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Abstract—Regenerating codes are a class of recently developed
codes for distributed storage that, like Reed-Solomon codes, permit
data recovery from any subset of nodes within the -node net-
work. However, regenerating codes possess in addition, the ability
to repair a failed node by connecting to an arbitrary subset of
nodes. It has been shown that for the case of functional repair, there
is a tradeoff between the amount of data stored per node and the
bandwidth required to repair a failed node. A special case of func-
tional repair is exact repair where the replacement node is required
to store data identical to that in the failed node. Exact repair is
of interest as it greatly simplifies system implementation. The first
result of this paper is an explicit, exact-repair code for the point
on the storage-bandwidth tradeoff corresponding to the minimum
possible repair bandwidth, for the case when � �. This code
has a particularly simple graphical description, and most interest-
ingly has the ability to carry out exact repair without any need to
perform arithmetic operations. We term this ability of the code to
perform repair through mere transfer of data as repair by transfer.
The second result of this paper shows that the interior points on the
storage-bandwidth tradeoff cannot be achieved under exact repair,
thus pointing to the existence of a separate tradeoff under exact re-
pair. Specifically, we identify a set of scenarios which we term as
“helper node pooling,” and show that it is the necessity to satisfy
such scenarios that overconstrains the system.

Index Terms—Distributed storage, minimum bandwidth, node
repair, regenerating codes, storage versus repair-bandwidth
tradeoff.

I. INTRODUCTION

I N A distributed storage system, the source data (message)
is encoded and dispersed across nodes in a network in such

a manner that an end user (termed as the data collector) can
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retrieve the data stored by tapping into a subset of nodes in the
network. A popular option that reduces network congestion and
leads to increased resiliency in the face of node failures is to
employ erasure coding, for example, by calling upon maximum-
distance-separable (MDS) codes such as Reed–Solomon (RS)
codes.

Let the source data to be stored in the network be repre-
sented by a collection of message symbols, with each mes-
sage symbol drawn from a finite field of size . An RS
code encodes the message of size to obtain symbols
over , and stores one distinct coded symbol in each of the
nodes in the network. Under this encoding operation, the entire
data can be recovered by a data collector by connecting to any
arbitrary nodes, a process of data recovery that we will refer
to as reconstruction. Several distributed storage systems such as
RAID-6 [1], OceanStore [2], and Total Recall [3] employ such
an erasure-coding option.

Upon failure of an individual node, a self-sustaining data
storage network must necessarily possess the ability to regen-
erate (i.e., repair) the failed node. An obvious means of accom-
plishing this task is by first permitting the replacement node to
download the entire data stored in any nodes and then pro-
ceeding to extract the data that was stored in the failed node.
Such a procedure is indeed mandated when RS codes are em-
ployed to distribute the data and nodes are restricted to carry out
linear operations on the data stored within them.

RS codes treat the data stored in each node as a single symbol
belonging to the finite field . When this is coupled with the
restriction that individual nodes perform linear operations over

, it follows that the smallest unit of data that can be down-
loaded from a node assisting in the repair of a failed node equals
the amount of information stored in the node itself (namely, the
equivalent of an symbol). As a consequence of the MDS
property of an RS code, when carrying out repair of a failed
node, the replacement node must necessarily collect data from
at least other nodes. It follows that the total amount of data
download needed to repair a failed node can be no smaller than

, the size of the entire message.
However, downloading the entire message of size in order

to repair a single node that stores only a fraction of the entire
data is wasteful, and raises the question as to whether there is a
better alternative. Such an alternative is provided by the concept
of a regenerating code introduced in the pioneering paper by
Dimakis et al. [4].

0018-9448/$26.00 © 2011 IEEE
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Fig. 1. Regenerating codes setup. (a) Data reconstruction. (b) Repair of a failed node.

A. Regenerating Codes

In the regeneration framework introduced in [4], codes whose
symbol alphabet is a vector over , i.e., an element of for
some integer parameter are employed. As with RS codes,
each node still continues to store a single code symbol. How-
ever, given the vector nature of the code-symbol alphabet, we
may equivalently regard, each node as storing a collection of
symbols, each symbol drawn from . Under this setup, it is
clear that while maintaining linearity over , it is possible for
an individual node to transfer a fraction of the data stored within
the node.

Apart from this new parameter , two other parameters and
are associated with the regenerating framework introduced in

[4]. A replacement node is permitted to connect to an arbitrary
subset of nodes out of the remaining nodes while
downloading symbols from each node. The nodes
helping in the repair of a failed node are termed as helper nodes.
The total amount of data downloaded for repair purposes is
termed the repair bandwidth. Thus, under this framework, apart
from the field size , we have

as the parameter set. The corresponding codes are called regen-
erating codes. Typically, with a regenerating code, the average
repair bandwidth is small compared to the size of the file .
Fig. 1(a) and (b) illustrates reconstruction and node repair, re-
spectively, while also depicting the relevant parameters.

An important feature of regenerating codes is that they allow
each storage node to store more than the minimum required in
order to reduce the repair bandwidth. While an MDS code would

require the message size , we shall soon see that regen-
erating codes permit the system to store , which reduces
the repair bandwidth.

Note that the parameters and are the minimum values
under which reconstruction and repair can always be guaran-
teed. This restricts the range of to

(1)

for, if the repair parameter were less than the reconstruction
parameter , this would imply that one could in fact reconstruct
the data by connecting to nodes, thereby contradicting the
minimality of .

B. Exact Versus Functional Repair

Under the notion of functional repair introduced in [4], a
failed node is replaced by a node that is functionally equiv-
alent, i.e., following replacement, the resulting network of
nodes must continue to possess the reconstruction and repair
properties. With this being the sole constraint, the data (and the
code) stored at the replacement node may be (arbitrarily) dif-
ferent from that stored in the corresponding failed node. This
change in code coefficients at the replacement node may neces-
sitate additional communication to the remaining entities in the
network informing them of the change. Moreover, it may also
require changes in the decoding algorithms at the data collec-
tors and replacement nodes to accommodate the modified code
coefficients.

