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Abstract We consider a distributed multi-agent network system where the goal is
to minimize a sum of convex objective functions of the agents subject to a common
convex constraint set. Each agent maintains an iterate sequence and communicates
the iterates to its neighbors. Then, each agent combines weighted averages of the
received iterates with its own iterate, and adjusts the iterate by using subgradient
information (known with stochastic errors) of its own function and by projecting
onto the constraint set.

The goal of this paper is to explore the effects of stochastic subgradient errors on
the convergence of the algorithm. We first consider the behavior of the algorithm in
mean, and then the convergence with probability 1 and in mean square. We consider
general stochastic errors that have uniformly bounded second moments and obtain
bounds on the limiting performance of the algorithm in mean for diminishing and
non-diminishing stepsizes. When the means of the errors diminish, we prove that
there is mean consensus between the agents and mean convergence to the optimum
function value for diminishing stepsizes. When the mean errors diminish sufficiently
fast, we strengthen the results to consensus and convergence of the iterates to an
optimal solution with probability 1 and in mean square.
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1 Introduction

A number of problems that arise in the context of peer to peer networks can be posed
as the constrained minimization of a sum of convex functions, where each component
function is known only to one agent in the network [1–13]. In such networks it is not
efficient, or possible, for an agent to share its objective function with other agents
due to energy and privacy constraints. In addition, the network topology is often time
varying due to agent mobility and link/node failures. Thus any algorithm used to
solve the optimization problem in these networks must be distributed, i.e., each agent
exchanges only limited information only with its immediate neighbors, and robust to
changes in the network topology.

In literature two algorithms have been proposed for the above problem: the Markov
incremental subgradient algorithm [6, 10] and the distributed subgradient algorithm
studied in [4] (and its later version [7]). The key difference between these two algo-
rithms is in the mechanism that is used to distribute the computations. In the Markov
incremental algorithm, the agents sequentially update a single iterate sequence by
passing the iterate to each other. When an agent receives the iterate, it updates the
iterate using its own objective function and then passes the iterate to a randomly cho-
sen neighbor. Thus, the order in which the agents update the iterate follows a Markov
chain (time inhomogeneous due to network topology changes) making the algorithm
stochastic by design. In addition, a single iterate sequence is generated. In contrast,
the distributed subgradient algorithm is deterministic by design and generates mul-
tiple iterate sequences (one sequence per agent). In the distributed subgradient al-
gorithms of [4, 7], each agent maintains an iterate sequence and communicates the
iterates to its neighbors. Then, each agent averages the received iterates with its own
iterate (similar to a consensus step), and updates the average using its own function.

In this paper, we study the effect of stochastic errors on the distributed subgradient
algorithm, where the errors are due to the agents computing the noisy subgradients of
their respective objective functions.1 We first consider general stochastic errors and
stepsizes, and obtain error bounds on the limiting performance of the algorithm. We
then consider errors whose mean and stepsize diminish sufficiently fast, and prove
consensus and convergence of the iterates to an optimal solution both with probabil-
ity 1 and in mean square. The extension of the analysis for the distributed subgradi-
ent from the deterministic case in [7] to the case with stochastic subgradient errors is
non-trivial. This is primarily because the stochastic subgradient errors made by each
agent propagate through the network to every other agent and also across time, mak-
ing the iterates statistically dependent across time and agents. Further, the constraint
introduces a non-linearity to the problem.

There are significant differences in the behavior of the algorithm of this paper and
the algorithm of [6], where the effect of stochastic errors on the Markov incremental
algorithm is studied. In the distributed algorithm, each agent maintains and updates
a different iterate sequence. This gives rise to a deterministic consensus error (dis-
agreement between agents) that interacts with the stochastic subgradient errors. In

1This is motivated by many applications including distributed learning and recursive regression over net-
works.
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the Markov incremental algorithm the random nature of the algorithm (each agent
passes the iterate to a random neighbor) results in a stochastic process that interacts
with the stochastic subgradient errors. The difference in the nature of the interacting
errors produces different convergence behavior of these algorithms. Inherently, their
analysis is also significantly different which is reflected in the scope of the results
obtained. We summarize the main results obtained in this paper and compare it with
the corresponding results in [6] for the Markov incremental algorithm.

• Theorem 5.3 obtains bounds on the performance of the distributed subgradient
algorithm after a finite number of iterations for diminishing and non-diminishing
stepsizes and general stochastic errors. No such results are available for the Markov
incremental algorithm in [6].

• Theorem 6.2 obtains sufficient conditions on the stepsizes and the stochastic er-
rors for the iterates converge to an optimal point with probability 1 and in mean
square. Theorem 4.3 of [6] obtains only mean square convergence of the Markov
incremental algorithm for a smaller class of stepsizes and only for the case when
the constraint set is bounded.

• Theorem 5.2 obtain bounds on the lim inf of the expected function value at the
iterates generated by the distributed subgradient algorithm for diminishing and
non-diminishing stepsizes and general stochastic errors. This bound is of the order
of m2, where m is the total number of agents in the network. The corresponding
bound for the Markov incremental algorithm in Theorem 4.4 of [6] is of the order
of m.

• Theorem 5.3 establishes the lim sup bound for the expected function value along
the time-averaged sequence of the distributed algorithm with diminishing and non-
diminishing stepsizes, and general stochastic errors. No such bound is available for
the Markov incremental algorithm in [6].

We next discuss related literature. The distributed subgradient algorithm was stud-
ied with constant stepsizes for the unconstrained and error free case in [4]. As men-
tioned the paper that is most related is [7]. In this a general algorithm is proposed
for the case when even the constraint set is not common across the agents and each
agent has a unique different set. While the problem and the proposed algorithm are
general, the analysis is performed only for two special cases (a) when the network
is completely connected, i.e., each agent shares its iterate with every other agent in
each iteration, and (b) when that constraint set at all the agents are the same (the case
studied in this paper). However, the paper considers only diminishing stepsize and
there are no stochastic errors in the subgradient terms.

Distributed incremental algorithms have been studied in [1, 2, 6, 9, 10, 14]. The
effects of stochastic errors on these algorithms have been investigated in [6, 14–19].
As mentioned, in the incremental algorithms all the agents update a single iterate
sequence and are hence fundamentally different from the distributed subgradient al-
gorithm in which each agent updates a different iterate sequence. Also related are the
optimization algorithms in [20–22]. However, these algorithms are not local as the
complete objective function information is available to each and every agent, with the
aim of distributing the processing. The work in this paper is also related at a much
broader level to the distributed consensus algorithms [7, 20–29]. In these algorithms,
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each agent starts with a different value and through local information exchange, the
agents eventually agree on a common value. The effect of random errors on con-
sensus algorithms have been investigated in [25–27, 30]. In addition, since we are
interested in the effect of stochastic errors, our paper is also related to the literature
on stochastic gradient methods [31–33].

The rest of the paper is organized as follows. In Sect. 2, we formulate the prob-
lem, describe the algorithm and state our basic assumptions. In Sect. 3 we state some
results from literature that we use in the analysis, while in Sect. 4, we derive two
important lemmas that form the backbone of the analysis. In Sect. 5, we study the
convergence properties of the method in mean, and in Sect. 6 we focus on the con-
vergence properties with probability 1 and in mean square. Finally, we provide some
concluding remarks in Sect. 7.

2 Problem, Algorithm and Assumptions

In this section, we formulate the problem of interest and describe the algorithm that
we propose. We also state and discuss our assumptions on the agent connectivity and
information exchange.

2.1 Problem

We consider a network of m agents that are indexed by 1, . . . ,m. Often, when conve-
nient, we index the agents by using set V = {1, . . . ,m}. The network objective is to
solve the following constrained optimization problem:

minimize
m∑

i=1

fi(x)

(1)
subject to x ∈ X,

where X ⊆ �n is a constraint set and fi : X → � for all i. Related to the problem,
we use the following notation

f (x) =
m∑

i=1

fi(x), f ∗ = min
x∈X

f (x), X∗ = {x ∈ X : f (x) = f ∗}.

We are interested in the case when the problem in (2) is convex. Specifically, we
assume that the following assumption holds.

