
Distributed String Mining for High-Throughput
Sequencing Data

Niko Välimäki Simon J. Puglisi

Department of Computer Science
University of Helsinki

nvalimak@cs.helsinki.fi

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

String Mining

T + = { I am positive,
I am also positive,
I am also positive}

T − = { I am negative,
I am also negative,
I am not negative}

Extract emerging substrings that discriminate the given
datasets.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

String Mining

T + = { I am positive,
I am also positive,
I am also positive}

T − = { I am negative,
I am also negative,
I am not negative}

Extract emerging substrings that discriminate the given
datasets.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

String Mining

T + = { I am positive,
I am also positive,
I am also positive}

T − = { I am negative,
I am also negative,
I am not negative}

Extract emerging substrings that discriminate the given
datasets.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

String Mining under Frequency Constrains

INPUT

• Sets T1, T2, . . . , TR

of total length
n =

P ‖Ti‖.

• Constraint (f i
min, f i

max)
for each Ti

OUTPUT

• All substrings P s.t.

f i
min ≤ freq(P, Ti) ≤ f i

max

for all i.

Where freq(P, T) is number of strings T ∈ T s.t. P occurs in T.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

String Mining under Frequency Constrains

INPUT

• Sets T1, T2, . . . , TR

of total length
n =

P ‖Ti‖.

• Constraint (f i
min, f i

max)
for each Ti

OUTPUT

• All substrings P s.t.

f i
min ≤ freq(P, Ti) ≤ f i

max

for all i.

Remark
It is non-trivial to choose (f i

min, f
i
max); use e.g. χ2 test instead.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Motivation: String Algorithms

Optimal String Mining Under

Frequency Constraints

Johannes Fischer1, Volker Heun1, and Stefan Kramer2

1 Ludwig-Maximilians-Universität München, Institut für Informatik,
Amalienstr. 17, D-80333 München

{Johannes.Fischer, Volker.Heun}@bio.ifi.lmu.de
2 Technische Universität München, Institut für Informatik/I12,

Boltzmannstr. 3, D-85748 Garching b. München
kramer@in.tum.de

Abstract. We propose a new algorithmic framework that solves fre-
quency-related data mining queries on databases of strings in optimal
time, i.e., in time linear in the input and the output size. The additional
space is linear in the input size. Our framework can be used to mine
frequent strings, emerging strings and strings that pass other statistical
tests, e.g., the χ2-test. In contrast to the presented result for strings, no
optimal algorithms are known for other pattern domains such as itemsets.
The key to our approach are several recent results on index structures
for strings, among them suffix- and lcp-arrays, and a new preprocess-
ing scheme for range minimum queries. The advantages of array-based
data structures (compared with dynamic data structures such as trees)
are good locality behavior and extensibility to secondary memory. We
test our algorithm on real-world data from computational biology and
demonstrate that the approach also works well in practice.

1 Introduction

In many applications, e.g., in computational biology, the goal is to find inter-
esting string or sequence patterns in data. Application areas are, among others,
finding discriminative features for sequence classification or segmentation [1],
discovering new binding motifs of transcription factors, or probe design [2]. In
this paper, we focus on string mining under frequency constraints, i.e., predicates
over patterns depending solely on the frequency of their occurrence in the data.
This category encompasses combined minimum/maximum support constraints,
constraints concerning emerging substrings, and constraints concerning statisti-
cally significant substrings. We present an algorithm that is able to answer such
queries optimally, that is, in time linear in the size of the input database, plus
the time to output the solution patterns.

In previous work [2], we investigated string mining approaches based on break-
through results on index structures for strings, among them suffix arrays and
longest common prefix (lcp) tables [3,4,5]. Suffix arrays are essentially a represen-
tation of the lexicographic order of all suffixes of a string. lcp tables contain the

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 139–150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Efficient Algorithm for Mining String
Databases Under Constraints�

Sau Dan Lee and Luc De Raedt

Institute for Computer Science,
University of Freiburg, Germany

{danlee, deraedt}@informatik.uni-freiburg.de

Abstract. We study the problem of mining substring patterns from
string databases. Patterns are selected using a conjunction of mono-
tonic and anti-monotonic predicates. Based on the earlier introduced
version space tree data structure, a novel algorithm for discovering sub-
string patterns is introduced. It has the nice property of requiring only
one database scan, which makes it highly scalable and applicable in dis-
tributed environments, where the data are not necessarily stored in local
memory or disk. The algorithm is experimentally compared to a previ-
ously introduced algorithm in the same setting.

