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ABSTRACT

The effective practice of supply chain management (SCM)
is crucial to improve corporations� competitive advantage.
Many corporations have built simulation models to
facilitate the application of simulation in designing,
evaluating, and optimizing their supply chain.
Traditionally, a supply chain involves only a single
enterprise with multiple facilities and distribution centers.
Hence, sharing of detailed simulation models is not a
problem in this scenario. But in recent years, the scope of
SCM has evolved to cross the enterprise boundaries.
Applying simulation in designing, evaluating, and
optimizing the supply chain becomes more difficult since
the participating corporations might not be willing to share
their simulation models with partners. In this paper,
distributed simulation techniques are presented as an
enabling technology that allows corporations to construct a
cross enterprise simulation while hiding model details
within the enterprise. This can be realized by either
building the simulation on top of the Runtime
Infrastructure of the High Level Architecture or building
the simulation on top of a customized distributed discrete
event simulation protocol. These alternative approaches are
compared in terms of their performance and
interoperability. The comparison of the performance is
done through a benchmarking test of a semiconductor
supply chain model.

1 INTRODUCTION

Supply chain management (SCM) involves managing the
flow of material and information through multiple stages of
manufacturing, transportation and distribution with the
objective of maintaining low inventories without
compromising customer service level. The effective
practice of SCM is critical to participating companies
especially in today�s business trend whereby companies are
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geographically distributed throughout the globe.
Traditionally, SCM involves only a single enterprise with
multiple facilities and distribution centers. But in recent
years, the scope of SCM has evolved to cross the enterprise
boundaries, as vertical integration is no longer the
emphasis of large corporations (Archibald, Karabakal and
Karlsson 1999).

Commercial simulation tools for supply chain
planning have been released in recent years, for example
the Supply chain Analyzer by IBM (Archibald, Karabakal
and Karlsson 1999) and the integrated tools of simulation
and optimization by i2 (Padmos et al. 1999). This
illustrates the importance and applicability of simulation to
supply chain planning. The main area of application of
supply chain simulation has been on performing what-if
analysis, by varying various aspects of the chain. To draw
accurate conclusions, it has been shown that a detailed
model of the whole chain needs to be built (Jain et al.
1999). Building a detailed model of the supply chain does
not pose a problem when the chain involves only a single
enterprise. In contrast, not many participating companies
are willing to share detailed model information when the
chain crosses the enterprise boundaries. This obstructs the
use of simulation in supply chain planning.

In this paper, we discuss distributed simulation
techniques as the enabling technology to eliminate this
obstacle. Distributed simulation technology allows each
participating corporation to run their own simulation model
at their own site. Detailed model (application codes and
data) information is encapsulated within the corporation
itself and the participating corporations only need to define
essential information flows from one model to another. To
realize the model encapsulation, two approaches are
discussed here. One is based on the High Level
Architecture (HLA) Run Time Infrastructure (RTI) (Kuhl,
Weatherly and Dahmann 1999) while another is based on
an extended asynchronous simulation protocol (Gan and
Turner 2000) that is implemented using the Message
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Passing Interface (MPI) (Gropp, Lusk and Skjellum 1994).
MPI is a library of functions and macros that facilitates the
development of parallel programs running on shared and
distributed multiprocessor systems. The latter approach is
referred to as MPI-ASP hereafter.

This paper is organized as follows: Section 2 discusses
how distributed simulation technology can serve as an
enabler to achieve model encapsulation. HLA and MPI-
ASP are then compared together with a detailed coverage
of how the simulation can be built on top of these two
technologies. A supply chain model based on the
semiconductor industry is then presented in Section 3.
Section 4 presents the benchmarking test of the HLA RTI
and MPI-ASP. Finally, conclusions are drawn in Section 5.

