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Distributed support vector machines over

dynamic balanced directed networks

Mohammadreza Doostmohammadian, Member, IEEE , Alireza Aghasi, Member, IEEE , Themistoklis

Charalambous, Senior Member, IEEE , and Usman A. Khan, Senior Member, IEEE

Abstract— In this paper, we consider the binary classi-
fication problem via distributed Support Vector Machines
(SVMs), where the idea is to train a network of agents, with
limited share of data, to cooperatively learn the SVM classi-
fier for the global database. Agents only share processed
information regarding the classifier parameters and the
gradient of the local loss functions instead of their raw data.
In contrast to the existing work, we propose a continuous-
time algorithm that incorporates network topology changes
in discrete jumps. This hybrid nature allows us to remove
chattering that arises because of the discretization of the
underlying CT process. We show that the proposed algo-
rithm converges to the SVM classifier over time-varying
weight balanced directed graphs by using arguments from
the matrix perturbation theory.

Index Terms— Support Vector Machines, distributed op-
timization, matrix perturbation theory.

I. INTRODUCTION

MACHINE-learning has been an area of significant re-

search in recent signal processing and control litera-

ture [1]–[4]. Among the supervised-learning methods, Support

Vector Machines (SVMs) find several applications ranging

from image/video processing to bioinformatics. Motivated by

the recent applications in robotic networks and the Internet of

Things, we are interested in developing distributed solutions

for SVM classification. The basic idea is to process the

raw data at each node to train a local classifier and then

fuse these classifiers among the neighboring nodes. D-SVM

(distributed SVM) finds applications where a subset of the

data is acquired by different nodes/servers/agents possibly

at different geographic locations, privacy is of concern, and

communication to a fusion center is infeasible.

In binary classification, SVM defines the maximum-margin

hyperplane (the classifier) determined by the closest data

samples (Support Vectors). The preliminary work on D-

SVM (referred as Distributed Parallel SVM [5] and Parallel

SVM [6]) is focused on local computation/sharing of the

support vectors [5]–[9]. These local support vectors are up-

dated either via a fusion center [6]–[8], over a Hamiltonian
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multi-agent cycle [5], or via a distributed method based on

alternating direction method of multipliers (ADMM) [9]. A

major drawback is that these approaches require sharing raw

data over the network, raising data privacy and information

security issues. More recently, consensus-based distributed

optimization methods are proposed in [10]–[26], where instead

of raw data, agents share processed information, which in

case of leakage to unauthorized parties reveals little infor-

mation about the original data. Among these, the solution

in [16] requires distributed computation of the Hessian in-

verse, while [17], [18] consider a penalty term on consen-

sus constraint violation with certain optimality gap [27]. In

contrast, Lagrangian and ADMM-based methods proposed

in [22], [23], [25] can achieve null constraint violation by

combining the benefits of dual decomposition and augmented

Lagrangian for constrained optimization. Such methods con-

verge linearly to primal/dual optimal solutions for strongly

convex loss functions [22]. Prediction-correction algorithm is

proposed in [25] based on prediction of optimal conditions in

time and correction on gradient descent or (damped) Newton

method. Particular application in online kernel-based nonlinear

regression learning is considered in [26], using a penalized

stochastic gradient descent with low-dimensional subspace

projection. A sub-gradient push-sum strategy over digraphs is

proposed in [19], and its regret-based extension over dynamic

networks is proposed in [21]. The perturbed push-sum descent

with linear convergence rate over digraphs is given in [24].

Similarly, [23] proposes a linearly convergent solution over

time-varying networks based on small-gain analysis. A double

time-scale algorithm is proposed by [20] with finite number of

communications per gradient-update iteration. Other methods

include finite/fixed-time algorithms [11]–[15] that are prone to

steady-state chattering due to non-Lipschitz dynamics.

