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Ship collision avoidance involves helping ships find routes that will best enable them to avoid a

collision. When more than two ships encounter each other, the procedure becomes more complex

since a slight change in course by one ship might affect the future decisions of the other ships.

Two distributed algorithms have been developed in response to this problem: Distributed Local

Search Algorithm (DLSA) and Distributed Tabu Search Algorithm (DTSA). Their common

drawback is that it takes a relatively large number of messages for the ships to coordinate their

actions. This could be fatal, especially in cases of emergency, where quick decisions should

be made. In this paper, we introduce Distributed Stochastic Search Algorithm (DSSA), which

allows each ship to change her intention in a stochastic manner immediately after receiving all

of the intentions from the target ships. We also suggest a new cost function that considers both

safety and efficiency in these distributed algorithms. We empirically show that DSSA requires

many fewer messages for the benchmarks with four and 12 ships, and works properly for real

data from the Automatic Identification System (AIS) in the Strait of Dover.
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1. INTRODUCTION. Even though navigation technology has been developing year by

year, ship collision still accounts for a large percentage of maritime accidents (Sormunen

et al., 2016). There is no doubt that, once collisions occur, they have a negative impact on

life, economy, and the environment.

Most of the previous methods for ship collision avoidance focus on one-to-one or one-

to-few situations, where an own ship decides her course by assuming that the surrounding

ships will all keep sailing as they did under the previous conditions. However, since each

target ship will also try to decide her course, any decision made by the own ship will

inevitably affect the future decisions of the other ships, and vice versa. In order to deal with
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such complex relations among multiple ships, many-to-many situations should be handled

directly by modelling ships as agents who can communicate their next-intended courses,

namely intentions, with each other to find their safest courses autonomously.

For many-to-many situations, few methods have been suggested in the literature except

for our distributed algorithms (Kim et al., 2014; 2015), which are in a form of peer-to-peer

communication protocols. With these algorithms, the ships can find the safest courses by

themselves without any instruction from a centralised system, such as a Vessel Traffic

Service (VTS) centre. In the Distributed Local Search Algorithm (DLSA) (Kim et al.,

2014), each ship searches for a safer course within her own local view by exchanging

intentions with target ships. The Distributed Tabu Search Algorithm (DTSA) Kim et al.

(2015) enhances DLSA with the tabu search technique to escape from a Quasi-Local Mini-

mum (QLM) in which DLSA sometimes becomes trapped. The QLM in this context means

that a ship cannot change her course even though a collision risk still exists. The common

drawback of these algorithms is that a relatively large number of messages need to be sent

in order for the ships to coordinate their actions. Therefore, if we try to use DLSA or DTSA

for ship collision avoidance, this drawback could be fatal, especially in cases of emergency,

where quick decisions should be made.

In this paper, we introduce the Distributed Stochastic Search Algorithm (DSSA), where

each ship changes her intention in a stochastic manner immediately after receiving all of

the intentions from the target ships. Along with our development of DSSA, we also suggest

a new cost function that considers both safety and efficiency in our distributed algorithms.

To examine the performance of DSSA, we made experiments to compare DLSA, DTSA,

and DSSA in two different settings on the number of ships, namely four and 12 ships. In

terms of sailed distance, all of the distributed algorithms show similar results. However,

in terms of the number of messages that the ships exchange with each other, DSSA uses

significantly fewer messages than DLSA and DTSA. Furthermore, its stochastic nature

excludes the need for a specific method to escape from QLM.

The remaining parts of this paper are organised as follows. Section 2 gives related works

on ship collision avoidance, and Section 3 provides the outline of distributed ship collision

avoidance including the overall framework, basic terminologies, and previous algorithms.

Section 4 gives the motivation and details of DSSA by highlighting its major differences

from the previous algorithms. Section 5 presents and discusses the experimental results,

which indicate the effectiveness of this new algorithm in benchmarks of encountering

four and 12 ships. Furthermore, to demonstrate the applicability to realistic scenarios, it

gives the trajectories of eight ships that DSSA computes from the real data from the Auto-

matic Identification System (AIS) in the Strait of Dover. Section 6 concludes with a brief

summary.