2 DISTRIBUTED SUPPLY CHAIN SIMULATION

2.1 Distributed Simulation for Model Encapsulation

Traditionally, the main objective of parallel (and
distributed) discrete event simulation (PDES) technology
has been to improve the execution time of complex and
time-consuming simulations. Another important aspect of
this technology, which does not gain as much attention, is
its ability to hide the modeling details of the simulation,
which is referred to as model encapsulation here. Using
this technology, the overall simulation system is broken
down into component models that are able to run
independently. Each model executes without knowing the
details of what others are doing. The only interaction
among the component models are the messages that they
send to each other. These messages have a predefined
format according to the information that independent
models are going to share. Synchronization is achieved
through the use of a parallel discrete event simulation
protocol. We refer to this as a PDES protocol as it may be
used on both parallel and distributed computer systems.

In a supply chain simulation, each company can be
seen as an independent model, as described in the previous
paragraph. The modeling details of each company (model)
are then encapsulated within the company itself. In order to
simulate the supply chain, participating companies need to
define the data that are going to be shared. Shared data is
then exchanged as messages during the simulation run.
Messages can be transmitted through a network connecting
the participating companies. As discussed earlier, the
simulation time synchronization of these independent
models can be achieved by the application of a PDES
protocol. From this discussion, one would see that PDES
offers the advantage of encapsulating the detailed model
information while still allowing a cross enterprise
boundaries supply chain simulation.

In this paper, we discuss two alternative approaches to
realizing this objective. One is through the application of a
readily available distributed simulation engine, namely the
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Runtime Infrastructure (RTI) of the HLA. The High Level
Architecture (HLA) is a common framework within which
specific simulation system architectures can be defined. It
allows users to describe the objects to be simulated and the
interactions among these objects in a standard way. HLA
also defines an interface specification which is
implemented by the RTI, to provide standard application
interfaces (API). These interfaces are used to facilitate the
integration and execution of separate simulation models.

The alternative approach is to develop a tailor-made
distributed simulation engine, implementing some well-
known PDES protocol. In this paper, we extend our parallel
simulation engine, which was developed originally for shared
memory multiprocessor systems, for distributed simulation. It
is based on an extended asynchronous simulation protocol
(Gan and Turner 2000). The algorithm was modified by
incorporating the MPI library for message passing.

2.2 HLA vs. MPI-ASP

Distributed simulation based on HLA and MPI-ASP is
compared in two ways. One is interoperability while
another is performance. Interoperability covers several
aspects:

a) whether the approach provides any standard ways
of defining the model and shared data,

b) whether the approach provides standard
application interfaces (API) that separate the
applications from the underlying simulation
kernel,

c) whether the approach facilitates �plug-and-
simulate� of models built using different
simulation languages,

d) whether the approach facilitates reuse of models.

HLA has an edge over MPI-ASP in terms of
interoperability. It has a well-defined Object Model
Template (OMT) that facilitates users to describe the
component models to be simulated and the interactions
among component models. More specifically, the data
produced or consumed by a component model is defined
by its Simulation Object Model (SOM). It also provides an
interface specification that defines standard application
interfaces (API) to the RTI simulation kernel, without
restricting the implementation of the kernel. This offers
user the flexibility of building their simulation using
different simulation languages. With this flexibility,
companies that are involved in the supply chain simulation
can develop their model using any simulation language
(the simulation language must have an HLA API) that is
most appropriate for their model. Simulation models
developed can then be integrated seamlessly together
(�plug-and-simulate� capability), provided they are using
the same RTI implementation. In addition to the flexibility
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of different simulation languages, HLA also eases the reuse
of model. See Kuhl, Weatherly and Dahmann (1999) for
more details.

The interoperability advantages offered by HLA are
possible to be realized using MPI-ASP, but not without
major effort. Even though MPI-ASP does provide a clear
logical separation of the simulation kernel and the
application model, it still lacks standard APIs that interface
to the simulation kernel. It also lacks a standard way of
defining shared data among the component models of a
simulation system. Once these interfaces are available,
�plug-and-simulate� and reuse of model using MPI-ASP
will be easier to realize. One point to consider is that even
though MPI-ASP can offer similar capabilities to HLA, it
still loses out to HLA since HLA has been nominated as an
IEEE standard and has been adopted by the Object
Management Group as an industry standard.

