4a10
1− σ2B

)
α2 < 1 (21)

One can then verify that:

a8
a7

+
2a9
a5a7

(
a4 +

4a6a7
1− σ2B

)
+

4a10
1− σ2B

<
24l2κ2 ‖πr‖22 ‖πc‖

2
2

(
n ‖πc‖22 + 48hc

)
(
1− σ2B

)2
(π>r πc)

2

Using the above inequality in (21) obtains another upper bound on α:

α <

(
1− σ2B

) (
π>r πc

)
lκ ‖πr‖2 ‖πc‖2

√
24
(
n ‖πc‖22 + 48hc

) (22)

We complete the proof by combining (20), (22) and the requirement from Lemma 8 that 0 < α < 1
nπ>

r πcl
.

It is important to note that the error bounds in Theorem 1 go to zero as the step-size gets smaller and the variance

on the gradient noise decreases.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the S-AB algorithm and its convergence properties. We demonstrate the results

on a directed graph generated using nearest neighbor rules with n = 20 agents. The particular graph for the

experiments is shown in Fig. 1 (left) to provide a sense of connectivity. We choose a logistic regression problem

to classify around 12, 000 images of two digits, 7 and 8, labeled as yij = +1 or −1, from the MNIST dataset [36].

Each image, cij , is a 785-dimensional vector and the total images are divided among the agents such that each

agent has mi = 600 images. Because privacy and communication restrictions, the agents do not share their local

batches (local training images) with each other. In order to use the entire data set for training, the network of

agents cooperatively solves the following distributed logistic regression problem:

min
w,b

F (w, b) =

n∑
i=1

mi∑
j=1

ln
[
1 + e−(w

>cij+b)yij
]
+
λ

2
‖w‖22,



where the private function at each agent, i, is given by:

fi(w, b) =

mi∑
j=1

ln
[
1 + e−(w

>cij+b)yij
]
+

λ

2n
‖w‖22.

We show the performance of this classification problem over centralized and distributed methods. Centralized

gradient descent (CGD) uses the entire batch, i.e., it computes 12, 000 gradients at each iteration, whereas

centralized stochastic gradient descent (C-SGD) uses only one data point at each iteration that is uniformly

sampled from the entire batch. For the distributed algorithms, we show the performance of non-stochastic AB,

where each agent uses its entire local batch, i.e., 600 labeled data points. Whereas, for the implementation

of S-AB, each agent uniformly chooses one data point from its local batch. For testing, we use 2000 additional

images that were not used for training. The residuals are shown in Fig. 1 (right) while the training and testing

accuracy is shown in Fig. 2. In the performance figures, the horizontal axis represents the number of epochs

where each epoch represents computations on the entire batch. Clearly, S-AB has a better performance when

compared to AB in [22] as expected from the performance of their centralized counterparts, C-SGD and CGD.
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10 2

10 1

100
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Fig. 1. (Left) Strongly-connected directed graph. (Right) Residuals.
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Fig. 2. (Left) Training accuracy. (Right) Test accuracy.

VI. CONCLUSIONS

In this paper, we have presented a stochastic gradient descent algorithm, S-AB, over arbitrary strongly-

connected graphs. In this setup, the data is distributed over agents and each agent uniformly samples a data



point (from its local batch) at each iteration of the algorithm to implement the stochastic S-AB algorithm.

To cope with general directed communication graphs and potential lack of doubly-stochastic weights, S-AB

employs a two-phase update with row- and column-stochastic weights. We have shown that under a sufficiently

small constant step-size, S-AB converges linearly to a neighborhood of the global minimizer when the local cost

functions are smooth and strongly-convex. We have presented numerical simulations based on real-world datasets

to illustrate the theoretical results.
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APPENDIX

PROOF OF LEMMA 1

Proof: We start with the proof of (6). Note that Ax−A∞x = (A−A∞)(x−A∞x) that leads to

‖Ax−A∞x‖πr
≤ |||A−A∞ |||πr

‖x−A∞x‖πr
.