In contrast, under exact repair, introduced subsequently in
[5], [6], a replacement node is required to store exactly the same
data as was stored in the failed node. Hence, there is no change
in the coefficients of a replaced node under exact repair. This
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Fig. 2. Storage-bandwidth tradeoff curve. Storage space � versus repair bandwidth ��. Also depicted are the two end points MBR and MSR, and two interior
points �� and �� .

obviates additional communication overheads during the repair
operation, and also avoids retuning of the reconstruction and
repair algorithms.

An additional advantage of exact repair over its functional
counterpart is the ability to maintain the code in systematic
form. In a systematic code, there exist a set of nodes (which we
shall refer to as “systematic nodes” in the sequel) which together
contain the entire message in an uncoded form. The ability to
store data in systematic form is practically useful since a data
collector connecting to the systematic nodes can obtain the
entire message without having to perform any decoding opera-
tions. Under functional repair, it may not be possible to maintain
a code in systematic form since the replacement of a failed sys-
tematic node may contain data not in the systematic form. On
the other hand, under exact repair, the replacement of a failed
systematic node will continue to be systematic.

Thus, exact repair greatly simplifies system implementation
and is of considerable practical interest. We use the term exact-
repair code to denote a regenerating code that is capable of per-
forming exact repair of any failed node.

C. Storage-Repair Bandwidth Tradeoff

A major result in the field of regenerating codes is the proof
in [7] that uses the cut-set bound of network coding to estab-
lish that the parameters of a regenerating code must necessarily
satisfy1

(2)

Since both storage and bandwidth come at a cost, it is naturally
desirable to minimize both as well as . However, it can be
deduced (see [7]) that achieving equality in (2), for fixed values
of and leads to a tradeoff between the storage
space and the repair bandwidth . This tradeoff is termed
as the storage-repair bandwidth tradeoff, or more simply as the

1This bound on the message size� is originally derived in [7] using the prin-
ciples of network coding. An information-theoretic derivation is presented in
Section IV-B in this paper.

storage-bandwidth tradeoff. In Fig. 2, the tradeoff is plotted for
symbols for a system with , and

some .
For fixed values of and , a regenerating code is

said to be optimal, if the parameters are such that
1) equality holds in (2), i.e.,

(3)

and
2) if either or is decreased, (3) fails to hold.

The parameters of any optimal regenerating code are
said to lie on the storage-bandwidth tradeoff.

Observe that when , the parameter can
be decreased without violating (3). Hence, the parameters of an
optimal regenerating code must necessarily satisfy

(4)

The case when takes the minimum value

(5)

is one of the extreme points of the tradeoff called the minimum
storage regenerating (MSR) point. From (3) and (5), we see that
the parameters at the MSR point satisfy

(6)

On the other hand, if (i.e., if ), the parameter
can be decreased without violating (3). Hence, the parameters

of an optimal regenerating code must necessarily satisfy

(7)

The case when takes this minimum value, i.e.

(8)
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is the other extreme point of the tradeoff called the minimum
bandwidth regenerating (MBR) point. From (3) and (8) we see
that the parameters at the MBR point satisfy

(9)

It can be inferred from (4) and (7) that an optimal regenerating
code must have the parameter lying in the range

(10)

Points on the tradeoff other than the two extreme (MSR and
MBR) points have the parameter lying strictly within this
range: . These points are, hence, referred
to as the interior points on the tradeoff curve.

Note that the scenario when results in
which can be satisfied trivially by a repetition code. Thus, we
assume throughout this paper.

The storage-bandwidth tradeoff was derived in [7] for the case
of functional repair and was shown to be tight in [7] and [8].
Clearly, the bound continues to hold even under the exact-re-
pair setting, since exact repair is an instance of functional re-
pair. However, the achievability of this bound under an exact-re-
pair requirement has remained an open problem, and will be ad-
dressed in this paper.

D. Summary of the Results in This Paper

The first main result of this paper is an explicit construction of
exact MBR codes for the case that has a simple graph-
ical description. An interesting and potentially useful aspect of
this construction is its repair-by-transfer property where a failed
node is repaired by simple transfer of data without the need for
any computation at either the helper nodes or the replacement
node. The property of repair-by-transfer leads to several advan-
tages which gives the code practical appeal: 1) reduced com-
plexity of repair; 2) minimum disk reads at helper nodes; 3) no
intelligence required at storage disks; and 4) efficient handling
of situations where a user requires access to only the data stored
in a single node, even while that node is under repair. These
properties will be revisited during the description of the code
construction in Section III. An additional advantage, when spe-
cialized to the parameter set , is that
all operations in the system can be accomplished using XOR
operations alone.2

The second main result of this paper answers an open problem
regarding the achievability of the storage-bandwidth tradeoff
under exact repair at the interior points. First, a set of interesting
properties required to be satisfied by an exact-repair code are de-
rived, which may also be of independent interest. Subsequently,
the nonachievability of the interior points on the storage-band-
width tradeoff under exact repair is established, with the pos-
sible exception of points within the immediate vicinity of the
MSR point.

E. Organization

This paper is organized as follows. A brief overview of the re-
lated literature is provided in Section II. Section III contains the

2An animated video of an example of this code is available in [9].

exact MBR code construction. A set of properties that any exact-
repair code must necessarily satisfy are provided in Section IV,
which are then used to establish the nonachievability of the
storage-bandwidth tradeoff for exact repair at essentially all in-
terior points. Section V presents conclusions.

II. RELATED WORK

The concept of regenerating codes, introduced in [4] and [7],
permits storage nodes to store more than the minimal units
of data in order to reduce the repair bandwidth. Several dis-
tributed systems are analyzed, and estimates of the mean node
availability in such systems are obtained. Using these values, the
substantial performance gains offered by regenerating codes in
terms of bandwidth savings are demonstrated. The problem of
minimizing repair bandwidth for functional repair of nodes is
formulated as a multicast network-coding problem in a network
having an infinite number of nodes. A cut-set lower bound on
the repair bandwidth is derived. Coding schemes achieving this
bound are presented in [7] and [8] which, however, are nonex-
plicit. These schemes require large field size and the repair and
reconstruction algorithms are also of high complexity.