Assumption 2.1 The functions fi and the set X are such that

(a) The set X is closed and convex.
(b) The functions fi, i ∈ V are defined and convex over an open set that contains

the set X.
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The function fi is known only partially to agent i in the sense that the agent
can only obtain a noisy estimate of the function subgradient. The goal is to solve
problem (2) using an algorithm that is distributed and local.2

We make no assumption on the differentiability of the functions fi . At points
where the gradient does not exist, we use the notion of subgradients. A vector ∇fi is
a subgradient of fi at a point x ∈ domf if the following relation holds

∇fi(x)T (y − x) ≤ fi(y) − fi(x) for all y ∈ domf . (2)

Since the set X is contained in an open set over which the functions are defined and
convex, a subgradient of fi exists at any point of the set X (see [35] or [36]).

2.2 Algorithm

To solve the problem in (2) with its inherent decentralized information access, we
consider an iterative subgradient method. The iterations are distributed accordingly
among the agents, whereby each agent i is minimizing its convex objective fi over
the set X and locally exchanging the iterates with its neighbors.

Let wi,k be the iterate with agent i at the end of iteration k. At the beginning of
iteration k + 1, agent i receives the current iterate of a subset of the agents. Then,
agent i computes a weighted average of these iterates and adjusts this average along
the negative subgradient direction of fi , which is computed with stochastic errors.
The adjusted iterate is then projected onto the constraint set X. Formally, each agent
i generates its iterate sequence {wi,k} according to the following relation:

wi,k+1 = PX[vi,k − αk+1(∇fi(vi,k) + εi,k+1)], (3)

starting with some initial iterate wi,0 ∈ X. Here, ∇fi(vi,k) denotes the subgradient of
fi at vi,k and εi,k+1 is the stochastic error in the subgradient evaluation. The scalar
αk+1 > 0 is the stepsize and PX denotes the Euclidean projection onto the set X. The
vector vi,k is the weighted average computed by agent i and is given by

vi,k =
∑

j∈Ni(k+1)

ai,j (k + 1)wj,k, (4)

where Ni(k + 1) denotes the set of agents whose current iterates are available to
agent i in the (k + 1)-st iteration. We assume that i ∈ Ni(k + 1) for all agents and at
all times k. The scalars ai,j (k+1) are the non-negative weights that agent i assigns to
agent j ’s iterate. We will find it convenient to define ai,j (k+1) as 0 for j /∈ Ni(k+1)

and rewrite (4) as

vi,k =
m∑

j=1

ai,j (k + 1)wj,k. (5)

This is a “consensus”-based step ensuring that, in a long run, the information of each
fi reaches every agent with the same frequency, directly or through a sequence of

2See [6, 34] for wireless network applications that can be cast in this framework.
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local communications. Due to this, the iterates wj,k become eventually “the same”
for all j and for large enough k. The update step in (3) is just a subgradient iteration
for minimizing fi over X taken after the “consensus”-based step.

2.3 Additional Assumptions

In addition to Assumption 2.1, we make some assumptions on the inter-agent ex-
change model and the weights. The first assumption requires the agents to commu-
nicate sufficiently often so that all the component functions, directly or indirectly,
influence the iterate sequence of any agent. Recall that we defined Ni(k + 1) as the
set of agents that agent i communicates with in iteration k + 1. Define (V ,Ek+1) to
be the graph with edges

Ek+1 = {(j, i) : j ∈ Ni(k + 1), i ∈ V }.

Assumption 2.2 There exists a scalar Q such that the graph (V ,
⋃

l=1,...,Q Ek+l ) is
strongly connected for all k.

It is also important that the influence of the functions fi is “equal” in a long run
so that the sum of the component functions is minimized rather than a weighted
sum of them. The influence of a component fj on the iterates of agent i depends
on the weights that agent i uses. To ensure equal influence, we make the following
assumption on the weights.

Assumption 2.3 For i ∈ V and all k,

(a) ai,j (k + 1) ≥ 0, and ai,j (k + 1) = 0 when j /∈ Ni(k + 1),

(b)
∑m

j=1 ai,j (k + 1) = 1,

(c) There exists a scalar η ∈ (0,1) such that ai,j (k + 1) ≥ η when j ∈ Ni(k + 1),

(d)
∑m

i=1 ai,j (k + 1) = 1.

Assumptions 2.3a and 2.3b state that each agent calculates a weighted average of
all the iterates it has access to. Assumption 2.3c ensures that each agent gives a suf-
ficient weight to its current iterate and all the iterates it receives.3 Assumption 2.3d,
together with Assumption 2.2, as we will see later, ensures that all the agents are
equally influential in the long run. In other words, Assumption 2.3d is crucial to en-
sure that

∑m
i=1 fi is minimized as opposed to a weighted sum of the functions fi with

non-equal weights. To satisfy Assumption 2.3d, the agents need to coordinate their
weights. Some coordination schemes are discussed in [4, 6].

3The agents need not be aware of the common bound η.
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3 Preliminaries

In this section, we state some results for future reference.
Euclidean norm inequalities. For any vectors v1, . . . , vM ∈ �n, we have

M∑

i=1

∥∥∥∥∥vi − 1

M

M∑

j=1

vj

∥∥∥∥∥

2

≤
M∑

i=1

‖vi − x‖2 for any x ∈ �n. (6)

The preceding relation states that the average of a finite set of vectors minimizes the
sum of distances between each vector and any vector in �n, which can be verified
using the first-order optimality conditions.

Both the Euclidean norm and its square are convex functions, i.e., for any vectors
v1, . . . , vM ∈ �n and nonnegative scalars β1, . . . , βM such that

∑M
i=1 βi = 1, we have

∥∥∥∥∥

M∑

i=1

βivi

∥∥∥∥∥ ≤
M∑

i=1

βi‖vi‖, (7)

∥∥∥∥∥

M∑

i=1

βivi

∥∥∥∥∥

2

≤
M∑

i=1

βi‖vi‖2. (8)

The following inequality is the well-known4 non-expansive property of the Euclidean
projection onto a nonempty, closed and convex set X,

‖PX[x] − PX[y]‖ ≤ ‖x − y‖ for all x, y ∈ �n. (9)

Scalar sequences. We make use of the following result. Its proof is in Appendix.

Lemma 3.1 Let {γk} be a scalar sequence.

(a) If limk→∞ γk = γ and 0 < β < 1, then limk→∞
∑k

�=0 βk−�γ� = γ
1−β

.

(b) If γk ≥ 0 for all k,
∑

k γk < ∞ and 0 < β < 1, then
∑∞

k=0(
∑k

�=0 βk−�γ�) < ∞.
(c) If lim supk→∞ γk = γ and {ζk} is a positive scalar sequence with

∑∞
k=1 ζk = ∞,

then lim supK→∞
∑K

k=0 γkζk∑K
k=0 ζk

≤ γ . In addition, if lim infk→∞ γk = γ , then

limK→∞
∑K

k=0 γkζk∑K
k=0 ζk

= γ .

Matrix convergence. Let A(k) be the matrix with (i, j)-th entry equal to ai,j (k).
As a consequence of Assumptions 2.3a, 2.3b and 2.3d, the matrix A(k) is doubly
stochastic.5 Define

	(k, s) = A(k)A(k − 1) · · ·A(s + 1) for all k, s with k ≥ s ≥ 0. (10)

4See for example [35], Proposition 2.2.1.
5The sum of its entries in every row and in every column is equal to 1.
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We next state a result from [29] (Corollary 1) on the convergence properties of the
matrix 	(k, s). Let [	(k, s)]i,j denote the (i, j)-th entry of the matrix 	(k, s), and
let e ∈ �m be the column vector with all entries equal to 1.

Lemma 3.2 Let Assumptions 2.2 and 2.3 hold. Then

(a) limk→∞ 	(k, s) = 1
m

eeT for all s ≥ 0.
(b) |[	(k, s)]i,j − 1

m
| ≤ θβk−s for all k ≥ s ≥ 0, where θ = (1 − η

4m2 )−2 and β =
(1 − η

4m2 )
1
Q .

Stochastic convergence. The following result is due to Robbins and Siegmund
(Lemma 11, Chap. 2.2, [37]).

Theorem 3.1 Let {Bk}, {Dk}, and {Hk} be non-negative random sequences and let
{ζk} be a deterministic nonnegative scalar sequence. Let Gk be the σ -algebra gener-
ated by B1, . . . ,Bk , D1, . . . ,Dk , H1, . . . ,Hk . Suppose that

∑
k ζk < ∞,

E [Bk+1 | Gk] ≤ (1 + ζk)Bk − Dk + Hk for all k,

and
∑

k Hk < ∞ with probability 1. Then, the sequence {Bk} converges to a non-
negative random variable and

∑
k Dk < ∞ with probability 1, and in mean.

