
TSpace Research Repository tspace.library.utoronto.ca

Distributed supervisory control of discrete-
event systems with communication delay

Renyuan Zhang, Kai Cai, Yongmei Gan, and W. M. Wonham

Version Post-Print/Accepted Manuscript

Citation
(published version)

Zhang, R., Cai, K., Gan, Y. et al. Distributed supervisory control of
discrete-event systems with communication delay, Discrete Event Dyn
Syst (2016) 26: 263. doi:10.1007/s10626-014-0208-4

Publisher’s Statement The final publication is available at Springer via
http://dx.doi.org/10.1007/s10626-014-0208-4.

How to cite TSpace items

Always cite the published version, so the author(s) will receive recognition through services that track

citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace
because you cannot access the published version, then cite the TSpace version in addition to the published

version using the permanent URI (handle) found on the record page.

This article was made openly accessible by U of T Faculty.
Please tell us how this access benefits you. Your story matters.

http://dx.doi.org/10.1007/s10626-014-0208-4
https://tspace.library.utoronto.ca/feedback

Noname manuscript No.
(will be inserted by the editor)

Distributed Supervisory Control of Discrete-Event
Systems with Communication Delay

Renyuan Zhang · Kai Cai · Yongmei
Gan · W.M. Wonham

the date of receipt and acceptance should be inserted later

Abstract This paper identifies a property of delay-robustness in distributed su-
pervisory control of discrete-event systems (DES) with communication delays. In
previous work a distributed supervisory control problem has been investigated on
the assumption that inter-agent communications take place with negligible delay.
From an applications viewpoint it is desirable to relax this constraint and identi-
fy communicating distributed controllers which are delay-robust, namely logical-
ly equivalent to their delay-free counterparts. For this we introduce inter-agent
channels modeled as 2-state automata, compute the overall system behavior, and
present an effective computational test for delay-robustness. From the test it typ-
ically results that the given delay-free distributed control is delay-robust with
respect to certain communicated events, but not for all, thus distinguishing events
which are not delay-critical from those that are. The approach is illustrated by a
workcell model with three communicating agents.

Keywords Discrete-Event Systems · Distributed Supervisory Control · Commu-
nication Delay · Delay-robustness

1 Introduction

Distributed control is pervasive in engineering practice, either by geographical
necessity or to circumvent the complexity of centralized (also called ‘monolithic’)

R. Zhang,
Dept. Traffic and Control Engineering, Northwestern Polytechnical University, China
E-mail: ryzhang@nwpu.edu.cn

K. Cai
Urban Research Plaza, Osaka City University, Japan
E-mail: kai.cai@info.eng.osaka-cu.ac.jp

Y. Gan
School of Electrical Engineering, Xi’an Jiaotong University
E-mail: ymgan@mail.xjtu.edu.cn

W.M. Wonham
System Control Group, Dept. Electrical and Computer Engineering, University of Toronto
E-mail: wonham@control.utoronto.ca

2 R. Zhang et al.

control. Existing work on distributed supervisory control of discrete-event systems
(DES) has focused on synthesis of local controllers for individual agents (plant com-
ponents) such that the resulting controlled behavior is identical with that achieved
by global supervision [1–6]. In these contributions, it is assumed that agents make
independent observations and decisions, with instantaneous inter-agent communi-
cation. While simplifying the design of distributed control, this assumption may be
unrealistic in practice, where controllers are linked by a physical network subject
to delays. Hence, to model and appraise these delays is essential for the correct
implementation of control strategies.

The communication problem in distributed control of multi-agent DES has
been discussed by several researchers. Kalyon et al. [7] propose a framework for
the control of distributed systems modeled as communicating finite state machines
with reliable unbounded FIFO channels. They formulate a distributed state avoid-
ance control problem, and show that the existence of a solution for the problem
is undecidable. Lin [8] investigates supervisory control of networked discrete-event
systems which features communication delays and data losses in observation and
control. He assumes that the communication between a supervisor and the plant
is via a shared network and communication delays are bounded. Darondeau and
Ricker [9] propose to synthesize distributed control starting from a monolithic
supervisor (in the DES sense) which can be represented as a distributed Petri
net; local nets are linked by message passing to effect token transfer required by
transitions joining places that have been distributed to distinct locations. PN dis-
tributability is admitted somewhat to constrain generality; but the exact relation
of this approach to our own remains open to future research.

Research on communication problems in decentralized/modular supervisory
control has also been reported in recent years. Taking delays into consideration,
Yeddes et al. [10] propose a 3-state data transmission model, representing delays
by timed events with lower and finite upper time bounds; these events are incor-
porated into the plant and specification automata, and the time bounds further
restricted by a supervisor synthesis procedure; maximal permissiveness and non-
blocking, however, are not guaranteed. In [11] Barrett and Lafortune propose an
information structure model for analysis and synthesis of decentralized supervisory
control, applicable in principle to the case of communication delays, but they as-
sume that such delays are absent. For a limited class of specifications, Tripakis [12]
formulates certain problems in decentralized control with bounded or unbounded
communication delay, modeling the system with communication by automata with
state output map. In this model the existence of controllers in case of unbounded
delay is undecidable. In our paper, by contrast, we address the question: does a
given controller have the property of delay-robustness (as we define it) or not?
This question is indeed decidable, and we provide an effective test to answer it.
Schmidt et al. [13] consider a heterarchical (hierarchical/decentralized) architec-
ture requiring communication of shared events among modules of the hierarchy.
A communication model is developed in which delay may affect system operation
unless suitable transmission deadlines are met. If so, correct operation of the dis-
tributed supervisors is achieved if the network is sufficiently fast. In [14] correct
heterarchical operation is achieved subject to a condition of “communication con-
sistency”, by which the occurrence of low-level events is restricted by the feasibility
of high-level events. Xu and Kumar [15] consider monolithic supervisory control
with bounded communication delay d (measured by event count) between plant

Distributed Supervisory Control of DES with Communication Delay 3

and controller; a condition is derived for equality of controlled behaviors under de-
lay d or with zero delay respectively; verification is exponential in d. Hiraishi [16]
proposes an automaton formalism for communication with delay in decentralized
control, and concludes semi-decidability of the controller design problem in the
case of k-bounded delay and in case an observability condition holds for state-
transition cycles. Ricker and Caillaud [17] consider decentralized control (with a
priori given individual observable event subsets) in the case where co-observability
fails and therefore inter-supervisor communication is needed for correct global su-
pervision. The issue is when, what, and to whom a given local supervisor should
communicate; a solution is proposed to the protocol design problem. In our paper
this question does not arise because, with supervisor localization, we already de-
clare who communicates what to whom, and the problem is then to analyze our
existing ideal (instantaneous) communication scheme to see if it is still correct in
the presence of delay.

Thus we consider distributed control with separately modeled communication
channels having unknown unbounded delay, imposed on an existing distributed ar-
chitecture known to be optimal and nonblocking for zero delay. In this paper and
its conference precursor [18], we start from the DES distributed control scheme
called ‘supervisor localization’ reported in [5,6], which describes a systematic top-
down approach to design distributed controllers which collectively achieve global
optimal and nonblocking supervision. Briefly, we first synthesize a monolithic su-
pervisor, or alternatively a set of decentralized supervisors, assuming zero delay;
then we apply supervisor localization to decompose each synthesized supervisor
into local controllers for individual plant components, in this process determining
the set of events that need to be communicated. Next, and central to the present
paper, we propose a channel model for event communication, and design a test to
verify for which events the system is delay-robust (as we define it below).

The initial control problem is the standard ‘Ramadge-Wonham’ (RW) prob-
lem [19–21]. Here the plant (DES to be controlled) is modeled as the synchronous
product of several DES agents (plant components), say AGENT1, AGENT2, ...,
that are independent, in the sense that their alphabets Σ1, Σ2, ..., are pairwise dis-
joint. In a logical sense these agents are linked by specifications SPEC1, SPEC2,
..., each of which (typically) restricts the behavior of an appropriate subset of
the AGENTi and is therefore modeled over the union of the corresponding sub-
family of the Σi. For each SPECj , a ‘decentralized’ supervisory controller SUPj

is computed in the same way as for a ‘monolithic’ supervisor [19]; it guarantees
optimal (i.e. maximally permissive) and nonblocking behavior of the relevant sub-
family (the ‘control scope’ of SPECj) of the AGENTi. In general it will turn
out that the synchronous product of all the SUPj is blocking (e.g. may cause
deadlock in the overall controlled behavior); in that case one or more additional
‘coordinators’ must be adjoined to suitably restrict the decentralized controlled
behavior (see [6] for an example). Techniques for coordinator design are available
in the literature (e.g. [22–25]) and in this paper we take them for granted. On
achieving satisfactory decentralized control we finally ‘localize’ each decentralized
supervisor, including the coordinator(s), if any, to the agents that fall within its
control scope; the algorithm that achieves this is detailed in [5], and we shall refer
to it as Localize. The result of Localize is that each AGENTi is equipped with
local controllers, one for each of the SPECj whose scope it falls within; in that
sense AGENTi is now ‘intelligent’ and semi-autonomous, with controlled behav-

4 R. Zhang et al.

ior SUPLOCi, say, while the synchronous product behavior of all the SUPLOCi

is provably that of the monolithic supervisor for the RW problem we began with.
Autonomy of the SUPLOCi is qualified, in that normally the transition struc-
ture of each SUPLOCi will include events from various other AGENTk with
k ̸= i. The implementation of our distributed control therefore requires instanta-
neous communication by AGENTk of ‘communication’ events (when they occur,
in its private alphabet Σk) to SUPLOCi so the latter can properly update its
state. Think of a group of motorists maneuvering through a congested intersection
without benefit of external traffic control, each instead depending solely on sig-
nals from (mostly) neighboring vehicles and on commonly accepted protocols. In
our DES model each SUPLOCi can disable only its private controllable events,
in Σi, but the logic of disablement may well depend on observation of critical
events from certain other AGENTk , as remarked above. It is clear that if these
communications are subject to indefinite time delay, then control may become
disrupted and the collective behavior logically unacceptable. Our first aim is to
devise a test to distinguish the latter case from the ‘benign’ situation where delay
is tolerable, in the sense that ‘logical’ behavior is unaffected, even though in some
practical sense behavior might be degraded, for instance severely slowed down1.
This investigation would provide practitioners with useful information to imple-
ment distributed supervisors by communication channels: ‘fast’ channels must be
assigned for communication of ‘delay-critical’ events, while ‘slow’ channels suffice
for ‘delay-robust’ events.

In Sect. 3, we introduce the model of our communication channel. As will be
seen, there is an implicit constraint that a channeled event (i.e. a communication
event transmitted by a channel with indefinite delay) can occur and be transmitted
only when its channel is available. This is similar to the mechanism of “synchronous
elastic circuits” or “latency insensitive systems” (e.g. [28]); see Remark 2 below
for details. As a consequence, an uncontrollable channeled event may or may not
be blocked by its channel, the former case being undesirable. Our second aim is
to distinguish these two cases; when an uncontrollable event is indeed blocked, we
discuss how long it can be delayed.