The notion of exact repair is introduced independently in [5]
and [6]. In [5], the MSR point is shown to be achievable under
exact repair for the parameters . The
proposed coding scheme uses the concept of interference align-
ment. Even here, the constructions are not explicit, and have
large complexity and field-size requirement.

The first explicit construction of regenerating codes appears
in [6]. An explicit MSR code is constructed here, for

(see also the journal version [10]). A computer search for
exact-repair MSR codes for the parameter set

is carried out in [11], and for this set of parameters,
codes for several values of field size are obtained.

A slightly different setting from the exact-repair situation is
considered in [12], where optimal MDS codes are given for the
parameters . Again, the schemes
given here are nonexplicit, and have high complexity and large
field-size requirement.

An explicit code structure at the MSR point that guarantees
reconstruction and exact repair of the systematic nodes is pro-
vided in [14], for parameters . This
code makes use of interference alignment, and is termed as the
“MISER” code in the journal-submission version [10] of [14].
Following the initial submission of [14], it is shown in [15] that
the code introduced in [14] can perform exact repair of parity
nodes as well, and explicit mechanisms for the same are also
provided. The impossibility of constructing linear, scalar (i.e.,

) exact MSR codes when is shown in [10] and
[14]. On the other hand, in the limiting case of (and hence

and ) approaching infinity, the MSR point is shown to be
achievable under exact repair for all in [16] and [17].

A general framework, termed the product-matrix framework,
that enables code construction for a wide range of parameters
is introduced in [13]. Explicit codes at the MBR point for all
values of the parameters and at the MSR point for
the parameter set are constructed in this
framework. Also contained in this paper is a simpler description
of the MISER code in the product-matrix framework.
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There has also been some work in the literature that con-
siders slightly different models for distributed storage systems.
Codes for more relaxed settings with respect to the reconstruc-
tion/repair requirements are presented in [18] and [19]. The pa-
pers [20]–[23] provide alternative frameworks for regenerating
codes that introduce additional parameters for the system; trade-
offs between storage and repair are derived in each of the pa-
pers for the functional-repair scenario. A method to construct
distributed storage systems that use existing erasure codes and
also enjoy the benefits of efficient node repair is presented in
[24].

The preliminary version of the nonachievability results
provided in this paper appeared in [25] and used subspace
arguments to show nonachievability of the interior points with
linear codes. This paper employs (stronger) information-the-
oretic arguments to show the nonachievability with any (not
necessarily linear) code. In [25], we also present exact MBR
codes for arbitrary values of (that, however, lack the
repair-by-transfer property). The codes in [25] are subsumed
by the product-matrix codes in [13]. A description of how the
MBR codes in this paper relate to the product-matrix exact
MBR codes in [13] is provided in Section III-F of this paper.

Following the initial presentation of the exact MBR codes
performing repair by transfer in [6] (described in Section III in
this paper), El Rouayheb and Ramchandran [26] use the graph-
based approach for code construction presented here to extend
these codes to a larger set of parameters.3 They, however, con-
sider a somewhat relaxed setting wherein a replacement node
can connect to only certain fixed subsets of nodes for repair;
they also provide upper bounds on the storage capacity of such
systems. In [27], the authors present a distributed file system on
which they implement and analyze the exact MBR codes de-
scribed in this paper. In [28] and [29], authors show that the
exact MBR codes described in this paper can be used to provide
information-theoretic security in the presence of eavesdroppers
and adversarial node attacks.

III. EXPLICIT EXACT MBR CODE FOR

WITH REPAIR BY TRANSFER

In this section, we provide an explicit construction of exact
MBR codes wherein the parameter takes the largest permis-
sible value of .4 These codes are capable of performing
exact repair of any failed node in such a way that the repair
process is accomplished with mere transfer of data and without
need for any arithmetic operations either at the helper nodes or
at the replacement node. This property makes the code practi-
cally appealing.

First, we present a brief overview of the MBR point on the
storage-bandwidth tradeoff and the concept of striping of data
which will be used in the code construction.

3In this paper, the authors refer to the repair-by-transfer property of codes in
[6] as uncoded repair.

4It can be inferred from the storage-bandwidth tradeoff (3) that for fixed
values of the parameters �� �� � and �, the repair bandwidth �� decreases
with increase in �.

A. MBR Point Parameters

The MBR point is an extreme point on the storage-bandwidth
tradeoff that corresponds to the least possible repair bandwidth.
As previously discussed in Section I-C, the parameters and
for the MBR point satisfy

(11)

Thus, at the MBR point, a replacement node downloads exactly
the number of symbols it eventually stores.

At this point, we briefly digress to analyze a particular relation
between the parameters of a regenerating code that
will aid in code construction as well as in simplifying the system
implementation of the code.

B. Striping of Data

Given a set of parameters of an optimal regener-
ating code [i.e., satisfying (3)], the parameters

for any positive integer also satisfy (3).
Thus, for some , an optimal regenerating code for

can be obtained easily by dividing the
message symbols into groups of symbols each, and applying
the optimal code to each group independently. In
particular, if one can construct an MBR code with

, then one can construct an MBR code for
any larger integer value of as well. Moreover, from a practical
standpoint, a code with smaller will involve manipulating a
smaller number of message symbols and, hence, may lead to al-
gorithms of lesser complexity. For these reasons, in this paper
we design codes for the case of . In this scenario, the
values of and at the MBR point are given by

(12)

Next, we present an example construction, before moving on
to the general case.

C. Example Code

The example deals with the parameter set
, which from (12) gives and . Let

the nine message symbols be denoted by .
Encoding: Our code construction can be visualized in terms

of a fully connected graph on five nodes, each representing a
distinct node in the network (see Fig. 3). We encode the nine
message symbols using a MDS code , and to each of
the ten edges in the graph, we assign a distinct symbol from this
set of code symbols. The code can be chosen
as any MDS code, for example, could be a single parity
check code of length 10. Under our construction, each storage
node stores the four symbols assigned to the four edges incident
on the node, as shown in Fig. 3.