We also use the well known Fatou’s lemma [38], stating that for a sequence of
non-negative random variables {Xk}, we have

E
[
lim inf
k→∞ Xk

]
≤ lim inf

k→∞ E [Xk].

4 Basic Relations

In this section, we derive two basic relations that form the basis for the analysis in
this paper. The first of them deals with the disagreements among the agents, and the
second deals with the agent iterate sequences.

4.1 Disagreement Estimate

The agent disagreements are typically thought of as the norms ‖wi,k − wj,k‖ of the
differences between the iterates wi,k and wj,k generated by different agents according
to (3)–(4). Alternatively, the agent disagreements can be measured with respect to a
reference sequence, which we adopt here. In particular, we study the behavior of
‖yk − wi,k‖, where yk is the vector defined by

yk = 1

m

m∑

i=1

wi,k for all k. (11)

In the next lemma, we provide a basic estimate for ‖yk − wj,k‖. The rate of conver-
gence result from Lemma 3.2 plays a crucial role in obtaining this estimate.
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Lemma 4.1 Let Assumptions 2.1a, 2.2, and 2.3 hold. Assume that the subgradients
of fi are uniformly bounded over the set X, i.e., there are scalars Ci such that

‖∇fi(x)‖ ≤ Ci for all x ∈ X and all i ∈ V .

Then, for all j ∈ V and k ≥ 0,

‖yk+1 − wj,k+1‖ ≤ mθβk+1 max
i∈V

‖wi,0‖ + θ

k∑

�=1

α�β
k+1−�

m∑

i=1

(Ci + ‖εi,�‖)

+ αk+1

m

m∑

i=1

(Ci + ‖εi,k+1‖) + αk+1(Cj + ‖εj,k+1‖).

Proof Define for all i ∈ V and all k,

pi,k+1 = wi,k+1 − ∑m
j=1 ai,j (k + 1)wj,k. (12)

Using the matrices 	(k, s) defined in (10) we can write

wj,k+1 =
m∑

i=1

[	(k + 1,0)]j,iwi,0 + pj,k+1 +
k∑

�=1

(
m∑

i=1

[	(k + 1, �)]j,ipi,�

)
. (13)

Using (12), we can also rewrite yk , defined in (11), as follows

yk+1 = 1

m

(
m∑

i=1

m∑

j=1

ai,j (k + 1)wj,k +
m∑

i=1

pi,k+1

)

= 1

m

(
m∑

j=1

(
m∑

i=1

ai,j (k + 1)

)
wj,k +

m∑

i=1

pi,k+1

)
.

In the view of the doubly stochasticity of the weights, we have
∑m

i=1 ai,j (k + 1) = 1,
implying that

yk+1 = 1

m

(
m∑

j=1

wj,k +
m∑

i=1

pi,k+1

)
= yk + 1

m

m∑

i=1

pi,k+1.

Therefore

yk+1 = y0 + 1

m

k+1∑

�=1

m∑

i=1

pi,� = 1

m

m∑

i=1

wi,0 + 1

m

k+1∑

�=1

m∑

i=1

pi,�. (14)
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Substituting for yk+1 from (14) and for wj,k+1 from (13), we obtain

‖yk+1 − wj,k+1‖ =
∥∥∥∥∥

1

m

m∑

i=1

wi,0 + 1

m

k+1∑

�=1

m∑

i=1

pi,�

−
(

m∑

i=1

[	(k + 1,0)]j,iwi,0 + pj,k+1

+
k∑

�=1

m∑

i=1

[	(k + 1, �)]j,ipi,�

)∥∥∥∥∥

=
∥∥∥∥∥

m∑

i=1

(
1

m
− [	(k + 1,0)]j,i

)
wi,0

+
k∑

�=1

m∑

i=1

(
1

m
− [	(k + 1, �)]j,i

)
pi,�

+
(

1

m

m∑

i=1

pi,k+1 − pj,k+1

)∥∥∥∥∥.

Therefore, for all j ∈ V and all k,

‖yk+1 − wj,k+1‖ ≤
m∑

i=1

∣∣∣∣
1

m
− [	(k + 1,0)]j,i

∣∣∣∣‖wi,0‖

+
k∑

�=1

m∑

i=1

∣∣∣∣
1

m
− [	(k + 1, �)]j,i

∣∣∣∣‖pi,�‖

+ 1

m

m∑

i=1

‖pi,k+1‖ + ‖pj,k+1‖.

We can bound ‖wi,0‖ ≤ maxi∈V ‖wi,0‖. Further, we can use the rate of conver-
gence result from Lemma 3.2 to bound | 1

m
− [	(k, �)]j,i |. We obtain

‖yk+1 − wj,k+1‖ ≤ mθβk+1 max
i∈V

‖wi,0‖ + θ

k∑

�=1

βk+1−�

m∑

i=1

‖pi,�‖

+ 1

m

m∑

i=1

‖pi,k+1‖ + ‖pj,k+1‖. (15)

We next estimate the norms of the vectors ‖pi,k‖ for any k. From the definition of
pi,k+1 in (12) and the definition of the vector vi,k in (4), we have pi,k+1 = wi,k+1 −
vi,k . Note that, being a convex combination of vectors wj,k in the convex set X, the
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vector vi,k is in the set X. By the definition of the iterate wi,k+1 in (3) and the non-
expansive property of the Euclidean projection in (9), we have

‖pi,k+1‖ = ‖PX[vi,k − αk+1(∇fi(vi,k) + εi,k+1)] − vi,k‖
≤ αk+1‖∇fi(vi,k) + εi,k+1‖
≤ αk+1(Ci + ‖εi,k+1‖).

In the last step we have used the subgradient boundedness. By substituting the pre-
ceding relation in (15), we obtain the desired relation. �

4.2 Iterate Relation

Here, we derive a relation for the distances ‖vi,k+1 − z‖ and the function value dif-
ferences f (yk) − f (z) for an arbitrary z ∈ X. This relation together with Lemma 4.1
provides the basis for our subsequent convergence analysis. In what follows, recall
that f = ∑m

i=1 fi .

Lemma 4.2 Let Assumptions 2.1, 2.2, and 2.3 hold. Assume that the subgradients of
fi are uniformly bounded over the set X, i.e., there are scalars Ci such that

‖∇fi(x)‖ ≤ Ci for all x ∈ X and all i ∈ V .

Then, for any z ∈ X and all k,

m∑

i=1

‖vi,k+1 − z‖2 ≤
m∑

i=1

‖vi,k − z‖2 − 2αk+1(f (yk) − f (z))

+ 2αk+1

(
max
i∈V

Ci

) m∑

j=1

‖yk − wj,k‖

− 2αk+1

m∑

i=1

εT
i,k+1(vi,k − z) + α2

k+1

m∑

i=1

(Ci + ‖εi,k+1‖)2.

Proof Using the Euclidean projection property in (9), from the definition of the iter-
ate wi,k+1 in (3), we have for any z ∈ X and all k,

‖wi,k+1 − z‖2 = ‖PX[vi,k − αk+1(∇fi(vi,k) + εi,k+1)] − z‖2

≤ ‖vi,k − z‖2 − 2αk+1∇fi(vi,k)
T (vi,k − z) − 2αk+1ε

T
i,k+1(vi,k − z)

+ α2
k+1‖∇fi(vi,k) + εi,k+1‖2.

By using the subgradient inequality in (2) to bound the second term, we obtain

‖wi,k+1 − z‖2 ≤ ‖vi,k − z‖2 − 2αk+1(fi(vi,k) − fi(z))

− 2αk+1ε
T
i,k+1(vi,k − z) + α2

k+1‖∇fi(vi,k) + εi,k+1‖2. (16)
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Note that by the convexity of the squared norm [cf. (8)], we have

m∑

i=1

‖vi,k+1 − z‖2 =
m∑

i=1

∥∥∥∥∥

m∑

j=1

ai,j (k + 2)wj,k+1 − z

∥∥∥∥∥

2

≤
m∑

i=1

m∑

j=1

ai,j (k + 2)‖wj,k+1 − z‖2.

In view of Assumption 2.3, we have
∑m

i=1 ai,j (k + 2) = 1 for all j and k, implying
that

m∑

i=1

‖vi,k+1 − z‖2 ≤
m∑

j=1

‖wj,k+1 − z‖2.