Interoperability aside, it is intuitive that a simulation
running on top of the MPI-ASP simulation engine should
be able to achieve a better performance (in terms of overall
execution time) as compared to a simulation that is running
on top of the HLA�s RTI. This claim is verified through
our benchmarking test, using our own supply chain model,
in a later section.

These alternative approaches share one common
advantage of allowing a modular model development
strategy to be applied. Individual companies can develop
their models independently of each other. Models can also
be developed in a modular approach within the company.
This advantage can significantly shorten the model
development time.

2.3 HLA for Distributed Supply
Chain Simulation

In HLA, each individual model is a federate. A collection
of federates that form the whole simulation system is a
federation. To apply this to a supply chain simulation, the
federate is thus the basic simulation model of each
individual company. Each company defines only data that
they are willing to share in the SOM using the OMT of the
HLA. Details of HLA�s object model template can be
found in Lutz (1998). Sensitive information on the model
are hidden within the company.

The simulation time synchronization of federates is
achieved automatically through the time management
services of HLA (Fujimoto 1998). Figure 1 shows the main
simulation loop that is common to all federates in the
federation. The pre-requisite to using the time management
services of HLA is that each federate must define a non-
zero lookahead value (line 1). In HLA, lookahead is
associated with a federate. It is a value which determines
the next earliest time that the federate will send an external
event. Before a federate executes each event, the
simulation time of this event has to be checked against the
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time granted by the RTI earlier. If the simulation time is
not greater than that previously granted, the event is then
simulated. Otherwise, the federate needs to request for time
advancement from the RTI. This is done by passing control
back to the RTI, using the call to tick() (line 10). When the
tick() is called, the RTI also tries to receive all the events
from remote federates. The RTI will grant the requested
time only when it knows that the requesting federate will
not receive any events with timestamp less than the
requested value in the future. One important point in
Figure 1 is that the topEv (event on top of the event list) in
line 3 and 13 could be two different events. While a
federate is waiting for the RTI to grant the time request
(line 10), it is possible that the federate has received some
remote events (interactions) with timestamp smaller than
the event currently on top of the event list. These new
events are inserted into the federate�s local event list. More
details on how HLA is adapted to the supply chain
simulation can be found in Turner, Cai and Gan (2000).

1  init federate�s lookahead
2  while (not end of simulation)
3   topEv = eventList.top()
4    ; whereby eventList is an ordered list
5    ; sorted by events� simulation time
6   evTS = topEv.get_timeStamp()
7   if (evTS > grantedTime)
8    timeAdvanceRequest(evTS)
9    while (request not granted by RTI)
10     tick()
11   end while
12  end if
13  topEv = eventList.pop()
14  simulate topEv
15  foreach generated event, eg
16   if eg is a local event
17    eventList.insert(eg)
18   else
19    send eg as interaction
20   end if
21  end for
22 end while

Figure 1: Main Simulation Loop for Simulator based on
HLA

2.4 MPI-ASP for Distributed Supply
Chain Simulation

As discussed earlier, distributed supply chain simulation
can also be realized by customizing a PDES protocol for
this purpose. In PDES, each simulation model is mapped to
a logical process (LP). A collection of logical processes
can then form the whole simulation system. To apply this
to the supply chain simulation scenario, each LP thus
represents the model of a company. Similar to the HLA
approach, these models can then be implemented
independently. Participating companies only need to define
data that are going to be shared and the message format
with which this data will be transmitted to one another.
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The PDES protocol that is used to realize distributed
supply chain simulation in this work is an extended
asynchronous simulation protocol (Gan and Turner 2000),
MPI-ASP. It incorporates the idea of null messages
(Chandy and Misra 1979) to ensure that the simulation is
deadlock free. Null messages carry time guarantee
information which represents the next possible earliest
simulation time that an external event will be sent from an
LP to its immediate downstream LP. It is computed by
adding the lookahead between the LPs to the current
simulation time of the source LP. Figure 2 shows the
general outline of the distributed simulation protocol.
Safetime in Figure 2 is an upper limit to which an LP can
advance its simulation time.