We proceed to a formal review of distributed control by supervisor localization
on the assumption of instantaneous inter-agent communication. Then we introduce
inter-agent communication with delay, modeled by a separate logical channel for
each delayed communication event (i.e. channeled event). As our main result, both
a definition and a computational test are provided for ‘delay-robustness’ of the
channeled distributed system with respect to an arbitrary subset of communication
events. In addition, we employ the standard algorithm for checking controllability
to identify whether or not an uncontrollable channeled event is blocked by its
channel. These issues are illustrated by a workcell model with three communicating
agents. Finally we present conclusions and suggestions for future work.

1 Similar issues are addressed in the literature on ‘delay-insensitive’ asynchronous networks;
for the definition see [26] and for a useful summary [27].

Distributed Supervisory Control of DES with Communication Delay 5

2 Preliminaries

2.1 Notation

Following [21] we recall various standard concepts and notation. Consider a system
G of n component DES Gi = (Qi, Σi, ηi, qi0, Qim), i ∈ N := {1, 2, ..., n}, where
Qi is the (finite) state set, Σi is the (finite) set of event labels, ηi : Qi×Σi → Qi is
the transition (partial) function, qi0 is the initial state, and Qim ⊆ Q is the set of
marker states. Each event set Σi is partitioned as the disjoint union Σi = Σic∪Σiu

where Σic (resp. Σiu) is the subset of controllable (resp. uncontrollable) events for
Gi; the full event set for G is the union Σ = ∪{Σi|i ∈ N}.

Let Σ∗
i denote the set of all finite strings of elements in Σi, including the empty

string ϵ, and as usual extend the transition function ηi to Qi × Σ∗
i , by defining

ηi(qi, ϵ) = qi , ηi(qi, sσ) = ηi(ηi(qi, s), σ) for all qi ∈ Qi, s ∈ Σ∗
i and σ ∈ Σi. We

write ηi(qi0, s)! to mean that ηi(qi0, s) is defined. The prefix closure of a language L
over Σ∗ is defined as L = {s ∈ Σ∗|su ∈ L for some u ∈ Σ∗}. The closed behavior
andmarked behavior ofGi are defined respectively by L(Gi) = {s ∈ Σ∗

i |ηi(qi0, s)!}
and Lm(Gi) = {s ∈ L(Gi)|ηi(qi0, s) ∈ Qim}.

As in [5, 6] we assume that the Gi are a priori independent, in the sense that
their alphabets Σi are pairwise disjoint. The systemG representing their combined
behavior is defined to be their synchronous product G = (Q,Σ, η, q0, Qm) =
Sync(G1, ...,Gn)

2. The closed behavior and marked behavior of G are L(G) =
||{L(Gi)|i ∈ N} and Lm(G) = ||{Lm(Gi)|i ∈ N} where || denotes synchronous
product of languages. Assume each Gi is trim (i.e. reachable and coreachable);
then by independence, G is trim, i.e., Lm(G) = L(G).

Let Σo ⊆ Σ be a subset of events thought of as ‘observable’. We refer the
reader to [21] for the formal definition of natural projection P : Σ∗ → Σ∗

o , DES
isomorphism, G-controllability, and the supremal quasi-congruence relation. Sim-
ply stated, natural projection P on a string s ∈ Σ∗ erases all the occurrences of
σ ∈ Σ in s such that σ /∈ Σo, namely Pσ = ϵ (the empty string); P is imple-
mented as Project(G, Null[Σ − Σo]), which returns a (state-minimal) DES PG
over Σo such that Lm(PG) = PLm(G) and L(PG) = PL(G). Two DES are
isomorphic if they are identical up to relabeling of states; G-controllability is the
property required for a sublanguage of Lm(G) to be synthesizable by a super-
visory controller; while projection modulo supremal quasi-congruence produces a
(possibly nondeterministic) abstraction (reduced version) of a DES G, denoted
Supqc(G, Null[Σ −Σo]), which preserves observable transitions and the ‘observ-
er’ property [29,30]. As detailed in [21] these operations are available in a software
implementation [31] and will be referred to here as needed.

2.2 Distributed Control without Communication Delay

Next we summarize the distributed control theory (assuming zero communication
delay) reported in [5,6]. First supposeG is to be controlled to satisfy a specification
language Lm(SPEC) ⊆ Σ∗ represented by a DES SPEC. Denote by K ⊆ Σ∗ the

2 We may safely assume that the implementation Sync of synchronous product is always
associative and commutative; for more on this technicality see [21], Sect. 3.3.

6 R. Zhang et al.

supremal controllable sublanguage of Lm(G) ∩ Lm(SPEC)(for details see [21]).
Assume K is represented by the DES SUP, i.e. SUP has closed and marked
behavior

L(SUP) = K, Lm(SUP) = K. (1)

Since G = Sync(G1, ...,Gn) is the synchronous product of independent com-
ponents we seek to implement SUP in distributed fashion by ‘localizing’ SUP
to each Gi as proposed in [5, 6]. For this we bring in a family of local controllers
LOC = {LOCi|i ∈ N}, one for each Gi, and define L(LOC) = ∥{L(LOCi)|i ∈
N} and Lm(LOC) = ∥{Lm(LOCi)|i ∈ N}. It is shown in [5, 6] that

L(G) ∩ L(LOC) = L(SUP) (2a)

Lm(G) ∩ Lm(LOC) = Lm(SUP) (2b)

Here, the supervisory action of SUP is fully distributed among the set of local
controllers, each acting independently and asynchronously, except for being syn-
chronized through ‘communication’ events. Generally, each local controller has a
much smaller state set than SUP and a smaller event subset of Σ, containing just
the events of its corresponding plant component, together with those communi-
cation events from other components that are essential to make correct control
decisions. We remark that if the system and its supervisor are large scale, we first
synthesize a set of decentralized supervisors to achieve global optimality and non-
blocking, and then apply supervisor localization to decompose each decentralized
supervisor in the set (as in [6]).

3 Distributed Control with Communication Delay

Cai and Wonham [5] discuss a boundary case of optimal distributed control that
is fully-localizable where inter-agent communication is not needed, namely the
alphabet of each local controller LOCi is simply Σi, so that LOCi observes only
events in its own agent Gi. In this case, no issue of delay will arise. The more
general and usual case is that inter-agent communication is imperative.

For simplicity assume temporarily that the system G consists of two compo-
nents G1 and G2, and let the monolithic supervisor SUP (in (1)) be given. By
localization we compute local controllers LOC1 with event set ΣLOC1

and LOC2

with event set ΣLOC2
; then the local controlled behaviors are represented by

SUP1 = Sync(G1,LOC1) (3)

SUP2 = Sync(G2,LOC2). (4)

Let LOCSUP = Sync(SUP1,SUP2). By the localization theory of [5, 6] we
know that L(LOCSUP) = L(SUP) and Lm(LOCSUP) = Lm(SUP), namely,
the synchronized behavior of SUP1 and SUP2 agrees with that of the monolithic
control SUP (in (1)).

In the general localization theory (instantaneous) inter-agent communication
is both possible and necessary, so the alphabet ΣLOC1

of LOC1 (resp. ΣLOC2
of

LOC2) will include elements (communication events) from Σ2 (resp. Σ1) as well as
events from its ‘private’ alphabet Σ1 (resp. Σ2). Let Σcom,1 (resp. Σcom,2) repre-
sent the set of communication events from Σ2 (resp. Σ1), i.e Σcom,1 = ΣLOC1

−Σ1

Distributed Supervisory Control of DES with Communication Delay 7

(resp. Σcom,2 = ΣLOC2
−Σ2); then the set of communication events in LOCSUP

(i.e. SUP) is

Σcom = Σcom,1 ∪Σcom,2. (5)

We say that a communication event in Σcom,1 is imported from G2 by LOC1

(resp. Σcom,2, G1 and LOC2).

Remark 1 For every state x of each controller LOCi (i ∈ N), and each communi-
cation event σ in LOCi but imported from some other component Gj (j ̸= i), if σ
is not defined at x, we add a σ-selfloop, i.e. transition (x, σ, x) to LOCi. Now, σ is
defined at every state of LOCi. With this modification, the new local controllers
LOCi are also control equivalent to SUP (because LOCi does not disable events
σ from other components Gj and σ will be disabled by LOCj if and only if it is
disabled by SUP) and the definition of σ at every state of LOCi is consistent with
the assumption that LOCi may receive σ after indefinite communication delay.

Next we model the way selected communication events are imported with in-
definite time delay; we call such events channeled events. Let Σch represent the
set of channeled events; then Σch ⊆ Σcom (Σcom is defined in (5)). For example
assume that communication event r in Σ2 is transmitted to LOC1 from G2 via a
channel modeled as the (2-state) DES CH(2, r, 1) in Fig. 13; then r is a channeled
event. In the transition structure of LOC1, hence also of SUP1, we replace every
instance of event r with a new event r′, the ‘output’ of CH(2, r, 1) corresponding
to input r (we call r′ the signal event of r); call these modified models LOC′

1,
SUP′

1. Thus if and when r happens to occur (in G2) CH(2, r, 1) is driven by syn-
chronization from its initial state 0 into state 1; on the eventual (and spontaneous)
execution of event r′ in SUP′

1, which resets CH(2, r, 1) to state 0, the execution
of r′ will be forced by synchronization in LOC′

1. In the standard untimed model
of DES employed here, the ‘time delay’ between an occurrence of r and r′ is un-
specified and can be considered unbounded; indeed, nothing in our model so far
implies that r′ will cause an actual state change (as opposed to selfloop) because,
subsequent to the occurrence of r in G2, SUP′

1 might conceivably move to states
(by events other than r′) where r′ is a selfloop and its occurrence will not cause
a state change in SUP′

1. As a convention, the control status of r′ (controllable
or uncontrollable) is taken to be that of r. Suppose in particular that r in Σ2 is
controllable. Since LOC1 has ‘control authority’ only over controllable events in
its private alphabet Σ1, LOC′

1 never attempts to disable r′ directly; r′ can only
be disabled implicitly by the ‘upstream’ disablement by LOC2 of r.

In general LOC′
1 ‘knows’ that r has occurred in G2 only when it executes

r′; meanwhile, other events may have occurred in G2. The only constraint placed
on events in G2 is that r cannot occur again until r′ has finally reset CH(2, r, 1)
and the communication cycle is ready to repeat. In other words, event r will be
delayed in re-occurring until the channel used to transmit event r again becomes

3 Communications among local supervisors can be modeled in different ways, e.g. [11,12,32].
In our model channel capacity (for each separate channeled event) is exactly 1 (event), imposing
the constraint that a given labeled event cannot be retransmitted unless its previous instance
has been received and acknowledged by the intended recipient (see footnote 4); this constraint
may not be appropriate in all applications. We adopt this model because its structure is rea-
sonable, simple, and renders the distributed control problem (with unbounded communication
delay) tractable.