In this paper, a D-SVM method is proposed that overcomes

the challenges of semi-centralized (fusion center based) so-

lutions and the chattering phenomena. Moreover, in contrast

to Refs. [10]–[26], where either continuous-time (CT) or

discrete-time (DT) protocols are considered, we propose a hy-

brid algorithm to address the topology switching of the multi-

agent network in DT incorporated in a CT gradient-descent

update [28]. Our hybrid approach enables more flexibility in

considering mixed-dynamics [28], [29], which allows solving

D-SVM via CT protocols over general dynamic digraphs in DT

domain, in contrast to DT dynamics where the sampling times

may be constrained [20]–[26], [30]. To analyze the proposed

hybrid model, we use matrix perturbation theory [31] to char-



acterize the eigen-spectrum of the proposed dynamics, which

enables convergence analysis in the hybrid DT-CT setup. Due

to Lipschitz-continuity of the proposed CT approach, it’s

DT approximation is free of the aforementioned chattering

inherent to the non-Lipschitz dynamics [11]–[15]. Further,

the proposed solution is free of penalty-based approximation

inaccuracies in [17], [18], [27].

We now describe the rest of the paper. Section II recaps

some preliminaries on algebraic graph theory, while Section III

formulates the D-SVM problem. Section IV states our CT

gradient descent method to address D-SVM, whereas the

convergence analysis over dynamic WB-digraphs is available

in Section V. Section VI provides an illustrative example, and

finally, Section VII concludes the paper.

II. PRELIMINARIES ON ALGEBRAIC GRAPH THEORY

We represent the multi-agent network by a strongly-

connected directed graph (SC digraph) G. Assuming a positive

weight wij for every link (from node j to node i) and zero

otherwise, the irreducible weighted adjacency matrix of G is

W = {wij}, and the Laplacian matrix W = {wij} with

wij = wij for i 6= j and wij = −∑n

j=1 wij for i = j.

The SC property of the graph is directly related to the rank of

its Laplacian matrix as given in the next lemma.

Lemma 1: [32] The given Laplacian W for a SC digraph

has eigenvalues whose real-parts are non-positive with one

isolated eigenvalue at zero.

Next, we define a WB-digraph as an SC digraph with equal

weight-sum of incoming and outgoing links at every node i,

i.e.,
∑n

j=1 wji =
∑n

j=1 wij , implying the following lemma.

Lemma 2: [32] For the Laplacian W of a WB-digraph,

the vectors 1⊤
n and 1n are respectively the left and right

eigenvector associated with the zero eigenvalue, i.e., 1⊤
nW =

0n and W1n = 0n, where 1n and 0n are the column vectors

of 1’s and 0’s of size n, respectively.

In the rest of the paper, ‖A‖∞ denotes the infinity norm of

a matrix, i.e., ‖A‖∞ = max1≤i≤n

∑n

j=1 |aij |.

III. PROBLEM STATEMENT

Consider binary classification of N points χi ∈ R
m−1,

i = 1, . . . , N , each belonging to one of two classes labeled

by li ∈ {−1, 1}. Using the entire training set, the SVM

problem is to find a hyperplane ω⊤χ− ν = 0, for χ ∈ R
m−1,

based on the maximum margin linear classification to partition

the data into two classes. Subsequently, a new test data point χ̂

belongs to the class labeled as g(χ̂) = sgn(ω⊤χ̂− ν). In the

linearly non-separable case, the data points are first projected

into a high-dimensional space F via a nonlinear mapping φ(·)
associated with a kernel function K(χi,χj) = φ(χi)

⊤φ(χj).
By proper mapping φ(·), a linear optimal hyperplane can be

found in F such that g(χ̂) = sgn(ω⊤φ(χ̂)− ν) determines

the class of χ̂. The SVM problem is to find the optimal ω

and ν by minimizing the following convex loss [33]:

min
ω,ν

ω⊤ω + C

N∑

j=1

max{1− lj(ω
⊤φ(χj)− ν), 0}p (1)

where p = {1, 2, . . .} defines smoothness and the positive

constant C determines the margin size. We adopt the stan-

dard convention of modifying the hinge loss in SVM, that

is not differentiable, with a twice differentiable cost func-

tion [12]. Therefore, max{z, 0}p for p = 1 in (1) is replaced

by L(z, µ) = 1
µ
log(1 + exp(µz)). It can be shown that the

maximum gap between the two functions inversely scales with

µ, i.e., L(z, µ) − max{z, 0} ≤ 1
µ

, and the two can become

arbitrarily close by selecting µ sufficiently large [34].

