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Distributed Synchronization in Networks of Agent
Systems With Nonlinearities and Random Switchings

Yang Tang, Member, IEEE, Huijun Gao, Senior Member, IEEE, Wei Zou, and Jürgen Kurths

Abstract—In this paper, the distributed synchronization prob-
lem of networks of agent systems with controllers and nonlinear-
ities subject to Bernoulli switchings is investigated. Controllers
and adaptive updating laws injected in each vertex of networks
depend on the state information of its neighborhood. Three sets
of Bernoulli stochastic variables are introduced to describe the
occurrence probabilities of distributed adaptive controllers, up-
dating laws and nonlinearities, respectively. By the Lyapunov
functions method, we show that the distributed synchronization
of networks composed of agent systems with multiple randomly
occurring nonlinearities, multiple randomly occurring controllers,
and multiple randomly occurring updating laws can be achieved
in mean square under certain criteria. The conditions derived in
this paper can be solved by semi-definite programming. Moreover,
by mathematical analysis, we find that the coupling strength, the
probabilities of the Bernoulli stochastic variables, and the form of
nonlinearities have great impacts on the convergence speed and
the terminal control strength. The synchronization criteria and
the observed phenomena are demonstrated by several numerical
simulation examples. In addition, the advantage of distributed
adaptive controllers over conventional adaptive controllers
is illustrated.

Index Terms—Bernoulli stochastic variables, complex dynam-
ical networks, distributed synchronization, multi-agent systems,
multiple random nonlinearities, multiple random updating laws.
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I. INTRODUCTION

R ECENTLY, cooperative collective behavior in networks
of autonomous agents has attracted growing attention ow-

ing to an increasing interest in understanding intriguing animal
group behaviors, such as flocking and swarming, and also due
to their emerging broad applications to sensor networks and
unmanned air vehicles formations [1]. To coordinate with the
agents in a networked environment, agents are required to share
information with their adjacent neighbors and thus to achieve
an agreement. As one of the mostly investigated dynamical
behaviors in the field of information consensus and complex
networks, synchronization/consensus of multi-agent systems or
complex networks has drawn significant research interest, and
a great number of results have been reported; e.g. [2]–[15] and
references therein.

Usually, synchronization in networks of coupled systems
can also be referred as the consensus problem of multi-agent
networked systems from the perspective of control theory and
engineering application [16]–[27]. Distributed algorithms have
attracted increasing attention in filtering of sensor networks
[14], and gossip algorithms [28]. In [20], a unified frame-
work is introduced to address the consensus of multi-agent
systems and the synchronization of complex networks. In [29],
a second-order consensus problem for multi-agent systems with
nonlinear dynamics and directed topologies is investigated. In
[30], the relationship between Lipschitz-like assumptions is
compared, and the application of these assumptions is used to
synchronization or consensus of complex networks.

In networked systems, networks of multi-agent systems are
often subject to a random environment [31], [32] and hence,
the stochastic modeling issue has been of vital significance
in many branches of science such as neurotransmitters and
packet dropouts. The corresponding random phenomena can be
considered in random switching ways, which have been paid
considerable research attention in the literature. For instance, in
[33], sufficient conditions for asymptotic almost sure consensus
are presented for the case of positive weights and for the case
of arbitrary weights, where the existence of any edge is proba-
bilistic and independent of the existence of any other edge. In
[34], the global synchronization problem has been investigated
for a complex network with blinking connections which are
randomly switched on and off with a given probability, and
the frequency of switching is high compared to the network
dynamics. In particular, in [32], the concept of randomly oc-
curred nonlinearities (RONs) is proposed to explain nonlinear
disturbances in networked control systems and biological net-
works. The filtering problem of randomly occurred phenomena
in networked systems was investigated [35], [36]. The problem
of stochastic synchronization analysis for complex networks
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composed of coupled discrete-time neural networks with RONs
and time delays was studied. Unfortunately, the RONs con-
sidered in [32] are confined to two cases, and multiple RONs
(MRONs) [35] have not been introduced in investigating the
synchronization of networks of agent systems and the impact
of MRONs on synchronization performance is still open, which
is the first motivation of this paper.