8 R. Zhang et al.

r

'r

0 1

Fig. 1 Communication channel CH(2, r, 1), from agent G2 to local controller LOC1 with
channeled event r (in the transition diagram of a DES, the circle with → represents the
initial state and a double circle represents a marker state). One may think of the delay of r′

as being the sum of the delay of (forward) event transmission plus the delay of (backward)
acknowledgement, i.e. two delays lumped into one. Note that when event r is communicated to
multiple local controllers, we employ separate channels with distinct signal events, as illustrated
in Fig. 8 below.

available. If event r is controllable, it can be disabled or delayed by the local
controller LOC2;

4 but if event r is uncontrollable, the constraint placed on G2

will require that r′ should reset CH(2, r, 1) before r is enabled to occur again,
possibly in violation of the intended meaning of ‘uncontrollable’. This issue will be
discussed in Sect. 3.3. The channel CH(2, r, 1) is not considered a control device,
but rather an intrinsic component of the physical system being modeled; it will be
‘hard-wired’ into the model by synchronous product with G1 and G2.

Remark 2 We note that our model of communication channel (Fig. 1) is similar to
the mechanism of “synchronous elastic circuits” or “latency insensitive systems”
(e.g. [28]). A synchronous elastic circuit is one whose behavior does not change
despite latencies (i.e. delays) of communication channels. One method of building
synchronous elastic circuits is “synchronous elastic flow” [28], where the idea of
“back pressure” is used in a similar way to the “signal events” we use in our model
of communication delay.

Continuing with this special case we consider the joint behavior of G1, G2 and
CH(2, r, 1) under control of LOC′

1 and LOC2, namely

SUP′ : = Sync(G1,LOC′
1,CH(2, r, 1),G2,LOC2)

= Sync(SUP′
1,CH(2, r, 1),SUP2) (6)

defined over the alphabet Σ1 ∪ {r′} ∪ Σ2. We refer to SUP′ as the channeled
behavior of SUP (in (1)) with r being the channeled event (i.e. Σch = {r}).

3.1 Delay-robustness and Delay-criticality

In this subsection we formalize the definition and present an effective computa-
tional test for delay-robustness.

Of principal interest is whether or not the communication delay between suc-
cessive occurrences of r and r′ is tolerable in the intuitive sense indicated above.

4 Our model implicitly assumes that the sender (i.e. LOC2) may observe which of the two
states CH(2, r, 1) is at. If CH(2, r, 1) is at state 1 (the channel is not available), LOC2 disables
r; otherwise r is enabled. In a more fine-grained model we may set r′ = r′21r

′
12 where r′21 signals

to LOC′
1 the occurrence of r in G2, while r′12 represents an acknowledgement to LOC2 that

r′21 has occurred in SUP′
1. We prove in [33] that these two channel models are equivalent as

far as the unbounded delay-robust property is concerned.

Distributed Supervisory Control of DES with Communication Delay 9

Let Σsig be the set of new events introduced by the communication channels,
in which each element is the signal event of an event in Σch, i.e.

Σsig = {σ′|σ ∈ Σch, σ
′ is the signal event of σ}. (7)

In SUP′ (in (6)), Σch = {r} and Σsig = {r′}. Then the event set of SUP′ will
be Σ′ = Σ ∪Σsig = Σ ∪ {r′}. Let P : Σ′∗ → Σ∗ be the natural projection of Σ′∗

onto Σ∗ [21], i.e. P maps r′ to ϵ (empty string).

To define whether or not SUP′ with alphabet Σ′ has the same behavior as
SUP, when viewed through P , we require that

1. anything SUP can do is the P -projection of something SUP′ can do (SUP′

is ‘complete’); and

2. no P -projection of anything SUP′ can do is disallowed by SUP (SUP′ is
‘correct’).

For completeness we need at least the inclusions

PL(SUP′) ⊇ L(SUP) (8)

PLm(SUP′) ⊇ Lm(SUP) (9)

In addition, however, we need the following observer property of P with respect
to SUP′ and SUP. Suppose SUP′ executes string s ∈ L(SUP′), which will be
viewed as Ps ∈ L(SUP). As SUP is nonblocking, there exists w ∈ Σ∗ such that
(Ps)w ∈ Lm(SUP). For any such w ‘chosen’ by SUP, completeness should require
the ability of SUP′ to provide a string v ∈ Σ′∗ with the property Pv = w and
sv ∈ Lm(SUP′). Succinctly (cf. [21, 30])

(∀s ∈ Σ′∗)(∀w ∈ Σ∗) s ∈ L(SUP′) & (Ps)w ∈ Lm(SUP)

⇒(∃v ∈ Σ′∗) Pv = w & sv ∈ Lm(SUP′). (10)

Remark 3 In ([21], Chapt. 6), P is defined to be an Lm(SUP′)-observer if

(∀s ∈ Σ′∗)(∀w ∈ Σ∗) s ∈ L(SUP′) & (Ps)w ∈ PLm(SUP′)

⇒(∃v ∈ Σ′∗) Pv = w & sv ∈ Lm(SUP′).

It is clear that when PLm(SUP′) = Lm(SUP), the observer property of P with
respect to SUP′ and SUP is identical with the Lm(SUP′)-observer property of
P .

Briefly, we define SUP′ to be complete relative to SUP if (8), (9) and (10)
hold.

Dually, but more simply, we say that SUP′ is correct relative to SUP if

PL(SUP′) ⊆ L(SUP) (11)

PLm(SUP′) ⊆ Lm(SUP) (12)

To summarize, we make the following definition.

10 R. Zhang et al.

10

20 12

12 20

20

10 12 11 20

20
0 1

0

2

3

4

5 7

6

98

1

1
SUP

2
SUP

20 20 20

20

20

20

Fig. 2 Example 1: SUP1 and SUP2

Definition 1 For given SUP′ in (6) and Σch = {r}, SUP (in (1)) is delay-robust
relative to Σch provided SUP′ is complete and correct relative to SUP, namely,
conditions (8)-(12) hold, or explicitly

PL(SUP′) = L(SUP) (13)

PLm(SUP′) = Lm(SUP) (14)

P has the observer property (10) with respect to SUP′ and SUP. (10bis)

We stress that in Definition 1 (and its generalizations later) the natural pro-
jection P is fixed by the choice of channeled events and structure of the com-
munication model. If the definition happens to fail (for instance if the observer
property fails), the only cure in the present framework is to alter the set of chan-
neled events, in the worst case reducing it to the empty set, that is, declaring that
all communication events must be transmitted without delay.

The following example shows why the observer property is really needed; for if
(13) and (14) hold, but (10) fails, SUP′ may have behavior which is distinguishable
from that of SUP.

Example 1 Let SUP1 and SUP2 be the generators shown in Fig. 2; assume event
20 in SUP2 is exported to SUP1, i.e., r = 20 and r′ = 120; SUP′

1 is obtained
by replacing 20 in SUP1 by 120, and SUP′ is obtained by (6). By inspection of
Fig. 3, (13) and (14) are verified to hold. However, we can see that (10) fails. Let
s = 20.10.120.12 ∈ L(SUP′); then Ps = 20.10.12. Now (Ps).11 = 20.10.12.11 ∈
Lm(SUP); but there does not exist a string v such that Pv = 11 and sv ∈
Lm(SUP′). Thus, SUP can execute 11 after Ps, but SUP′ can only execute ϵ
after s. This means that SUP′ has behavior distinguishable from that of SUP.

Since SUP is a nonblocking supervisor, delay-robustness of SUP also requires
that SUP′ be nonblocking, i.e.

Lm(SUP′) = L(SUP′), (15)

as can easily be derived from (10),(13) and (14). The following example shows
that when delay-robustness fails, transmission delay of r can lead to blocking in
SUP′.

Distributed Supervisory Control of DES with Communication Delay 11

10

12 20

20 12

20

10 12 11

0

2

3

4

5 7

6

8

1

SUP

10

12

20

20
12

20
10

10 12 11

0

3

5 8

6

1110

1

'SUP 7

9

120

120

120

12
4

2

Fig. 3 Example 1: SUP and SUP′

11

0 1

2

20

13

11

0 1

3

21

13

2

20

11

1SUP

2SUP

20

20

13

13

11

11,13

Fig. 4 Example 2: SUP1 and SUP2

Example 2 Let SUP1 and SUP2 be the generators shown in Fig. 4, and assume
event 20 in SUP2 is exported to SUP1, i.e., r = 20 and r′ = 120; SUP′

1 is
obtained by replacing 20 in SUP1 by 120. Then SUP is nonblocking, but SUP′

obtained by (6) is blocking, as shown in Fig. 5. Note that delay-robustness fails be-
cause (13) fails. Indeed, string 21.20.11 ∈ L(SUP′) but P (21.20.11) = 21.20.11 /∈
L(SUP). To see why SUP′ is blocking, start from the initial state, and suppose
events 21 and 20 have occurred in SUP2 but that SUP′

1 has not executed the
corresponding event 120. Then SUP′

1 may execute event 11, which is immediately
observed by SUP2; however, if 11 occurs, SUP′

1 and SUP2 cannot accomplish
their task synchronously; hence the system blocks.

Given SUP, Σch, Σsig and SUP′, we wish to verify whether or not SUP is
delay-robust relative to Σch. For this we need the concept of “supremal quasi-
congruence” [21,29] and the operator Supqc [21, Sect. 6.7] which projects a given

12 R. Zhang et al.

11

0 1

3

21

13

2

20

11

SUP

11

0 1

4

21

13

2

20

11

'SUP

3

120

11

5

6

120

Fig. 5 Example 2: SUP and SUP′

DES over the alphabet Σ′ to QCDES, the corresponding quotient DES over
Σ∗ = P (Σ′∗). We denote the counterpart computing procedure by

QCDES = Supqc(DES, Null[])

where Null[] is the event subset Σ′ − Σ that P maps to the empty string ϵ; for
details see [21]5. Let QCDES = (Z,Σ, ζ, z0, Zm). In general QCDES will be
nondeterministic with transition function ζ : Z×Σ∗ → Pwr(Z) and include silent
(ϵ−) transitions. If no silent or nondeterministic transitions happen to appear in
QCDES, the latter is said to be ‘structurally deterministic’. Formally, QCDES
is structurally deterministic if, for all z ∈ Z and s ∈ Σ∗, we have

ζ(z, s) ̸= ∅ ⇒ |ζ(z, s)| = 1.

It is known that structural determinism of QCDES is equivalent to the con-
dition that P is an Lm(DES)-observer (cf. [29], and [21], Theorem 6.7.1).

Given minimal-state deterministic generators A and B over the same alphabet,
we write A ⊆ B iff Lm(A) ⊆ Lm(B) and L(A) ⊆ L(B); and A ≈ B to mean both
(A ⊆ B) and (B ⊆ A), i.e. A and B are isomorphic. Clearly, “≈” is transitive.