2. RELATED WORKS. To prevent ship collisions, the International Regulations for

Preventing Collisions at Sea (COLREGS, 1972) were adopted in 1972. They specify nav-

igation rules to be followed by all ships at sea to prevent collisions. However, it would be

very hard to describe all possible conditions in the form of rules due to the complexity of

the actual marine environment.

From a technological point of view, several methods have been developed to support

officers in this regard, including those using a ship domain (Fujii and Tanaka, 1971; Good-

win, 1975; Szlapczynski, 2006; Wang et al., 2009), ant colony optimisation (Tsou and

https://doi.org/10.1017/S037346331700008X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331700008X


NO. 4 DISTRIBUTED STOCHASTIC SEARCH ALGORITHM 701

Hsueh, 2010; Lazarowska, 2015), a genetic algorithm (Tsou et al., 2010), and fuzzy the-

ory (Lee et al., 2004). For example, in the algorithm using a ship domain, the notion of

the safety domain has been introduced, where an own ship prevents target ships from

penetrating. Both ant colony optimisation and the genetic algorithm perform searches to

identify a safe course by mimicking various biological phenomena (foraging for food by

ants and struggling for gene survival, respectively).

On the other hand, Szlapczynski (2011) suggested a new approach to collision avoidance

by evolutionary algorithms. He tried to find optimal sets of safe trajectories in multi-ship

encounter situations. In this approach, the fitness function is computed as the sum of the

fitness of trajectories. The fitness of each trajectory considers the way loss, target ships

and other obstacles. He revised the algorithm for application to restricted visibility situa-

tions and focused on compliance with COLREGS Rule 19 (Szlapczynski, 2015). A new

violation penalty was added for penetration of a ship domain, the difference for altering

course, and the distance from a target ship. The methods proposed in these papers had

good results. However, they focused on the application of a centralised system such as a

VTS centre. If many ships encounter each other outside of VTS control, it would be difficult

to apply these methods. Moreover, the number of ships used in the experiments was less

than five.

Lamb and Hunt (1995) used the Poisson distribution to compute the probability of mul-

tiple encounters. The traffic flow is assumed to be uniformly distributed across the lane.

The probability for various situations is computed by vessel type, speed, domain radius,

and lane traffic flow during crossing situations. They revised their method by adding three

options: the relationship between ships, manoeuvring angle (which is changeable), and

speed reduction (Lamb and Hunt, 2000). They also considered not only the first ship, but

also the second ship at risk to avoid collision. Although their methods are related with mul-

tiple encounters, their focus is on how a ship finds a safe course in multiple encounters,

namely a one-to-many situation.

Hu et al. (2008) investigated a negotiation framework called CANFO (Collision-

Avoidance Negotiation Framework) by exploiting the planned routes of vessels. Although

they explored a negotiation protocol to control the process, it is still in the preliminary stage

since it deals with only a one-to-one situation.

Hornauer (2013) and Hornauer et al. (2015) proposed a decentralised trajectory opti-

misation algorithm to avoid collision between ships that are partly cooperating with

each other. The movement for non-cooperative ships is computed by a Bayesian model

using the data from AIS. The probability of the estimated position for a passive ship

that predicts the trajectories by historic probabilistic models is accurately computed.

The computed trajectory is reasonable when three ships encounter each other. However,

any new explicit algorithm among cooperating ships has not been provided in these

papers.

Table 1 summarises the major features of preceding studies, where we consider the

computation is “decentralised” when the ships themselves would try to solve the problem

but no explicit and feasible communication protocol is provided.

3. DISTRIBUTED SHIP COLLISION AVOIDANCE.

3.1. Framework and Terminology. Distributed ship collision avoidance is made up

of two procedures: the control and search procedures. Its framework is given in Figure 1.
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Table 1. Major features of preceding studies on ship collision avoidance.