In addition, most of the aforementioned results concerning
synchronization of complex networks or consensus of multi-
agent systems are based on the implicit assumption that the
communications between the node dynamics and controller are
perfect. In many practical applications, however, there may be
a nonzero probability that some measurements or control inputs
will be lost during their transmission. Usually, there exist two
approaches to describe the imperfect communications among
networks or multi-agent systems [31]. The first one is to use the
deterministic switching method to characterize the control fail-
ure in networked systems [37]–[40]. Among them, in [40], an
effective approach was proposed to analyze the delayed neural
networks under arbitrary switching with average dwell time and
presented a less conservative sufficient stability condition. The
approaches in [40] can also be utilized to study the synchroniza-
tion problem for a linearly coupled array of networked systems,
and can improve some existing results. The second one is to
utilize stochastic modeling analysis to describe the intermittent
communications in the networked systems [31], [41], [42]. Note
that utilizing Bernoulli variables is the most common way to
describe packet losses [31], [43], [44], random sensor delays
[45], and unreliable control inputs [46] due to their simplicities
and efficiency. Unfortunately, another important random phe-
nomenon, i.e., randomly occurring updating laws (ROULs) in
adaptive controllers, is widely neglected in the existing litera-
ture. ROULs are similar to randomly occurring control, which
take place in environments suffering from packet dropouts and
data missing, and thus the feedback information of updating
laws are lost in signals transmission of networked systems. To
the best of our knowledge, there has not been any work being
reported in the literature concerning synchronization or consen-
sus problems in the context of networked systems where the
controllers or updating laws are described by sets of Bernoulli
variables, which is the second motivation of this paper.

Control cost and convergence speed of networked dynam-
ics are two important measures to define the performance of
networked systems [19], [28], [31]. In [47], the problem of
finding the edge weights that result in the least mean-square
deviation in a steady state of a stochastic model for distributed
average consensus is investigated. In [48], synchronization of
complex networks is studied, and the bounds of convergence
speed and control cost are provided. However, up to now, the
impacts of sets of Bernoulli variables on synchronization or
consensus of networked systems have not been addressed yet,
and the purpose of this paper is therefore to shorten such a gap,
which is the third motivation of this paper.

In this paper, the distributed synchronization problem is
studied for networks of agent systems with MRONs, multiple
randomly occurring controllers (MROCs), and multiple ran-
domly occurring updating laws (MROULs). The controllers
and the adaptive updating laws injected in each vertex of
networks are dependent on the state information of its nearest

neighborhood. By Lyapunov functions method, the distributed
synchronization of networks of agent systems with MRONs,
MROCs, and MROULs can be achieved in mean square. The
main merits of this paper are the following ones: 1) the concept
of MRONs is used and is taken into account to model networks
of agent systems, hence reflecting the reality more closely;
2) MROCs and MROULs are considered to describe unreliable
stochastic effects in multi-agent systems simultaneously; 3) the
effects of occurrence probabilities of MRONs, MROCs, and
MROULs on control cost and convergence speed are illus-
trated; 4) the algorithm developed is new in terms of semi-
definite programming (SDP), which can be efficiently solved by
Yamlip [49].

The organization of this paper is illustrated as follows.
Section II proposes networks model composed of agent sys-
tems with MRONs, MROCs, and MROULs, and outlines some
preliminaries. In Section III, by using stochastic analysis tech-
niques and graph theory, we present sufficient conditions in
terms of SDP to ensure the synchronization of the addressed
networks of agent systems in the mean square. The upper
bounds of synchronization errors and control gains are also
presented. In Section IV, several numerical examples are pro-
vided to show the applicability of the obtained results. The
conclusions are finally drawn in Section V.