1  while (not end of simulation)
2   Recv external events and null messages
3   safeTime = min(timeGuaranteedk,i)
4     where k is list of upstream LPs for LPi
5   while (eventList.top().get_timeStamp()
6            < safeTime)
7    topEv = eventList.pop()
8    simulTime = topEv.get_timeStamp()
9    simulate topEv
10   foreach generated event, eg
11    if eg is a local event
12      eventList.insert(eg)
13    else
14     timeGuaranteedi,d = simulTime
15                        + lookaheadi,d
16        where LPd is destination LP of eg
17     send eg as message with piggybacked
18          timeGuaranteedi,j
19    end if
20   end for
21  end while
22  simulTime = safeTime
23  old_timeGuaranteedi,j = timeGuaranteedi,j
24  timeGuaranteedi,j = simulTime
25                     + lookaheadi,j
26     where j is list of downstream LPs
27           for LPi
28  if timeGuaranteedi,j
29      ≠ old_timeGuaranteedi,j
30   send null messages with
31     timeGuaranteedi,j to LPj
32  end if
33 end while

Figure 2: Main Simulation Loop for Simulator based on
Asynchronous Simulation Protocol

To keep the overhead of null messages low, null
messages are only sent after an LP finishes simulating all
events with timestamp less than the computed safetime
(line 28-32). But this might slow down the simulation time
advance. To overcome this problem, time guarantee
information is piggybacked to each external event (line
17). This helps LPs to keep a more up-to-date view of the
time guaranteed and in turn improve the protocol�s
performance.
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3 THE SUPPLY CHAIN MODEL

Figure 3 shows the supply chain model that is used to
benchmark the distributed simulation based on HLA RTI
and MPI-ASP. Even though the supply chain model
presented here is simple, it is reasonably representative of
the semiconductor industry. In this model, the supply chain
involves only two stages of the whole chain. Multiple
wafer fabrication plants are modeled to supply wafers to a
single assembly and test factory. The wafer fabrication
plants produce wafers based on their own forecasted
demand. The release rate of wafer products is varied each
month based on three parameters. These parameters are the
current inventory level of the wafer product at the
assembly and test factory (as perceived by the wafer
fabrication plants at the time they adjust the release rate),
current work-in-progress of the wafer product, and the
forecasted demand of the wafer product. For details, see
Jain et al. (1999).

Wafer fab (WF) 1

Wafers from WF

Wafers Inventory
from A&T

ICs

Orders
for ICs

Forecast

Manufacturing

Business

Forecast

Manufacturing

Wafer fab (WF) 2

Business

Forecast

Manufacturing

Assembly & Test (A&T)

Business

Figure 3: The Supply Chain Model

In this simplified supply chain model, there is an
information flow (inventory level of each wafer product)
from the assembly and test facility to the wafer fabrication
plant and a shipment flow (shipping of all produced wafer
products) in the reverse direction. Inventory information is
sent on a monthly basis while shipment of products is sent
on a daily basis. Corresponding to the information and
material flows, two types of messages are needed, one for
the inventory information and another for the wafer
shipment. Having identified the message types, the
message format is then defined. The supply chain
simulation can then be integrated through distributed
simulation once each module is implemented.
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Each individual factory being modeled in this study is
based on some real world wafer fabrication factories and
assembly and test plant. The models of the wafer
fabrication factories are obtained from the sample data
model of Sematech (Sematech 1997), which is available
through the Internet (MASMLab 1999), while the model of
the assembly and test plant is obtained through our past
projects with the industry. The matching of wafers to IC
was developed based on volume considerations; that is,
large volume wafer products supply large volume IC
products. Table 1 shows the results of this matching
algorithm for the six sample data models of wafer
fabrication factories to the assembly and test facility.
Multiple wafer fabrications are needed to fulfill the volume
requirement of the assembly and test factory.