Now let SUP = (X,Σ, ξ, x0,Xm) (in (1)), SUP′ = (Y,Σ′, η, y0, Ym) (in (6)),

PSUP′ = Project(SUP′, Null[r′]) (16)

QCSUP′ = Supqc(SUP′, Null[r′]). (17)

Write QCSUP′ = (Y ,Σ, η, y0, Y m).
The following theorem provides an effective test for whether or not the com-

munication delay is tolerable, i.e., SUP is delay-robust.

Theorem 1 SUP is delay-robust relative to Σch (= {r}) if and only if QCSUP′

is structurally deterministic, and isomorphic to SUP.

5 This procedure can also be phrased in terms of ‘bisimulation equivalence’ [34], as explained
in [29]. We remark that the algorithm for Supqc(DES, ·) in [21], Sect. 6.7, can be estimated to
have time complexity O(kn4) where (k, n) is the (alphabet, state) size of DES. We note that
[35] reports an algorithm with quadratic time complexity for verifying the observer property
alone.

Distributed Supervisory Control of DES with Communication Delay 13

As indicated above, QCSUP′ can be computed by Supqc and isomorphism
of DES can be verified by Isomorph.6 Hence, Theorem 1 provides an effective
computational criterion for delay-robustness. Before Theorem 1 is proved, a spe-
cial relation between QCSUP′ and PSUP′ must be established; a proof is in
Appendix A.

Proposition 1 If QCSUP′ is structurally deterministic, then it is a canonical
(minimal-state) generator for PLm(SUP′).

Proof of Theorem 1. (If) From Proposition 1, QCSUP′ is a minimal state gen-
erator of PLm(SUP′). So, QCSUP′ ≈ PSUP′. As QCSUP′ is isomorphic to
SUP, QCSUP′ ≈ SUP. Hence, SUP ≈ PSUP′, i.e. (13) and (14) both hold.
For (10), since QCSUP′ is structurally deterministic [21, Theorem 6.7.1], P is
an Lm(SUP′)-observer; by Remark 3 and (14), P has the observer property with
respect to SUP′ and SUP. Thus by Definition 1, SUP is delay-robust relative to
Σch.

(Only if) By Remark 3, conditions (10) and (14) imply that P is an Lm(SUP′)-
observer; thus QCSUP′ is deterministic [21]. By Proposition 1, QCSUP′ ≈
PSUP′. Equations (13) and (14) say that PSUP′ ≈ SUP. Hence QCSUP′ ≈
SUP. Finally, we conclude that QCSUP′ is isomorphic to SUP.

We have now obtained an effective tool to determine whether or not SUP is
delay-robust relative to Σch = {r}. If SUP is not delay-robust relative to r, we
say that r is delay-critical for SUP. In that case, communication of r (with delay,
as r′) could result in violation of a specification. If r is delay-critical, and if such
violation is inadmissible, then r must be transmitted instantaneously to the agent
(in this case, LOC1) that imports it – where “instantaneous” must be quantified
on the application-determined time scale.

3.2 Delay-robustness for Multiple Events

In this subsection, we consider delay-robustness for multiple events. First, we adopt
the result of Theorem 1 as the basis of a new (though equivalent) definition and
extend delay-robustness naturally to multiple events. Then we prove that delay-
robustness for a set R2 (of multiple events) implies that delay-robustness holds for
any subset of R2.

Definition 2 Let R2 ⊆ Σ2 be a subset of events r imported from G2 by LOC1

via their corresponding channels CH(2, r, 1) (i.e. Σch = R2), and let SUP1 be
modified to SUP′

1 by replacing each r by its transmitted version r′ as before. Let

SUP′ := Sync(SUP′
1, {CH(2, r, 1)|r ∈ R2},SUP2).

Then SUP is delay-robust relative to the event subset R2 provided Supqc(SUP′,
Null[{r′|r ∈ R2}]) is isomorphic to SUP.

6 For language equality Isomorph should be applied to minimal (Nerode) state DES; see
e.g. [21] Sect. 3.7.

14 R. Zhang et al.

20,21,22,23

20,23

21,22

21,22,23 20,23 20,21,23 20,21,22,23

20,22,23

20,21,23 20,21,22 20,21,22,23

20,22,23 20,21,22,23 20,21,22,23

15

20

22

21 15

21 22 23

20

21 22

22 21

23

0 1

3

2

6

5

4 8

7

9

10 13

12

11

path (3)

path (2)

path (1)

1SUP

15 20 21 2223

0 1 2 3 4 5 6

15 15 15 15 15

15

2SUP

Fig. 6 Example 3: SUP1 and SUP2

Note that the property of SUP described in Definition 2 is stricter than in
Definition 1: that SUP is delay-robust with respect to each event r ∈ R2 taken
separately does not imply that SUP is delay-robust with respect to R2 as a subset;
however, that SUP is delay-robust with respect to R2 does imply that SUP is
delay-robust with respect to each separate event r ∈ R2. The former statement
will be confirmed by Example 3 and the latter by Theorem 2.

Example 3 In this example SUP is delay-robust with respect to events 21 and 23
separately, but is not delay-robust with respect to the event set {21, 23}. Let SUP1

and SUP2 be the generators shown in Fig. 6, where events 20,21,22,23 in SUP2

are exported to SUP1 and event 15 in SUP1 is exported to SUP2. Let events 21
and 23 be transmitted by communication channel CH(2, 21, 1) (with signal event
121) and CH(2, 23, 1) (with signal event 123) respectively. Let ASUP′

1 (resp.
BSUP′

1) be obtained by replacing 21 (resp. 23) in SUP1 by 121 (resp. 123) and
XSUP′

1 be obtained by simultaneously replacing 21 and 23 in SUP1 by 121 and
123. Let

SUP = Sync(SUP1,SUP2)

ASUP′ = Sync(ASUP′
1,CH(2, 21, 1),SUP2)

BSUP′ = Sync(BSUP′
1,CH(2, 23, 1),SUP2)

XSUP′ = Sync(XSUP′
1,CH(2, 21, 1),CH(2, 23, 1),SUP2),

as shown in Fig. 7. One can verify that both Supqc(ASUP′, Null[121]) and
Supqc(BSUP′, Null[123]) are isomorphic to SUP, i.e. SUP is delay-robust with
respect to 21 and 23 separately. However, SUP is not delay-robust with respect
to the event set {21, 23}. Take

s = 15.23.20.123.21.22.121.15.

Distributed Supervisory Control of DES with Communication Delay 15

15 20 21 2223

0 1 2 3 4 5SUP

15 20 21

22

23

0 1 2 3 4

6

7

5

22

121

121

'ASUP

15
123

21 22

23

0 1

6 12

7 10 13

3 5 8 11

123 123

20

20

21

21 22

22 123
'BSUP

15

123

21

22

23
0 1

3 5 13

21

121

20

20

123

22

21 22
19 23

15

18

16

22

21

22

6
121

123
123

123
123121

121 15

22

123

123

121 22

121

'XSUP

2

4

7

11

10

9

8

12

14

15

17

20

2

4 9

Fig. 7 Example 3: SUP, ASUP′, BSUP′ and XSUP′

As in Fig. 7, s ∈ L(XSUP′), but by projecting out 121 and 123,

Ps = 15.23.20.21.22.15 /∈ L(SUP),

which implies that PL(XSUP′) * L(SUP) (where P is the natural projection
which projects 121 and 123 to the empty string ϵ).

Intuitively, one sees from Fig. 6 that SUP1 at its state 1 has three paths to
choose from: paths (1) and (2) are ‘safe’, but path (3) is ‘dangerous’ (because
event 15 will occur, which violates SUP’s behavior). Which path SUP1 chooses
depends on the events imported from SUP2. If event 21 alone is delayed, SUP1

can choose only path (1); if event 23 alone is delayed, SUP1 can choose either
path (1) or (2); thus delaying 21 and 23 individually leads only to ‘safe’ paths. If,
however, events 21 and 23 are both delayed, SUP1 can choose any of the three
paths including the ‘dangerous’ path (3).

Before addressing delay-robustness for event subsets, we extend our definition
to the general case with n agents Gj (j ∈ N = {1, 2, ..., n}), each with local
controller LOCj which imports channeled events Σch(i, j) ⊆ Σi from Gi (i ∈

16 R. Zhang et al.

'
j
r

r

0 1

'
k
r

r

0 1

(, ,)i r jCH (, ,)i r kCH

Fig. 8 CH(i, r, j) and CH(i, r, k), with distinct signal events r′j and r′k

Ij ⊂ N). For this configuration we employ binary channels as before, one for
each r ∈ Σch(i, j). Thus an event r ∈ Σi that is channeled to both LOCj and
LOCk will employ separate channelsCH(i, r, j) andCH(i, r, k). Here the channels
CH(i, r, j) and CH(i, r, k) are distinct (see Fig. 8): we use different signal events
r′j and r′k corresponding to r in CH(i, r, j) and CH(i, r, k), respectively; in this
way, the channeled event r may be received by LOCj and LOCk in either order
and with unspecified delays. Of course r might also be communicated (but with
zero delay) from Gi to other local controllers LOCl with l ̸= j, k.

For this architecture, Definition 2 is generalized in the obvious way. For each
j ∈ N we compute SUP′

j by relabeling each event r that appears in SUPi, such
that r ∈ Σch(i, j) (i ∈ Ij), by its channeled output r′. Since Σch(i, j) ⊆ Σi and
the Σi are pairwise disjoint, this relabeling is unambiguous. Then we compute

SUP′ = Sync(SUP′
j ,CH(i, r, j) | r ∈ Σch(i, j), i ∈ Ij , j ∈ N) (18)

Note that if for some j, Ij = ∅, i.e. LOCj imports no channeled events from other
agents Gi, i ̸= j, then SUP′

j = SUPj .
With SUP = Sync(SUPj | j ∈ N), we have the following definition.

Definition 3 SUP is delay-robust for distributed control of n agents by localiza-
tion provided the projected channeled behavior

Supqc(SUP′, Null{r′|r ∈ Σch(i, j), i ∈ Ij , j ∈ N}) (19)

is deterministic, and isomorphic with SUP.

The justification of this definition is merely a repetition of the argument for
two agents based on the conditions (13), (14) and (10bis). Once the obvious gener-
alization of SUP′ has been framed, as above, the basic conditions just referenced
are fully defined as well, and require no formal change. The final result in terms
of Supqc is derived exactly as before.

We note that to verify delay-robustness in Definition 3 we need to compute
SUP′ as in (18). The computation may be expensive when there is a large number
of communication channels. Nevertheless SUP′ is implemented in a purely dis-
tributed fashion: distributed supervisors and communication channels. We shall
investigate the computational issue of SUP′ in our future work, one promising
approach being to use State Tree Structures [36]. We also note in passing that
all the above results can be extended to decentralized controllers; for details see
Appendix B.