In distributed SVM (D-SVM), the data points are distributed

over a network of n agents and each agent i possesses a local

dataset with Ni data points denoted by χi
j , j = 1, . . . , Ni.

Since each agent has access to partial data, the locally found

values ωi and νi, obtained by solving (1) over the local

dataset χi
j , j = 1, . . . , Ni, may differ for each agent i. The

idea behind D-SVM is thus to develop a distributed mechanism

to learn the global classifier parameters by making sure

that no agent reveals its local data to any other agent. The

corresponding distributed optimization problem is given by:

min
ω1,ν1,...,ωn,νn

n∑

i=1

fi(ωi, νi) (2)

subject to ω1 = · · · = ωn, ν1 = · · · = νn, (3)

where each local cost fi : R
m → R is approximated as

(with z = 1− lj(ω
⊤
i φ(χ

i
j)− νi) and large enough µ > 0)

fi(ωi, νi) = ω⊤
i ωi + C

Ni∑

j=1

1
µ
log(1 + exp(µz)). (4)

Let xi = [ω⊤
i ; νi] ∈ R

m and let x = [x1;x2; . . . ;xn] ∈ R
mn

be the global state with the symbol ‘;’ denoting the column

concatenation. Then, Problem (2) takes the following form:

min
x∈Rmn

F (x), F (x) =
n∑

i=1

fi(xi)

subject to x1 = x2 = · · · = xn. (5)

We next provide the following lemma on the cost functions.

Lemma 3: [12] Each local cost fi is twice differentiable

and strictly convex, i.e., the m×m Hessian matrix ∇
2fi(xi)

is positive definite, for all non-zero xi ∈ R
m.

Clearly, any solution x∗
i , i = 1, . . . , n, of (5) must sat-

isfy
∑n

i=1 ∇fi(x
∗
i ) = 0m, such that x∗

1 = . . . = x∗
n = x∗,

for some x∗ ∈ R
m. In other words, the optimality condi-

tion ∇F (x∗) = 0mn must hold for some x∗ ∈ R
mn such

that x∗ = 1n ⊗ x∗, where ∇F : Rmn → R
mn is the gradient

of F : Rmn → R.

IV. PROPOSED ALGORITHM:

DYNAMICS AND AUXILIARY RESULTS

To solve problem (5), we consider the following continuous-

time linear dynamics:

ẋi = −
n∑

j=1

w
q
ij(xi − xj)− αyi, (6)

where xi(t) ∈ R
m represents the state of agent i at time t ≥ 0,

ẋi =
dxi

dt
, Wq = {wq

ij} is the weighted adjacency associated



with Gq (q is the switching index), and α > 0 is the step-

size. We note that instead of the standard descend direc-

tion ∇fi(xi), the xi-update descends towards an auxiliary

variable yi(t) ∈ R
m, which tracks the sum of local gradients,

asymptotically, and is updated via the following dynamics:

ẏi = −
n∑

j=1

a
q
ij(yi − yj) +

d

dt
∇fi(xi), (7)

where ẏi =
dyi

dt
and Aq = {aqij} is the weighted adjacency

matrix with the same zero/non-zero structure as the matrix W .

Let y = [y1;y2; . . . ;yn] ∈ R
mn and note that d

dt
∇fi(xi) =

∇
2fi(xi)ẋi. We emphasize that the proposed algorithm, (6)

and (7), is in continuous-time, however, the structure of the

underlying graph Gq may change in a discrete fashion. This

makes the proposed dynamics hybrid where the states, x

and y, evolve in CT collated with DT switching signal q.

We make the following assumption on Wq and Aq .