Paper Method Situation Computation

(COLREGS, 1972) rule one-to-one centralised

(Fujii and Tanaka, 1971),

(Goodwin, 1975),

(Szlapczynski, 2006),

(Wang et al., 2009)

ship domain one-to-many centralised

(Tsou and Hsueh, 2010),

(Lazarowska, 2015)

ant colony one-to-many centralised

(Tsou et al., 2010) genetic algorithm one-to-many centralised

(Lee et al., 2004) fuzzy theory one-to-many centralised

(Lamb and Hunt, 1995; 2000) probability one-to-many centralised

(Szlapczynski, 2011; 2015) evolutionary algorithm many-to-many centralised

(Hornauer, 2013), (Hornauer

et al., 2015)

Bayesian model many-to-many decentralised

(Hu et al., 2008) negotiation one-to-one decentralised

(Kim et al., 2014) local search many-to-many distributed

(Kim et al., 2015) tabu search many-to-many distributed

By the control procedure, a ship decides whether to proceed to the next position. If a

ship does not have any target ship in the area within a certain distance from her current

position and also has not yet arrived at her destination, she moves to the next position.

By the search procedure, a ship tries to avoid collision by running a distributed algorithm

when she confirms that there is a collision risk. If every ship finds a solution, or if the

computational time exceeds a certain time limit, they update the next positions and move

to them. We set a time limit on the computational time within which ships can exchange

messages with each other to figure out safe courses. When the time has elapsed, they update

the next positions (typically, with the courses that may not be safe but have the minimum

cost found so far) and move to them. All of the ships alternate the search and control

procedures until they arrive at their destinations.

Figure 2 illustrates the basic terms. The own ship located at the centre has a detection

range where she can detect target ships. The own ship can exchange messages with a target

ship in the detection range, but not with a ship located outside the detection range. The

own ship must keep a safety domain between herself and a target ship. The safety domain

is a circle with a certain radius depending on ships. If that safety domain is penetrated,

we consider they collide with each other. Let us suppose, for example, that a ship sails the

ocean at 12 knots. Due to the restriction on ship movement, a sailing ship cannot change her

course abruptly. Once she selects a course, she must follow it for a certain period. We set

3 minutes for that period throughout the paper. Namely, a ship is required to consider

changing her course every 3 minutes (every 0·6 nautical miles). We consider this 3 minutes

a unit of time to be called a time step.

We set a time window to 15 minutes (five time steps). Namely, a ship makes a 15-minute

plan on her future positions based on current positions, headings, and speeds of herself and

target ships. Note that this is done every 3 minutes through communication with target

ships. When a time window gets larger, a ship has a longer view of future events since
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Figure 1. Framework of Distributed Ship Collision Avoidance.

Figure 2. Basic terms.
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Figure 3. Communication structure among three ships (a, left) and nine ships (b, right).

she will make a longer plan on her future positions to compute the cost for each candidate

course described later.

It is worth noting that distributed algorithms for ship collision avoidance operate on any

number of ships with any communication structure. Suppose that three ships encounter

each other as shown in Figure 3(a). Ships O and A can exchange messages directly because

they are inside each other’s detection range. However, ships O and B cannot because they

are mutually outside of their detection ranges. A communication structure of these three

ships is denoted by the graph in Figure 3(a), whose nodes are ships and edges are the

possibilities of direct message exchange. A communication structure of nine ships is also

shown in Figure 3(b).

3.2. Cost and Improvement. Given current positions, headings, and speeds of target

ships, a ship computes the cost for each candidate course. A candidate course is cho-

sen from a discrete set of angles for alternating courses. In consideration of typical ship

manoeuvring, it ranges from 45◦ on the port side (−45◦) to 45◦ on the starboard side (+45◦)

in steps of 5◦. If the heading angle for a destination exists in these bounds, it is also included

as a candidate course.

We propose a cost function that is comprised of the collision risk against a target ship

and the relative angle between a candidate course and a destination.

Equation (1) shows the Collision Risk (CR), where crs and j mean a candidate course

and a target ship, respectively, and self means the own ship. If self will collide with

ship j in its time window of 15 minutes when choosing a course crs, CRself, for crs and

j is computed as TimeWindow divided by TCPA (Time to Closest Point of Approach).

Otherwise, it becomes zero.

CRself(crs, j ) ≡

{

TimeWindow
TCPAself(crs,j )

, if self will collide with ship j

0, otherwise
(1)

Equation (2) computes the cost for a course crs, which is made up of two parts: first, the

sum of CRself over the target ships at risk for crs, and second, the relative angle between

crs and a destination. Parameter α is a weight factor that controls the relationship between

safety and efficiency. If α gets lower, a ship places more emphasis on efficiency than safety.