II. PRELIMINARIES

Notations: In this paper, Rn and R
n×m represent, respec-

tively, the n-dimensional Euclidean space and the set of all
real matrices. The superscript “T” stands for matrix transpo-
sition, and the notation X ≥ Z (respectively, X > Z) where
X and Z are symmetric matrices indicates that X − Z is
positive semi-definite (respectively, positive definite). In is the
identity matrix with order n. E{x}, and E{x|z} denote the
expectation of x and the expectation of x conditional on z.
‖ · ‖ denotes the Euclidean vector norm in R

n. The Kronecker
product of matrices X ∈ R

m×n and Z ∈ R
p×q is a matrix in

R
mp×nq and represented as X ⊗ Z. λmin(·) and λmax(·) stand

for the minimum and maximum eigenvalue of a matrix. Let
a graph be G = [V, E ], where V = {1, . . . , N} is the vertex
set and E = {e(i, j)} the edge set. N (i) means the neighbor-
hood of vertex i in the sense N (i) = {j ∈ {V : e(i, j) ∈ E}.
Here, graph G is supposed to be connected, unweighted and
undirected, (e(i, j) ∈ E implies e(j, i)) ∈ E and simple (with-
out self-loops and multiple edges). Let L = [aij ]

N
i,j=1 be the

Laplacian matrix of graph G, which is defined as: for any pair
i �= j, aij = aji = −1 if e(i, j) ∈ E ; otherwise, aij = aji = 0.
aii = −

∑N
j=1,j �=i aij represents the degree of vertex i(i ∈ V).

Here, the network of agent systems is considered

dxi(t) =

⎡
⎣f(xi, t) +D

∑
j∈N (i)

(xj(t)− xi(t))

⎤
⎦ dt, i ∈ V

(1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]
T ∈ R

n(i ∈ V)
is the state vector of the ith vertex and f(xi, t) =
[f1(xi, t), . . . , fn(xi, t)]

T is a continuous vector function,
which occurs according to the occurrence probabilities.
D represents the coupling strength of the network. From
the Gershgorin disk theorem, all the eigenvalues of L
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corresponding to graph G satisfy the following relationship
0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λN (L). In addition, G is
connected if and only if λ2(L) > 0; namely, L is irreducible.
The nonlinearity f(.) takes values in a finite set, i.e.,
f(.) ∈ {g1(.), . . . , gq(.)}. I denotes the set I = {1, . . . , q}.
The nonlinearity gm(.) is assumed to be i. i. d. (independent
and identically distributed), with the probabilities given by

Prob {f(.) = gm(.)} = κm, m ∈ I (2)

where κm is a positive scalar and
∑

m∈I κm = 1. The network
(1) is a basic model to study synchronization of networks of
agent systems for rather general cases particularly when the
synchronized state is a time-varying function and switching
rather than a constant equilibrium [50].

By introducing stochastic variables κm(t) to represent the
occurrence of nonlinearities, where E{κm(t)} = κm, we can
also rewrite the system (1) as follows:

dxi(t) =

⎡
⎣∑
m∈I

κm(t)gm(xi, t)−D
N∑
j=1

aijxj(t)

⎤
⎦ dt, i ∈ V.

(3)

Remark 1: RONs are considered to model a complex net-
work in [32], and its synchronization was studied. According to
[45] and [35], in this paper, a finite set is introduced to describe
the multiple random occurrence of nonlinearities. Utilizing
such an expression is more general than RONs and is able to
describe multiple nonlinearities cases in a stochastic way. Here,
we can regard the dynamics of each node/vertex/agent in net-
works switches from a finite set according to the probabilities
of κm.

Our aim is to develop distributed controllers to achieve syn-
chronization of the network of agent systems (1) or (3) in mean
square. Therefore, distributed controllers ui(t) are injected to
the vertex set

dxi(t) =

[ ∑
m∈I

κm(t)gm(xi, t) +D
∑

j∈N (i)

× (xj(t)− xi(t)) + ηi(t)ui(t)

]
dt, i ∈ V (4)

where ηi(t), i ∈ V , is a Bernoulli stochastic variable that de-
scribes the following random events for the network of agent
systems (4):{

Event 1 : vertex i in (4) experiences ui(t),
Event 2 : vertex i in (4) does not experience ui(t)

(5)

which shows that the controllers might fail to work due to the
existence of packet dropouts.