Assumption 1: The weights Wq = {wq
ij} and Aq = {aqij}

(w
q
ij , a

q
ij ≥ 0) are associated with strongly-connected WB-

digraphs. Further,
∑n

j=1 w
q
ij < 1 and

∑n

j=1 a
q
ij < 1.

Following Assumption 1, we obtain from (6) and (7):

n∑

i=1

ẏi =
n∑

i=1

d

dt
∇fi(xi), (8)

n∑

i=1

ẋi = −α

n∑

i=1

yi. (9)

Integrating (8) with respect to t and initializing the auxiliary

variable y(0) = 0nm, we have

n∑

i=1

ẋi = −α

n∑

i=1

yi = −α

n∑

i=1

∇fi(xi), (10)

which shows that the time-derivative of the sum of

states xi’s is towards sum gradient. Therefore, the equi-

librium (ẋi = 0m) of the dynamics (6)-(7) is x∗ satisfy-

ing (1⊤
n ⊗ Im)∇F (x∗) = 0m (Im as the identity matrix of

size m), which is the optimal state of problem (5) [10].

Lemma 4: Initializing from any x(0) 6= 1n ⊗ x0, for some

non-zero x0 ∈ R
m, and y(0) = 0nm, the state [x∗;0nm] with

(1⊤
n ⊗ Im)∇F (x∗) = 0m is an invariant equilibrium point of

the dynamics (6)-(7).

Proof: From (10), the following uniquely holds

at x = x∗ = 1n ⊗ x∗,
n∑

i=1

ẋi = −α(1⊤
n ⊗ Im)∇F (x∗) = 0m.

Further, from (6) we have ẋi = 0m and from (7),

ẏi =
d

dt
∇fi(x

∗) = ∇
2fi(x

∗)ẋi = 0m,

which shows that [x∗;0nm] is an invariant equilibrium point

of the dynamics (6)-(7).

Lemma 4 only shows that [x∗;0nm], with x∗ as the optimal

point of (5), is the equilibrium of the networked dynamics (6)-

(7). The first term in Eq. (6) drives the agents to reach

consensus on xi’s, while the second term along with Eq. (7)

implements the gradient correction [35], [36]. The pseudo-

code of the proposed D-SVM is given in Algorithm 1.

Algorithm 1: The proposed D-SVM algorithm.

1 Given: data χj ∈ R
m−1, j = 1, . . . , N , costs fi(xi)

with xi = [ω⊤
i ; νi] ∈ R

m as SVM parameters,

agents i = 1, . . . , n, WB-digraphs Gq , weights

Wq, Aq , switching signal q, running-time Tend

2 Initialization: yi(0) = 0m, xi(0) is set randomly

3 for t < Tend do

4 Every agent i finds ∇fi(xi) ;

5 Every agent i shares xi and yi over Gq ;

6 Every agent i updates xi and yi via Eq. (6)-(7);

7 Return: x∗ as optimal SVM parameters ω∗
i , ν

∗
i ;

V. PROOF OF CONVERGENCE

In this section, we show that dynamics (6)-(7) converge to

the equilibrium state described in Lemma 4. Define the nm-

by-nm Hessian matrix H := blockdiag[∇2fi(xi)]. The dy-

namics (6)-(7) can be written in a compact form as
(

ẋ

ẏ

)
= M(t, α, q)

(
x

y

)
, (11)

M(t, α, q) =

(
W q ⊗ Im −αImn

H(W q ⊗ Im) Aq ⊗ Im − αH

)
. (12)

The networked dynamics (11)-(12) represent a hybrid dynam-

ical system because: (i) the matrix H varies in CT; and (ii)

the structure of Laplacian matrices W q and Aq may change in

DT in case of dynamic network topology, which is motivated

by robotic networks and dynamic resource availability at the

agents. In this direction, W q and Aq follow a switching signal

q (and a jump map) fulfilling all the proper assumptions

for stability1; see also [37] for related work on regularity

conditions on the weight matrices. In this hybrid setup, towards

convergence analysis, (i) we evaluate the stability properties

of the matrix M at every time-instant using the matrix

perturbation theory [31]. Specifically, we show that, under

Assumptions 1, the algebraic multiplicity of zero eigenvalues

of M is m and the rest of eigenvalues have negative real parts.