We set the value of α to one throughout the paper.

COSTself(crs) ≡ α
∑

j ∈TargetShips

CRself(crs, j ) +
|θdest − θself(crs)|

180◦
(2)
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Figure 4. Numerical example to compute costs and improvements.

When performing the search procedure in Figure 1, a ship tentatively selects one course

as her intention that imposes the cost computed by Equation (2). However, she may be

able to reduce the cost by changing her intention to another course. Equation (3) computes

the largest cost reduction as improvementself. A ship always tries to select the course that

gives the largest cost reduction. Note that a tie in cost reduction is broken by following

the COLREGS, which means a ship will select a starboard side when there are multiple

courses that give the same largest cost reduction.

improvementself ≡ max
crs

{COSTself(intentionself) − COSTself(crs)} (3)

A ship is always aware of absolute angles θheading and θdest for her heading and destina-

tion, respectively. As shown in Equation (4), a course for the destination is computed by

θdest − θheading to be added into a set of candidate courses only if the course is within the

bounds on alterable angles.

θself_dest ≡

{

θdest − θheading, if |θdest − θheading| < 45◦

empty, otherwise
(4)

where crs ∈ {−45◦, −40◦, . . . , −5◦, 0◦, +5◦ . . . , +40◦, +45◦} ∪ {θself_dest} θself(crs) returns

θheading + crs.

We demonstrate how the own ship computes COSTself and improvementself using

Figure 4. The own ship will collide with Target1 after 12 minutes (four time steps) later

with her current course. The cost for 000◦ (current intention) is computed by COST(000◦) =

15/12 + 0◦/180◦ = 1·25, while the cost for 045◦ is COST(045◦) = 0 + 45◦/180◦ = 0·25,

and the cost for 005◦ is COST(005◦) = 0 + 5◦/180◦ ≈ 0·028. The improvementself for

the own ship is thus computed by improvementself = maxcrs{COST(000◦) − COST(crs)} ≈

1·222, since the cost for 005◦ is clearly minimum among the candidate courses. Target2
is ruled out for computing the cost because Target2 has nothing to do with any collision.

Similarly, Target1 will also compute her COSTself and improvementself independently.

3.3. Distributed Local Search Algorithm. DLSA is a simple distributed algorithm to

minimise the total sum of costs over the ships by letting them exchange their current inten-

tions and improvements with each other (Kim et al., 2014). It is an incomplete optimisation

algorithm, which is not guaranteed to find an optimal solution. Namely, it may end with
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Figure 5. Procedure for DLSA (a, top-left), (b, top-right), (c, bottom-left), (d, bottom-right).

a sub-optimal solution even if it spends a lot of time searching for an optimum. However,

it is often the case that such a sub-optimal solution is quickly found. The basic idea of

DLSA is from the core process of the Distributed Breakout Algorithm (DBA) (Yokoo and

Hirayama, 1996; Hirayama and Yokoo, 2005).

Figure 5 illustrates ship collision avoidance by DLSA. Suppose that three ships

encounter each other. Each ship first exchanges their current intentions by ok? messages

with target ships to compute COSTself for each candidate course as shown in Figures 5(a)

and 5(b). The number of messages exchanged to do so is six in this example. Then, based

on COSTself for each candidate course, she computes improvementself to be sent by improve

messages as shown in Figure 5(c). The number of messages exchanged to do so is also

six. Finally, as shown in Figure 5(d), the ship that has the largest improvementself, ship 3,

changes her intention, while the other ships maintain their current intentions. We should

note that, to reach this state, DLSA consumed 12 messages and two cycles of message

exchange.

To prevent an endless loop, only one ship can change her intention at a time among

herself and target ships. This process is repeated until the overall cost becomes zero or the

computational time exceeds a time limit.1 After all the ships have set their optimal courses

1 By exploiting the termination counter used in DBA (Yokoo and Hirayama, 1996; Hirayama and Yokoo, 2005),
no centralised system is required to check whether the overall cost becomes zero. The procedure to terminate
distributed algorithms is omitted for simplicity in this paper. Refer to Yokoo and Hirayama (1996) and Hirayama
and Yokoo (2005) for the detail.
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Figure 6. Procedure for DLSA.

as their intentions, they proceed to the next position. At the new position, each ship then

starts identifying new target ships within the detection range to avoid collisions by DLSA

again.