1 Introduction

In recent years, the number of string databases (particularly, in bioinformatics)
has grown enormously [1]. One of the motivations for constructing and maintain-
ing these databases is the desire to discover new knowledge from these databases
using data mining techniques. While more traditional data mining techniques,
such as frequent itemset mining [2] and frequent sequence mining [3], can be
adapted to mine string databases, they do not take advantage of some proper-
ties specific to strings to accelerate the mining process. By specifically targeting
string databases, it should be possible to devise more effective algorithms for
discovering string patterns.

The most important contribution of this paper is the introduction of a novel
algorithm, called FAVST, for mining string patterns from string databases. This
algorithm combines ideas from data mining with string processing principles.
More specifically, we employ ideas from suffix trees [4, 5] to represent and com-
pute the set of patterns of interest. The data structure used is that of Version
Space Trees (VST, introduced by [6]) to organize the set of substring patterns
being discovered. We have observed that a suffix trie can be treated as a deter-
ministic automata so that we can visit all the substring patterns contained in
a data string efficiently. We exploit this property of the suffix trie in VST and
devised the FAVST algorithm (see Sect. 5.2). This algorithm performs frequency

� This work was supported by the EU IST FET project cInQ, contract number IST-
2000-26469.

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 108–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient String Mining under Constraints Via

the Deferred Frequency Index

David Weese1 and Marcel H. Schulz2

1 Department of Computer Science, Free University of Berlin, Takustr. 9, 14195
Berlin, Germany

weese@inf.fu-berlin.de
2 Department of Computational Molecular Biology, Max Planck Institute for

Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany and
International Max Planck Research School for Computational Biology and Scientific

Computing
marcel.schulz@molgen.mpg.de

Abstract. We propose a general approach for frequency based string
mining, which has many applications, e.g. in contrast data mining. Our
contribution is a novel algorithm based on a deferred data structure.
Despite its simplicity, our approach is up to 4 times faster and uses about
half the memory compared to the best-known algorithm of Fischer et al.
Applications in various string domains, e.g. natural language, DNA or
protein sequences, demonstrate the improvement of our algorithm.

1 Introduction

The storage of data in databases alone does not guarantee that all hidden in-
formation is readily available. A promising approach for knowledge discovery in
databases is to mine frequent patterns, reviewed in [1]. This general paradigm
can be applied in many application domains ranging from mining of customer
data to optimize marketing strategies [2], and language identification [3], to find-
ing protein fingerprints or binding motifs in biological sequences [4,5]. The latter
is important in Computational Biology, where a gene is regulated by proteins,
so-called transcription factors, that bind to its promoter sequence. A common
approach taken, is to contrast promoter sequences of genes that are believed to
be regulated by the same factor, with promoters of unrelated genes to detect the
transcription factor’s binding motif. The rationale behind it, is to find sequence
motifs that are representative (frequent) for one set of sequences and absent (in-
frequent) in another, often called discriminatory or contrast data mining [6,7].
Here the Frequency of a motif is defined as the number of distinct sequences in
a set that contain the motif at least once. In this paper we propose an approach
that can efficiently solve any frequency based string mining problem including
the problem introduced above.