By summing the relations in (16) over all i ∈ V and by using the preceding rela-
tion, we obtain

m∑

i=1

‖vi,k+1 − z‖2

≤
m∑

i=1

‖vi,k − z‖2 − 2αk+1

m∑

i=1

(fi(vi,k) − fi(z))

− 2αk+1

m∑

i=1

εT
i,k+1(vi,k − z) + α2

k+1

m∑

i=1

‖∇fi(vi,k) + εi,k+1‖2. (17)

From (2) we have

fi(vi,k) − fi(z) ≥ (fi(vi,k) − fi(yk)) + (fi(yk) − fi(z))

≥ −‖∇fi(vi,k)‖‖yk − vi,k‖ + (fi(yk) − fi(z)). (18)

Recall that vi,k = ∑m
j=1 ai,j (k + 1)wj,k [cf. (5)]. Substituting for vi,k and using the

convexity of the norm [cf. (7)] and f + ∑m
i=1 fi , from (18) we obtain

m∑

i=1

fi(vi,k) − fi(z) ≥ −
m∑

i=1

‖∇fi(vi,k)‖
∥∥∥∥∥yk −

m∑

j=1

ai,j (k + 1)wj,k

∥∥∥∥∥

+ (f (yk) − f (z))

≥ −
m∑

i=1

‖∇fi(vi,k)‖
m∑

j=1

ai,j (k + 1)‖yk − wj,k‖

+ (f (yk) − f (z))

≥ −
(

max
i∈V

‖∇fi(vi,k)‖
) m∑

j=1

(
m∑

i=1

ai,j (k + 1)

)
‖yk − wj,k‖
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+ (f (yk) − f (z))

= −
(

max
i∈V

‖∇fi(vi,k)‖
) m∑

j=1

‖yk − wj,k‖ + (f (yk) − f (z)).

By using the preceding estimate in relation (17), we have

m∑

i=1

‖vi,k+1 − z‖2 ≤
m∑

i=1

‖vi,k − z‖2 − 2αk+1(f (yk) − f (z))

+ 2αk+1

(
max
i∈V

‖∇fi(vi,k)‖
) m∑

j=1

‖yk − wj,k‖

− 2αk+1

m∑

i=1

εT
i,k+1(vi,k − z) + α2

k+1

m∑

i=1

‖∇fi(vi,k) + εi,k+1‖2.

The result follows by using the subgradient norm boundedness, ‖∇fi(vi,k)‖ ≤ Ci for
all k and i. �

5 Convergence in Mean

Here, we study the behavior of the iterates generated by the algorithm, under the
assumption that the errors have bounded norms in mean square. In particular, we
assume the following.

Assumption 5.1 The subgradient errors are uniformly bounded in mean square, i.e.,
there are scalars ν̄i such that

E
[‖εi,k+1‖2] ≤ ν̄2

i for all i ∈ V and all k.

Using this assumption, we provide a bound on the expected disagreement E [‖wi,k −
yk‖] for nondiminishing stepsize. We later use this bound to provide an estimate
for the algorithm’s performance in mean. The bound is provided in the following
theorem.

Theorem 5.1 Let Assumptions 2.1a, 2.2, 2.3 and 5.1 hold. Also, let the subgradients
of each fi be uniformly bounded over X, i.e., for each i ∈ V there is Ci such that

‖∇fi(x)‖ ≤ Ci for all x ∈ X.

If the stepsize {αk} is such that limk→∞ αk = α for some α ≥ 0, then for all j ∈ V ,

lim sup
k→∞

E [‖yk+1 − wj,k+1‖] ≤ α max
i∈V

{Ci + ν̄i}
(

2 + mθβ

1 − β

)
.
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Proof The conditions of Lemma 4.1 are satisfied. Taking the expectation in the rela-
tion of Lemma 4.1 and using the inequality E [‖εi,k‖] ≤ √

E [‖εi,k‖2] = ν̄i , we obtain
for all j ∈ V and all k,

E [‖yk+1 − wj,k+1‖] ≤ mθβk+1 max
i∈V

‖wi,0‖ + mθβ max
i∈V

{Ci + ν̄i}
k∑

�=1

βk−�α�

+ 2αk+1 max
i∈V

{Ci + ν̄i}.

Since limk→∞ αk = α, by Lemma 3.1(a) we have limk→∞
∑k

�=1 βk−�α� = α
1−β

. Us-
ing this equality and limk→∞ αk = α, we obtain the result by letting k → ∞ in the
preceding relation. �

When the stepsize is diminishing (i.e., α = 0), the result of Theorem 5.1 implies
that the expected disagreements E [‖yk+1 − wj,k+1‖] converge to 0 for all j . Thus,
there is an asymptotic consensus in mean. We formally state this as a corollary.

Corollary 5.1 Let the conditions of Theorem 5.1 hold with α = 0. Then
limk→∞ E [‖wj,k − yk‖] = 0 for all j ∈ V .

We next obtain bounds on the performance of the algorithm. We make the addi-
tional assumption that the set X is bounded. Thus, the subgradients of each fi are
also bounded (see [35], Proposition 4.2.3).

Note that, under Assumption 5.1, by Jensen’s inequality we have ‖E [εi,k+1]‖ ≤ ν̄i .
Therefore, under Assumption 5.1,

lim sup
k→∞

‖E [εi,k+1]‖ ≤ ν̄i for all i ∈ V. (19)

We have used this relation in our analysis of the agent disagreements in Theorem 5.1.
Using this relation, we obtain special results for the cases when the errors are zero
mean or when their mean is diminishing, i.e., the cases E [εi,k+1] = 0 for all i, k, or
lim supk→∞ ‖E [εi,k+1]‖ = 0 for all i.

Theorem 5.2 Let Assumptions 2.1, 2.2, 2.3 and 5.1 hold. Assume that the set X is
bounded. Let limk→∞ αk = α with α ≥ 0. If α = 0, also assume that

∑
k αk = ∞.

Then, for all j ∈ V ,

lim inf
k→∞ E [f (wj,k)] ≤ f ∗ + max

x,y∈X
‖x − y‖

m∑

i=1

μ̄i + mα
(

max
i∈V

{Ci + ν̄i}
)2

×
(

9

2
+ 2mθβ

1 − β

)
,

where μ̄i = lim supk→∞ ‖E [εi,k+1]‖ and Ci is an upper-bound on the subgradient
norms of fi over the set X.
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Proof Under Assumption 5.1, the limit superiors μ̄i = lim supk→∞ ‖E [εi,k+1]‖ are
finite [cf. (19)]. Since the set X is bounded the subgradients of fi over the set X

are also bounded for each i ∈ V ; hence, the bounds Ci, i ∈ V on subgradient norms
exist. Thus, the conditions of Lemma 4.2 are satisfied. Further, by Assumption 2.1,
the set X is contained in the interior of the domain of f , over which the function is
continuous (by convexity; see [36]). Thus, the set X is compact and f is continuous
over X, implying that the optimal set X∗ is nonempty. Let x∗ ∈ X∗, and let y = x∗ in
Lemma 4.2. We have, for all k,

m∑

i=1

‖vi,k+1 − x∗‖2 ≤
m∑

i=1

‖vi,k − x∗‖2 − 2αk+1(f (yk) − f ∗)

+ 2αk+1

(
max
i∈V

Ci

) m∑

j=1

‖yk − wj,k‖

− 2αk+1

m∑

i=1

εT
i,k+1(vi,k − x∗) + α2

k+1

m∑

i=1

(Ci + ‖εi,k+1‖)2.

Since X is bounded, by using ‖vi,k −x∗‖ ≤ maxx,y∈X ‖x −y‖, taking the expectation
and using the error bounds E [‖εi,k+1‖2] ≤ ν̄2

i we obtain

m∑

i=1

E
[‖vi,k+1 − x∗‖2] ≤

m∑

i=1

E
[‖vi,k − x∗‖2] − 2αk+1(E [f (yk)] − f ∗)

+ 2αk+1

(
max
i∈V

Ci

) m∑

j=1

E [‖yk − wj,k‖]

+ 2αk+1 max
x,y∈X

‖x − y‖
m∑

i=1

‖E [εi,k+1]‖

+ α2
k+1

m∑

i=1

(Ci + ν̄i )
2. (20)

By rearranging the terms and summing over k = 1, . . . ,K , for an arbitrary K , we
obtain

2
K∑

k=1

αk+1

(
(E [f (yk)] − f ∗) −

(
max
i∈V

Ci

) m∑

j=1

E [‖yk − wj,k‖]

− max
x,y∈X

‖x − y‖
m∑

i=1

‖E [εi,k+1]‖ − mαk+1

2

(
max
i∈V

{Ci + ν̄i}
)2

)

≤
m∑

i=1

E
[‖vi,1 − x∗‖2] −

m∑

i=1

E
[‖vi,K+1 − x∗‖2] ≤ m max

x,y∈X
‖x − y‖2.
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Note that when αk+1 → α and α > 0, we have
∑

k αk = ∞. When α = 0, we have
assumed that

∑
k αk = ∞. Therefore, by letting K → ∞, we have

lim inf
k→∞

(
E [f (yk)] −

(
max
i∈V

Ci

) m∑

j=1

E [‖yk − wj,k‖]

− max
x,y∈X

‖x − y‖
m∑

i=1

‖E [εi,k+1]‖ − mαk+1

2

(
max
i∈V

{Ci + ν̄i}
)2

)
≤ f ∗.