The distributed controller is represented as follows:

ui(t) =
∑

j∈N (i)

εi(t) (xj(t)− xi(t)) , i ∈ V (6)

where εi(t) is the control gain of vertex i, which is updated
according to updated laws. ηi(t) is defined by

ηi(t) =

{
1, if Event 1 occurs
0, if Event 2 occurs

(7)

where E{ηi(t)} = ηi ∈ [η̌, η̂] ⊆ [0, 1]. The main feature of dis-
tributed controllers/algorithms/protocals is that a vertex can
utilize the information of its neighbors with high efficiency but
does not need the information of entire networks [19].

Remark 2: The practical controllers are influenced by envi-
ronmental circumstances [31], [37]. The controller failure or
inactivation arises from two aspects. The first reason is that the
signals are not transmitted perfectly or the controller itself is not
available, e.g., as in the case of the packet dropout phenomenon,
intermittent communication, and repairs of the actuator [31],
[46]. The other is a positive reason: for an economic or system
life consideration, where the controller is suspended from time
to time [37]. Here, a set of Bernoulli variables are used to
describe the controller failure or controller suspension.

The control gain εi(t) in (6) is adjusted according to the
following MROULs:

dεi(t) = ξi(t)αi

⎡
⎣ ∑
j∈N (i)

(xj(t)− xi(t))

⎤
⎦
T

×

⎡
⎣ ∑
j∈N (i)

(xj(t)− xi(t))

⎤
⎦ dt, i ∈ V (8)

where αi ≥ 0 and ξi(t) is a stochastic variable that is indepen-
dent of ηi(t) and indicates the following random events:

{
Event 3 : (6) experiences (8)
Event 4 : (6) does not experience (8).

(9)

Here, ξi(t) is defined by

ξi(t) =

{
1, if Event 3 occurs,
0, if Event 4 occurs

(10)

where E{ξi(t)} = ξi ∈ [ξ̌, ξ̂] ⊆ [0, 1]. In this paper, three sets
of Bernoulli variables, i.e., κm(t), ηi(t) and ξi(t), are intro-
duced. We assume that all the Bernoulli variables are indepen-
dent of each other. Also, the Bernoulli variables here follow
an unknown, but exponential distribution of switchings and the
probabilities should be known a priori [51].

Two measures are employed to characterize the performance
of synchronization. One is the average of terminal control
strengths, which is formulated as follows:

ε =
1

N

∑
i∈V

εi,∞(i ∈ V) (11)

where εi,∞ = limt→∞ εi(t). The other measure is the conver-
gence rate, which is defined as follows:

γ =

∞∫
0

1

N − 1

∑
i∈V

[xi(t)− x̄(t)]T [xi(t)− x̄(t)] dt (12)

where x̄(t) = (1/N)x(t). As shown in (11) and (12), it can be
found that a good synchronization performance means a high
convergence rate (a small γ) and low control cost (a small ε).
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Remark 3: Note that if ηi = η or ξi = ξ, the occurrence
probabilities of controllers and updating laws are identical in
the nodes of the whole networks. Such a simple assumption,
however, does have its limitations since it cannot cover some
practical cases where multiple control failures or suspensions
occur. Like the idea of multiple missing measurements [52],
in this paper, we consider MROCs and MROULs. Note that
the implementation of controllers are not subject to stochastic
effects. However, the transmission of control signals in net-
worked circumstances suffers from packet dropouts. For the
sake of simplicity, we name this kind of controllers as MROCs.
Therefore, the assumption is relaxed, and in each vertex of
the network, the unreliable implementation probabilities of the
controllers and updating laws are different.

Remark 4: If ηi and ξi are both equal to 1, controllers and
updating rules will be reduced to the usual studied controllers
and updating laws, which indicates that controllers and updat-
ing laws are always available. If ηi = 1 and ξi = 0, controllers
are available, and control strengths do not update. If ηi = 0
and ξi = 1, controllers are not available and control strengths
can update. If ηi = 0 and ξi = 0, the problem is reduced to
the synchronization problem without controllers. The problem
of such models was widely studied in the literature, see [4]
and references therein. Also, the control and updating failure
in the considered system can also be modeled by Markovian
switching [8] and switching signals [39], which would be more
general than our model.