Recall that our methodology only mandates strict convexity

(Lemma 3) in contrast to strong convexity condition in [20]–

[26]; (ii) then, using a Lyapunov analysis, we show that the

rate of convergence (decrease in Lyapunov function) depends

1The proposed model (11) represents a “differential equation whose right-
hand side is chosen from a family of functions based on a switching
signal” [28]. Define the hybrid state ζ = ((x;y), q, τ) with τ as the timer
state and q : t ∈ R≥0 → Q = {1, 2, . . . , q} as the index of the network

topology Gq (and the Laplacians W q , Aq) over a bounded time-interval. Then,

the flow map is F : (ẋ; ẏ) = M(t, α, q)(x;y),q̇ = 0,τ̇ ∈ [0, 1

τD
] with the

flow (domain) set ζ ∈ C = R2mn ×Q× [0, 1]. Then, the change in the
hybrid state at each jump (known as the jump map) is J : (x;y)+ =
(x;y), q+ ∈ Q, τ+ = 0 over the jump domain set ζ ∈ D = Rn×Q×{1},
implying that the hybrid system jumps to a new mode q ∈ Q whenever ζ ∈ D
with the time-interval length depending on the timer rate τ̇ for each mode
q. For example, for minimum length time-interval τD , the rate is τ̇ = 1

τD
implying that τ = 1 (the jump happens) at the time τD . Clearly, at the jump,
q switches to a new mode, τ starts over, while the state (x;y) is continuous
and unchanged. Such a jump map is categorized as a piece-wise constant
mapping with finite number of discontinuities (jumps) in each time interval
and satisfies the so-called “Basic Assumption” for stability [28].



on the largest non-zero eigenvalue of M ; and, (iii) following

the continuity of the Lyapunov function at the jump points, we

generalize the convergence to the entire (hybrid) time horizon

[28]. In the rest of this paper for notation simplicity, we drop

the dependence of M on (t, α, q) and dependence of Aq,W q

on q, unless where needed, despite the fact that they are a

function of mapping q, time t, and stepsize α.

Lemma 5: [38], [39] Let an n-by-n matrix P (α) de-

pend smoothly on a real parameter α ≥ 0. Assume P (0)
has l < n equal eigenvalues, denoted by λ1 = . . . =
λl, associated with right and left eigenvectors v1, . . . ,vl

and u1, . . . ,ul, which are linearly independent. Let λi(α) de-

note the eigenvalues of P (α), as a function of α, correspond-

ing to λi, i ∈ {1, . . . , l}, and P ′ = dP (α)
dα

|α=0. Then, dλi

dα
|α=0

is the i-th eigenvalue of the following l-by-l matrix,



u⊤
1 P

′v1 . . . u⊤
1 P

′vl

. . .

u⊤
l P

′v1 . . . u⊤
l P

′vl


 .

Theorem 1: Let Assumption 1 hold. For sufficiently

small α, all eigenvalues of M have non-positive real-parts,

∀t, q, and algebraic multiplicity of zero eigenvalue is m.

Proof: Let M = M0 + αM1 with

M0 =

(
W ⊗ Im 0mn×mn

H(W ⊗ Im) A⊗ Im

)
,

M1 =

(
0mn×mn −Imn

0mn×mn −H

)
,

where 0mn×mn is the zero matrix of size mn. Since ma-

trix M0 is block (lower) triangular we have,

σ(M0) = σ(W ⊗ Im) ∪ σ(A⊗ Im), (13)

where σ(·) represents the eigenspectrum of the matrix. From

Lemma 1, both matrices W and A have n− 1 eigenvalues in

the LHP (left-half plane) and one isolated eigenvalue at zero.