Using lim supk→∞ ‖E [εi,k+1]‖ = μ̄i [see (19)] and limk→∞ αk = α, we obtain

lim inf
k→∞ E [f (yk)] ≤ f ∗ + mα

2

(
max
i∈V

{Ci + ν̄i}
)2

+
(

max
i∈V

Ci

) m∑

j=1

lim sup
k→∞

E [‖yk − wj,k‖]

+ max
x,y∈X

‖x − y‖
m∑

i=1

μ̄i .

Next from the convexity inequality in (2) and the boundedness of the subgradients it
follows that for all k and j ∈ V ,

E [f (wj,k) − f (yk)] ≤
(

m∑

i=1

Ci

)
E [‖yk − wj,k‖],

implying

lim inf
k→∞ E [f (wj,k)] ≤ f ∗ + mα

2

(
max
i∈V

{Ci + ν̄i}
)2

+
(

max
i∈V

Ci

) m∑

j=1

lim sup
k→∞

E [‖yk − wj,k‖]

+
(

m∑

i=1

Ci

)
lim sup
k→∞

E [‖yk − wj,k‖] + max
x,y∈X

‖x − y‖
m∑

i=1

μ̄i .

By Theorem 5.1, we have for all j ∈ V ,

lim sup
k→∞

E [‖yk − wj,k‖] ≤ α max
i∈V

{Ci + ν̄i}
(

2 + mθβ

1 − β

)
.

By using the preceding relation, we see that

lim inf
k→∞ E [f (wj,k)] ≤ f ∗ + mα

2

(
max
i∈V

{Ci + ν̄i}
)2 + max

x,y∈X
‖x − y‖

m∑

i=1

μ̄i
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+ mα
(

max
i∈V

Ci

)
max
i∈V

{Ci + ν̄i}
(

2 + mθβ

1 − β

)

+ α

(
m∑

i=1

Ci

)
max
j∈V

{Cj + ν̄j }
(

2 + mθβ

1 − β

)

≤ f ∗ + max
x,y∈X

‖x − y‖
m∑

i=1

μ̄i + mα
(

max
i∈V

{Ci + ν̄i}
)2

×
(

9

2
+ 2mθβ

1 − β

)
. �

The network topology influences the error only through the term θβ
1−β

and can
hence be used as a figure of merit for comparing different topologies. For a network
that is strongly connected at every time, [i.e., Q = 1 in Assumption 2.2] and when η

in Assumption 2.3 does not depend on the number m of agents, the term θβ
1−β

is of

the order m2 and the error bound scales as m4.
We next show that stronger bounds can be obtained for a specific weighted time

averages of the iterates wi,k . In particular, we investigate the limiting behavior of

{f (zi,t )}, where zi,t =
∑t

k=1 αk+1wi,k∑t
k=1 αk+1

. Note that agent i can locally and recursively

evaluate zi,t+1 from zi,t and wi,t+1.

Theorem 5.3 Consider the weighted time averages zj,t =
∑t

k=1 αk+1wj,k∑t
k=1 αk+1

for j ∈ V

and t ≥ 1. Let the conditions of Theorem 5.2 hold. Then, we have for all j ∈ V ,

lim sup
t→∞

E [f (zj,t )] ≤ f ∗ + max
x,y∈X

‖x−y‖
m∑

i=1

μ̄i +mα
(

max
i∈V

{Ci + ν̄i}
)2

(
9

2
+ 2mθβ

1 − β

)
.

Proof The relation in (20) of Theorem 5.2 is valid, and we have for any x∗ ∈ X∗,

m∑

i=1

E [‖vi,k+1 − x∗‖2] ≤
m∑

i=1

E [‖vi,k − x∗‖2] − 2αk+1(E [f (yk)] − f ∗)

+ 2αk+1

(
max
i∈V

Ci

) m∑

�=1

E [‖yk − w�,k‖]

+ 2αk+1 max
x,y∈X

‖x − y‖
m∑

i=1

‖E [εi,k+1]‖

+ α2
k+1

m∑

i=1

(Ci + ν̄i )
2.
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From the subgradient boundedness and the subgradient inequality in (2) we have for
any j ,

E [f (yk)] − E [f (wj,k)] ≥ −
(

m∑

i=1

Ci

)
E [‖yk − wj,k‖]

≥ −m
(

max
i∈V

Ci

)
E [‖yk − wj,k‖].

Therefore, we obtain

m∑

i=1

E [‖vi,k+1 − x∗‖2]

≤
m∑

i=1

E [‖vi,k − x∗‖2] − 2αk+1(E [f (wj,k)] − f ∗)

+ 2αk+1

(
max
i∈V

Ci

)(
mE [‖yk − wj,k‖] +

m∑

i=1

E [‖yk − wi,k‖]
)

+ 2αk+1 max
x,y∈X

‖x − y‖
m∑

i=1

‖E [εi,k+1]‖ + α2
k+1

m∑

i=1

(Ci + ν̄i )
2.

By re-arranging these terms, summing over k = 1, . . . , t and dividing with
2
∑t

k=1 αk+1, we further obtain

t∑

k=1

αk+1E [f (wj,k)]∑t
k=1 αk+1

≤ f ∗ + 1

2
∑t

k=1 αk+1

m∑

i=1

E
[‖vi,1 − x∗‖2]

+
t∑

k=1

αk+1(maxi∈V Ci)(mE [‖yk − wj,k‖] + ∑m
i=1 E [‖yk − wi,k‖])∑t

k=1 αk+1

+ max
x,y∈X

‖x − y‖
m∑

i=1

∑t
k=1 αk+1‖E [εi,k+1]‖∑t

k=1 αk+1
+

∑t
k=1 α2

k+1

2
∑t

k=1 αk+1

m∑

i=1

(Ci + ν̄i )
2.

Next by the convexity of f note that

f (zj,t ) = f

(
t∑

k=1

αk+1wj,k∑t
k=1 αk+1

)
≤

t∑

k=1

αk+1f (wj,k)∑t
k=1 αk+1

.
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From the preceding two relations we obtain

E [f (zj,t )]

≤ f ∗ + 1

2
∑t

k=1 αk+1

m∑

i=1

E
[‖vi,1 − x∗‖2]

+
t∑

k=1

αk+1(maxi∈V Ci)(mE [‖yk − wj,k‖] + ∑m
i=1 E [‖yk − wi,k‖])∑t

k=1 αk+1

+ max
x,y∈X

‖x − y‖
m∑

i=1

∑t
k=1 αk+1‖E [εi,k+1]‖∑t

k=1 αk+1
+

∑t
k=1 α2

k+1

2
∑t

k=1 αk+1

m∑

i=1

(Ci + ν̄i )
2.

(21)

First note that in the limit as t → ∞, the second term in (21) converges to 0 since∑t
k=1 αk+1 = ∞. By using the results of Lemma 3.1c, for the remaining terms, we

obtain

lim sup
t→∞

E [f (zj,t )]

≤ f ∗ +
(

max
i∈V

Ci

)
lim sup
k→∞

(
mE [‖yk − wj,k‖] +

m∑

i=1

E [‖yk − wi,k‖]
)

+ max
x,y∈X

‖x − y‖
m∑

i=1

lim sup
k→∞

‖E [εi,k+1]‖ + α

2

m∑

i=1

(Ci + ν̄i )
2.

By Theorem 5.1, we have for all j ∈ V ,

lim sup
k→∞

E [‖yk − wj,k‖] ≤ α max
i∈V

{Ci + ν̄i}
(

2 + mθβ

1 − β

)
,

which when substituted in the preceding relation, yields

lim sup
t→∞

E [f (zj,t )] ≤ f ∗ + 2mα
(

max
i∈V

Ci

)
max
i∈V

{Ci + ν̄i}
(

2 + mθβ

1 − β

)

+ max
x,y∈X

‖x − y‖
m∑

i=1

lim sup
k→∞

‖E [εi,k+1]‖ + α

2

m∑

i=1

(Ci + ν̄i )
2

≤ f ∗ + max
x,y∈X

‖x − y‖
m∑

i=1

lim sup
k→∞

‖E [εi,k+1]‖

+ mα
(

max
i∈V

{Ci + ν̄i}
)2

(
9

2
+ 2mθβ

1 − β

)
.

