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Foreword

We live today in a truly interconnected world. Viewed as a network of decision
making agents, decisions taken and information generated in one part, or one
node, rapidly propagate to other nodes, and have impact on the well being (as
captured by utilities) of agents at those other nodes. Hence, it is not only the
information flow that connects different agents (or players, in the parlance of
game theory), but also the cross-impact of individual actions. Individual play-
ers therefore know that their performance will be affected by decisions taken
by at least a subset of other players, just as their decisions will affect others.
To expect a collaborative effort toward picking the “best” decisions is gen-
erally unreasonable, and for various reasons, among which are nonalignment
of individual objectives, limits on communication, incompatibility of beliefs,
and lack of a mechanism to enforce a stable cooperative solution. Sometimes
a player will not even know the objective or utility functions of other players,
their motivations, and the possible cross-impacts of decisions.

How can one define an equilibrium solution concept that will accommo-
date different elements of such an uncertain decision making environment?
How can such an equilibrium be reached when players operate under incom-
plete information? Can players learn through an iterative process and with
strategic plays the equilibrium-relevant part of the game? Would such an it-
erative process converge, and to the desired equilibrium, when players learn
at different rates, employ heterogeneous learning schemes, receive informa-
tion at different rates, and adopt different attitudes toward risk (some being
risk-neutral, other being risk-sensitive)?

The questions listed above all relate to issues that sit right in the heart of
multi-agent networked systems research. And this comprehensive book meets
the challenge of addressing them all, in the nine chapters to follow.

Professor Tamer Başar,
Urbana-Champaign,

Illinois, 11-11-11.

xix
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Preface

Preface to the book Distributed Strategic Learning for Wireless Engi-
neers

Much of Game Theory has developed within the community of Economists,
starting from the book “Theory of Games and Economic behavior” by Mor-
genstern and Von Neumann (1944). To a lesser extent, it has had an impact on
biology (with the development of evolutionary games) and on road traffic Engi-
neering (triggered by the concept of Wardrop equilibrium introduced already
in 1952 along with the Beckmann potential approach introduced in 1956).
Since 1999 game theory has had a remarkable penetration into computer sci-
ence with the formation of the community of Algorithmic game theory.

I am convinced that game theory will play a much more central role in
many fields in the future including telecommunication network engineering.
I use the term Network Engineering Games (NEGs) to call games that arise
within the latter context. NEG is the young brother of the Algorithmic game
theory. NEG is concerned with competition that arises at all levels of a net-
work. This includes aspects related to information theory, to power control
and energy management, to routing, to the transport and application layers of
communication networks. It also includes competition arising in spread of in-
formation over a network as well as issues related to the economy of networks.
Finally, it includes security issues, service denial attacks, spread of virus in
computers and measures to fight it.

This book is the first to consider a systematic analysis of games arising in
all network layers and is thus an important contribution to NEGs.

The word “game” may have connotations to “toys” or of “playing” (as
opposed to decision making). But in fact it stands for decision making by
several decision makers, each having her (or his) own individual objectives.
Is game theory a relevant tool for research in communication networks? On
20/12/2011 I searched on Scholar Google the documents containing “wireless
networks” together with “power control”. 20500 documents were found. Of
these, 3380 appeared in 2011, and 1680 dated from 2000 or earlier. I then
repeated the experience restricting further to documents containing “game
theory”. 2600 documents were found. Of these, 20 dated from prior to 2001

xxi
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and 580 dated from the single year 2011. The share of documents containing
“game theory” thus increased from 1.2% to 17% within 10 years.

Is game theory relevant in wireless Engineering?