By the definition of ||| · |||πr
in (4), we have

|||A−A∞ |||πr
=
∣∣∣∣∣∣diag(

√
πr)(A−A∞)diag(

√
πr)
−1 ∣∣∣∣∣∣

2
,
√
λmax(J),

where J = diag(
√
πr)
−1(A−A∞)>diag(πr)(A−A∞)diag(

√
πr)
−1 and λmax(·) denotes the largest eigenvalue

of the matrix. What we need to show is that ρ(J) < 1. Expanding J , we get

J = diag(
√
πr)
−1A>diag(πr)Adiag(

√
πr)
−1 − diag(

√
πr)
−1A>∞diag(πr)Adiag(

√
πr)
−1

− diag(
√
πr)
−1A>diag(πr)A∞diag(

√
πr)
−1 + diag(

√
πr)
−1A>∞diag(πr)A∞diag(

√
πr)
−1,

, J1 − J2 − J3 + J4.

With the fact that A∞ = 1nπ
>
r , it can be verified that J2 = J3 = J4 =

√
πr
√
π
>
r and thus J = J1 −

√
πr
√
π
>
r . Furthermore, J1

√
πr =

√
πr, and

√
πr
>J1 =

√
πr
>. Since J1 is primitive, by Perron-Frobenius

theorem [34], we have ρ(J) = ρ(J1 −
√
πr
√
π
>
r ) < 1 and thus

σA , |||A−A∞ |||πr
=

√
ρ(J1 −

√
πr
√
π
>
r ) < 1.

To prove (7), we note that Bx−B∞x = (B −B∞)(x−B∞x) and we have the following:

‖Bx−B∞x‖πc
≤ |||B −B∞ |||πc

‖x−B∞x‖πc
.

Next we show that |||B −B∞ |||πc
< 1. By the definition of ||| · |||πc

in (5), we have the following:

|||B −B∞ |||πc
=
∣∣∣∣∣∣diag(

√
πc)
−1(B −B∞)diag(

√
πc)

∣∣∣∣∣∣
2
,
√
λmax(H),

where H = diag(
√
πc)(B − B∞)>diag(πc)−1(B − B∞)diag(

√
πc). Next we show that ρ(H) < 1. We expand

the expression for H as below:

H = diag(
√
πc)B

>diag(πc)−1Bdiag(
√
πc)− diag(

√
πc)B

>
∞diag(πc)−1Bdiag(

√
πc)

− diag(
√
πc)B

>diag(πc)−1B∞diag(
√
πc) + diag(

√
πc)B

>
∞diag(πc)−1B∞diag(

√
πc),

, H1 −H2 −H3 +H4.

With the fact that B∞ = πc1
>
n , one can verify that H2 = H3 = H4 =

√
πc
√
πc
> and thus H = H1−

√
πc
√
π
>
c .

Since H1 is primitive, by Perron-Frobenius theorem [34], we have that

σB , |||B −B∞ |||πc
=

√
ρ(H1 −

√
πc
√
π
>
c ) < 1,

which completes the proof.



PROOF OF LEMMA 6

Proof: Recall that B∞ = πc1
>
n . We have the following hold:

‖yk‖2 ≤ πc
0.5‖yk − πc1

>
nyk‖πc

+ ‖πc1>nyk‖2

= πc
0.5‖yk −B∞yk‖πc

+ ‖πc‖2‖1>nyk‖2

≤ πc
0.5‖yk −B∞yk‖πc

+ n‖πc‖2‖yk − h(xk)‖2 + n‖πc‖2‖h(xk)−∇F (x̂k)‖2

+ n‖πc‖2‖∇F (x̂k)−∇F (x∗)‖2

≤ πc
0.5‖yk −B∞yk‖πc

+ n‖πc‖2‖yk − h(xk)‖2 +
√
n‖πc‖2l√

πr
‖xk − 1nx̂k‖πr

+ n‖πc‖2l‖x̂k − x∗‖2,

where in the last inequality we used Lemma 3 and norm-equivalence. Squaring the above, and using the basic

inequality 2ab ≤ a2 + b2, we get

‖yk‖22 ≤ 4πc‖yk −B∞yk‖2πc
+ 4n2‖πc‖22‖yk − h(xk)‖22

+
4n‖πc‖22l2

πr
‖xk − 1nx̂k‖2πr

+ 4n2‖πc‖22l2‖x̂k − x∗‖22.