�
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The error bounds in Theorems 5.2 and 5.3 have the same form, but they apply to
different sequences of function evaluations. Furthermore, in Theorem 5.3, the bound
is for all subsequences of E [f (zi,k)] for each agent i. In contrast, in Theorem 5.2, the
bound is only for a subsequence of E [f (zi,k)] for each agent i. Theorem 5.3 demon-
strates that, due to the convexity of the objective function f , there is an advantage
when agents are using the running averages of their iterates.

When the error6 moments ‖E [εi,k+1]‖ converge to zero as k → ∞, and the step-
size converges to zero [α = 0], Theorems 5.2 and 5.3 yield respectively

lim inf
k→∞ E [f (wj,k)] = f ∗ and lim

k→∞ E [f (zj,k)] = f ∗.

When a constant stepsize α is used, the vector zj,t is simply the running average
of all the iterates of agent j until time t , i.e., zj,t = 1

t

∑t
k=1 wj,k . For this case, with

zero mean errors, the relation in (21) reduces to

E [f (zj,t )] ≤ f ∗ + 1

2tα

m∑

i=1

E [‖vi,1 − x∗‖2]

+
(

max
i∈V

Ci

)1

t

t∑

k=1

(
mE [‖yk − wj,k‖] +

m∑

i=1

E [‖yk − wi,k‖]
)

+ α

2

m∑

i=1

(Ci + ν̄i )
2. (22)

This can be used to derive an estimate per iteration, as seen in the following.

Corollary 5.2 Under the conditions of Theorem 5.2 with ‖E [εi,k+1]‖ = 0 and αk = 0
for all i and k, for the average sequences {zj,k} we have for all t and j ,

E [f (zj,t )] ≤ f ∗ + 1

2tα

m∑

i=1

E
[‖vi,1 − x∗‖2] + 2m2θβ2

t (1 − β)

(
max
i∈V

Ci

)(
max
i∈V

‖wi,0‖
)

+ mα
(

max
i∈V

{Ci + ν̄i}
)2

(
9

2
+ 2mθβ

1 − β

)
.

Proof Taking the expectation in the relation of Lemma 4.1, we obtain

E [‖yk+1 − wj,k+1‖] ≤ mθβk+1 max
i∈V

‖wi,0‖ + mαθβ
(

max
i∈V

{Ci + ν̄i}
) k∑

�=1

βk−�

+ 2α max
i∈V

{Ci + ν̄i}

≤ mθβk+1 max
i∈V

‖wi,0‖ + α
(

max
i∈V

{Ci + ν̄i}
)(

2 + mθβ

1 − β

)
.

6When the moments ‖E [εi,k+1]‖ are zero, it can be seen that the results of Theorems 5.2 and 5.3 hold
when the boundedness of X is replaced by the weaker assumption that the subgradients of each fi are
bounded over X.
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Combining the preceding relation with the inequality in (22), and using
∑t

k=1 βk+1 ≤
β2

1−β
, we obtain

E [f (zj,t )] ≤ f ∗ + 1

2tα

m∑

i=1

E
[‖vi,1 − x∗‖2] + 2m2θβ2

t (1 − β)

(
max
i∈V

Ci

)(
max
i∈V

‖wi,0‖
)

+ mα
(

max
i∈V

{Ci + ν̄i}
)2

(
9

2
+ 2mθβ

1 − β

)
. �

The preceding equation provides a bound on the algorithm’s performance at each
iteration. The bound can be used in obtaining stopping rules for the algorithm. For
example, consider the error free case (ν̄i = 0) and suppose that the goal is to deter-
mine the number of iterations required for agents to find a point in the ε-optimal set,
i.e., in the set Xε = {x ∈ X : f (x) ≤ f ∗ + ε}. Minimizing the bound in Corollary 5.2
over different stepsize values α, we can show that ε-optimality can be achieved in

Nε = � 1
ψ2

ε
 iterations with a stepsize αε =

√
Aψε√
C

, where ψε is the positive root of the

quadratic equation

Bx2 + 2
√

ACx − ε = 0,

and A,B and C are

A = 1

2

m∑

i=1

‖vi,1 − x∗‖2, B = 2m2θβ2

1 − β

(
max
i∈V

Ci

)(
max
i∈V

‖wi,0‖
)
,

C = m
(

max
i∈V

{Ci + ν̄i}
)2

(
9

2
+ 2mθβ

1 − β

)
.

Since ψε scales as
√

ε, we can conclude that Nε scales as 1
ε2 . Equivalently, we can

say that the level ε of sub-optimality diminishes inversely with the square root of the
number of iterations.

6 Almost Sure and Mean Square Convergence

In this section, we impose some additional assumptions on the subgradient errors to
obtain almost sure consensus among the agents and almost sure convergence of the
iterates to an optimal solution of (2). Towards this, define Fk to be the σ -algebra
σ(εi,�; i ∈ V,0 ≤ � ≤ k) generated by the errors in the agent system up to time k. In
other words, Fk captures the history of the errors until the end of time k. We use the
following assumption on the subgradient errors εi,k .

Assumption 6.1 There are scalars νi such that E [‖εi,k+1‖2 | Fk] ≤ ν2
i for all k with

probability 1.

Note that Assumption 6.1 is stronger than Assumption 5.1. Furthermore, when the
errors are independent across iterations and across agents, Assumption 6.1 reduces to
Assumption 5.1.



J Optim Theory Appl (2010) 147: 516–545 537

We start by analyzing the agents’ disagreements measured in terms of distances
‖yk − wj,k‖. We have the following result.

Theorem 6.1 Let Assumptions 2.1a, 2.2, 2.3 and 6.1 hold. Suppose that the subgra-
dients of each fi are uniformly bounded over X, i.e., for each i ∈ V there is Ci such
that

‖∇fi(x)‖ ≤ Ci for all x ∈ X.

If
∑∞

k=0 α2
k+1 < ∞, then with probability 1,

∞∑

k=1

αk+2‖yk+1 − wj,k+1‖ < ∞ for all j ∈ V .

Furthermore, for all j ∈ V , we have limk→∞ ‖yk+1 −wj,k+1‖ = 0 with probability 1
and in mean square.

Proof By Lemma 4.1 and the subgradient boundedness, we have for all j ∈ V ,

‖yk+1 − wj,k+1‖ ≤ mθβk+1 max
i∈V

‖wi,0‖ + θ

k∑

�=1

βk+1−�

m∑

i=1

α�(Ci + ‖εi,�‖)

+ 1

m

m∑

i=1

αk+1(Ci + ‖εi,k+1‖) + αk+1(Cj + ‖εj,k+1‖).

Using the inequalities

αk+2α�(Ci + ‖εi,�‖) ≤ 1

2

(
α2

k+2 + α2
� (Ci + ‖εi,�‖)2)

and (Ci + ‖εi,�‖)2 ≤ 2C2
i + 2‖εi,�‖2, we obtain

αk+2‖yk+1 − wj,k+1‖ ≤ αk+2mθβk+1 max
i∈V

‖wi,0‖

+ θ

k∑

�=1

βk+1−�

m∑

i=1

(
1

2
α2

k+2 + α2
�

(
C2

i + ‖εi,�‖2)
)

+ 1

m

m∑

i=1

(
1

2
α2

k+2 + α2
k+1

(
C2

i + ‖εi,k+1‖2)
)

+ 1

2
α2

k+2 + α2
k+1

(
C2

j + ‖εj,k+1‖2).
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By using the inequalities
∑k

�=1 βk+1−� ≤ β
1−β

for all k ≥ 1 and 1
2m

+ 1
2 ≤ 1, and by

grouping the terms accordingly, from the preceding relation we have

αk+2‖yk+1 − wj,k+1‖ ≤ αk+2mθβk+1 max
i∈V

‖wi,0‖ +
(

1 + mθβ

2(1 − β)

)
α2

k+2

+ θ

k∑

�=1

α2
�β

k+1−�
m∑

i=1

(
C2

i + ‖εi,�‖2)

+ 1

m
α2

k+1

m∑

i=1

(
C2

i + ‖εi,k+1‖2) + α2
k+1

(
C2

j + ‖εj,k+1‖2).