In the foregoing notation now suppose that SUP is known to be delay-robust
for a set of binary channels CH(i, r, j) with i ∈ Ij , j ∈ N , and r in some sub-
set Σch(i, j) ⊆ Σi. We shall prove that SUP remains delay-robust when any one

Distributed Supervisory Control of DES with Communication Delay 17

of these channels is replaced by the ideal channel with zero transmission delay.
As a corollary, delay-robustness is preserved if the given set Σch(i, j) of chan-
neled events from Gi to LOCj is replaced by any subset. Focussing attention on
SUP1 = Sync(G1,LOC1), consider its environment E = {SUP2, . . . ,SUPn}
with SUPE := Sync{SUPi | i = 2, . . . , n}. We assume that E is augmented to a
channeled version E′ (say) having internal channelsCH(i, rij , j) (i, j = 2, ..., n, i ̸=
j, rij ∈ Σch(i, j)), together with outgoing external channelsCH(j, rj1, 1) to LOC1

and incoming external channels CH(1, r1i, i) from G1. Denote the totality of
E’s internal channels, along with those from G1, by CHE . Write SUPE′ :=
Sync(SUP′

2, ...,SUP′
n,CHE) where SUP′

j is SUPj with any event r ∈ Σch(i, j)
replaced by r′ (i = 1, ..., n; j = 2, ..., n; i ̸= j) as prescribed before. For the alphabet
of SUPE′ we have

ΣE′ = ∪{Σi | i = 2, ..., n} ∪ {r′ | r ∈ Σch(i, j); i = 1, ..., n, j = 2, ..., n, i ̸= j}.

Similarly let SUP′
1 denote SUP1 with channeled events rj1 ∈ Σch(j, 1) (j =

2, ..., n) replaced by r′j1, and let Σ′
1 denote the corresponding alphabet. By as-

sumption the alphabets Σi (i = 1, ..., n) are pairwise disjoint, hence the Σch(j, 1)
(j = 2, ..., n) together with Σ1 are pairwise disjoint. Write

Σch(E, 1) = ∪{Σch(j, 1) | j = 2, ..., n}.

For clarity assume Σch(E, 1) = {α, β}; the extension to more than two events
will be evident. Thus α, β are the channeled events imported to LOC1 from its
environment SUPE (actually SUPE′), and appear in SUP′

1 as α′, β′. We can
therefore write SUP′ in (19) in more detail as

SUP′ = Sync(SUP′
1,CH(E,α, 1),CH(E, β, 1),SUPE′).

Notice that α, β belong to ΣE := Σ2∪ · · ·∪Σn but not Σ1, whereas α
′, β′ appear

in SUP′
1 and the two channels but not in SUPE′ .

Now denote by SUP′′ the structure SUP′ but with the channel CH(E,α, 1)
replaced by one with zero delay (and so eliminated from the channel formalism).
Thus

SUP′′ = Sync(SUP′′
1 ,CH(E, β, 1),SUPE′)

where SUP′′
1 is SUP1 with β replaced by β′ (but α left unchanged). We shall

prove the following result.

Theorem 2 If SUP is delay-robust with respect to the channel structure of SUP′,
then it remains so with respect to that of SUP′′.

The assertion is almost obvious from the intuition that the statement for SUP′′

should be derivable by “taking the limit” at which CH(E,α, 1) operates with zero
delay, namely by replacing the communication event α, when unchanneled, with
the zero-delay channeled version α.α′, and finally projecting out α′. A proof is
given in Appendix C.

18 R. Zhang et al.

20 11

0 1 2 3

20

1
SUP

2
SUP

2020

20

0 1 2

20

Fig. 9 Example 4: SUP1 and SUP2

3.3 Blocking of Uncontrollable Events

The foregoing discussion of delay robustness covers channeled events in general,
regardless of their control status, and is adequate if all channeled events happen to
be controllable. In the case of uncontrollable channeled events, however, we must
additionally examine whether channel delay violates the conventional modeling
assumption that uncontrollable events may occur spontaneously at states where
they are enabled and should not be subject to external disablement.

In our simplified model the transmission of r from G2 to LOC1 is completed
(by event r′) with indefinite (unbounded) delay. A constraint imposed on SUP′ by
the channel CH(2, r, 1) is that r cannot occur again until r′ has reset CH(2, r, 1)
and the communication cycle is ready to repeat. If r is controllable its re-occurrence
can be disabled and hence delayed until after the occurrence of r′ corresponding
to the previous occurrence of r. If, however, r is uncontrollable, then once it is
re-enabled (by entrance of SUP2 to a state where r is defined) its re-occurrence
cannot be externally delayed, according to the usual modeling assumption on un-
controllable events. In this sense the introduction of CH(2, r, 1) could conceivably
conflict with the intention of the original DES model. To address this issue we
examine whether or not communication delay of an uncontrollable event might
violate a modeling assumption.

Example 4 For illustration, let SUP1 and SUP2 be the generators shown in Fig. 9.
Assume event 20 in SUP2 is exported to SUP1, i.e., r = 20 and r′ = 120;
SUP′

1 is obtained by replacing 20 in SUP1 by 120. As shown in Fig. 10, SUP′ =
Sync(SUP′

1,CH(2, 20, 1),SUP2) is easily verified to be delay-robust with
respect to event 20. Define NSUP = Sync(SUP′

1,SUP2). Let s = 20; then s.20 ∈
L(NSUP), but s.20 /∈ L(SUP′). Since SUP′ = Sync(NSUP,CH(2, 20, 1)),
event 20 is blocked by CH(2, 20, 1).

This example shows a case where the reoccurrence of an uncontrollable event
is ‘blocked’ by its channel, which demonstrates that communication delay of an
uncontrollable event really violates the modeling assumption that uncontrollable
events cannot be disabled by any external agent. Now let

NSUP = Sync(SUP′
1,SUP2); (20)

then according to (6)

SUP′ = Sync(NSUP,CH(2, r, 1)). (21)

Distributed Supervisory Control of DES with Communication Delay 19

'SUP

NSUP

20 11

0 1 2 5

120

3 4

12020

20

20

20

11

0

2

1

5

4

3 6

8

11

9

7

10

120

120

120

20

120

120

20

120

20 11

11

20

20

120

120

120

120

120 120

Fig. 10 Example 4: SUP′ and NSUP

As before, write Σ′ = Σ ∪ {r′} for the alphabet of SUP′, let P : Σ′∗ → Σ∗

be the natural projection of Σ′∗ to Σ∗, and define the new natural projection
Pr : Σ′∗ → {r, r′}∗. Now, for given NSUP and SUP′ as in (20) and (21), and
r ∈ Σu, if there exists s ∈ L(SUP′) such that sr ∈ L(NSUP), but sr /∈ L(SUP′),
then we say that r is blocked by CH(2, r, 1).

To check whether or not r is blocked byCH(2, r, 1), we check if P−1
r L(CH(2, r, 1))

is NSUP-controllable with respect to event r, i.e.

P−1
r L(CH(2, r, 1))r ∩ L(NSUP) ⊆ P−1

r L(CH(2, r, 1)).

For this, we employ the standard algorithm that checks controllability [21]; the
algorithm has complexity O(mn) where m and n represent the state numbers of
CH(2, r, 1) and NSUP, respectively.7

To summarize, for an uncontrollable event r, if SUP is delay-robust (by Theo-
rem 1) and r is never blocked by CH(2, r, 1) (by the controllability checking algo-
rithm), then SUP is said to be ‘unbounded’ delay-robust with respect to r. Oth-
erwise, there exists s ∈ L(SUP′) such that sr ∈ L(NSUP), but sr /∈ L(SUP′).
Thus r is blocked by the channel, which could violate the modeling assumption
that an uncontrollable event should never be prohibited or delayed by an exter-
nal agent. However, if the occurrence of r′ is executed by LOC1 before the next
occurrence of r, the controllers may still achieve global optimal nonblocking su-
pervision. In this case, we say that SUP is ‘bounded’ delay-robust with respect
to r.8

We illustrate the foregoing results by an example adapted from [21].

7 For the case described in Section 3.2 of transmitting multiple events by separate chan-
nels, we use the same method to check if each event r is blocked. Specifically, we check if
P−1
r L(CH(i, r, j)) is NSUP-controllable with respect to r, where NSUP denotes the behav-

ior of the system excluding CH(i, r, j).
8 One way to determine a delay bound in terms of number of event occurrences is to find

the shortest path between two consecutive occurrences of event r in SUP. A more detailed
study of this issue is left for future research.

20 R. Zhang et al.

FEEDER INBUF ROBOT

LBUF

SBBUF

LATHE

1211
13

15

14 18

16 17

19 20

Fig. 11 WORKCELL

Table 1 Physical interpretation of events

Event label Physical interpretation
11 FEEDER imports new part from infinite source
12 FEEDER loads new part in INBUF
13 ROBOT takes part from INBUF for loading into LBUF
14 ROBOT loads part from INBUF into LBUF
15 ROBOT takes part from INBUF for loading into SBBUF
16 ROBOT loads part from INBUF into SBBUF
17 ROBOT takes part from SBBUF for loading into LBUF
18 ROBOT loads part from SBBUF into LBUF
19 LATHE loads part from LBUF and starts working
20 LATHE exports finished part and returns to idle

4 Example - WORKCELL

4.1 Model Description and Controller Design

WORKCELL consists of ROBOT, LATHE and FEEDER, with three buffers,
INBUF, LBUF and SBBUF, connected as in Fig. 11. Labeled arrows denote
synchronization on shared transitions (events) in the corresponding component
DES.

WORKCELL operates as follows: FEEDER acquires a new part from an
infinite source (event 11) then stores it (event 12) in a 2-slot buffer INBUF.
ROBOT takes a new part from INBUF (event 13) and stores it (event 14) in a
1-slot buffer LBUF; if LBUF is already full, ROBOT may instead take a new
part from INBUF (event 15) and store it (event 16) in a 1-slot ‘stand-by’ buffer
SBBUF. If LBUF is empty and there’s already a part in SBBUF, ROBOT
first unloads the part in SBBUF (event 17) and loads it in LBUF (event 18).
If LATHE is idle and there exists a part in LBUF, LATHE takes that part
and starts working on it (event 19), and when finished exports it and returns to
idle (event 20). Event labels accord with [31]: odd-(resp. even-) numbered events
are controllable (resp. uncontrollable). The physical interpretations of events are
displayed in Table 1.

The specifications to be enforced are: 1) SPEC1 says that a buffer must not
overflow or underflow; 2) SPEC2 says that ROBOT can load SBBUF (event
sequence 15.16) only when LBUF is already full; 3) SPEC3 says that ROBOT
can load LBUF directly from INBUF (event sequence 13.14) only when SBBUF
is empty; otherwise it must load from SBBUF (event sequence 17.18). The DES
models of plant components and specifications are shown in Figs. 12 and 13.

Distributed Supervisory Control of DES with Communication Delay 21

11

0 1

19

20

0 1

15

0 1

12

2

3

16

18

17

13 14

FEEDER LATHE

ROBOT

Fig. 12 Plant models to be controlled

10 2

13,1513,15

12 12

10

17

16

10

19

14,18

10

19

14,18

10

17

16

16 14

INBUF

SBBUF LBUF

2SPEC 3SPEC

Fig. 13 Model of Specifications

We first compute the monolithic supervisor by a standard method (e.g. [21,
31]). The behavior of WORKCELL is the synchronous product of FEEDER,
ROBOT, and LATHE. As SPEC1 is automatically incorporated in the buffer
models, the total specification SPEC is the synchronous product of INBUF,
LBUF, SBBUF, SPEC2, and SPEC3. The monolithic supervisor is SUPER =
Supcon(WORKCELL,SPEC) with (state, transition) count (70, 153).