Therefore, matrix M0 has m sets of eigenvalues associated

with m dimensions of vector states xi i.e.,

Re{λ2n,j} ≤ . . . ≤ Re{λ3,j} < λ2,j = λ1,j = 0,

where j = {1, . . . ,m}. Using Lemma 5, we analyze the

spectrum of M by considering it as the perturbed version

of M0 via the term αM1. We check the variation of the

zero eigenvalues λ1,j and λ2,j by adding the (small) pertur-

bation αM1. Denote these perturbed eigenvalues by λ1,j(α)
and λ2,j(α). To apply Lemma 5, define the right eigenvectors

corresponding to λ1,j and λ2,j as,

V = [V1 V2] =

(
1n 0n

0n 1n

)
⊗ Im, (14)

Similarly, the left eigenvectors are V ⊤. These eigenvectors are

defined using Lemma 2 and satisfy V ⊤V = I2mn. Recall that,
dM(α)

dα
|α=0 = M1 and following Lemma 5,

V ⊤M1V =

(
0m×m 0m×m

−nIm −(1n ⊗ Im)⊤H(1n ⊗ Im)

)
. (15)

Following the definition of the Hessian matrix H ,

−(1n ⊗ Im)⊤H(1n ⊗ Im) = −
n∑

i=1

∇
2fi(xi) ≺ 0, (16)

where the last inequality follows the strict convexity of the

loss function (see Lemma 3). Recall that from Lemma 5 the

derivatives
dλ1,j

dα
|α=0 and

dλ2,j

dα
|α=0 depend on the eigenvalues

of (15), which clearly form a lower triangular matrix with m

zero eigenvalues and m negative eigenvalues (following (16)).

Therefore,
dλ1,j

dα
|α=0 = 0 and

dλ2,j

dα
|α=0 < 0, which implies

that considering αM1 as a perturbation, the m zero eigen-

values λ2,j(α) of M move toward the LHP while λ1,j(α)’s
remain zero. We recall that the eigenvalues are a continuous

functions of the matrix elements [31], and therefore, for

sufficiently small α we have,

Re{λ2n,j(α)} ≤ . . . ≤ Re{λ3,j(α)}
≤ λ2,j(α) < λ1,j(α) = 0,

(17)

which completes the proof.

Theorem 1, similar to [10]–[15], only requires strict

convexity of the loss function, as compared to strong

convexity in [20]–[26]. Moreover, the matrix perturbation

method allows eigen-spectrum analysis of the time-varying

matrix M , including possible discrete jumps in the hybrid

mode. From Theorem 1, for sufficiently small α, the

matrix M has m zero eigenvalues, while all other eigenvalues

remain in the LHP. In order to determine upper-bound

on α ensuring the results of Theorem 1, some relevant

concepts regarding the eigen-spectrum σ(M0) and σ(M) are

provided next. Define the optimal matching distance [40]

as d(σ(M), σ(M0)) = minπ max1≤i≤2nm(λi − λπ(i)(α)),
where π(i) represents the ith permutation over all

possible permutations {1, . . . , 2nm}. It can be verified

that, d(σ(M), σ(M0)) is the smallest-radius circle

centered at λ1,j , . . . , λ2n,j , which includes all the

eigenvalues of M denoted by λ1,j(α), . . . , λ2n,j(α).
Loosely speaking, d(σ(M), σ(M0)) represents the farthest

distance between the eigenvalues of M and M0. From

Theorem 1, the first 2m eigenvalues of the perturbed

matrix M are λ1,j(α) = 0 and λ2,j(α) < 0. To show that

all the other (2n − 2)m eigenvalues λ3,j(α), . . . , λ2n,j(α)
remain in the LHP, it is sufficient that d(σ(M), σ(M0)) < λ

with λ = min1≤j≤m |Re{λ3,j}|. This guarantees that the

distance between the (2n − 2)m eigenvalues of M0 and M

is less than λ and therefore all the (2n − 2)m eigenvalues

of M remain in the LHP. In this direction, the following

lemma provides a useful bound on d(σ(M), σ(M0)) and

subsequently bound α.