Data Reconstruction: Suppose a data collector connects to
nodes 2, 3, and 4. The data collector, then, recovers
coded symbols of which are distinct. Since the code

is an -MDS code by construction, the data collector
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Fig. 3. Graphical representation of the repair-by-transfer code for the MBR point with �� � �� � � �� � � ��.

can recover the nine message symbols from these nine coded
symbols.

Repair by Transfer: Suppose node 3 fails, and is replaced by
an empty replacement node. Under our construction, each of the
four remaining nodes pass the symbol assigned to the edge that it
has in common with node 3, i.e., nodes 1, 2, 4, and 5 pass on the
symbols , , , and , respectively, to the replacement node
(from Fig. 3). But these are precisely the four symbols that were
stored in node 3 prior to failure, and hence, node 3 is exactly
repaired. Note that the repair is accomplished by mere transfer
of data and no arithmetic operations are required either at the
helper nodes or at the replacement node.

This property, which we term as repair by transfer, has con-
siderable practical appeal. The ability of a code to perform re-
pair by transfer, while obviating the need to perform any com-
putations during repair, permits the use of “dumb” storage disks
(without extra intelligence). Such a code also minimizes the
number of disk reads required at the helper nodes during repair.
Moreover, this property enables an additional feature wherein
a user who requires access to only the data stored in a single
node can do so even while that node is under repair. This is due
to the specific code structure wherein a copy of the data stored
in a node is also stored across the other nodes in a distributed
manner.

D. Code Construction for the General Set of Parameters

As discussed previously, the code is constructed for the case
of , and codes for any higher value of can be obtained via
concatenation. The construction follows along the lines similar
to the example provided in the previous section.

Let the message symbols be denoted by .
Encoding: Let be an -MDS code. Encode the

message symbols using the code , and let the coded sym-
bols be denoted by . As in the example, we
can visualize the code construction via a fully connected graph
on nodes, each representing a distinct node in the network.
To each of the edges in the graph, we assign a distinct code
symbol from the set (in any arbitrary order).

Under our construction, each storage node stores the
symbols assigned to the edges incident on the

node. Thus, each symbol in is stored in
precisely two nodes.

The following theorems establish the properties of data re-
construction and repair by transfer.

Theorem 1 (Data Reconstruction): A data collector can re-
cover all the message symbols by connecting to any subset of

nodes.
Proof: The data collector connects to a subset of nodes in

the network, and recovers the code symbols stored in
these nodes. Since every pair of nodes has exactly one symbol in
common, there are redundant symbols among these code
symbols. Thus, the data collector has access to
distinct code symbols from the set . Since
the code is an -MDS code by construction, the data
collector can recover the message symbols
from these code symbols.

Note that in our construction, the data reconstruction (de-
coding) procedure is identical to that of decoding an MDS code
over an erasure channel.

Theorem 2 (Repair by Transfer): Exact repair of any failed
node can be achieved by connecting to the remaining
nodes and downloading the minimum possible data. Further-
more, the process involves mere transfer of data and does not
require any arithmetic operations.

Proof: On failure of a storage node, the replacement node
connects to the remaining nodes. Each of the remaining
nodes passes to the replacement node, the symbol assigned to
the edge that it has in common with the failed node. By con-
struction, these symbols are precisely the symbols
that were stored in the node prior to failure. Thus, the replace-
ment node simply stores these symbols, completing the process
of exact repair. Clearly, the repair process does not require any
arithmetic operation either at the helper nodes or at the replace-
ment node.

E. Size of the Finite Field

The sole constraint on the field size required in the code con-
struction arises from the need for the existence of an
MDS code. The existence of doubly extended RS codes tells us
that a field size of will suffice.

Remark 1: The example employed a single parity check code
as its MDS code. This has practical appeal since all operations
can be carried out in binary field using only XORs. We note
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that a single parity check code will suffice whenever ,
which from (12) gives .

F. Relation to the Product-Matrix MBR Codes in [13]

Subsequent to the initial presentation of the repair-by-transfer
codes in [6], a new product-matrix framework was introduced in
[13]. This framework was used in [13] to construct explicit MSR
codes for all and explicit MBR codes for all
values of the parameters . While the codes presented in
[13] do not possess the repair-by-transfer property, in hindsight,
one can provide an alternative construction to repair-by-transfer
codes using the product-matrix MBR code for .

In the product-matrix MBR code in [13] with ,
let denote the encoding matrix and let denote the

message matrix. The message matrix contains as
its elements, the message symbols arranged in a particular
redundant fashion. The encoding matrix is chosen such that
any of its rows are linearly independent. The symbols stored
in node are given by , where denotes the

row of . For the repair of a failed node , each remaining
node passes an inner product of the symbols stored in it with
the encoding vector of node , i.e., the helper node passes

the symbol .
Taking a cue from the repair-by-transfer code constructed in

this paper, we consider an equivalent code where node stores
the set of symbols .5

Clearly, this code can perform repair by transfer. Furthermore,
since the transformation of the symbols stored in each node is
nonsingular, the code retains the data-reconstruction property.

IV. NONEXISTENCE OF EXACT-REPAIR CODES ACHIEVING THE

INTERIOR POINTS ON THE STORAGE-BANDWIDTH TRADEOFF

We now move on to the second main result of this paper
which proves the nonachievability of the interior points on the
storage-bandwidth tradeoff under exact repair. Originally, the
storage-bandwidth tradeoff was derived for the case of func-
tional repair. However, given the clear advantages of exact re-
pair, much of the work in the field of regenerating codes has been
dedicated to exact repair. In particular, the two extreme points
of the tradeoff (MBR and MSR) have been much studied, and
the achievability of the tradeoff for exact repair at the extreme
points has been characterized to a large extent [10], [13]–[17]
(see Section II for more details). On the other hand, the tight-
ness of the storage-bandwidth tradeoff under exact repair has re-
mained open for the interior points. In this section, we address
this issue by proving the impossibility of constructing codes,
performing exact repair at essentially all interior points on the
storage-bandwidth tradeoff.