Table 1: Matching of Wafer Fabrication Plants
to Assembly and Test Plant

Model 1 2 3 4 5a 6
No of wafer

fabrication plants
3 5 3 15 6 10

4 BENCHMARKING

Figure 4 shows the system architecture of the two
approaches. The architecture was designed in such a way
that the application layer (supply chain simulation) is
independent of the underlying simulation engine. For the
purpose of this study, the underlying simulation engine is
implemented using a version of the HLA RTI and the
distributed simulation protocol, MPI-ASP, discussed
earlier. The RTI is version RTI1.3NG-v2 developed by the
Defense Modeling and Simulation Office of the
Department of Defense, USA. To implement the
asynchronous simulation protocol, a version of MPI,
MPICH version 1.2 available from the Argonne National
Laboratary of University of Chicago, is used to facilitate
message passing among simulation models. The simulator
is implemented using C++, compiled with GNU GCC
compiler version 2.95.1. The simulation is run on a
homogeneous platform, with four Sun UltraSparc II
workstations (three of which are 248 MHz and the
remaining is 167 MHz). The workstations are running Sun
Solaris 2.6 and interconnected by a 100 Mbps Ethernet.

As observed from Table 1, the total number of
factories for our supply chain simulation is larger than the
number of workstations that are available. Thus, we
partition the simulation based on the workload contributed
by each factory. Table 2 shows the final partitioning
information. For the purpose of this benchmark, we allow
multiple factories to share the same workstation. One very
important point to note here is that they can be run as
separate operating system processes. These processes make
simulation progress without knowing the details of what
other processes are doing. Thus, the primary requirement
of model encapsulation is still satisfied.
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Figure 4: System Architecture

Table 2: Partitioning Information
Model 1 2 3 4 5a 6

Workstation
1

1
wfab

2
wfab

1
wfab

5
wfab

2
wfab

4
wfab

Workstation
2

1
wfab

2
wfab

1
wfab

5
wfab

2
wfab

3
wfab

Workstation
3

1
wfab

1
wfab

1
wfab

5
wfab

2
wfab

3
wfab

Workstation
4

1
a&t

1
a&t

1
a&t

1
a&t

1
a&t

1
a&t

Figure 5 compares the execution time achieved by
using the alternative distributed simulation approaches. As
one can see, the execution time achieved by using MPI-
ASP is better than the execution time achieved using the
HLA RTI. This is mainly due to higher overhead of HLA
RTI underlying implementation. The overhead of HLA
RTI is mainly contributed by grant time computation. We
would like to stress here that we have made all necessary
steps to optimize the way our simulation engine makes use
of the RTI. The optimizations are:

a) calling tick() of the RTI without specifying the
minimum and maximum amount of time that a
federate allows its local RTI component to
execute its tasks,

b) requesting for time advancement periodically
instead of for every event to reduce the overhead,

c) running rtiexec (the server process of RTI) at a
separate workstation that does not run any
federates.

More details on the optimization can be found in Turner,
Cai, and Gan (2000).

5 CONCLUSIONS

In this paper, we have illustrated how distributed
simulation can be used to realize model encapsulation.
Model encapsulation is particularly important in a
distributed supply chain simulation that involves
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Execution time comparison
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Figure 5: Execution Time Comparison

companies that cross the enterprise boundaries. By having
this capability, companies will no longer need to worry
about sharing their confidential information when the
supply chain model is built. Detailed simulation of each
enterprise can then be used as a tool to facilitate the
process of supply chain design, evaluation and
optimization.

Distributed simulation built on top of the HLA RTI
and MPI-ASP was also discussed. Two important issues,
namely interoperability and performance, were used to
compare the two approaches. HLA offers an edge over
MPI-ASP in term of interoperability. But from the
benchmarking test, it is obvious that MPI-API outperforms
the HLA RTI. With this split of advantages, the choice of
approach for distributed simulation will then be determined
by the primary concern of the application. If speed of
execution is critical for a supply chain application, MPI-
ASP will definitely be the option. Alternatively, if the
supply chain application involves a number of existing
simulation models (developed using various simulation
languages that support HLA interface), HLA will then be
the winner. Even though runtime performance might be
important in the latter case, the time that is saved from
rebuilding the simulation model for MPI-ASP might offset
the loss in runtime performance.
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