Distributed String Mining for High-Throughput Sequencing Data

Niko Välimäki Simon J. Puglisi

Department of Computer Science University of Helsinki nvalimak@cs.helsinki.fi

String Mining

Extract *emerging substrings* that discriminate the given datasets.

String Mining

```
T^+ = \{ egin{array}{ll} {
m I \ am \ positive}, \\ {
m I \ am \ also \ positive}, \\ {
m I^- = \{ \ {
m I \ am \ negative}, } \\ {
m I \ am \ also \ negative}, \\ {
m I \ am \ not \ negative} \} \end{array}
```

Extract *emerging substrings* that discriminate the given datasets.

String Mining

```
T^+ = \{ I am positive,
 I am also positive,
 I am also positive\}

T^- = \{ I am negative,
 I am also negative,
 I am not negative\}
```

Extract *emerging substrings* that discriminate the given datasets.

String Mining under Frequency Constrains

INPUT

• Sets $\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_R$

- of total length $n = \sum \|\mathcal{T}_i\|$.
- Constraint (f_{\min}^i, f_{\max}^i) for each \mathcal{T}_i

OUTPUT

• All substrings *P* s.t.

$$f_{\min}^i \leq \mathsf{freq}(P, \mathcal{T}_i) \leq f_{\max}^i$$

for all i.

Where freq(P, T) is number of strings $T \in T$ s.t. P occurs in T.

String Mining under Frequency Constrains

INPUT

- Sets $\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_R$ of total length $n = \sum ||\mathcal{T}_i||$.
- Constraint (f_{\min}^i, f_{\max}^i) for each \mathcal{T}_i

OUTPUT

• All substrings *P* s.t.

$$f_{\min}^i \leq \operatorname{freq}(P, T_i) \leq f_{\max}^i$$
 for all i .

Remark

It is non-trivial to choose (f_{\min}^i, f_{\max}^i) ; use e.g. χ^2 test instead.

Motivation: String Algorithms

Motivation: Sequence Analysis

Mapping requires reference genomes.

Motivation: Sequence Analysis

Replace *k*-mers with string mining? (both are *de novo*)

Earlier Work

[Fischer, Heun, Kramer 2006]

- Optimal $\mathcal{O}(n)$ time
- $\Theta(n \log n)$ bits

Requires 50-100 GB for human genome-scale inputs.

Earlier Work

[Fischer, Mäkinen, V 2008]

- $\mathcal{O}(n \log n)$ time
- $\mathcal{O}(n\log\sigma)$ bits

First to scale up to human genome sized inputs.

Earlier Work

[Dhaliwal, Puglisi, Turpin 2012]

- $\mathcal{O}(n\log^2 n)$ time
- $\mathcal{O}(n\log\sigma)$ bits

Optimal-Time Algorithm

Construct

- 1. suffix array,
- 2. LCP array + RMQ.

All in $\mathcal{O}(n)$ time.

Optimal-Time Algorithm

Construct

- 1. suffix array,
- 2. LCP array + RMQ.

All in $\mathcal{O}(n)$ time.

Integration of

- 1. [Kasai et al. 2001] to visit all branching substrings,
- 2. [Hui 1992] to solve the color set size problem.

Both in $\mathcal{O}(n)$ time.

Summary of Earlier Work

State of the art methods require that:

- 1. the whole input fits in main memory (of one machine),
- 2. the computation is serial.

Summary of Earlier Work

State of the art methods require that:

- 1. the whole input fits in main memory (of one machine),
- 2. the computation is serial.

Our distributed algorithm solves both problems.

Distributed String Mining

Distributed String Mining

Client Side Processing

- 1. Simulate a suffix tree traversal via *suffix array* & *LCP array*.
- 2. Compute frequencies and check against f_{\min}^i and f_{\max}^i .

	Worst-case	Expected
Time	$\mathcal{O}\left(\max\{\ell,\frac{n}{c}\}\ell\right)$	$O\left(\frac{n}{c}\log n\right)$
Space (in bits)	$\mathcal{O}\left(\max\{\ell,\frac{n}{c}\}\log n\right)$	

Space-efficiency: $\mathcal{O}\left(\frac{n}{c}\log\sigma\right)$ bits with $(\log n)$ -factor slowdown.

Server Side Processing

- 1. Merge the (sorted) input from clients on the fly.
- 2. Output substrings that obey the constraints over all T^i .

	Worst-case	Expected
Time	$O(n \log n)$	$\mathcal{O}\left(\frac{n}{s}\log n\right)$
Space (in bits)	$\mathcal{O}\left(c\ell\log n\right)$	negligible
Transmitted bits	$O\left(n\log^2 n\right)$	

Experimental Results

- 1. Human genome
 - Experiment given in [Fischer et al. 2008] [Dhaliwal et al. 2012].
- 2. Human gut metagenomics
 - 124 samples, 2.8 billion reads, 0.4 Tb.

Third experiment (in the paper) includes artificial data.

Human Genome-Scale Data

Method	Time	Memory
[Fischer et al. 2006]	1h	50.0 GB
[Fischer et al. 2008]	72h 12m	10.0 GB
[Dhaliwal et al. 2012]	3h 4m	17.7 GB
[Dhaliwal et al. 2012]	4h 27m	12.1 GB
[Dhaliwal et al. 2012]	5h 55m	9.3 GB
[Dhaliwal et al. 2012]	6h 4m	7.9 GB
Our	43m	4.9 GB

Human Gut Metagenomics

Human Gut Metagenomics

Summary

Earlier algorithms:

- require that the input fits main memory,
- scale up to gigabytes of input.

Distributed variant:

- improves time and space complexities,
- scales up to terabytes of input,
- \approx \$500 to analyze 0.4TB at Amazon EC2.