We begin by providing an information-theoretic perspec-
tive on regenerating codes. We then reparameterize the
storage-bandwidth tradeoff in terms of two new parameters
and , which makes the proofs easier to understand. Following
this, we derive a set of interesting properties that the amount of

5Two (linear) regenerating codes are defined to be equivalent if one can be
obtained from the other by 1) a nonsingular transformation of the � message
symbols, and 2) a nonsingular transformation of the � symbols stored at each
storage node. The reader is referred to [10] for a formal definition of equivalence
of regenerating codes.

information stored and passed by the nodes must necessarily
satisfy.

In our proof, we exploit the requirement that a regenerating
code must be able to repair a failed node by connecting to any
set of nodes. Showing that, under some scenario, there exists
at least one set of nodes that are incapable of supporting re-
pair proves the impossibility result. We identify such a scenario
of repair wherein a common pool of nodes help in the repair of
multiple nodes, and show that under this scenario, all the prop-
erties cannot be satisfied simultaneously. This establishes the
impossibility of constructing exact repair codes operating at the
interior points on the tradeoff.

A. Notation

While in earlier sections we worked with individual symbols
from a certain alphabet, in keeping with the information-the-
oretic approach of this section, we treat the message symbols
as well as the data stored and passed by the nodes as random
variables.

Under this information-theoretic perspective, the nodes in the
network store data pertaining to a source (message) , whose
entropy is , i.e.

(13)

Next, we introduce the random variables, pertaining to the data
stored in the nodes and the data passed by nodes for data re-
covery and repair purposes.

Let denote the random variable corresponding to the data
stored in node . We will assume that each storage
node has a storage capacity of and is, hence, incapable of
storing variables whose entropy are greater than , thus

(14)

Consider exact repair of node using a set of helper nodes,
and let node . In this scenario, we denote the random
variable corresponding to the data passed by the helper node

to aid in the repair of node by . We also assume that
the data links used for repair have capacity and, hence, are
incapable of carrying variables whose entropy are greater than

, i.e.

(15)

Both (14) and (15) are in keeping with the original setting where
each node had the capacity to store symbols and each data link
used in repair had the capacity to carry symbols.

Note that since repair is exact, the random variables and
are invariant with time, i.e., they remain constant irrespec-

tive of the sequence of failures and repairs that occur in the
system.6

The reconstruction property requires that the message be
determined completely from the data stored in any nodes,
and the exact-repair property requires that the data stored in the
failed node be determined completely from the data passed by

6In contrast, functional repair permits a replacement node to store data dif-
ferent from that stored in the failed node, thus leaving open the possibility that
these variables are dependent on time.
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the helper nodes. These requirements of reconstruction and
exact repair can be stated information theoretically as follows.

1) From the reconstruction property required of a regener-
ating code, it must be that, for every subset of storage
nodes: , we need

(16)

2) Similarly, the exact-repair property requirement leads to
the condition that for every node

(17)

where represents the set of helper nodes participating
in the exact repair of node .

In the sequel, for simplicity, we will drop the left subscript
and the set of nodes participating in the repair process will be
clear from the context. Furthermore, since a node can pass only
a function of what is stored in the node, it follows that for any
node

(18)

Remark 2: Throughout this section, we will assume that all
the random variables are functions of the message . This is
without loss of generality since one can always assume a genie
that reveals all the extraneous sources of randomness to every
entity in the system, and this would still retain the necessity of
the properties proved here. However, for convenience, we do not
indicate this dependence in the notation. Thus, we have

(19)

Now, from (13) and (19), one can rewrite the reconstruction
property in (16) as

(20)

Next, we set up notation to denote certain sets of random vari-
ables which will be used frequently. Let denote a collection of
storage nodes. Then, the set of random variables corresponding
to the data stored in the nodes in is denoted by

(21)

Further, define as the set of numbers for some
positive integer , and denote

(22)

Note that the notation will correspond to an empty set.
The random variables corresponding to the data passed for

repair may be grouped in two ways. Denote the collection of
random variables passed by nodes in set to assist in the repair
of a particular failed node by

(23)

On the other hand, the collection of random variables passed by
node to assist in the repairs of nodes in the set is denoted
by

(24)

Note that in both the aforementioned cases, the other helper
nodes participating in the repair process will be clear from the
context.

B. Information-Theoretic Derivation of the Tradeoff

We now present an information-theoretic derivation of the
storage-bandwidth tradeoff (2), since it is convenient to remain
in the information-theoretic domain throughout this section. The
results established in this section are derived only for the case
of exact repair. The extensions to the case of functional repair
are straightforward and are explained subsequently.

The following lemma establishes a relation between the in-
formation stored in various nodes.

Lemma 3: For an arbitrary node , an arbitrary subset con-
sisting of nodes such that , and a scenario
wherein the set of nodes helping in the repair of failed node
includes the nodes in , it must be that

(25)

Hence

(26)

Proof: Consider exact repair of node by connecting to
the nodes in set and other arbitrary nodes. Denote
the set of these helper nodes by . Then, exact repair of
node requires (recall (17))

(27)

(28)

(29)

(30)

(31)

(32)

where (31) follows since each of the helper nodes in
can pass at most units of information to the replacement

node, and (32) is a result of the fact that a node can only pass
a function of what it stores, i.e., for all nodes

. The inequality in (32), coupled with the constraint on
the storage capacity of the nodes (i.e., ), leads to
the desired result.

Remark 3 (The Case of Functional Repair): In the case of
functional repair, the data stored in a node after repair need
not be identical to that stored in it prior to failure. This makes
the corresponding random variable a function of time. In this
scenario, the aforementioned lemma applies when is the
random variable corresponding to the data stored in node after
being repaired with the help of nodes in and other
arbitrary nodes.
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The next theorem gives a simple derivation of the storage-
bandwidth tradeoff (2) for exact repair from an information-
theoretic perspective.

Theorem 4: Any regenerating code
must necessarily satisfy

(33)

Proof: The reconstruction property [recall (20)] requires

(34)

(35)

(36)

where (36) follows from Lemma 3.