Taking the conditional expectation and using E [‖εi,�‖2 | F�−1] ≤ ν2
i , and then taking

the expectation again, we obtain

E [αk+2‖yk+1 − wj,k+1‖] ≤ αk+2mθβk+1 max
i∈V

‖wi,0‖ +
(

1 + mθβ

2(1 − β)

)
α2

k+2

+ θ

(
m∑

i=1

(
C2

i + ν2
i

)
)

k∑

�=1

α2
�β

k+1−�

+ 1

m
α2

k+1

m∑

i=1

(
C2

i + ν2
i

) + α2
k+1

(
C2

j + ν2
j

)
.

Since
∑

k α2
k < ∞ (and hence {αk} bounded), the first two terms and the last

two terms are summable. Furthermore, in view of Lemma 3.1 [part (b)], we
have

∑∞
k=1

∑k
�=1 βk+1−�α2

� < ∞. Thus, the third term is also summable. Hence∑∞
k=1 E [αk+2‖yk+1 −wj,k+1‖] < ∞. From the monotone convergence theorem [38],

it follows that

E

[ ∞∑

k=1

αk+2‖yk+1 − wj,k+1‖
]

=
∞∑

k=1

E [αk+2‖yk+1 − wj,k+1‖],

and it is hence finite for all j . If the expected value of a random variable is finite, then
the variable has to be finite with probability 1; thus, with probability 1,

∞∑

k=1

αk+2‖yk+1 − wj,k+1‖ < ∞ for all j ∈ V. (23)

We now show that limk→∞ ‖yk −wj,k‖ = 0 with probability 1 for all j ∈ V . Note
that the conditions of Theorem 5.1 are satisfied with ν̄i = νi and α = 0. Therefore,
‖yk − wj,k‖ converges to 0 in the mean and from Fatou’s lemma it follows that

0 ≤ E
[
lim inf
k→∞ ‖yk − wj,k‖

]
≤ lim inf

k→∞ E [‖yk − wj,k‖] = 0,
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and hence E [lim infk→∞ ‖yk − wj,k‖] = 0. Therefore, with probability 1,

lim inf
k→∞ ‖yk − wj,k‖ = 0. (24)

To complete the proof, in view of (24) it suffices to show that ‖yk − wj,k‖ con-
verges with probability 1. To show this, we define

ri,k+1 =
m∑

j=1

ai,j (k + 1)wj (k) − αk+1(∇fi(vi,k) + εi,k+1),

and note that PX[ri,k+1] = wi,k+1 [see (3) and (4)]. Since yk = 1
m

∑m
i=1 wi,k and the

set X is convex, it follows that yk ∈ X for all k. Therefore, by the non-expansive
property of the Euclidean projection in (9), we have ‖wi,k+1 − yk‖2 ≤ ‖ri,k+1 − yk‖2

for all i ∈ V and all k. Summing these relations over all i, we obtain

m∑

i=1

‖wi,k+1 − yk‖2 ≤
m∑

i=1

‖ri,k+1 − yk‖2 for all k.

From yk+1 = 1
m

∑m
i=1 wi,k+1 and the fact that the average of vectors minimizes the

sum of distances between each vector and arbitrary vector in �n [cf. (6)], we further
obtain

m∑

i=1

‖wi,k+1 − yk+1‖2 ≤
m∑

i=1

‖wi,k+1 − yk‖2.

Therefore, for all k,

m∑

i=1

‖wi,k+1 − yk+1‖2 ≤
m∑

i=1

‖ri,k+1 − yk‖2. (25)

We next relate
∑m

i=1 ‖ri,k+1 − yk‖2 to
∑m

i=1 ‖wi,k − yk‖2. From the definition of
ri,k+1 and the equality

∑m
j=1 ai,j (k + 1) = 1 [cf. Assumption 2.3b], we have

ri,k+1 − yk =
m∑

j=1

ai,j (k + 1)(wj,k − yk) − αk+1(∇fi(vi,k) + εi,k+1).

By Assumption 2.3a and 2.3b, we have that the weights ai,j (k + 1), j ∈ V yield a
convex combination. Thus, by the convexity of the norm [(7) and (8)] and by the
subgradient boundedness, we have

‖ri,k+1 − yk‖2 ≤
m∑

j=1

ai,j (k + 1)‖wj,k − yk‖2 + α2
k+1‖∇fi(vi,k) + εi,k+1‖2

+ 2αk+1‖∇fi(vi,k) + εi,k+1‖
m∑

j=1

ai,j (k + 1)‖wj,k − yk‖
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≤
m∑

j=1

ai,j (k + 1)‖wj,k − yk‖2 + 2α2
k+1

(
C2

i + ‖εi,k+1‖2)

+ 2αk+1(Ci + ‖εi,k+1‖)
m∑

j=1

ai,j (k + 1)‖wj,k − yk‖.

Summing over all i and using
∑m

i=1 ai,j (k + 1) = 1 [cf. Assumption 2.3d], we obtain

m∑

i=1

‖ri,k+1 − yk‖2 ≤
m∑

j=1

‖wj,k − yk‖2 + 2α2
k+1

m∑

i=1

(
C2

i + ‖εi,k+1‖2)

+ 2αk+1

m∑

i=1

(Ci + ‖εi,k+1‖)
m∑

j=1

ai,j (k + 1)‖wj,k − yk‖.

Using this in (25) and taking the conditional expectation, we see that for all k, we
have with probability 1,

m∑

i=1

E [‖wi,k+1 − yk+1‖2 | Fk] ≤
m∑

i=1

‖wi,k − yk‖2 + 2α2
k+1

m∑

i=1

(
C2

i + ν2
i

)

+ 2αk+1

m∑

i=1

(Ci + νi)

m∑

j=1

‖wj,k − yk‖, (26)

where we use ai,j (k + 1) ≤ 1 for all i, j and k, and the relations E [‖εi,k+1‖2 | Fk] ≤
ν2
i , E [‖εi,k+1‖ | Fk] ≤ νi holding with probability 1.

We now apply Theorem 3.1 to the relation in (26). To verify that the conditions
of Theorem 3.1 are satisfied, note that the stepsize satisfies

∑∞
k=1 α2

k+1 < ∞ for all
i ∈ V . We also have

∑∞
k=1 αk+1‖wj,k −yk‖ < ∞ with probability 1 [cf. (23)]. There-

fore, the relation in (26) satisfies the conditions of Theorem 3.1 with ζk = Dk = 0,
thus implying that ‖wj,k − yk‖ converges with probability 1 for every j ∈ V . �

Let us compare Theorem 6.1 and Corollary 5.1. Corollary 5.1 provided suffi-
cient conditions for the different agents to have consensus in the mean. Theorem 6.1
strengthens this to consensus with probability 1 and in mean square sense, for a
smaller class of stepsize sequences under a stricter assumption.

We next show that the consensus vector is actually in the optimal set, provided
that the optimal set is nonempty and the conditional expectations ‖E [εi,k+1 | Fk]‖
are diminishing.

Theorem 6.2 Let Assumptions 2.1, 2.2, 2.3 and 6.1 hold. Suppose that the subgra-
dients of each fi are uniformly bounded over X, i.e., for each i ∈ V there is Ci such
that

‖∇fi(x)‖ ≤ Ci for all x ∈ X.

Also, assume that
∑∞

k=0 ‖E [εi,k+1 | Fk]‖2 < ∞ for all i ∈ V . Further, let the stepsize
sequence {αk} be such that

∑∞
k=1 αk = ∞ and

∑∞
k=1 α2

k < ∞. Then, if the optimal
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set X∗ is nonempty, the iterate sequence {wi,k} of each agent i ∈ V converges to the
same optimal point with probability 1 and in mean square.