1.1 Related Work

There have been several approaches in the context of mining substrings with fre-
quency constraints. Raedt and co-workers introduced the first O(n2) algorithm,

P. Perner (Ed.): ICDM 2008, LNAI 5077, pp. 374–388, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Data Min Knowl Disc (2008) 17:24–38
DOI 10.1007/s10618-008-0110-5

A space efficient solution to the frequent string mining
problem for many databases

Adrian Kügel · Enno Ohlebusch

Received: 20 June 2008 / Accepted: 23 June 2008 / Published online: 9 July 2008
Springer Science+Business Media, LLC 2008

Abstract The frequent string mining problem is to find all substrings of a collection
of string databases which satisfy database specific minimum and maximum frequency
constraints. Our contribution improves the existing linear-time algorithm for this prob-
lem in such a way that the peak memory consumption is a constant factor of the size
of the largest database of strings. We show how the results for each database can be
stored implicitly in space proportional to the size of the database, making it possible
to traverse the results in lexicographical order. Furthermore, we present a linear-time
algorithm which calculates the intersection of the results of different databases. This
algorithm is based on an algorithm to merge two suffix arrays, and our modifica-
tion allows us to also calculate the LCP table of the resulting suffix array during the
merging.

Keywords String mining · Enhanced suffix array

1 Introduction

In string mining problems, one is given m databases D1, . . . ,Dm of strings and
searches for the (unknown) strings that fulfill certain constraints, which are usu-
ally specified by the user. Here, we focus on the frequent string mining problem.
In this problem, the constraints consist of m pairs of frequency thresholds

Responsible editors: Walter Daelemans, Bart Goethals, and Katharina Morik.

A. Kügel (B) · E. Ohlebusch
Faculty of Engineering and Computer Sciences, University of Ulm, 89069 Ulm, Germany
e-mail: Adrian.Kuegel@uni-ulm.de

E. Ohlebusch
e-mail: Enno.Ohlebusch@uni-ulm.de

123

Practical Efficient String Mining

Jasbir Dhaliwal, Simon J. Puglisi, and Andrew Turpin

Abstract

In recent years, several algorithms for mining frequent and emerging substring patterns from

databases of string data (such as proteins and natural language texts) have been discovered, all of

which traverse an enhanced suffix array data structure. All of these algorithms lie at either extreme of

the efficiency spectrum: they are either fast and use enormous amounts of space, or they are compact

and orders of magnitude slower. In this paper we present an algorithm that achieves the best of both

these extremes, having runtime comparable to the fastest published algorithms while using less space

than the most space efficient ones. This excellent practical performance is underpinned by theoretical

guarantees. Our main mechanism for keeping memory usage low is to build the enhanced suffix array

incrementally, in blocks. Once built, a block is traversed to output patterns with required support before

its space is reclaimed to be used for the next block.

All authors are with the Royal Melbourne Institute of Technology.

Digital Object Indentifier 10.1109/TKDE.2010.242 1041-4347/10/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

. . .

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Motivation: Sequence Analysis

Human gut
metagenome,
124 samples

50 million reads
per sample

assembly + mapping

k-mers + prob. modeling

Mapping requires reference genomes.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Motivation: Sequence Analysis

Human gut
metagenome,
124 samples

50 million reads
per sample

assembly + mapping

k-mers + prob. modeling

Replace k-mers with string mining? (both are de novo)

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Earlier Work

[Fischer, Heun, Kramer 2006]

• Optimal O(n) time

• Θ(n log n) bits

Requires 50-100 GB for
human genome-scale inputs.

[Fischer et al.
2006]

Time

S
pa

ce

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Earlier Work

[Fischer, Mäkinen, V 2008]

• O(n log n) time

• O(n logσ) bits

First to scale up to human
genome sized inputs.

[Fischer et al.
2008]

[Fischer et al.
2006]

Time

S
pa

ce

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Earlier Work

[Dhaliwal, Puglisi, Turpin 2012]

• O(n log2 n) time

• O(n logσ) bits [Dhaliwal et al.
2012]

[Fischer et al.
2008]

[Fischer et al.
2006]

Time

S
pa

ce

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Optimal-Time Algorithm

Construct

1. suffix array,

2. LCP array + RMQ.
All in O(n) time.

Integration of

1. [Kasai et al. 2001] to visit
all branching substrings,

2. [Hui 1992] to solve the
color set size problem.

Both in O(n) time.