Figure 6 shows the procedure for DLSA. At the initial step, all ships select the current

courses as their intentions. After exchanging their current intentions by ok? messages, they

compute COSTself and improvementself. If there exists a ship having non-zero COSTself for

her intention, the ship that has a larger improvementself than those of target ships changes

her intention after exchanging improvementself. This process is repeated until all ships are

content with their current intentions. If there is a tie in choosing a ship with the largest

improvementself, it is broken in favour for a smaller ID number of ship.

3.4. Distributed Tabu Search Algorithm. We have observed that DLSA is sometimes

trapped in a Quasi-Local Minimum (QLM), where a ship is unable to change her course

even though a collision risk still exists. To solve this problem, we applied the tabu search

technique (Glover, 1989), where the ship in QLM puts her current course in a tabu list to

prohibit herself from selecting that course for a certain period. The resulting algorithm was

called the Distributed Tabu Search Algorithm (DTSA) (Kim et al., 2015).

Figure 7 shows the procedure for DTSA. The whole framework is essentially the same

as DLSA; only the QLM procedure (dotted red box) is added. This process is repeated until

all ships are content with their current intentions. If QLM occurs, a ship calls the QLM

procedure, in which she randomly chooses an alternate course excepting any course in the

tabu list. This process will be recurred until QLM is resolved.

4. DISTRIBUTED STOCHASTIC SEARCH ALGORITHM.

4.1. Motivation. The common drawback of DLSA and DTSA is that they must send a

relatively large number of messages in order for the ships to coordinate their actions. In the

context of distributed constraint optimisation, the Distributed Stochastic Algorithm (DSA)

has been proposed to reduce the number of messages by allowing neighbouring agents to
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Figure 7. Procedure for DTSA.

perform simultaneous changes in a stochastic manner (Zhang et al., 2002; 2005). They

reveal that these simultaneous changes often lead to faster convergence to a sub-optimal

solution; furthermore, its stochastic nature excludes the need for a specific method to escape

from QLM. The basic idea of DSA is so general that it can be applied to many optimisation

problems (like local search and tabu search). In their original papers, DSA was applied to

the graph colouring problem (Zhang et al., 2002) and the scheduling problem on sensor

networks (Zhang et al., 2005). Although several studies have been made on DSA since its

development, we are not aware that there is any study that tackles the collision avoidance

problem using this idea.

4.2. Detail. Figure 8 shows the procedure for the Distributed Stochastic Search

Algorithm for ship collision avoidance (DSSA). First, a ship selects the current course

as her intention. After exchanging intentions with target ships, she computes COSTself and

improvementself. If any of the ships is not content with her current intention, she changes it

by Rule A described below. This process is repeated in parallel over the ships until all the

ships are content with their current intentions.

A new intention is chosen stochastically by Rule A, where only the ship with positive

improvementself chooses the course with probability improvementself as her new intention,

but keeps her current intention with probability 1 − p . This probability is a parameter that

controls the stochastic behaviour of ships. We denote DSSA with a certain value p for this

probability as DSSA(p) if necessary.

Table 2 summarises the main features of our distributed algorithms for ship collision

avoidance. We should point out that both DLSA and DTSA require two cycles of message

exchange for some of the ships to change intentions. Namely, they require one cycle for ok?

messages and another cycle for improve messages. However, in DSSA, one cycle suffices

for some ships to change intentions since there is no need to exchange improvementself.
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Figure 8. Procedure for DSSA(p).

Table 2. Comparison of DLSA, DTSA, and DSSA.