Remark 4 (The Case of Functional Repair): The aforemen-
tioned theorem holds for the case of functional repair as well.
Here, a sequence of failures and repairs is to be considered,
starting from node 2 through node (in this order). The nodes
assisting node in its repair include the
nodes in set , and is the random variable corresponding
to the data stored in node after its repair.

Next, we present a convenient way to represent all points on
the storage-bandwidth tradeoff in terms of and .

C. Representation for the Points on the Tradeoff

As previously discussed in Section I-C, for any
optimal regenerating code, the parameter lies in the range

(37)

Moreover, given the values of and , the point of operation
depends on the value of in comparison to . More specifically,
the evaluation of the minimum in the terms in the summation of
(3) depends on the value of the integer such that

. In this case, the value of evaluates to

Based on the aforementioned discussion, in order to get a
good handle on the point of operation on the tradeoff, we repa-
rameterize in terms of two new parameters as

(38)

for some and with and . Thus,
the parameter serves the purpose of identifying the precise
value of in the range . Note that the
range of in (37) implies that for , it must be that

.
The storage-bandwidth tradeoff can, thus, be partitioned into

the two end points and a middle region.
1) The MSR point: (which implies ).

2) The MBR point:
3) The interior points: except

.
For instance, the values of at the four points
depicted on the storage-bandwidth tradeoff in Fig. 2 are

MSR : (2700, 300, 9, 0)
: (2786, 250, 6, 214)
: (3300, 204, 1, 168)

MBR : (3600, 200, 0, 0).

D. Properties of Exact-Repair Codes

We now present a set of properties that any exact-repair code
with parameters satisfying the storage-bandwidth tradeoff with
equality (3) must necessarily possess. These properties pertain
to the random variables stored in the nodes and those passed
for exact repair. The proofs of these properties are relegated to
Appendix A.

The first two properties provide insights pertaining to the data
stored in the nodes, and the subsequent properties provide in-
sights about the data passed for repair.

Property 1 (Entropy of the Data Stored): For an arbitrary
storage node (

(39)

Property 2 (Mutual Information Among the Nodes): For a set
comprising an arbitrary collection of nodes, and an arbitrary

node

(40)

Note that in the aforementioned Property 2, a threshold ef-
fect manifests itself twice in the mutual information, the first
threshold occurring at and the second at .
This is illustrated in Fig. 4(a). This is a phenomenon similar (al-
beit more complex) to the single threshold effect in MDS codes
where a code symbol has zero mutual information with up to

other code symbols and has mutual information equal
to its entropy with any or more other code symbols. Also
plotted alongside in Fig. 4(b) and (c) are the behaviors of the
two extreme points—the MBR ( ) and the MSR
( ) points, respectively. Note that any MSR
code is necessarily MDS.

An intuitive interpretation of Property 2 is as follows. The
property attempts to evaluate the mutual information between
the data stored in a node, and that stored in a set of nodes. In such
a situation, there are two opposing forces in play: the reconstruc-
tion requirement which tends to limit this mutual information in
order to allow any nodes to accumulate all information about
the source data, and the repair requirement which requires this
quantity to be large enough to allow exact repair to take place.
The property shows that in a regenerating code satisfying (3),
these two forces are in equilibrium. In order to attain the max-
imum possible value of , the mutual information is zero when
the cardinality of the set is small, and increases by the smallest
possible increments that would allow for repair.
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Fig. 4. Amount of information that a node � has in common with a set � of � other arbitrary nodes (Property 2). For (a) a general point on the tradeoff, (b) the
MBR point, and (c) the MSR point.

Corollary 5: Consider a set comprising an arbitrary col-
lection of nodes. In the scenario where the set of helper
nodes assisting in the repair of an arbitrary node includes
the nodes in , it must be that

(41)

Property 3 (Entropy of the Data Passed): In the scenario
where node is an arbitrary node helping in the repair of a
second arbitrary node , it must be that

(42)

irrespective of the identity of the other helper nodes.
Helper Node Pooling: Regenerating codes permit a failed

node to choose an arbitrary set of remaining nodes to aid in its
repair. In particular, this includes situations where nodes may
form a pool and help each other in the repair process. More for-
mally, consider a set consisting of nodes, and a
subset of the set consisting of nodes. We refer to “helper
node pooling” as a scenario where on failure of any node ,
the helper nodes assisting in its repair include the re-
maining nodes in . We denote the remaining

arbitrary helper nodes assisting in the repair of node by .7

The helper-node-pooling scenario is illustrated in Fig. 5.
Regenerating codes must necessarily satisfy helper-node-

pooling scenarios. This leads to surprising (and as we shall see,
implausible) upper bounds on the amount of information passed
by a single helper node in the pool to multiple replacement
nodes. In the following two properties, is used to denote
the random variable corresponding to the data passed by node

to assist in the repair of node in the scenario
where the helper nodes are .8 Furthermore,
in agreement with our earlier notation, we define

7This notation is in anticipation of the usage of these sets in Properties 4 and 5,
which consider the repair of each of the nodes in�. In the scenario considered,
every replacement node in � connects to the remaining �� � �� nodes in � ,
and hence, � forms a fixed set of helper nodes. On the other hand, the set ����,
comprising the ��� �� � ��� helper nodes of node � � �, is specific to node
� and is allowed to vary with �.

8The set ���� representing the ��� �� ���� arbitrary helper nodes assisting
in the repair of node � plays no role in the properties or the proofs. Hence, for
ease of understanding, the reader may choose to assume this set also to be fixed,
i.e., ���� � � .
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Fig. 5. Helper node pooling, and the setting of Properties 4 and 5. The nodes in the set� are partitioned into two: a subset� and the remainder���. The repair
of each of the nodes in �, as in the helper-node-pooling scenario, is depicted.