Next by use of procedure Localize [21, 31], we compute the localization of
SUPER (in the sense of [5, 6]) to each of the three WORKCELL agents, to
obtain local controllers FEEDERLOC, ROBOTLOC and LATHELOC, as
shown in Fig. 14. The local controlled behaviors are

FEEDERSUP = Sync(FEEDER,FEEDERLOC),

ROBOTSUP = Sync(ROBOT,ROBOTLOC),

LATHESUP = Sync(LATHE,LATHELOC).

22 R. Zhang et al.

1

0

2

13,15

13,15

12

FEEDERLOC

3 4

12

14,18

17,19

16

12

19

11

11

11

11,14,16,17,18,19

14,16,17,18,1912

7

6

3

10 2

4 5

9 11

8 10

14,18 14,18 14,18

15 15

19 19 19

12 12

12 12

12 12

13 13

12 12

191919

17 17 1716 16 16

ROBOTLOC

LATHELOC

1

0

713
16

5

12

14,18

14,18

19

6

3 2

4

17

13,17

12

15

19

19

12

11

14,18 19

16

14,18 19

12
11

11

15

16

17

13,17

11

11

11

11

11

1615

Fig. 14 Local Controller for each component. According to Remark 1, for every state x
of each controller, and each communication event σ imported from some other componen-
t, if σ is not defined at x, we add a σ-selfloop. Let ∗(x) be the set of selfloops to be
adjoined at state x. In FEEDERLOC, ∗(0) = {13, 15, 17, 19}, ∗(3) = {13, 14, 15, 16, 18},
∗(4) = {13, 14, 15, 16, 17, 18}; in ROBOTLOC, ∗(0) = {19}, ∗(1) = {19}, ∗(2) = {12, 19},
∗(5) = {12}, ∗(7) = {19},∗(9) = {19},∗(10) = {12}, ∗(11) = {19}; in LATHELOC, ∗(0) =
{13, 15}, ∗(1) = {12, 15}, ∗(2) = {15}, ∗(3) = {12, 15}, ∗(4) = {13, 14, 15, 16, 17, 18},∗(5) =
{12, 13, 14, 16, 17, 18}, ∗(6) = {13, 14, 16, 17, 18},∗(7) = {12, 13, 14, 16, 17, 18}.

From the transition structures shown in Fig. 14, we see that FEEDERLOC
(FEEDERSUP) must import events 13, 14, 15, 16, 17 and 18 from ROBOT,
and 19 from LATHE; ROBOTLOC (ROBOTSUP) must import events 12
from FEEDER, and 19 from LATHE; and LATHELOC (LATHESUP) must
import events 11 and 12 from FEEDER, and 13, 14, 15, 16, 17 and 18 from
ROBOT.

Distributed Supervisory Control of DES with Communication Delay 23

13

113

0 1

15

115

0 1

(,13,)R FCH (,15,)R FCH

15

215

0 1

(,15,)R LCH

Fig. 15 CH(R, 13, F), CH(R, 15, F), and CH(R, 15, L)

4.2 Illustrative Cases

Based on the computed local controllers, we illustrate our new verification tools
with the following cases.

Case 1 – Single Event
In this case, we show that SUPER is delay-robust relative to event 13, but is

not delay-robust relative to event 19.
(1) Taking FEEDERLOC for example, build a channel CH(R, 13, F), as

shown in Fig. 15, using a new event label 113 to represent the corresponding chan-
nel output; use 113 to replace 13 in FEEDERSUP to obtain FEEDERSUP′,
over the alphabet {11,12,113,14,15,16,17,18,19}.

Now compute the channeled behavior SUPER′ according to

SUPER′ = Sync(FEEDERSUP′,CH(R, 13, F),ROBOTSUP,LATHESUP)

over the augmented alphabet {11, ..., 20, 113} and with (state, transition) count
(124, 302). Next, to check delay-robustness we project SUPER′ modulo supremal
quasi-congruence with nulled event 113, to get, say,

QCSUPER′ := Supqc(SUPER′, Null[113])

(deterministic, with size (70, 153))

Finally we verify that QCSUPER′ is isomorphic to SUPER, and conclude
that SUPER is delay-robust with respect to the channeled communication of
event 13 from ROBOT to FEEDERLOC. As a physical interpretation, consid-
er the case where events 11, 12, 11, 12, 13 have occurred sequentially (i.e. there
exist two parts in INBUF and ROBOT has taken a part from INBUF) and
FEEDERSUP′ has not executed the occurrence 113 of event 13. On the one
hand, if FEEDERSUP′ executes event 113 (i.e. it acknowledges the occurrence
of event 13), it will enable event 11 legally (according to SUPER). On the other
hand, if FEEDERSUP′ does not execute event 113, then ROBOT will load
the part into LBUF and take another part from INBUF (execute event 15).
So FEEDERSUP′ can enable event 11 again, which is also legal according to
SUPER. Hence, in this case, the channeled system SUPER′ can run ‘correct-
ly’(no extra behavior violates the specification) and can ‘complete’ the given task
(with the help of SBBUF), i.e. the communication delay of event 13 is tolerable
with respect to SUPER.

(2) By the same method, one can verify that event 19 channeled toROBOTLOC
is delay-critical with respect to SUPER. By tracking the working process, we show
that indefinite communication delay of event 19 may result in violation of SPEC2.
Consider the following case: events 11,12,11,12,13,14,19 have occurred sequential-
ly, i.e. there exists one part in INBUF, ROBOT has loaded a part in LBUF and

24 R. Zhang et al.

LATHE has taken the part from LBUF (i.e. LBUF is now empty). Since the
transmission of event 19 is delayed unboundedly, if ROBOT doesn’t ‘know’ that
LATHE has taken the part from LBUF, it may take a new part from INBUF
(event 15) and load it into SBBUF (event 16) according to ROBOTSUP′, i.e.
the event sequence 11.12.11.12.13.14.19.15.16 occurs in WORKCELL with com-
munication delay, violating SPEC2. Hence event 19 is delay-critical.

Case 2 – Multiple Events (Channels)
(1) We show that SUPER is delay-robust relative to the event set {13, 15},

with 13 and 15 both channeled to FEEDERLOC.
Consider the channel CH(R, 15, F) displayed in Fig. 15, using the signal event

115 to represent the corresponding channel output. Use labels 113, 115 to replace
13, 15 in FEEDERSUP to obtain FEEDERSUP′, over the alphabet {11,12,113,
14, 115,16,17,18,19}.

We compute the channeled behavior SUPER′ according to

SUPER′ = Sync(FEEDERSUP′,CH(R, 13, F),CH(R, 15, F),

ROBOTSUP,LATHESUP),

over the augmented alphabet {11, ..., 20, 113, 115} and with (state, transition)
count (180, 470). Next, to check delay-robustness we project SUPER′ modulo
supremal quasi-congruence with nulled events 113, 115, to get

QCSUPER′ := Supqc(SUPER′, Null[113, 115])

(deterministic, with size (70, 153))

QCSUPER′ turns out to be isomorphic to SUPER, and we conclude that
SUPER is delay-robust with respect to the channeled communication of events 13,
15 from ROBOT to FEEDERLOC. Briefly, the reason is that FEEDERSUP′

will enable event 11 after it executes event 113 or 115, and ROBOT will remain
idle if no more parts are loaded into the system (i.e. event 11 cannot occur again).

(2) We verify that SUPER is delay-robust with respect event 15 provid-
ed it is channeled only to FEEDERLOC; however, it must be communicated
to LATHELOC without delay. To verify this, we have two separate channel-
s, CH(R, 15, F) and CH(R, 15, L), with distinct signal events 115 and 215 (see
Fig. 15). Taking the two channels separately, by Definition 1 and the same method
as above for event 13, we verify that SUPER is delay-robust when 15 is communi-
cated to FEEDERLOC by CH(R, 15, F), but delay-critical to LATHELOC by
CH(R, 15, L). Moreover, by Definition 3 and the procedure in Sect. 3.2, we verify
that SUPER is delay-critical when 15 is communicated to both FEEDERLOC
and LATHELOC.

Case 3 – Blockingness of Uncontrollable Event
This case shows that although the occurrence of (uncontrollable) event 12

(channelled to ROBOTLOC) may be blocked by its channel CH(F, 12, R), as
shown in Fig. 16, this will not violate the specifications. According to Sect 3.3, we
check whether L(CH(F, 12, R)) is controllable with respect to

NSUPER = Sync(FEEDERSUP,ROBOTSUP′,LATHESUP).

Distributed Supervisory Control of DES with Communication Delay 25

12

212

0 1

16

316

0 1

(,12,)F RCH (,16,)R LCH

Fig. 16 CH(F, 12, R) and CH(R, 16, L)

In [31], we use Condat, which tabulates the set of events disabled in CH(F, 12, R)
with respect to NSUPER, to implement the verification of the controllability for
L(CH(F, 12, R)).9

By using Condat, it turns out that event 12 is disabled at state 1 of L(CH(F, 12, R)).
Physically, suppose 11, 12 and 11 have occurred sequentially, i.e., FEEDER
has stored a part in INBUF and taken another part (event 11). After that,
FEEDER may store the part in INBUF (event 12, which is uncontrollable). If
ROBOTSUP does not acknowledge the first occurrence of 12, then CH(F, 12, R)
is at state 1, and thus cannot transmit the next occurrence of 12. So, in the chan-
neled system SUPER′, event 12 is blocked by CH(F, 12, R). If transmission of the
first 12 is completed (i.e. event 212 occurs) before the second occurrence of event
12, then event 12 will not be blocked. In SUPER, only event 11 occurs between
two occurrences of event 12; thus we say that SUPER is ‘1-bound’-delay-robust
with respect to event 12.

Case 4 – All communication events
When all communication events are subject to delay through channels (i.e.

Σch = Σcom), it can be verified that delay-robustness of SUPER in the strong
sense of Definition 3 fails, i.e. SUPER fails to be delay-robust for distributed
control by localization. In fact when all the channeled events except 19 (channeled
to ROBOTLOC) are received without delay, Case 4 is reduced to Case 1; so
SUPER cannot be delay-robust with respect to the set of all communication
events, consistently with Theorem 2 in Sect. 3.