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "#

!"# % !" !("# $ "" () ! !* " & !% !) !! !(# "! ' !$!& "* !#

$%&# * * * * * ! ! " # ! " # " # * ! ! " " " ! " #

+ + + + , , , , , , , , , , - - - - - - - - -

+ + , , , - - - - - + + , , , , - - -

, - - + , , - - + + , - + , ,

- + , + , + , , - + -

+ + , + - + -

- + +

+

!
"

!

"#

"

"#

#

!#
"

!

"#

"

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Optimal-Time Algorithm

Construct

1. suffix array,

2. LCP array + RMQ.
All in O(n) time.

Integration of

1. [Kasai et al. 2001] to visit
all branching substrings,

2. [Hui 1992] to solve the
color set size problem.

Both in O(n) time.

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "#

!"# % !" !("# $ "" () ! !* " & !% !) !! !(# "! ' !$!& "* !#

$%&# * * * * * ! ! " # ! " # " # * ! ! " " " ! " #

+ + + + , , , , , , , , , , - - - - - - - - -

+ + , , , - - - - - + + , , , , - - -

, - - + , , - - + + , - + , ,

- + , + , + , , - + -

+ + , + - + -

- + +

+

!
"

!

"#

"

"#

#

!#
"

!

"#

"

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Summary of Earlier Work

State of the art methods require that:

1. the whole input fits in main memory (of one machine),

2. the computation is serial.

Our distributed algorithm solves both problems.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Summary of Earlier Work

State of the art methods require that:

1. the whole input fits in main memory (of one machine),

2. the computation is serial.

Our distributed algorithm solves both problems.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Distributed String Mining

INPUT

client1 client2 · · · clientc

divide

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Distributed String Mining

INPUT

client1 client2 · · · clientc

divide

server1 server2 · · · servers

OUTPUT

concatenate

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Client Side Processing

1. Simulate a suffix tree traversal via suffix array & LCP array.

2. Compute frequencies and check against f i
min and f i

max.

Worst-case Expected

Time O
(

max{`, n
c } `

)
O

(
n
c log n

)
Space (in bits) O

(
max{`, n

c } log n
)

Space-efficiency: O
(

n
c logσ

)
bits with (log n)-factor slowdown.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Server Side Processing

1. Merge the (sorted) input from clients on the fly.

2. Output substrings that obey the constraints over all T i.

Worst-case Expected

Time O
(

n log n
)

O
(

n
s log n

)
Space (in bits) O

(
c ` log n

)
negligible

Transmitted bits O
(

n log2 n
)

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Experimental Results

1. Human genome
• Experiment given in [Fischer et al. 2008] [Dhaliwal et al.

2012].

2. Human gut metagenomics
• 124 samples, 2.8 billion reads, 0.4 Tb.

Third experiment (in the paper) includes artificial data.

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Human Genome-Scale Data

Method Time Memory
[Fischer et al. 2006] 1h 50.0 GB
[Fischer et al. 2008] 72h 12m 10.0 GB
[Dhaliwal et al. 2012] 3h 4m 17.7 GB
[Dhaliwal et al. 2012] 4h 27m 12.1 GB
[Dhaliwal et al. 2012] 5h 55m 9.3 GB
[Dhaliwal et al. 2012] 6h 4m 7.9 GB
Our 43m 4.9 GB

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Human Gut Metagenomics

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400

T
im

e
 (

s
)

Input size (GB)

fmin = 2
fmin = 3

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Human Gut Metagenomics

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

T
im

e
 p

e
r

o
u
tp

u
t
(µ

s
)

Output size (relative to fmin = 10)

10 8 6 4
20

3

2

Introduction Earlier Work Distributed String Mining: Theory Distributed String Mining: Practice

Summary

Earlier algorithms:

• require that the input fits main memory,

• scale up to gigabytes of input.

Distributed variant:

• improves time and space complexities,

• scales up to terabytes of input,

• ≈ $500 to analyze 0.4TB at Amazon EC2.

	Introduction
	Earlier Work
	Earlier work

	Distributed String Mining: Theory
	Theory

	Distributed String Mining: Practice
	Practice