DLSA (Kim et al.,

2014)

DTSA (Kim et al.,

2015)

DSSA

Solution for QLM None Tabu Stochasticity

Solution for endless

loop

Mutual exclusion

with target ships

Mutual exclusion

with target ships

Stochasticity

#cycles of message

exchange to

change intentions

Two Two One

5. EXPERIMENTS. First, to examine the performance of DSSA, we made experiments

to compare DLSA, DTSA, and DSSA in two different settings on the number of ships,

namely four and 12 ships, in Sections 5.1 and 5.2. We measured the average distance and

the number of messages for each algorithm. The average distance is the average length

of trajectories over the ships from their origins to destinations that are obtained by an

algorithm. The number of messages is the total number of messages exchanged among

ships, assuming that they communicate with each other on a peer-to-peer communication

system. It is commonly used to evaluate the performance of distributed algorithms. The

lower these measures are, the better the performance is. In these experiments, we assume

that all ships have the same and constant speed of 12 knots for simplicity. Regarding the

parameters of individual algorithms, we set a length of tabu list for DTSA to one and the

probability for DSSA to 0·5 (i.e., DSSA(0·5)).
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Table 3. Values for parameters of four ships.

Parameters Values

Speed 12 knots (constant) (0·6 nautical miles per

3 minutes)

Detection range/Safety domain 12 nautical miles/0·5 nautical miles

Origin/Destination/heading of ships (0,10)/(10,0)/090◦, (0,0)/(10,10)/090◦,

(10,10)/(0,0)/270◦, (10, 0)/(0,10)/270◦

Then, to demonstrate the applicability to realistic scenarios, we made an experiment

to see how DSSA performs for real data in Section 5.3. We used real data from AIS that

involves eight ships in the Strait of Dover.

All of these experiments were conducted on the discrete event simulator written in

MATLAB.

In the real world, the message exchange among ships occurs in parallel. To simulate this

on a single CPU machine, the discrete event simulator has been frequently used to evalu-

ate the performance of distributed algorithms (Yokoo and Hirayama, 1996; Hirayama and

Yokoo, 2005). In this simulator, a sequence of parallel events is controlled by cycles. More

specifically, at one cycle on this simulator, every ship performs the following sequence of

actions: 1) reads all incoming messages from her neighbours, 2) computes costs, improve-

ment, or a new intention to create an outgoing message, and 3) sends this message to

each of her neighbours. The cycle of these actions is repeated until a termination condition

is met.

5.1. Four-ship Encounter. Table 3 indicates the values for parameters of four ships.

Every ship has the same and constant speed of 12 knots. The radii of detection range and

safety domain are set to 12 and 0·5 nautical miles, respectively. All four ships, each sailing

in a diagonal direction, are arranged so that they intersect with each other at the centre. Each

ship repeats the control and search procedures in Figure 1 every 3 minutes as suggested in

Section 3.1. The time limit for the search procedure is controlled over 3–10 seconds in

steps of one second in order to observe how the overall performance changes when more

time is allocated for the search procedure.

To clarify the importance of exchanging intentions explicitly among ships, we first

illustrate in Figure 9 the simulated trajectories of (a) “non-cooperative” and (b) “cooper-

ative” ships for this instance.2 By a “non-cooperative” ship, we mean the ship with the

RADAR/ARPA system that always selects the best course (in terms of our cost func-

tion), which is computed through sensing data of target ships. On the other hand, by a

“cooperative” ship, we mean the ship with our distributed algorithm that always selects

the best course (in terms of our cost function), which is computed through exchanging

intentions with target ships. The trajectories of four “non-cooperative” ships are shown in

Figure 9(a), which clearly indicates that the ships change their courses suddenly and signifi-

cantly. These behaviours can generally lead to unstable and longer trajectories. On the other

hand, those of four “cooperative” ships with DSSA are also shown in Figure 9(b), which

clearly indicates that the ships go smoothly to their destinations without collisions. The

2 In order to demonstrate the difference between these two trajectories more clearly, the radius of safety domain
is enlarged to 1·5 nautical miles.
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Figure 9. Simulated trajectories of four ships by non-cooperative (a, left) and cooperative (b, right).

Figure 10. Performance of algorithms for four-ship encounter.

“cooperative” ships are likely to have a shorter average distance than the “non-cooperative”

ships.

Then, we compare the performance of DLSA, DTSA, and DSSA(0·5) for this instance

while varying a time limit from 3 to 10 seconds. The results of this simulation are shown

in Figure 10. The bar indicates the average distance, which is the average length of tra-

jectories over the ships, and the line indicates the number of messages exchanged among

the ships. Compared to DLSA and DTSA, DSSA(0·5) showed better performance in both

measures. In terms of average distance, DLSA and DTSA showed almost the same results.