Lemma 6: [40] For M = M0 + αM1, we have ∀t, q,

d(σ(M), σ(M0)) ≤ 4(‖M0‖∞ + ‖M‖∞)1−
1

nm ‖αM1‖
1

nm
∞ .

Lemma 7: Define γ = max1≤i≤nm

∑nm

j=1 |Hij | and

λ = min1≤j≤m |Re{λ3,j}|. Then, the real-part of the

eigenvalues, Re{λ3,j(α)}, . . . ,Re{λ2n,j(α)}, is negative,

if 0 < α < α where for γ < 1,

α = argmin
α>0

|4(max{4+4γ+αγ, 4+2γ+α})1− 1

nmα
1

nm −λ|,
(18)

and for γ ≥ 1,

α = argmin
α>0

|4(4 + 4γ + αγ)1−
1

nm (αγ)
1

nm − λ|. (19)



Proof: From Assumption 1 and Lemmas 2 and 3,

||M0||∞ ≤ 2(1+ γ). This is because, from Assumption 1 and

Lemma 3, the row sum of the absolute values of matrix W

and H(W ⊗ Im) are at most 2 and 2γ, respectively. Thus,

||M ||∞ ≤ max{2 + γ(2 + α), 2 + α},
||αM1||∞ ≤ max{αγ, α}.

Then, for γ < 1,

4(2(1 + γ) + max{2 + γ(2 + α), 2 + α})1− 1

nmα
1

nm < λ,

and for γ ≥ 1,

4(4 + γ(4 + α))1−
1

nm (αγ)
1

nm < λ.

Since the left-hand-side of the above inequalities are mono-

tonically increasing for α > 0, the largest α satisfying the

above inequalities is given by (18)-(19).

Despite the conservative upper-bound in Lemma 7, the eigen-

value condition in Theorem 1 may be valid for possible less-

conservative choice of α > α. For a proper α, matrix M

has m zero eigenvalues associated with the eigenvectors V1

in (14), and the null space of the time-varying matrix M ,

N (M) = span{[1n;0n]⊗ Im}, is independent of time.

Theorem 2: Let the conditions in Lemma 4, Lemma 7, and

Theorem 1 hold. The proposed dynamics (6)-(7) converges

to [x∗;0nm] with x∗ as the optimal solution of problem (5).

Proof: Consider the positive-definite Lyapunov function

V (δ) = 1
2δ

⊤δ = 1
2‖δ‖22 with δ = [x;y]− [x∗;0mn] ∈ R

2mn.

Since, from Lemma 4, [x∗;0nm] is an invariant state of

the dynamics (11)-(12), we have δ̇ = [ẋ; ẏ]− [ẋ∗;0mn] =
M([x;y]− [x∗;0mn]) = Mδ, where M [x∗;0mn] = 02mn.

Then, the time-derivative of the proposed Lyapunov

function is V̇ = δ⊤δ̇ = δ⊤Mδ. Following Theorem 1,

recall that λ1,j(α) = 0, while the remaining eigenvalues

have negative real parts, i.e., Re{λi,j(α)} < 0,

for 2 ≤ i ≤ 2n, 1 ≤ j ≤ m. It is known that [32],

δ⊤Mδ ≤ max
1≤j≤m

Re{λ2,j(α)}δ⊤δ. (20)

Since M varies in time, max1≤j≤m Re{λ2,j(α)} also changes

in time. However, from Theorem 1, it is always nega-

tive, implying that V̇ < 0 for δ 6= 02mn, while V remains

continuous at the jump (switching) points. We thus have

V̇ = 0 ⇔ δ = 02mn and, from LaSalle’s invariance principle,

convergence to the invariant set {δ = 02mn} follows [28].

From (20), the convergence rate of the dynamics (11)-(12)

depends on Re{λ2,j(α)} and the parameter α. Therefore, to

improve the convergence rate, α needs not to be very small.