5 Conclusions and Future Work

In this paper we have studied distributed control obtained by supervisor local-
ization on the relaxed assumption (compared to previous literature [5, 6]) that
inter-agent communication of selected ‘communication events’ (channeled events)
may be subject to unknown time delays. For this distributed architecture we have
identified a property of ‘delay-robustness’ which guarantees that the logical prop-
erties of our delay-free distributed control (i.e. the original DES specifications)
continue to be enforced in the presence of delay, albeit with possibly degraded
temporal behavior. We have shown that delay-robustness can be effectively test-
ed with polynomial complexity, and that such tests serve to distinguish between
events that are delay-critical and those that are not. The case that an uncontrol-
lable channeled event may be blocked by its communication channel is identified
by the algorithm for checking controllability. A simple workcell exemplifies the

9 Here the alphabet of CH(F, 12, R) is {12, 212}; before calling Condat, one should add the
selfloop with events in NSUPER but not in {12, 212} at each state of CH(F, 12, R).

26 R. Zhang et al.

approach, showing how delay-robustness may depend on the subset of events sub-
ject to delay, and that a given event may be delay-critical for some choices of the
delayed event subset but not for others.

With the definitions and tests reported here as basic tools, future work should
include the investigation of alternative channel models and, of especial interest,
global interconnection properties of a distributed system of DES which render
delay-robustness more or less likely to be achieved. A quantitative approach in-
volving timed discrete-event systems could also be an attractive extension.

Appendices

A Proof of Proposition 1

Recall that SUP′ = (Y,Σ′, η, y0, Ym). According to natural projection P : Σ′∗ → Σ∗ which
maps (Σ′ −Σ) to ϵ, define η′ : Y ×Σ∗ → Pwr(Y) given by

η′(y, t) = {η(y, s)|s ∈ Σ′∗, η(y, s)! &Ps = t}. (22)

Let ρ be the supremal quasi-congruence on Y with respect to SUP′, and define Pρ : Y → Y/ρ =

Y . As in ([21], Chapt. 6), QCSUP′ = (Y ,Σ, η, y0, Y m) is defined with η : Y ×Σ∗ → Pwr(Y)
given by

η(y, t) :=
∪

{Pρ(η
′(y, t))|Pρ(y) = y}, (23)

y0 = Pρ(y0) and Y m = Pρ(Ym).

Proof. We must prove that QCSUP′ represents PLm(SUP′) and is a canonical generator.
(1) We show that QCSUP′ represents PLm(SUP′), i.e,

Lm(QCSUP′) = PLm(SUP′)

and

L(QCSUP′) = PL(SUP′).

(i) L(QCSUP′) ⊆ PL(SUP′)
Let t ∈ L(QCSUP′). We prove by induction that t ∈ PL(SUP′).
Base step: t = ϵ ∈ PL(SUP′) trivially.
Inductive step: Suppose t ∈ L(QCSUP′), t ∈ PL(SUP′), and tα ∈ L(QCSUP′); we

must prove tα ∈ PL(SUP′).

Since tα ∈ L(QCSUP′), we have η(y0, t)! and η(y0, tα)!. So, (∃y ∈ Y) y = η(y0, t) & η(y, α)!.
We have y0 = Pρy0. Since t ∈ PL(SUP′), (∃s ∈ L(SUP′)) Ps = t, i.e. η(y0, s)!. So,
η(y0, s) ∈ η′(y0, t), i.e., η′(y0, t) ̸= ∅. Thus, y = Pρη′(y0, t) because QCSUP′ is deterministic.
Since η(y, α)! and η′(y0, t) ̸= ∅, there exists y ∈ η′(y0, t) such that η(y, α) = Pρη′(y, α). Hence,
η′(y0, tα)!. However, according to (22)

η′(y0, tα) = {η(y0, s)|s ∈ Σ∗, η(y0, s)!, P s = tα}.

Thus, (∃s ∈ L(SUP′)) Ps = tα, so tα ∈ PL(SUP′).
(ii) PL(SUP′) ⊆ L(QCSUP′)
Let t ∈ PL(SUP′); we show that t ∈ L(QCSUP′).
Base step: t = ϵ ∈ L(QCSUP′) trivially.
Inductive step: Supposing t ∈ PL(SUP′), t ∈ L(QCSUP′), and tα ∈ PL(SUP′), we

show tα ∈ L(QCSUP′)).

Distributed Supervisory Control of DES with Communication Delay 27

Since t ∈ PL(SUP′) and t ∈ L(QCSUP′), η′(y0, t) ̸= ∅, η(y0, t)!; letting y = η(y0, t),
then y = Pρη′(y0, t) because QCSUP′ is deterministic. Since tα ∈ PL(SUP′), there exists
s′ ∈ L(SUP′), i.e. η(y0, s′)! such that Ps′ = tα; thus∪

{η′(y′, α)|y′ ∈ η′(y0, t)}

=
∪

{η′(y′, α)|s ∈ Σ′∗, y′ = η(y0, s), P s = t} (according to (22))

= {η((η(y0, s), v))|v ∈ Σ′∗, η(η(y0, s), v)!, P s = t, Pv = α}
= {η(y0, sv)|sv ∈ Σ′∗, η(y0, sv)!, P (sv) = tα}
̸= ∅ (since η(y0, s

′)! and Ps′ = tα),

i.e. there exists y ∈ η′(y0, t) such that η′(y, α)!. Then, Pρy = y due to y = Pρη′(y0, t). Hence,
η(y, α) = Pρη′(y, α) ̸= ∅, i.e., η(y, α)!. So, tα ∈ L(QCSUP′).

(iii) Lm(QCSUP′) ⊆ PLm(SUP′)

For any t ∈ Σ∗, if t ∈ Lm(QCSUP′), then (∃y ∈ Y) y = η(y0, t) & y ∈ Y m. By (i),
we conclude that t ∈ PL(SUP′). Thus, η′(y0, t) ̸= ∅. Because QCSUP′ is deterministic,

we know that y = Pρη′(y0, t). So, Pρη′(y0, t) ∈ Y m. Further, η′(y0, t) ∩ Ym ̸= ∅, i.e., there
exists s ∈ Σ′∗ such that η(y0, s)! & η(y0, s) ∈ Ym & Ps = t. Hence, s ∈ Lm(SUP′), thus
t = Ps ∈ PLm(SUP′).

(iv) PLm(SUP′) ⊆ Lm(QCSUP′)
For any t ∈ Σ∗, if t ∈ PLm(SUP′), then η′(y0, t)! & η′(y0, t) ∩ Ym ̸= ∅. By (ii), t ∈

L(QCSUP′), i.e., (∃y ∈ Y) η(y0, t)! & y = η(y0, t). Since QCSUP′ is deterministic, y =

Pρη′(y0, t). We conclude that Pρη′(y0, t) ∈ Y m from η′(y0, t) ∩ Ym ̸= ∅. Hence, y ∈ Y m, i.e.,
t ∈ Lm(QCSUP′).

2. We prove that QCSUP′ is a canonical(minimal-state) generator.

Let ν be a congruence on Y defined according to: y ≡ y′ (mod ν) provided

(i) (∀t ∈ Σ∗) η(y, t)! ⇔ η(y′, t)!

(ii)(∀t ∈ Σ∗) η(y, t) ∈ Y m ⇔ η(y′, t) ∈ Y m.
With reference to ([21], Proposition 2.5.1), projection (mod ν) reduces QCSUP′ to a

state-minimal generator.
Define Pν : Y → Y /ν and write ν ◦ ρ = ker(Pν ◦ Pρ). Next we will prove that ν ◦ ρ is a

quasi-congruence on Y ,i.e., for all y, y′ ∈ Y ,

Pν ◦ Pρ(y) = Pν ◦ Pρ(y
′) ⇒ (∀α ∈ Σ)Pν ◦ Pρη(y, α) = Pν ◦ Pρη(y

′, α).

Now

Pν ◦ Pρ(y) = Pν ◦ Pρ(y
′)

⇒ Pν(Pρ(y)) = Pν(Pρ(y
′))

⇒ Pν(η(Pρ(y)), α) = Pν(η(Pρ(y
′)), α)

(cf. (ii) of Proposition 2.5.1 in [21])

⇒ Pν(η(y, α)) = Pν(η(y′, α))

⇒ Pν(Pρ(η
′(y, α))) = Pν(Pρ(η

′(y′, α)))

⇒ Pν ◦ Pρη
′(y, α) = Pν ◦ Pρη

′(y′, α)

Hence, ν ◦ ρ is a quasi-congruence on Y . Obviously, ν ◦ ρ is coarser than ρ. However, ρ
is the supremal quasi-congruence on Y , so for any y, y′ ∈ Y , if Pν(Pρ(y)) = Pν(Pρ(y′)), i.e.,
(y, y′) ∈ ν ◦ ρ, then (y, y′) ∈ ρ, which means that Pρ(y) = Pρ(y′). Hence, ν = ⊥ (namely all
its cells are singletons).

We have shown that QCSUP′ is a canonical generator.

B Delay-Robustness of Decentralized Controllers

Here we show that the verification tool for delay-robustness of distributed controllers can be
used without change to verify the delay-robustness of decentralized supervisors.

28 R. Zhang et al.

Let G be the DES to be controlled, and LOC1 and LOC2 be two decentralized controllers,
which achieve global supervision with zero-delay communication. Let Σi, Σio be the event set
and observable event set of LOCi, respectively (i = 1, 2). Assume event r ∈ Σ1∩ (Σ2o−Σ1o),
which is not observed by LOC1, but is observed by LOC2. Hence, r should be transmitted
to LOC1. We use the channel CH(2, r, 1), as shown in Fig. 1, to transmit r and use r′

to represent that LOC1 receives the occurrence of r. Then, replacing r by r′, we obtain
LOC′

1. Let SUP = Sync(G,LOC1,LOC2), SUP′ = Sync(G,LOC′
1,CH(2, r, 1),LOC2),

and QCSUP′ = Supqc(SUP′, Null[r′]). Finally, by Theorem 1, if SUP ≈ QCSUP′, SUP is
delay-robust with respect to r, or LOC1 and LOC2 achieve global supervision with unbounded
delay communication.

C Proof of Theorem 2

The relevant natural projections are

P ′ :(Σ1 ∪ {α′, β′} ∪ΣE′)∗ → Σ∗

P ′′ :(Σ1 ∪ {β′} ∪ΣE′)∗ → Σ∗.

Thus P ′ (resp. P ′′) nulls {α′, β′} (resp. {β′}) ∪{r′|r′ ∈ ΣE′}.
For the proof we assume that

P ′L(SUP′) = L(SUP) (24a)

P ′Lm(SUP′) = Lm(SUP) (24b)

P ′ has the observer property with respect to SUP′ and SUP. (24c)

It must be shown that the counterpart properties hold for P ′′ and SUP′′, namely

P ′′L(SUP′′) = L(SUP) (25a)

P ′′Lm(SUP′′) = Lm(SUP) (25b)

P ′′ has the observer property with respect to SUP′′ and SUP. (25c)

We need the following lemmas.

Lemma 1 (α′ insertion) Let s′′ = x.α.x.β.x.β′.x ∈ L(SUP′′) where the (generally distinct)
strings written x are free of α, β, β′. Then s′ := x.α.α′.x.β.x.β′.x ∈ L(SUP′).

Proof. Immediate from the definition of the relevant synchronous products. �
Evidently Lemma 1 extends to multiple appearances of α, β, β′ and arbitrary possible

orderings of the α with respect to the β, β′; and holds with L replaced by Lm throughout.