Property 4: In the helper-node-pooling scenario where

for an arbitrary node it must be that

(43)

Property 5: In the helper-node-pooling scenario where

for an arbitrary node and an arbitrary pair of nodes
, it must be that

(44)

and hence

(45)

The intuition behind these properties is as follows. In Prop-
erty 5, the set contains at most nodes. Hence, during
repair of any node in , the other nodes in cannot contribute
“directly” as the mutual information between the data stored in
these nodes, and that stored in the failed node is zero (from Prop-
erty 2). It follows that for the repair of any node in , the mutual
information between what a node passes for repair, and
what is stored in the failed node is required to be large. This is
true for each of the nodes in . On the other hand, the data
that node passes are a function of the data stored in it. In
addition, from Property 2, the mutual information between
and is at most . This forces node to pass highly
correlated information for the repair of the nodes in . The
intuition behind Property 4 closely follows the aforementioned
argument, differing only in the cardinality of the set .

Properties 4 and 5 do not impose any constraints on systems
operating at the MSR or the MBR point. At the MSR point,
we have , and hence, the cardinality of the set

considered in these two properties evaluate to and ,
respectively. However, since any nodes suffice to recover the
entire data, the upper bound on the mutual information between

and evaluates simply to the trivial bound . At the
MBR point, we have and , and in the two properties,
the cardinality of set evaluates to 2 and 1, respectively. For
these sizes, the upper bounds of and on the cumulative data
passed by node for the repair of the nodes in turn out to be
trivial.

Remark 5: The cardinality of the set considered in Prop-
erties 4 and 5 are carefully chosen, and attempted analogous
proofs for other cardinalities of fail to yield tighter bounds.

E. Nonexistence Proof

We now show that the properties derived in the preceding sec-
tion overconstrain the system, causing a majority of the points
on the storage-bandwidth tradeoff to be nonachievable under
exact repair. Recall that the parameters at any point on
the tradeoff are written as

Here, the interior points correspond to and
, except for the point .

We first consider the case when is a multiple of , in The-
orem 6. A majority of regenerating schemes and code construc-
tions in the literature [5], [6], [10]–[15], [18] are designed for
this case of being a multiple of . Thus, for this case, at the
interior points it must be that

with lying in the range

(46)

Theorem 6: For any given values of and , exact-
repair codes do not exist for the parameters lying at
any interior point on the storage-bandwidth tradeoff with .

Proof: The proof is by contradiction: for any given values
of the parameters and such that

, we assume the existence of an exact-repair code with these
parameters and show that the code fails to satisfy some of the
properties of exact-repair codes.

Let denote the distributed storage network under consid-
eration, and further, let denote an arbitrary sub-network of

consisting of or greater nodes. As the notation sug-
gests, in this proof, plays the role of the fixed set in the helper-
node-pooling scenario. Given an optimal exact-repair code for
the network , it is clear that the code is also an optimal exact-re-
pair code for the subnetwork , with the same parameter values

, and . In the present proof, we restrict our atten-
tion to a subnetwork consisting of precisely nodes.

A brief outline of the proof is as follows. Clearly, the nodes in
form a helper node pool, and hence, Property 5 can be used to

upper bound the total amount of information that a node can pass
to aid in the repair of a set of nodes. This limits the cumulative
information received by the nodes in during their respective
repair operations, which in turn limits the total data stored in
the network to . Finally, the value of determined by
the storage-bandwidth tradeoff (3) is found to be strictly larger.

Since the subnetwork consists of nodes, a failed
node is repaired with the assistance of the remaining
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nodes in . Thus, for any node , the exact-repair property
requires

(47)

Also, for any three distinct nodes , Property 5
[see(44)] when implies that

(48)

Now, for a data collector to be able to recover the entire data
by connecting to a set of nodes it must be that

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

where (51) follows from the exact-repair requirement stated in
(47), (53) is a re-writing of (52), and (55) employs (48) and
Property 3.

On the other hand, since any optimal regenerating code must
satisfy the storage-bandwidth tradeoff (3), it must be that

(57)

(58)

(59)

(60)

(61)

where (58) holds since , (59) holds since
[see (46)], (60) follows since each term in the summation in (59)
is at least , and (61) is derived using . This is in
contradiction to (56).

Theorem 7: For any given values of and , exact-
repair codes do not exist for the parameters lying at
any interior point on the storage-bandwidth tradeoff with ,
except possibly for the case

Fig. 6. Achievable value of repair bandwidth �� for exact repair of all nodes
plotted alongside the storage repair-bandwidth tradeoff curve, which is a lower
bound on the repair bandwidth.

Proof: The proof of this theorem also exploits the existence
of helper node pools in the system. Refer to Appendix B for the
proof.

Remark 6: It can be verified that the properties derived in
Section IV-D, and the nonachievability results in this section
continue to hold even if optimal exact repair of only of the
nodes is desired, and the remaining nodes are per-
mitted to repair functionally with no restriction on the repair
bandwidth.

F. Achievable Curve Via Storage Space Sharing

We have seen that for a majority of the points in the interior of
the tradeoff curve, the cut-set bound cannot be achieved under
exact repair. On the other hand, from the product-matrix codes
provided in [13], the cut-set bound can be achieved at the ex-
treme points of the tradeoff curve: for all at the MBR
point and for all at the MSR point. A linear
storage-space-sharing scheme between these codes can be used
to establish an achievable region between these two extreme
points for exact repair. Given the system parameters
and , with , the net repair bandwidth re-
quired under this scheme can be computed as

(62)

Fig. 6 depicts the curve achieved via storage-space-sharing
alongside the storage-bandwidth tradeoff curve for the parame-
ters .

V. CONCLUSION

In this paper, an explicit exact MBR code for the parameters
is presented. This code has very low re-

pair complexity; repair of a failed node can be achieved by mere
transfer of data and does not require any computation at either
the helper nodes or the repair nodes. The ability of the code to
perform repair by transfer minimizes the number of disk reads
required at the helper nodes, and also permits the use of storage



SHAH et al.: DISTRIBUTED STORAGE CODES WITH REPAIR-BY-TRANSFER 1849

disks with no extra intelligence. Moreover, this code, when spe-
cialized to the parameter set , can
be constructed over the binary field: repair does not require any
computation, and the encoding and reconstruction processes re-
quire only XOR operations.

A set of properties that any exact-repair code must neces-
sarily satisfy are derived. Specific scenarios termed helper node
pooling are identified, which lead to upper bounds (that are sur-
prisingly small) on the amount of information that a node can
pass to assist in the repair of a set of nodes. These upper bounds
are, then, used to show the nonachievability of almost all inte-
rior points on the storage-bandwidth tradeoff under exact repair.