Taking the expectation on both sides given Fk and using (3) in Lemma 2 completes the proof.

PROOF OF LEMMA 7

Proof: Recall that A∞ = 1nπ
>
r and x̂k , π>r xk. Using (3a) and Lemma 1, We have the following hold:

‖xk+1 − 1nx̂k+1‖2πr

= ‖Axk − αyk −A∞(Axk − αyk)‖2πr

= ‖Axk −A∞xk − α(In −A∞)yk‖2πr

= ‖Axk −A∞xk‖2πr
+ α2 ‖(In −A∞)yk‖2πr

− 2
〈
Axk −A∞xk, α(In −A∞)yk

〉
πr

≤ σ2A ‖xk −A∞xk‖2πr
+ α2||| In −A∞ |||2πr

‖yk‖2πr
+ 2ασA ‖xk −A∞xk‖πr

||| In −A∞ |||πr
‖yk‖πr

≤ σ2A‖xk −A∞xk‖2πr
+ α2‖yk‖2πr

+ ασA

(
1− σ2A
2ασA

‖xk −A∞xk‖2πr
+

2ασA
1− σ2A

‖yk‖2πr

)
≤

1 + σ2A
2
‖xk −A∞xk‖2πr

+
α2(1 + σ2A)πr

1− σ2A
‖yk‖22.

where the second last inequality uses Young’s inequality and the fact that ||| In −A∞ |||πr
= 1. Taking the

expectation on both sides given Fk completes the proof.

PROOF OF LEMMA 8

Proof: We start by multiplying both sides of (3a) with π>r to obtain as in [22], [23]:

x̂k+1 − x∗ = x̂k − x∗ − απ>r (yk − πc1
>
nyk + πc1

>
nyk)

= x̂k − x∗ − nαπ>r πcyk − απ>r (yk −B∞yk).



Taking norms and squaring both sides leads to

‖x̂k+1 − x∗‖22

=
∥∥∥x̂k − x∗ − nαπ>r πcyk − απ>r (yk −B∞yk)

∥∥∥2
2

=
∥∥∥x̂k − x∗ − nαπ>r πcyk

∥∥∥2
2
− 2
〈
x̂k − x∗ − nαπ>r πcyk, απ>r (yk −B∞yk)

〉
+ α2

∥∥∥π>r (yk −B∞yk)
∥∥∥2
2

≤
∥∥∥x̂k − x∗ − nαπ>r πcyk

∥∥∥2
2
− 2
〈
x̂k − x∗ − nαπ>r πcyk, απ>r (yk −B∞yk)

〉
+ α2‖πr‖22πc‖yk −B∞yk‖2πc

, r1 + r2 + α2‖πr‖22πc‖yk −B∞yk‖2πc
.

Taking the conditional expectation on bothsides given Fk, we obtain:

E
[
‖x̂k+1 − x∗‖22

∣∣Fk] ≤ E [r1|Fk] + E [r2|Fk] + α2‖πr‖22πcE
[
‖yk −B∞yk‖2πc

∣∣Fk] (23)

Bounding E [r1|Fk]: We first derive an upper bound on r1. To simplify the notation, we denote α̃ , αnπ>r πc.

If 0 < α̃ < 1
l , we have the following:

r1 = ‖x̂k − x∗ − α̃∇F (x̂k) + α̃∇F (x̂k)− α̃yk‖
2
2

= ‖x̂k − x∗ − α̃∇F (x̂k)‖22 + α̃2 ‖∇F (x̂k)− yk‖
2
2 + 2α̃

〈
x̂k − x∗ − α̃∇F (x̂k),∇F (x̂k)− yk

〉
≤ (1− µα̃)2 ‖x̂k − x∗‖22 + α̃2 ‖∇F (x̂k)− yk‖

2
2 + 2α̃

〈
x̂k − x∗ − α̃∇F (x̂k),∇F (x̂k)− yk

〉
,

where in the last inequality above we used Lemma 4. Then we take the conditional expectation given Fk on

bothsides to obtain:

E [r1|Fk]

= (1− µα̃)2 ‖x̂k − x∗‖22 + α̃2E
[
‖∇F (x̂k)− yk‖

2
2

∣∣Fk]+ 2α̃
〈
x̂k − x∗ − α̃∇F (x̂k),∇F (x̂k)− h (xk)

〉
≤ (1− µα̃)2 ‖x̂k − x∗‖22 + α̃2E

[
‖∇F (x̂k)− yk‖

2
2

∣∣Fk]+ 2α̃ (1− µα̃) ‖x̂k − x∗‖2 ‖∇F (x̂k)− h (xk)‖2

≤ (1− µα̃)2 ‖x̂k − x∗‖22 + α̃2E
[
‖∇F (x̂k)− yk‖

2
2

∣∣Fk]
+ α̃

(
µ (1− µα̃)2 ‖x̂k − x∗‖22 +

1
µ ‖∇F (x̂k)− h (xk)‖22

)
≤ (1− µα̃) ‖x̂k − x∗‖22 + α̃2E

[
‖∇F (x̂k)− yk‖

2
2

∣∣Fk]+ α̃l2

µnπr
‖xk − 1nx̂k‖2πr

, (24)

where in the second last inequality we used Lemma 4 and Young’s inequality and in the last inequality we

used Lemma 3 and the fact that (1− µα̃)2 (1 + µα̃) < (1− µα̃). In order to finish bounding r1, we next

bound E
[
‖∇F (x̂k)− yk‖

2
2

∣∣Fk]:
E
[
‖∇F (x̂k)− yk‖

2
2

∣∣Fk]
= E

[
‖∇F (x̂k)− h(xk) + h(xk)− yk‖

2
2

∣∣Fk]
= ‖∇F (x̂k)− h(xk)‖22 + E

[
‖h(xk)− yk‖

2
2

∣∣Fk]



Using Lemma 2 (3) and Lemma 3 leads to:

E
[
‖∇F (x̂k)− yk‖

2
2

∣∣Fk] ≤ l2

nπr
‖xk − 1nx̂k‖2πr

+
σ2

n
(25)

Plugging in (25) to (24), we obtain an upper bound on E [r1|Fk] as follows:

E [r1|Fk] ≤ (1− µα̃) ‖x̂k − x∗‖22 +
α̃l2

nπr

(
1

µ
+ α̃

)
‖xk − 1nx̂k‖2πr

+
2α̃2σ2

n

≤ (1− µα̃) ‖x̂k − x∗‖22 +
2α̃l2

µnπr
‖xk − 1nx̂k‖2πr

+
α̃2σ2

n
(26)

Bounding E [r2|Fk]: Recall that r2 = −2α
〈
x̂k − x∗ − α̃yk,π>r (yk −B∞yk)

〉
.

r2 ≤ 2α ‖x̂k − x∗ − α̃yk‖2
∥∥∥π>r (yk −B∞yk)

∥∥∥
2

≤ α

(
µnπ>r πc

2
r1 +

2 ‖πr‖22 πc
µnπ>r πc

‖yk −B∞yk‖2πc

)
Taking the conditional expectation on bothsides given Fk to get:

E [r2|Fk] ≤
µα̃

2
E [r1|Fk] +

2α ‖πr‖22 πc
µnπ>r πc

E
[
‖yk −B∞yk‖2πc

∣∣Fk] (27)

Bounding E [r1|Fk] + E [r2|Fk]: Putting (26) and (27) together, we have:

E [r1|Fk] + E [r2|Fk]

≤
(
1 +

µα̃

2

)
2α̃l2

µnπr
‖xk − 1nx̂k‖2πr

+

(
1 +

µα̃

2

)
(1− µα̃) ‖x̂k − x∗‖22 +

(
1 +

µα̃

2

)
α̃2σ2

n

+
2α ‖πr‖22 πc
µnπ>r πc

‖yk −B∞yk‖2πc

≤ 3α̃l2

µnπr
‖xk − 1nx̂k‖2πr

+

(
1− µα̃

2

)
‖x̂k − x∗‖22 +

2α ‖πr‖22 πc
µnπ>r πc

‖yk −B∞yk‖2πc
+

3α̃2σ2

2n
, (28)

where in the last inequality we use the fact that 1 + µα̃
2 ≤

3
2 and (1 + µα̃

2 ) (1− µα̃) ≤ 1 − µα̃
2 . Plugging (28)

in (23) and replacing α̃ by αnπ>r πc finishes the proof.

