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String Mining
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Extract emerging substrings that discriminate the given
datasets.
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String Mining under Frequency Constrains

INPUT OUTPUT
e Sets 71, 7»,...,7x e All substrings P s.t.
of total length ,- [
n:ZHIH fmin Sfreq(P~77) S_fmax
e Constraint (fii., fiay) for all i.
for each 7; )

Where freq(P, 7') is number of strings T € 7 s.t. Poccursin T.
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String Mining under Frequency Constrains

( INPUT ) OUTPUT
e Sets 71,72, ..., T e All substrings P s.t.
of total length , )
- T frlnin < freq(Pa I) Sfrlnax
n=> |7l
e Constraint (.., i) for all i.
L for each 7; )
Remark

It is non-trivial to choose (f! . . fi..); use e.g. \? test instead.
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Motivation: String Algorithms
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Motivation: Sequence Analysis

k-mers + prob modeling

Human gut 50 million reads
metagenome, per sample
124 samples

assembly + mapping

Mapping requires reference genomes.
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Motivation: Sequence Analysis

k-mers + prob modeling

Human gut 50 million reads
metagenome, per sample
124 samples

assembly + mapping

Replace k-mers with string mining? (both are de novo)
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Earlier Work

[Fischer, Heun, Kramer 2006]
e Optimal O(n) time
e O(nlogn) bits

Requires 50-100 GB for
human genome-scale inputs.

Space

[Fischer et al.
2006]

\J

Time
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Earlier Work
A
[Fischer, Makinen, V 2008] [Fischer et al.
20086]
e O(nlogn) time o
e O(nlogo) bits fj:i
Fischer et al.

First to scale up to human [ 'S‘;O%rg‘]* @
genome sized inputs.
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Earlier Work

[Dhaliwal, Puglisi, Turpin 2012]

o O(nlog”n) time
e O(nlogo) bits

Space

[Fischer et al.
2006]

Distributed String Mining: Practice

[Dhaliwal et al.
2012]

[Fischer et al.
2008]
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Optimal-Time Algorithm

Construct

1. suffix array,

2. LCP array + RMQ.

All in O(n) time.
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Distributed String Mining: Theory

Optimal-Time Algorithm

Construct
1. suffix array,

2. LCP array + RMQ.
Allin O(n) time.

Integration of

1. [Kasai et al. 2001] to visit
all branching substrings,

2. [Hui 1992] to solve the
color set size problem.
Both in O(n) time.
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Summary of Earlier Work

State of the art methods require that:
1. the whole input fits in main memory (of one machine),

2. the computation is serial.
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Summary of Earlier Work

State of the art methods require that:
1. the whole input fits in main memory (of one machine),

2. the computation is serial.

Our distributed algorithm solves both problems.
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Distributed String Mining

INPUT )
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Distributed String Mining
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Client Side Processing

1. Simulate a suffix tree traversal via suffix array & LCP array.

2. Compute frequencies and check against f.. and fi ...

Worst-case Expected
Time O(max{t,2}¢) O(%logn)
Space (in bits) O(max{é, Z}log n>

Space-efficiency: O (% log 0) bits with (log n)-factor slowdown.
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Server Side Processing

1. Merge the (sorted) input from clients on the fly.
2. Output substrings that obey the constraints over all 7.

Worst-case Expected

Time (’)(n log n) C’)(% log n)
Space (in bits) O (c llog n) negligible

Transmitted bits O (n log? n)
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Experimental Results

1. Human genome

o Experiment given in [Fischer et al. 2008] [Dhaliwal et al.
2012].

2. Human gut metagenomics
e 124 samples, 2.8 billion reads, 0.4 Tb.

Third experiment (in the paper) includes artificial data.
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Human Genome-Scale Data

Method Time Memory
[Fischer et al. 2006] 1h 50.0 GB
[Fischer et al. 2008] 72h 12m 10.0 GB
[Dhaliwal et al. 2012] 3h 4m 17.7 GB
[Dhaliwal et al. 2012] 4h 27m 12.1 GB
[Dhaliwal et al. 2012] 5h 55m 9.3GB
[Dhaliwal et al. 2012] 6h 4m 7.9 GB
Our 43m 4.9 GB
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Human Gut Metagenomics
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Human Gut Metagenomics
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Summary

Earlier algorithms:
e require that the input fits main memory,

e scale up to gigabytes of input.

Distributed variant:
e improves time and space complexities,
e scales up to terabytes of input,
e ~ $500 to analyze 0.4TB at Amazon EC2.
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