A user that changes some protocols in his cellular telephone may find out
that a more aggressive behavior is quite beneficial and allows to obtain better
performances. Yet if all the population tried to act selfishly and use more
aggressive protocols, then everyone may loose in performance. But in practice
we do not bother to change the protocols in our cellular phones. Making
such changes would require access to the hardware, skills and training which
is too much to invest. This may suggest that game theory should be used
for other networking issues, perhaps in other scales (such as auctions over
bandwidth, competition between service providers etc). So is there a need in
NEG? Here are two different angles that one can use to look at this problem.
First, we made here the assumption that decisions are taken concerning how
to use equipment. But we can instead consider the decisions as being which
equipment to buy. The user’s decisions concerning which protocol to use are
taken when one purchases a telephone terminal. One prefers a telephone that is
known to perform better. The game is then between equipment constructors.
Secondly, not all decisions require special skills and knowhow. The service
providers and/or the equipment constructors can often gain considerably by
delegating to the users to take decisions. For example, when you wish to
connect to the Internet from your laptop, you often go to a menu that provides
you with a list of available connections along with some of their properties.
The equipment provider has decided to leave us, the users, this choice. It also
decides what information to let us have when we take the decision.

Leaving the decisions to the users is beneficial for service providers because
of scalability issues: decentralizing a network may reduce signaling, computa-
tions and costs. When designing a network that relies on decisions taken by
users, one needs to predict the users behavior. Learning is part of their behav-
ior. Much of the theory of learning in games has been developed by biologists
that used mathematical tools to model learning and adaptation within com-
peting species. In NEG one need not restrict to describing existing learning
approaches, one can propose and design learning procedures.

Why learn to play an equilibrium?

Sometimes it’s better not to learn. For example, assume that there are
two players, one chooses x and the other chooses y, where both x and y lye
in the half closed unit interval [0, 1[ Assume that both have the same utility
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to maximize, which is given by r(x, y) = xy. It is easily seen that this game
has an equilibrium which is unique: (0, 0). This is the worst possible choice
for both players. Any values of x and y that are strictly different from the
equilibrium value give both a strictly better utility!

When a service provider delegates to users some decisions, it can control
what parameter to let them control and what information to let them have
so as to avoid such situations. Learning to play equilibrium may then be in
the interest of the players, and exploring learning algorithms enrich the tools
available in designing networks.

This book is unique among the books on learning in game theory in focus-
ing on problems relevant to games in wireless engineering. It is a masterpiece
bringing the state-of-the art foundations of learning in games to wireless.

Professor Eitan Altman
INRIA Sophia Antipolis

February 3rd, 2012
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Strategic learning has made substantial progress since the early 1950s and
has become a central element in economics, engineering, and computer sci-
ence. One of the most significant accomplishments in strategic decision mak-
ing during the last decades have been the development of game dynamics.
Learning and dynamics are necessary when the problem to be solved is un-
der uncertainty, time-variant and depends on the structure of the dynamic
environment. This book develops distributed strategic learning schemes in
games [15, 16, 17]. It offers several examples in networking, communications,
economics and evolutionary biology in which learning and dynamics play an
important role in understanding the behavior of the system.

As a first example, consider a spectrum access problem where the sec-
ondary users can sense a subset of channels. If there are unused channels by
primary users at a given time slot, then the secondary users which sensed can
access to the free channels. The problem is that even under slotted time and
frames, several secondary users can simultaneously sense the same channels at
the same time. We can explicitly describe this problem depending the channel
conditions, the throughput, the set of primary users, the set of malicious users,
the set of altruistic users (relays), the set of secondary users, their arrivals,
departure rates, their past activities, but we are unable to explain how the
secondary users do it if they sensed the same channel at the same time. Thus,
it is useful to find a learning mechanism that allows an access allocation in
the long-run.

As a second example, consider a routing packet over a wireless ad hoc
network. The wireless path maximizing the quality of service with minimal
end-to-end delay from a source to a destination changes continuously as the
network traffic and the topology change. A learning-based routing protocol
is therefore needed to estimate the network traffic and to predict the best
stochastic path.