PROOF OF LEMMA 9

Proof: To simplify notation, we define:

∇k , ∇f(xk), ∇ik , ∇fi(xik),

gk , g(xk, ξk), gik , gi(x
i
k, ξ

i
k).

Starting with (3b) and using Lemma 1, we obtain

‖yk+1 −B∞yk+1‖2πc

= ‖Byk −B∞yk‖2πc
+ ‖(In −B∞) (gk+1 − gk)‖2πc

+ 2
〈
Byk −B∞yk, (In −B∞)(gk+1 − gk)

〉
πc

≤ σ2B ‖yk −B∞yk‖2πc
+ ‖gk+1 − gk‖2πc

+ 2
〈
Byk −B∞yk,gk+1 − gk

〉
πc

, (29)



where the last inequality uses ||| In −B∞ |||πc
= 1 and that〈

Byk −B∞yk, B∞ (gk+1 − gk)
〉
πc

=
〈
Byk −B∞yk,1n1

>
n (gk+1 − gk)

〉
= 0.

We take the conditional expectation given Fk on both sides of (29) to get:

E
[
‖yk+1 −B∞yk+1‖2πc

∣∣Fk]
≤ σ2BE

[
‖yk −B∞yk‖2πc

∣∣Fk]+ E
[
‖gk+1 − gk‖2πc

∣∣Fk]+ 2E
[
E
[〈
Byk −B∞yk,gk+1 − gk

〉
πc

∣∣∣Fk+1

] ∣∣∣Fk]
= σ2BE

[
‖yk −B∞yk‖2πc

∣∣Fk]+ E
[
‖gk+1 − gk‖2πc

∣∣Fk]+ 2E
[〈
Byk −B∞yk,∇k − gk

〉
πc

∣∣∣Fk]
+ 2E

[〈
Byk −B∞yk,∇k+1 −∇k

〉
πc

∣∣∣Fk] ,
, σ2BE

[
‖yk −B∞yk‖2πc

∣∣Fk]+ s1 + 2s2 + s3. (30)

We now bound the last three terms in the following. We start with s1.

Bounding s1:

s1 = E
[
‖gk+1 − gk − (∇k+1 −∇k) +∇k+1 −∇k‖2πc

∣∣Fk]
= E

[
‖∇k+1 −∇k‖2πc

∣∣Fk]
+ E

[
‖gk+1 − gk − (∇k+1 −∇k)‖2πc

∣∣Fk]+ 2E
[〈
∇k+1 −∇k,gk+1 − gk − (∇k+1 −∇k)

〉
πc

∣∣∣Fk]
≤ E

[
‖∇k+1 −∇k‖2πc

|Fk
]
+ 2E

[〈
∇k+1,∇k − gk

〉
πc

∣∣∣Fk]+ 2nσ2

πc
. (31)

We now bound the first term in the above inequality. Using (3a), Lemma 1, we have

‖∇k+1 −∇k‖2πc

≤ l2

πc
‖xk+1 − xk‖22

= l2

πc
‖Axk − αyk − xk‖22

= l2

πc
‖(A− In) (xk −A∞xk)− αyk‖22

≤ 8l2

πc πr
‖xk −A∞xk‖2πr

+ 2α2l2

πc
‖yk‖22 , (32)

where in the last inequality we used the basic inequality ‖x+ y‖22 ≤ 2 ‖x‖22 + 2 ‖y‖22 , ∀x,y ∈ Rp and

that |||A− In |||πr
≤ 2. In order to bound the second term in (31), we first note, from (2a), that

∇ik+1 = ∇fi

 n∑
j=1

aijx
j
k −α

 n∑
j=1

bijy
j
k−1 + gik − gik−1

 ,

and we also define

∇̃ik+1 , ∇fi

 n∑
j=1

aijx
j
k − α

 n∑
j=1

bijy
j
k−1 +∇

i
k − gik−1

 .