VI. SIMULATION: NONLINEAR SVM EXAMPLE

We consider the example given in [41] with N = 6000
uniformly distributed sample data points in Fig. 1

(Left), represented in two classes: blue *’s and red o’s.

Clearly, these points χi = [χi(1);χi(2)] are not linearly

separable in R
2. The nonlinear mapping φ(χi) =

[χi(1)
2;χi(2)

2;
√
2χi(1)χi(2)], proposed by [41], properly

maps the data to R
3 such that the projected points are

linearly separable (see Fig. 1 (Right)) with the kernel function

Fig. 1. (Left) Training data and the optimal nonlinear classifier (the
ellipse) in 2D. (Right) The same points mapped into 3D space via a
nonlinear mapping. Linear SVM optimally classifies the data points via
the gray hyperplane which represents the ellipse in the left figure by
inverse mapping.

0 1 2
-5

0

5

10

15

1.95 1.975 2
0.9

1.0

0 1 2
0

5

10 104

Loss function
Optimal value

0 0.025 0.05

0 1 2
0

5

10

15

1.95 1.975 2
4.9

5.0

5.1

0 1 2

-1.5

-1.0

-0.5

0.0

0.5
103

0 0.025 0.05

Fig. 2. The time-evolution of the SVM classifier parameters ωi

and νi (at all 5 agents) under dynamics (11)-(12) along with overall loss
function F (x) and sum of the gradients

∑
5

i=1
∇fi(xi). The optimal

values based on the centralized SVM are also shown for comparison.

K(χi,χj) = (φ(χi)
⊤φ(χj))

2. We evaluate the proposed

dynamics (11)-(12) (with α = 10) for D-SVM over a network

Gq of n = 5 agents considered as the union of a cycle and a

2-hop digraph (as in [2]) with weight-balanced links. Using

the loss function (2)-(4) with µ = 3 and C = 1.5, every agent

finds the optimal hyperplane parameters xi = [ω⊤
i ; νi]

(ωi ∈ R
3) and shares xi along with the auxiliary

variable yi over Gq . Using MATLAB’s randperm, the

node’s permutation is randomly changed every 0.05 sec

to simulate a dynamic network with switching signal

q : t → Q = {1, 2, . . . , N !} and timer rate τ̇ = 1
0.05 = 20.

The time-evolution of xi = [ω⊤
i ; νi] ∈ R

4, loss function F (x),
and sum of the gradients

∑5
i=1 ∇fi(xi) ∈ R

4 are shown

in Fig. 2. The agents reach consensus on the optimal value

x∗ = [ω(1), ω(2), ω(3), ν]⊤, which represents the separating

ellipse ω(1)z21 + ω(2)z22 − ν = 0 (z1 and z2 as the Cartesian

coordinates in R
2). For comparison, similar D-SVM solutions

under finite-time [13] (with βij = 3) and fixed-time [11]

dynamics (with α = 4, β = γ = 1, a = 2, b = 9) are shown

in Fig. 3. Recall that finite/fixed-time dynamics are non-

Lipschitz and result in undesirable chattering of the SVM

parameters in steady-state.

VII. CONCLUSION AND FUTURE RESEARCH

In this work, a Lipschitz dynamics is proposed to solve D-

SVM over a dynamic WB-digraph in a hybrid setting using

matrix perturbation analysis. Our CT results can be easily ex-

tended to the DT case by adopting, for example, approximate

Euler-Forward discretization and replacing matrix M in (12)
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Fig. 3. Time-evolution of ωi and νi under (Left) finite-time [13] and
(Right) fixed-time [11] dynamics chatter around the optimal value in
steady-state due to non-Lipschitz dynamics.

with Md = I + TM , where T is the sampling time. Then,

the explicit upper bound on T such that stable CT dynamics

from Theorems 1-2 remains stable after discretization can

be defined. On the other hand, implicit discretizations, e.g.,

Euler-Backward, impose no upperbound on T , but they are

more time-consuming and harder to implement. As future

directions, extensions to time-delayed networks, online D-

SVM, and sparse digraphs are of interest.
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