The average distance for DSSA was lower than for DLSA and DTSA. In terms of the num-

ber of messages, the longer the time limit, the greater the number of messages for every

algorithm. In comparison with those for DLSA and DTSA, the number of messages for

DSSA was significantly lower regardless of time limit. This implies that DSSA did not

exceed any time limit to find optimal courses for all ships, while DLSA and DTSA often

did so. DSSA enables multiple ships to alter their intentions simultaneously, leading to fast

convergence to the optimum within one second.
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Figure 11. Simulated trajectories of four ships by DSSA(0·5).

Table 4. DCPA for any pair of four ships. (unit: nm)

Ship 2 3 4

1 0·6092 0·5340 0·9787

2 – 0·5177 0·8721

3 – – 0·5475

In order to prove that collision never occurred in this experiment, we show DCPA (Dis-

tance at Closest Point of Approach) for any pair of four ships with DSSA in Table 4. Note

that the minimum DCPA was 0·5177 nm between ships 2 and 3, which is larger than the

radius of safety domain (0·5 nm). Figure 11 also shows the trajectories of four ships.

5.2. 12-ship Encounter. Table 5 indicates the values for parameters of 12 ships,

which are the same as in the previous experiment except for origin/destination/heading of

ships. We arranged 12 ships as in Figure 12, which also shows the simulated trajectories by

DSSA. All the ships arrived at their destinations without any collision, since the minimum

DCPA was 1·0007 nm between ships 6 and 9 (see Table 6). It also demonstrates how much

a ship’s decision is affected by target ships. The ships in the middle that are surrounded by

many target ships altered their courses significantly while other ships altered their courses

only a little.

Figure 13 shows the average distance and the number of messages for this instance. In

terms of average distance, all algorithms showed a similar result. In terms of the number of

messages, DSSA had many fewer than DLSA and DTSA.

In addition to the above experiments, we have examined the performance of DLSA,

DTSA and DSSA on various artificial settings, such as the one with 100 ships with

randomly generated origins, destinations, and headings. We should point out that we have

obtained similar results to the above.
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Table 5. Values for parameters of 12 ships.

Parameters Values

Speed 12 knots (constant) (0·6 nautical miles per 3 minutes)

Detection range/Safety

domain

12 nautical miles/0·5 nautical miles

Origin/Destination/heading

of ships

(−5,0)/(5,0)/090◦, (−5,−2)/(5,−2)/090◦,

(−5,−4)/(5,−4)/090◦, (5,4)/(−5,4)/270◦,

(5,2)/(−5,2)/270◦, (5,0)/(−5,0)/270◦,

(−4,5)/(−4,−5)/180◦, (−2,5)/(−2,−5)/180◦,

(0,5)/(0,−5)/180◦, (0,−5)/(0,5)/000◦,

(2,−5)/(2,5)/000◦, (4,−5)/(4,5)/000◦

Figure 12. Simulated trajectories of 12 ships by DSSA(0·5).

5.3. Real data from AIS in the Strait of Dover. To demonstrate the applicability to

real scenarios, we applied DSSA to the real data from AIS in the Strait of Dover as shown

in Figure 14, which includes eight ships with different speeds, safety domains, origins,

destinations, and headings. Details are also shown in Table 7. These data were collected

from the website (vesselfinder.com). Note that the time limit for the search procedure was

fixed to 3 seconds.

Figure 15 indicates the trajectories of eight ships computed by DSSA. Table 8 shows

DCPA for any pair of eight ships, where the minimum DCPA is 0·5544 nm between ships

4 and 8. Although these eight ships have different safety domains, Table 8 clearly indicates

that all ships arrived at their destinations without collision.
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Table 6. DCPA for any pair of 12 ships. (unit: nm).