Therefore,
∥∥∇ik+1 − ∇̃ik+1

∥∥
2
≤ αl

∥∥∇ik − gik
∥∥
2
. We then proceed to bound the second term in (31) as follows:

E
[〈
∇k+1,∇k − gk

〉
πc

|Fk
]

≤ 1

πc

n∑
i=1

E
[〈
∇ik+1 − ∇̃ik + ∇̃ik,∇ik − gik

〉∣∣∣Fk]
≤ 1

πc

n∑
i=1

E
[∥∥∇ik+1 − ∇̃ik

∥∥
2

∥∥∇ik − gik
∥∥
2

∣∣Fk]
≤ αl

πc

n∑
i=1

E
[∥∥∇ik − gik

∥∥2
2

∣∣Fk]
≤ αnlσ2

πc
. (33)

Plugging (32) and (33) to (31), we obtain an upper bound on s1:

s1 ≤
8l2

πc πr
‖xk −A∞xk‖2πr

+
2α2l2

πc
E
[
‖yk‖22

∣∣Fk]+ 2αlnσ2

πc
+

2nσ2

πc
. (34)

Bounding s2: We first split s2 into the sum of two terms as follows:

s2 = E
[〈
Byk,∇k − gk

〉
πc

∣∣∣Fk]− E
[〈
B∞yk,∇k − gk

〉
πc

|Fk
]
. (35)

For the first term in (35), using (3b), we have

E
[〈
Byk,∇k − gk

〉
πc

∣∣∣Fk]
= E

[〈
B2yk−1 +B(gk − gk−1),∇k − gk

〉
πc

∣∣Fk]
= E

[〈
Bgk,∇k − gk

〉
πc

∣∣Fk]
=

n∑
i=1

1

[πc]i
E

〈 n∑
j=1

bijg
j
k,∇

i
k − gik

〉∣∣∣Fk


=

n∑
i=1

bii
[πc]i

E
[〈

gik,∇ik − gik

〉∣∣Fk] ≤ 0.

For the second term in (35), we have

−E
[〈
B∞yk,∇k − gk

〉
πc

∣∣∣Fk]
= − E

[〈
1n1

>
n gk,∇k − gk

〉∣∣∣Fk]
=

n∑
i=1

E

〈 n∑
j=1

−gjk,∇
i
k − gik

〉∣∣∣Fk


=

n∑
i=1

E
[〈
∇ik − gik,∇ik − gik

〉∣∣∣Fk] ≤ nσ2
Hence, we have an upper bound on s2 as follows:

s2 ≤ nσ2. (36)



Bounding s3: Using the upper bound on ‖∇k+1 −∇k‖2πc
in (32), we proceed towards an upper bound on s3.

2
〈
Byk −B∞yk,∇k+1 −∇k

〉
πc

≤ 2 ‖Byk −B∞yk‖πc
‖∇k+1 −∇k‖πc

≤
1− σ2B
2σ2B

‖Byk −B∞yk‖2πc
+

2σ2B
1− σ2B

‖∇k+1 −∇k‖2πc

≤
1− σ2B

2
‖yk −B∞yk‖2πc

+
16σ2Bl

2

πc πr(1− σ2B)
‖xk −A∞xk‖2πr

+
4σ2Bl

2α2

πc(1− σ2B)
‖yk‖22 .

Taking the conditional expectation given Fk on bothsides of the inequality above, we obtain an upper bound

on s3 as follows:

s3 ≤
16σ2Bl

2

πc πr(1− σ2B)
‖xk −A∞xk‖2πr

+
1− σ2B

2
E
[
‖yk −B∞yk‖2πc

∣∣Fk]+ 4σ2Bl
2α2

πc(1− σ2B)
E
[
‖yk‖22 |Fk

]
(37)

Plugging the bounds on s1, s2, s3 in (34), (36) and (37) into (30) completes the proof.
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