Proof Observe that the conditions of Lemma 4.2 are satisfied. Letting z = x∗ for
some x∗ ∈ X∗, taking conditional expectations and using the bounds on the error
moments, we obtain for any x∗ ∈ X∗ and any k, with probability 1,

m∑

i=1

E [‖vi,k+1 − x∗‖2 | Fk] ≤
m∑

i=1

‖vi,k − x∗‖2 − 2αk+1(f (yk) − f ∗)

+ 2αk+1

(
max
i∈V

Ci

) m∑

j=1

‖yk − wj,k‖

+ 2αk+1

m∑

i=1

μi,k+1‖vi,k − x∗‖ + α2
k+1

m∑

i=1

(Ci + νi)
2,

where f ∗ = f (x∗), and we use the notation μi,k+1 = ‖E [εi,k+1 | Fk]‖. Using the
inequality

2αk+1μi,k+1‖vi,k − x∗‖ ≤ α2
k+1‖vi,k − x∗‖2 + μ2

i,k+1,

we obtain with probability 1,

m∑

i=1

E [‖vi,k+1 − x∗‖2 | Fk] ≤
m∑

i=1

(
1 + α2

k+1

)‖vi,k − x∗‖2

− 2αk+1

(
(f (yk) − f ∗) −

(
max
i∈V

Ci

) m∑

j=1

‖yk − wj,k‖

+
m∑

i=1

μ2
i,k+1 − 1

2
αk+1

m∑

i=1

(Ci + νi)
2

)
. (27)

By Theorem 6.1, we have with probability 1,
∑

k αk+1‖wj,k − yk‖ < ∞. Further,
since

∑
k μ2

i,k < ∞ and
∑

k α2
k < ∞ with probability 1, the relation in (27) satisfies

the conditions of Theorem 3.1. We therefore have
∑

k

αk(f (yk) − f ∗) < ∞, (28)

and ‖vi,k − x∗‖ converges with probability 1 and in mean square. In addition, by
Theorem 6.1, we have limk→∞ ‖wi,k − yk‖ = 0 for all i, with probability 1. Hence,
limk→∞ ‖vi,k −yk‖ → 0 for all i, with probability 1. Therefore, ‖yk −x∗‖ converges
with probability 1 for any x∗ ∈ X∗. Moreover, from (28) and the fact that

∑
k αk = ∞,

by continuity of f , it follows that yk , and hence wi,k , must converge to a vector in
X∗ with probability 1 and in mean square. �
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Theorem 6.2 does not require the compactness of the constraint set X. This is due
to the assumption that both the stepsize αk and the norms ‖E [εi,k+1 | Fk]‖ of the con-
ditional errors are square summable. In addition, note that the result of Theorem 6.2
remains valid when the condition

∑∞
k=0 ‖E [εi,k+1 | Fk]‖2 < ∞ for all i is replaced

with
∑∞

k=0 αk+1‖E [εi,k+1 | Fk]‖ < ∞ for all i.

7 Discussion

We studied the effects of stochastic subgradient errors on distributed algorithm for
network of agents with time-varying connectivity. We first considered very general
errors with bounded second moments and obtained explicit bounds on the agent dis-
agreements and on the expected deviation of the limiting function value from the opti-
mal. The bounds are explicitly given as a function of the network properties, objective
function and the error moments. For networks that are connected at all times and η is
independent of the size of the network, the bound scales as α(maxi∈V {Ci + νi})2m4,
where m is the number of agents in the network, α is the stepsize limit, and Ci and
ν2
i are respectively the subgradient norm bound and the bound on the second moment

of the subgradient errors for agent i. For the constant stepsize case, we obtained a
bound on the performance of the algorithm after a finite number of iterations. There,
we showed that deviation from the “error-bound” diminishes at rate 1

t
, where t is

the number of iterations. Finally, we proved that when the expected error and the
stepsize converge to 0 sufficiently fast, the agents reach a consensus and the iterate
sequences of agents converge to a common optimal point with probability 1 and in
mean square.

We make the following remarks. First, it can be shown that the disagreement re-
sults in Corollary 5.1 and Theorem 6.1 hold even when the agents use non-identical
stepsizes. However, with non-identical agent stepsizes there is no guarantee that the
sum of the objectives rather than a weighted sum, is minimized.

Future work includes several important extensions of the distributed model stud-
ied here. At first, we have assumed no communication delays between the agents
and synchronous processing. An important extension is to consider the properties of
the algorithm in asynchronous networks with communication delays, as in [20]. At
second, we assumed perfect communication scenario, i.e., noiseless communication
links. In wireless network applications, the links are typically noisy and this has to be
taken into consideration. At third, we have considered the class of convex functions.
This restricts the number of possible applications for the algorithm. Further research
is to develop distributed algorithms when the functions fi are not convex.

Appendix

Proof of Lemma 3.1 (a) Let ε > 0 be arbitrary. Since γk → γ and for all k, there
is an index K such that |γk − γ | ≤ ε for all k ≥ K . For all k ≥ K + 1, we



J Optim Theory Appl (2010) 147: 516–545 543

have

k∑

�=0

βk−�γ� =
K∑

�=0

βk−�γ� +
k∑

�=K+1

βk−�γ�

≤ max
0≤t≤K

γt

K∑

�=0

βk−� + (γ + ε)

k∑

�=K+1

βk−�.

Since
∑k

�=K+1 βk−� ≤ 1
1−β

and
∑K

�=0 βk−� = βk−K(1 + · · · + βK) ≤ βk−K

1−β
, it fol-

lows that

k∑

�=0

βk−�γ� ≤
(

max
0≤t≤K

γt

)βk−K

1 − β
+ γ + ε

1 − β
for all k ≥ K + 1.

Therefore, lim supk→∞
∑k

�=0 βk−�γ� ≤ γ+ε
1−β

. Since ε is arbitrary, we have

lim supk→∞
∑k

�=0 βk−�γ� ≤ γ
1−β

. Similarly, we have

k∑

�=0

βk−�γ� ≥ min
0≤t≤K

γt

K∑

�=0

βk−� + (γ − ε)

k∑

�=K+1

βk−�.

Thus,

lim inf
k→∞

k∑

�=0

βk−�γ� ≥ lim inf
k→∞

(
min

0≤t≤K
γt

K∑

�=0

βk−� + (γ − ε)

k∑

�=K+1

βk−�

)
.

Since
∑K

�=0 βk−� ≥ βk−K and
∑k

�=K+1 βk−� = ∑k−(K+1)
s=0 βs , which tends to

1/(1 − β) as k → ∞, it follows that

lim inf
k→∞

k∑

�=0

βk−�γ� ≥
(

min
0≤t≤K

γt

)
lim

k→∞βk−K + (γ − ε) lim
k→∞

k−(K+1)∑

s=0

βs = γ − ε

1 − β
.

Since ε is arbitrary, we have lim infk→∞
∑k

�=0 βk−�γ� ≥ γ
1−β

. This and

lim supk→∞
∑k

�=0 βk−�γ� ≤ γ
1−β

(established earlier), imply limk→∞
∑k

�=0 βk−�γ�

= γ
1−β

.

(b) Let
∑∞

k=0 γk < ∞. For any integer M ≥ 1, we have

M∑

k=0

(
k∑

�=0

βk−�γ�

)
=

M∑

�=0

γ�

M−�∑

t=0

βt ≤
M∑

�=0

γ�

1

1 − β
,

implying that

∞∑

k=0

(
k∑

�=0

βk−�γ�

)
≤ 1

1 − β

∞∑

�=0

γ� < ∞.
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(c) Since lim supk→∞ γk = γ , for every ε > 0 there is a large enough K such that
γk ≤ γ + ε for all k ≥ K . Thus, for any M > K ,

∑M
k=0 γkζk∑M
k=0 ζk

=
∑K

k=0 γkζk∑M
k=0 ζk

+
∑M

k=K+1 γkζk
∑M

k=0 ζk

≤
∑K

k=0 γkζk∑M
k=0 ζk

+ (γ + ε)

∑M
k=K+1 ζk

∑M
k=0 ζk

.

By letting M → ∞ and using
∑

k ζk = ∞, we see that lim supM→∞
∑M

k=0 γkζk∑M
k=0 ζk

≤
γ + ε, and since ε is arbitrary, the result for the limit superior follows.

Analogously, if lim infk→∞ γk = γ , then for every ε > 0 there is a large enough
K such that γk ≥ γ − ε for all k ≥ K . Thus, for any M > K ,

∑M
k=0 γkζk∑M
k=0 ζk

=
∑K

k=0 γkζk∑M
k=0 ζk

+
∑M

k=K+1 γkζk
∑M

k=0 ζk

≥
∑K

k=0 γkζk∑M
k=0 ζk

+ (γ − ε)

∑M
k=K+1 ζk

∑M
k=0 ζk

.

Letting M → ∞ and using
∑

k ζk = ∞, we obtain lim infM→∞
∑M

k=0 γkζk∑M
k=0 ζk

≥ γ − ε.

Since ε > 0 is arbitrary, we have lim infM→∞
∑M

k=0 γkζk∑M
k=0 ζk

≥ γ . This relation and the

relation for the limit superior yield limM→∞
∑M

k=0 γkζk∑M
k=0 ζk

= γ when γk → γ . �
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