Already there are many successful applications of learning in networked
games but also in many other domains: robotics, machine learning, bio-
informatics, economics, finance, cloud computing, network security and relia-
bility, social networks, etc. A great many textbooks have been written about
learning in dynamic game theory. Most of them adopt either an economic
perspective or a mathematical perspective. In the past several years, though,
the application of game theory to problems in networking and communication
systems has become more important. Specifically, game-theoretic models have
been developed to better understand flow control, congestion control, power
control, admission control, access control, network security, quality of service,
quality of experience management and other issues in wireline and wireless
systems. By modeling interdependent decision makers such as users, trans-
mitters, radio devices, nodes, designer, operators, etc, game theory allows us
to model scenarios in which there is no centralized entity with a full picture
of the system conditions. It allows also teams, collaborations, and coalitional
behaviors among the participants. The challenges in applying game theory to
networking systems has attracted a lot of attention in the last decade. Most
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of the game-theoretic models can abstract away important assumptions and
mask critical unanswered questions. In absence of observation of the actions of
the other participants and under unknown dynamic environment, the predic-
tion of the outcome are less clear. It is our hope that this book will illuminate
both the promise of learning in dynamic games as a tool for analyzing net-
work evolution and the potential pitfalls and difficulties likely to be encoun-
tered when game theory is applied by practicing engineers, undergraduate,
graduate students, and researchers. We have not attempted to cover either
learning in games or its applications to networking and communications. We
have severely restricted our exposition to those topics that we feel are neces-
sary to give the reader a grounding in the fundamentals of learning in games
under uncertainty or robust games and their applications to networking and
communications.

As most of wireless networks are dynamic and evolve in time, we are see-
ing a tendency toward decentralized networks, in which each node may play
multiple roles at different times without relying on an access point or a base
station (small base station, femto-cell BS or macro-cell BS) to make decisions
such as in what frequency band to operate, how much power to use during
transmission frame, when to transmit, when to go in sleep mode, when to up-
grade, etc. Examples include cognitive radio networks, opportunistic mobile
ad hoc networks, and sensor networks that are autonomous and self-organizing
and support multihop communications. These characteristics lead to the need
for distributed decision making that potentially takes into account network
conditions as well as channel conditions. In such distributed systems, an in-
dividual terminal may not have access to control information regarding other
terminal’s actions and network congestion may occur. We address the follow-
ing questions:

• Question One: How much information is enough for effective distributed
decision making?

• Question Two: Is having more information always useful in terms of system
performance (value/price of information)?

• Question Three: What are the individual learning performance bounds
under outdated and imperfect measurement?

• Question Four: What are the possible dynamics and outcomes if the players
adopt different learning patterns?

• Question Five: If convergence occurs, what is the convergence time of
heterogeneous learning (at least two of the players use different learning
patterns)?

• Question Six: What are the issues (solution concepts, non-convergence,
convergence rate, convergence time etc) of hybrid learning (at least one
player changes its learning pattern during the interaction)?
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• Question Seven: How to develop very fast and efficient learning schemes
in scenarios where some players have more information than the others?

• Question Eight: What is the impact of risk-sensitivity in strategic learning
systems?

• Question Nine: How do we construct learning schemes in a dynamic envi-
ronment in which one of the players does not observe a numerical value of
its own-payoffs but only a signal of it?

• Question Ten: How to learn “unstable” equilibria and global optima in a
fully distributed manner?

These questions are discussed through this book. There is an explicit descrip-
tion of how players attempt to learn over time about the game and about the
behavior of others (e.g. through reinforcement, adaptation, imitation, belief
updating, estimations or combination of these etc.). The focus is both on finite
and infinite systems, where the interplay among the individual adjustments
undertaken by the different players generate different learning dynamics, het-
erogeneous learning, risk-sensitive learning, and hybrid dynamics.
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How to use this book?