Ship 2 3 4 5 6 7 8 9 10 11 12

1 1·4291 3·4284 4·4902 2·5189 1·1581 2·9264 1·7957 1·0272 1·0148 1·9513 3·1570

2 – 2·000 6·0133 4·0306 2·6119 4·2521 3·0668 2·0710 1·8084 2·9989 4·2426

3 – – 8·0100 6·0239 4·5938 5·6639 4·4253 3·3529 3·0293 4·3183 5·6639

4 - – – 1·9477 3·3783 5·6639 4·3610 2·9906 3·3575 4·4123 5·6639

5 – – – – 1·3791 4·2445 3·0257 1·8424 2·0903 2·9952 4·2639

6 – – – – – 3·1890 1·9970 1·0007 1·0108 1·8135 3·0256

7 – – – – – – 1·6872 3·1303 4·8028 6·2225 8·0100

8 – – – – – – – 1·4452 3·1337 4·5428 6·3189

9 – – – – – – – – 1·7728 3·1325 4·8646

10 – – – – – – – – – 1·3837 3·1213

11 – – – – – – – – – – 1·7390
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Figure 13. Performance of algorithms for 12-ship encounter.

Table 7. Values for parameters of eight ships in the Strait of Dover.

SHIP Speed Detection Range Safety domain Origin Destination Heading

1 7·2kn 12nm 0·5nm (0,0) (12,2) 057◦

2 11kn 12nm 0·8nm (3·4,2) (0,−6) 208◦

3 9·6kn 12nm 0·6nm (7,0·5) (13,13) 039◦

4 9·8kn 12nm 0·5nm (3·5,7) (11,5) 120◦

5 12·1kn 12nm 0·9nm (5·5,5·5) (1,−4) 214◦

6 9·2kn 12nm 0·7nm (9,4) (14,14) 039◦

7 9·5kn 12nm 0·7nm (8,8) (2,−2) 211◦

8 7·1kn 12nm 0·5nm (16,14) (4,0) 221◦

Figure 14. Eight ships in the Strait of Dover. (source: www.vesselfinder.com)
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Figure 15. Simulated trajectories of eight ships in the Strait of Dover by DSSA.

Table 8. DCPA for any pair of eight ships. (unit: nm)

Ship 2 3 4 5 6 7 8

1 1·1555 6·6741 3·7226 0·9714 9·8489 0·9518 3·5745

2 – 3·9000 5·0010 2·0351 5·9464 4·5315 7·1312

3 – – 9·7183 3·4981 1·3825 2·7058 0·6374

4 – – – 2·3069 3·5658 0·9090 0·5544

5 – – – – 3·8079 2·5147 5·1965

6 – – – – – 2·7918 0·7050

7 – – – – – – 2·7691

6. CONCLUSION. We are developing distributed algorithms to replace previous algo-

rithms that consider only one-to-one or one-to-few ship situations.

DLSA is the first distributed algorithm that considers ship collision avoidance in many-

to-many situations. It enables each individual ship to decide her action by communicating

with target ships, with no need for any centralised system such as a Vessel Traffic Service

centre. However, DLSA sometimes gets trapped in a Quasi-Local Minimum (QLM), where

a ship cannot change her course even though a collision risk still exists. To resolve the QLM

issue, we have suggested DTSA, which performs tabu search to enable a ship to search for

other courses compulsorily when trapped in QLM.

In this paper, we introduced DSSA, where each ship changes her intention in a stochas-

tic manner immediately after receiving all the intentions from target ships. DSSA enables

ships to exchange significantly fewer messages than DLSA and DTSA; furthermore, its

stochastic nature excludes the need for a specific method to escape from QLM. Through

developing DSSA, we also suggested a new cost function that considers both safety and
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efficiency in our distributed algorithms. We empirically showed that DSSA performed bet-

ter than DLSA and DTSA in terms of the number of messages for artificial situations. Then,

we also demonstrated the trajectories of eight ships that DSSA computes from the real data

from AIS in the Strait of Dover.

There would be several directions in which to expand this work. Currently, the actions

taken by ships are limited to only altering courses. For more flexible control, especially

in critical situations, not only altering courses but also speed change may need to be

considered.

Although we have parameters in Equation (2) to control the relationship between safety

and efficiency, this topic has not been fully explored yet. Which value brings the best

balance between safety and efficiency may need to be investigated.

Distributed algorithms implicitly assume that all ships can communicate with each other

and furthermore they are basically “cooperative”. However, in reality, there may be ships

or moving obstacles with which we cannot exchange intentions. Our distributed algorithm

framework needs to be generalised to deal with such a situation with “non-cooperative”

ships.
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