APPENDIX A
PROOFS OF THE PROPERTIES OF EXACT-REPAIR CODES

Proof of Property 1: Without loss of generality, assume
. Now, for reconstruction by a data collector connecting to

the first nodes, it must be that

(63)

(64)

(65)

(66)

(67)

(68)

where (65) follows from (14), (66) results from Lemma 3, (67)
uses the fact that (from (37)), and (68) follows since
we need to satisfy the storage-bandwidth tradeoff with equality
(3). Thus, (65) must be satisfied with equality, which forces

.

Proof of Property 2: The result clearly holds when
since 1) data contained in any nodes suffice to recover the
entire data, and 2) (from Property 1).

Now for the case when , without loss of generality, we
assume that the set comprises of the first nodes in the system
and node is the node, i.e., and .
For reconstruction by a data collector connecting to the first
nodes, we need

(69)

(70)

(71)

(72)

where (71) follows from Lemma 3 and (72) is a result of
satisfying the storage-bandwidth tradeoff with equality (3).
Thus, (71) must be satisfied with equality. This, coupled with
the upper bound on each term from Lemma 3
gives (for the choice of as )

(73)

Defining for any two numbers and
, and noting that , it follows that

(74)

(75)

(76)

(77)

where (75) follows from Property 1 and (73), and (77) follows
since .

Proof of Corollary 5: From Lemma 3, it must be that

(78)

On the other hand, since for every node

(79)

(80)

(81)

(82)

where (81) employs Property 1 and Property 2 with .

Proof of Property 3: Partition the set of helper nodes
assisting in the repair of node into a set consisting of
nodes and a second set consisting of the remaining
nodes, such that node . Then, Corollary 5 mandates that

(83)

However, exact repair of node requires [recall (17)]

(84)

From (83) and (84), it follows that

(85)

Noting that each of the helper nodes in set can
pass no more than units of information, it must be that

(86)

from which it follows that

(87)

Proof of Property 4: Clearly, if the statement holds for
some values of and , it continues to hold for all , when

and . Hence, throughout the proof, the set is
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assumed to be comprised of nodes, and the set is
such that . Thus, .

Consider repair of an arbitrary node where the set of
helper nodes includes node and the remaining nodes in

. As an intermediate step, we wish to prove
. For this, consider

(88)

(89)

(90)

(91)

(92)

(93)

(94)

where (92) follows since is a function of , and
(93) follows from Property 2 and Corollary 5 with

. Then, it must be that

(95)

(96)

(97)

and hence

(98)

Now, since the choice of node from the set was arbitrary,
(98) holds for all and hence

(99)

It follows that

(100)

(101)

(102)

where (102) follows from Property 2.

Proof of Property 5: The steps followed in this proof are
similar to those in the proof of Property 4. Clearly, if the state-
ment holds for some values of and , it continues to hold for
all , when and . Hence, throughout the proof,
the set is assumed to be comprised of nodes, and
the set is such that . Thus, .

Consider repair of an arbitrary node where the set of
helper nodes includes node and the remaining nodes in .
As an intermediate step, we wish to prove .
For this, consider

(103)

(104)

(105)

(106)

(107)

(108)

(109)

where (107) follows since is a function of and
(108) follows from Property 2 and Corollary 5 with

. Then, it must be that

(110)

(111)

(112)

Since the choice of node from the set was arbitrary, (112)
holds for all .

Next, we prove for an arbitrary pair of nodes
. For this, consider

(113)

(114)

(115)

(116)

(117)

where (114) follows since and are functions of , and
(116) follows from Property 2 and (112). Then, it must be that

(118)

(119)

(120)

Finally, ordering the nodes in in an arbitrary manner as
and noting that (120) holds for every pair of

nodes in , we have

(121)

(122)

APPENDIX B
PROOF OF THEOREM 7

Proof: The proof is by contradiction: for any given values
of the parameters and such that

, we assume the existence of an exact-repair code with these
parameters and show that the properties of exact-repair codes
lead to a contradiction.

As in the proof in Theorem 6, we restrict our attention to a
subnetwork of the distributed storage network consisting
of nodes, and ignore the remaining nodes in . Thus,
on failure of a node in this subnetwork , the helper nodes
comprise of the remaining nodes in .

We consider the processes of the exact repair of two nodes,
nodes and . We partition the remaining nodes in
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Fig. 7. Setting and notation for the proof of Theorem 7: repair of nodes � and
� using the remaining � nodes in � .

into two sets: set of cardinality and set of cardinality
. The proof, in a nutshell, uses the properties es-

tablished earlier in this paper to obtain bounds on the quantity
(Fig. 7 depicts the setting and relevant param-

eters). First, the restriction that Property 2 imposes on the mu-
tual information of nodes and with the nodes in is used
to obtain a lower bound on the amount of information passed
by the nodes in for the repair of nodes and .
Next, Properties 3 and 4 are invoked to obtain an upper bound
on the information passed by any single node (in ) to repair
nodes and . From this, it turns out that the total amount of
information that can be passed by the nodes in falls short of
the amount required for the repair. Details follow.

Restricting ourselves to the subnetwork , exact repair of
nodes and requires [from (17)]

(123)

(124)

respectively. However, since is a function of for every
helper node , it follows from the two aforementioned equations
that

(125)

(126)

We first derive a lower bound on the quantity ,
as follows:

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

where (130) follows from (126), and (133) follows from Prop-
erties 1 and 2.

Next, we obtain an upper bound on the quantity
. We consider the case of and the

case of separately.

Case 1: : In this case

(135)

(136)

(137)

where (136) follows from Properties 3 and 4. Since and
, the inequalities in (134) and (137) are in

contradiction.

Case 2: : In this case, Property 5 is used to obtain
an upper bound on . Note that this property
does not hold when , and hence, we consider the case
when

(138)

(139)

(140)

where (139) follows from Properties 3 and 5. Clearly, the in-
equalities in (140) and (134) contradict when

(141)
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