This Guide is designed to assist instructors in helping students grasp the
main ideas and concepts of distributed strategic learning. It can serve as the
text for learning algorithm courses with a variety of different goals, and for
courses that are organized in a variety of different manners. The Instructor’s
note and supporting materials is developed for use in a course using distributed
strategic learning with the following goals for students:

Students will be better able to think about iterative process for engineering
problems;

Students will be better able to make use of their algorithmic, graphing,
and computational skills in real wireless networks based on data;

Students will be better able to independently read, study and understand
the topics that are new to the students such as solution concepts in robust
games;

Students will be better able to explain and describe the learning outcomes
and notions orally and to discuss both qualitative and quantitative topics with
others;

We would like to make the following remarks. The investigations of var-
ious solutions are almost independent of each other. For example, you may
study the strategy dynamics by reading Chapter 2 and payoff dynamics by
reading Chapter 3. If you are interested only in the risk-sensitive learning,
you should read Chapter 8. Similar possibilities exist for the random updates,
heterogeneous learning, and hybrid learning (see the Table of Contents).

If you plan an introductory course on robust game theory, then you may use
Chapter 1 for introducing robust games in strategic-form. Remark. Chapters
2 - 8 may be used for a one-semester course on distributed strategic learning.

Each chapter contains some exercises. The reader is advised to solve at
least those exercises that are used in the text to complete the proofs of various
results.

This book can be used for a one semester course by sampling from the
chapters and possibly by discussing extra research papers; in that case, I hope
that the references at the end of the book are useful. I welcome your feedback
via email to tembineh(at)gmail.com. I very much enjoyed writing this course,
I hope you will enjoy reading it.

Notation and Terminology

The book is comprised of nine chapters and one appendix. Each chapter is
divided into sections, and sections occasionally into subsections. Section 2.3,
for example, refers to the third section of Chapter 2, while Subsection 2.3.1 is
the first section of Subsection 2.3.

© 2012 by Taylor & Francis Group, LLC



xxviii Distributed Strategic Learning for Wireless Engineers

Items like theorems, propositions, lemmas, etc, are identified within each
chapter according to the standard numbering; Equation (7.1) would be the
first equation of Chapter 7.

Organization of the book

The manuscript comprises nine chapters.

• Chapter one introduces basic strategic decision-making and robust games.
State-dependent games with different level of information are formulated
and the associated solution concepts are discussed. Later, distributed
strategic learning approaches in different layers of the open systems inter-
connection model (OSI) including physical layer (PHY), medium access
control (MAC) layer, network layer, transport layer, and application layer
are presented.

• In Chapter two, we overview classical distributed learning schemes. We
start with partially distributed strategy-learning algorithms and their
possible implementation in wireless networks. Generically, partially dis-
tributed learning schemes, sometimes called semi-distributed schemes, as-
sume that all players knew their own-payoff functions and, observe others’
actions in previous stages. This is clearly not the case in many networking
and communication problems of interest. Under this strong assumption,
several game-theoretic formulations are possible for uncertain situations.
Then, the question of how to learn the system characteristics in presence
of incomplete information and imperfect measurements is addressed. Both
convergence and nonconvergence results are provided. In the other chap-
ters of this book, we develop strategic learning framework by assuming
that each player is able to learn progressively its own-action space, knows
his or her current action, and observes a numerical (possibly noisy) value of
her (delayed) payoff (the mathematical structure of the payoff functions
are unknown as well as the actions of the other players). This class of
learning procedures is called fully distributed strategy-learning algorithm
or model-free strategy-learning and is presented in section 2.3.

• Chapter 3 focuses on payoff learning and dynamics. The goal of Payoff
Learning is to learn the payoff functions, the expected payoffs and the
risk-sensitive payoffs. In many cases, the exact payoff functions may not be
known by the players. The players try to learn the unknown data through
the long-run interactions. This chapter complements the Chapter two.

• Chapter 4 studies combined fully distributed payoff and strategy learning
(CODIPAS). The core chapter examines how can evolutionary game the-
ory be used as a framework to analyze multi-player reinforcement learn-
ing algorithms in an heterogeneous setting. In addition, equilibrium seek-
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ing algorithms, learning in multi-armed bandit problems and algorithms
for solving variational inequality are presented. CODIPAS combines both
strategy-learning and payoff-learning.