Lemma 2 (α′ deletion) Let t′ = x.α.y.α′.z.β.z.β′.z ∈ Lm(SUP′), where the strings x, y, z
are free of α, α′, β, β′. Then t′′ := x.α.y.z.β.z.β′.z ∈ Lm(SUP′′).

Proof. Recall that the synchronous products defining Lm(SUP′) and Lm(SUP′′) differ
only in that the latter omits the factor CH(E,α, 1), and in SUP′′

1 α appears as in SUP1 (and
not as α′). The string y is of form, say a1.b1.a2.b2, where a1, a2 ∈ (Σ′

1)
∗ and b1, b2 ∈ Σ∗

E′ ,
hence by definition of synchronous product can be re-ordered as a1.a2.b1.b2 without affecting
membership of t′ in Lm(SUP′); next α.y can be re-ordered in t′ as a1.a2.α.b1.b2, and then
α.y.α′ can be re-ordered as a1.a2.α.α′.b1.b2, again preserving membership of t′ in Lm(SUP′).
In this new ordering it is clear that deletion of α′ converts t′ to a string t′′ in Lm(SUP′′).
Reversing the ordering restores our original t′′, proving the claim. �

Proof of Theorem 2. For (25a) suppose s′′ = x.α.x.β.x.β′.x ∈ L(SUP′′). By Lemma 1,
s′ := x.α.α′.x.β.x.β′.x ∈ L(SUP′), so by (24a) P ′(s′) ∈ L(SUP). Evidently P ′′(s′′) = P ′(s′)
as required. For the reverse inclusion, if s = x.α.x.β.x ∈ L(SUP) then applying Lemma 1 to
s with β we get that s′′ = x.α.x.β.β′.x ∈ L(SUP′′) and then s = P ′′(s′′) , as claimed. The
argument for (25b) is similar. For the observer property we have by (24c) that

(∀s′ ∈ L(SUP′))(∀v ∈ Σ∗)P ′(s′).v ∈ Lm(SUP) ⇒
(∃v′ ∈ (Σ′)∗)s′.v′ ∈ Lm(SUP′) & P ′(v′) = v

Distributed Supervisory Control of DES with Communication Delay 29

and must verify the counterpart (25c), namely

(∀s′′ ∈ L(SUP′′))(∀v ∈ Σ∗)P ′′(s′′).v ∈ Lm(SUP) ⇒
(∃v′′ ∈ (Σ′′)∗)s′′.v′′ ∈ Lm(SUP′′) & P ′′(v′′) = v.

For the proof let s′′ ∈ L(SUP′′), v ∈ Σ∗, P ′′(s′′).v ∈ Lm(SUP). By Lemma 1 with α′-
insertion we obtain s′ ∈ L(SUP′) such that P ′(s′) = P ′′(s′′), so P ′(s′).v ∈ Lm(SUP), and
by (24c) there is v′ ∈ (Σ′)∗ with s′.v′ ∈ Lm(SUP′) and P ′(v′) = v. Thus v′ is of the form
v′ = y.α.y.α′.y.β.y.β′.y (possibly with multiple α’s and β’s in various interleavings). Define
v′′ = Q(v′) where Q projects α′ to the empty string ϵ. Then P ′′(v′′) = P ′′Q(v′) = P ′(v′) = v.
Also, by Lemma 2, s′′.v′′ = Q(s′.v′) ∈ QLm(SUP′) ⊆ Lm(SUP′′). Thus v′′ has the properties
required in (25c), which completes the proof. �

Acknowledgements This work was supported in part by the National Nature Science Foun-
dation of China, Grant no. 61403308; the Fundamental Research Funds for the Central Uni-
versities, China, Grant no. 3102014JCQ01069; the Program to Disseminate Tenure Tracking
System, MEXT, Japan; the Natural Sciences and Engineering Research Council, Canada,
Grant no. 7399.

References

1. R. Su and J.G. Thistle. A distributed supervisor synthesis approach based on weak bisim-
ulation. In Proc. 8th International Workshop on Discrete-Event Systems (WODES’06),
pages 64–69, Ann Arbor, MI, July 2006.

2. A. Mannani and P. Gohari. Decentralized supervisory control of discrete-event systems
over communication networks. IEEE Trans. on Automatic Control, 53(2):547–559, March
2008.

3. P. Darondeau. Distributed implementation of Ramadge-Wonham supervisory control with
Petri nets. In Proc. 44th IEEE Conference on Decision and Control and 2005 European
Control Conference. CDC-ECC’05, pages 2107–2112, Seville, Spain, December 2005.

4. K. T. Seow, M. T. Pham, C. Ma, and M. Yokoo. Coordination planning: applying control
synthesis methods for a class of distributed agents. IEEE Trans. on Control Systems
Technology, 17(2):405–415, March 2009.

5. K. Cai and W. M. Wonham. Supervisor localization: a top-down approach to distributed
control of discrete-event systems. IEEE Trans. on Automatic Control, 55(3):605–618,
March 2010.

6. K. Cai and W.M. Wonham. Supervisor localization for large discrete-event systems: case
study production cell. International J. of Advanced Manufacturing Technology, 50(9-
12):1189–1202, October 2010.

7. G. Kalyon, T. Le Gall, H. Marchand, and T. Massart. Synthesis of communicating con-
trollers for distributed systems. In 2011 50th IEEE Conference on Decision and Control
and European Control Conference (CDC-ECC), Orlando, FL, USA, December 2011.

8. F. Lin. Control of networked discrete event systems: dealing with communication delays
and losses. SIAM J. Control and Optimization, 52(2):1276–1298, 2014.

9. P. Darondeau and L. Ricker. Distributed control of discrete-event systems: A first step.
Transactions on Petri Nets and Other Models of Concurrency, 6:24–45, 2012.

10. M. Yeddes, H. Alla, and R. David. On the supervisory synthesis for distributed control of
discrete event dynamic systems with communication delays. In Proc. 1999 IEEE Inter-
national Symposium on Intelligent Control/Intelligent Systems and Semiotics, pages 1–6,
Cambridge, MA, September 1999.

11. G. Barrett and S. Lafortune. Decentralized supervisory control with communicating con-
trollers. IEEE Trans. on Automatic Control, 45(9):1620–1638, September 2000.

12. S. Tripakis. Decentralized control of discrete-event systems with bounded or unbounded
delay communication. IEEE Trans. on Automatic Control, 49(9):1489–1501, September
2004.

13. K. Schmidt, E.G. Schmidt, and J. Zaddach. A shared-medium communication architecture
for distributed discrete event systems. In Proc. Mediterranean Conf. on Control and
Automation, pages 1–6, Athens, Greece, 2007.

30 R. Zhang et al.

14. K. Schmidt and E.G. Schmidt. Communication of distributed discrete-event supervisors on
a switched network. In Proc. 9th Int. Workshop on Discrete Event Systems (WODES’08),
pages 419–424, Goteborg, Sweden, 2008.

15. S. Xu and R. Kumar. Asynchronous implementation of synchronous discrete event control.
In Proc. 9th Int. Workshop on Discrete Event Systems (WODES’08), pages 181–186, 2008.

16. K. Hiraishi. On solvability of a decentralized supervisory control problem with communi-
cation. IEEE Trans. on Automatic Control, 54(3):468–480, March 2009.

17. L. Ricker and B. Caillaud. Mind the gap: expanding communication options in decentral-
ized discrete-event control. Automatica, 47(11), 2011.

18. R. Zhang, K. Cai, Y. Gan, Z. Wang, and W. M. Wonham. Checking delay-robustness
of distributed supervisors of discrete-event systems. In Proc. Int. Conf. on Information
Science and Control Engineering, pages 350–355, Shenzhen, China, 2012.

19. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control and Optimization, 25(1):206–230, January 1987.

20. W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of a given
language. SIAM J. Control and Optimization, 25(3):637–659, May 1987.

21. W.M. Wonham. Supervisory Control of Discrete-Event Systems. Systems Control Group,
ECE Dept, Univ. Toronto, Toronto, ON, Canada, July 2014. Available at http://www.
control.utoronto.ca/DES.

22. L. Feng, K. Cai, and W. M. Wonham. A structural approach to the nonblocking su-
pervisory control of discrete-event systems. International J. of Advanced Manufacturing
Technology, 41(11):1152–1167, 2009.

23. K. Wong and W. M. Wonham. Modular control and coordination of discrete-event systems.
Discrete Event Dynamic Systems, 8(3):247–297, October 1998.

24. R. Hill and D. Tilbury. Modular supervisory control of discrete-event systems with ab-
straction and incremental hierarchical construction. In Proc. 8th International Workshop
on Discrete-Event Systems (WODES’06), pages 399–406, Ann Arbor, MI, July 2006.

25. R. Su, Jan H. van Schuppen, and Jacobus E. Rooda. Aggregative synthesis of distribut-
ed supervisors based on automaton abstraction. IEEE Trans. on Automatic Control,
55(7):1627–1640, July 2010.

26. J.Y. Udding. A formal model for defining and classifying delay-insensitive circuits and
systems. Distributed Computing, 1:197–204, 1986.

27. H. Zhang. Delay Insensitive Networks. Master of math. thesis, Computer Science Dept.,
University of Waterloo, Waterloo, ON, Canada, 1997.

28. M. Kishinevsky and J. Cortadella. Synchronous elastic systems. Tutorial presented at
the ASYNC08/NOCS08 in Newcsstle, UK., 2008. Available at http://async.org.uk/
async2008/async-nocs-slides/Tutorial-Monday/Mike_tutorial.pdf.

29. K.C. Wong and W.M. Wonham. On the computation of observers in discrete-event sys-
tems. Discrete Event Dynamic Systems, 14(1):55–107, January 2004.

30. L. Feng and W.M. Wonham. On the computation of natural observers in discrete-event
systems. Discrete Event Dynamic Systems, 20(1):63–102, March 2010.

31. W.M. Wonham. Design Software: XPTCT. Systems Control Group, ECE Dept, Univ.
Toronto, Toronto, ON, Canada, July 2014. Available at http://www.control.utoronto.
ca/DES.

32. S.-J. Park and K.-H. Cho. Decentralized supervisory control of discrete event system-
s with communication delays based on conjunctive and permissive decision structures.
Automatica, 43(4):738–743, April 2007.

33. R. Zhang, K. Cai, Y. Gan, and W.M. Wonham. Distributed supervisory control of discrete-
event systems with communication delay. Available at http://arxiv.org/abs/1207.5072.

34. R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs, NJ, 1989.
35. H.J. Bravo, A.E.C. da Cunha, P.N. Pena, R. Malik, and J.E.R. Cury. Generalised verifica-

tion of observer property in discrete event systems. In Proc. 11th International Workshop
on Discrete Event Systems(WODES’12), pages 337–342, Guadalajara, Mexico, October
2012.

36. C. Ma and W. M. Wonham. Nonblocking Supervisory Control of State Tree Structures.
Springer-Verlag, 2005.