• Chapter 5 examines combined learning under delayed and unknown pay-
offs. Based on outdated and noisy measurements, combining learning
schemes that incorporates the delays, as well as schemes that avoid the
delays, are investigated. Relevant applications to wireless networks are
presented.

• Chapter 6 analyzes combined learning in constrained-like games. The core
of the chapter comprises two parts. The first part introduces constrained
games and the associated solution concepts. Then, we address the chal-
lenging question of how such a game can be played? How player can choose
their actions in constrained games? The second part of the chapter focuses
on satisfactory solutions. Instead of robust optimization framework, we
propose a robust satisfaction theory which is relevant quality-of-experience
(QoE, application layer) and quality-of-service (QoS, network layer) prob-
lems. The feasibility conditions as well as satisfactory solutions are inves-
tigated. The last part of the chapter is concerned about random matrix
games (RMGs) with variance criterion.

• Chapter 7 extends the heterogeneous learning to hybrid learning. Uncer-
tainty, random updates and switching between different learning proce-
dures are presented.

• Chapter 8 develops learning schemes for global optima. The chapter pro-
vides specific class of games in which global optimum can be found in
a fully distributed manner. Selection of larger sets, Pareto optimal solu-
tions, are discussed. A detailed MATLAB code associated to the example
of resource selection games is provided.

• Chapter 9 presents risk-sensitivity aspects in learning. The classical game-
theoretic approach to modeling multi-player interaction assumes that play-
ers in a game want to maximize their expected payoff. But in many set-
tings, players instead often want to maximize some more complicated func-
tion of their payoff. The expected payoff framework for games is obviously
very general, but it does exclude the possibility that players in the game
have preferences that depend on the entire distribution of payoff, and not
just on its expectation. For example, if a player is sensitive to risk, her
objective might be to balance the variance to be closer to the expectation.
Indeed, this is the recommendation of modern portfolio theory, and a ver-
sion of the mean-variance objective is widely used by investors in financial
markets as well as in network economics. The chapter also addresses the
generalization of familiar notions of Nash and correlated equilibria to set-
tings where players are sensitive to the risk. We especially examine the
impact of risk-sensitivity in the outcome.
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• Background materials on dynamical systems and stochastic approxima-
tions are provided in appendices.
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Symbol Description

R
k k−dimensional Euclidean

space, k ≥ 2.
N Set of players (finite or infi-

nite).
B(t) Random set of active play-

ers at time t.

Aj Set of actions of player j.
sj ∈ Aj An element of Aj .

∆(Aj) Set of probability distribu-
tions over Aj .

Xj Mixed actions ∆(Aj).
aj,t Action of the player j at

time t. Element of Aj .

xj,t Randomized action of the
player j at t. Element of Xj .

rj,t Perceived payoff by player j
at t.

r̂j,t Estimated payoff vector of
player j at t. Element of
R

|Aj |.

β̃j,ǫ(r̂j,t) Boltzmann-Gibbs strategy
of player j. Element of Xj .

σ̃j,ǫ(r̂j,t) Imitative Boltzmann-Gibbs
strategy of player j. Element
of Xj .

1l{.} Indicator function.

l2 Space of sequences {λt}t≥0

such that
∑

t |λt|2 < +∞.

l1 Space of sequences {λt}t≥0

such that
∑

t |λt| < +∞

λj,t Learning rate of player j at
t.

esj ∈ Xj Unit vector with 1 at the
position of sj , and zero oth-
erwise.

‖ . ‖2 ‖ x ‖2= (
∑

k |xk|2)
1

2 .

〈., .〉 Inner product.

W State space, environment
state.

w ∈ W A scalar, a vector or a ma-
trix (finite dimension).

2D The set of the all the sub-
sets of D.

C0(A,B) Space of continuous func-
tions from A to B.

N Set of natural numbers
(non-negative integers).

Z Set of integers.

Mt Martingale.
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