Remark 5: Compared with [32], [48], [52], the problem
considered here is to study the distributed synchronization
of networks of agent systems with multiple random failures
existing in controllers and updating laws. The model is general
to include several switchings in dynamics of each agent and
packet dropouts, and therefore our model can describe real-
worlds networks well. In addition, criteria are shown in terms of
SDP, and the effects of stochastic variables on synchronization
performance are illustrated in both theoretical and simulation
ways.

Before presenting our main results, the following assump-
tions and definitions are required.

Assumption 1: [53] Suppose that vector-valued continu-
ous functions gm(x, t) : Rn × R

+ → R
n are said to be uni-

formly decreasing if there exist θm > 0 ∈ R and Δm > 0 ∈ R

such that

(x− y)T [gm(x, t)− gm(y, t)− θm(x− y)]

≤ −Δm(x− y)T (x− y), m ∈ I (13)

holds for all x, y ∈ R
n and t ≥ 0.

Note that the relationship between Assumption 1 and
Lipchitz condition is revealed in [30].

Assumption 2: [32]gm(xi, t) is said to be locally uniformly
Lipschitz continuous with respect to t if there exist positive
constants ϕm such that the following inequalities hold for all
xi, xj ∈ R

n:

‖gm(xi, t)− gm(xj , t)‖ ≤ ϕm‖xi − xj‖, i, j ∈ V, m ∈ I.
(14)

Assumption 3: gm(0, t) = 0.
Definition 1: Let xi(t; t0, X0)(1 ≤ i ≤ N) be a solution of

the array of the stochastic complex network (1), where X0 =

(x0
1, x

0
2, . . . , x

0
N ). If there is a nonempty subset Ω ⊆ R

n, with
x0
i ∈ Ω(1 ≤ i ≤ N), such that xi(t; t0, X0) ∈ R

n for all t ≥
t0, 1 ≤ i ≤ N , and

lim
t→∞

E

∑
i∈V

‖xi(t)− xj(t)‖2 = 0, i, j ∈ V (15)

then the network of agent systems (1) is said to achieve syn-
chronization in mean square under the distributed controller (6).

III. MAIN RESULTS

In this section, the synchronization problem of the network
of agent systems with MRONs (1) is studied in the sense of
mean square via MROCs and MROULs. The synchronization
criteria are given as follows.

A. Criteria for Synchronization of Networks of Agent Systems
With Multiple Random Controllers and Nonlinearities

Theorem 1: Suppose that gm(x, t), (m ∈ I) is continuous
on (x, t) ∈ R

n × R
+, satisfies Assumptions 1, 2, and 3, graph

G is connected, H = diag{η1, . . . , ηN} and c is a positive
constant, which makes the following inequality hold:(∑

m∈I
κmθmIN − cLH−DL

)
L ≤ 0 (16)

for any initial data xi(0) ∈ R
n, i ∈ V , then system (4) under

(6) and (8) will be globally synchronized in mean square, and
the coupling strengths will converge, i.e., limt→∞ εi(t) = εi,∞,
where εi,∞(i ∈ V) ∈ R is a constant.

Proof: Define x = [xT
1 , . . . , x

T
N ]

T ∈ R
nN . Let eij =

xi − xj , ∀i, j ∈ V . Note that λ2(L) > 0 since graph G is con-
nected and L is irreducible. Since L is irreducible, we conclude
that (L⊗ In)x = 0 if and only if eij = 0 holds for ∀i, j ∈ V .

The network of agent systems (3) with Bernoulli variables is
a special case of stochastic systems with Markovian switching
[51]. Thus, the existence and uniqueness of solutions of (3) can
be solved by the theory of stochastic systems with Markovian
switching [54].

Consider the following Lyapunov candidate:

V (t) =
1

4

∑
i∈V

∑
j∈N (i)

eTijeij +
∑
i∈V

ηi
2αiξi

(εi(t)− c)2 (17)

where c is a positive constant.
The operator L is defined as follows [55]:

LV (t) = lim
φ→0+

1

φ
{E (V (t+ φ)|t)− V (t)} . (18)

Then, we can obtain from (4) and (6)

LV (t) =
1

2

∑
i∈V

∑
j∈N (i)

eTij

×

⎧⎪⎨
⎪⎩

∑
m∈I

κm(t)× (gm(xi, t)− gm(xj , t))

+D
∑

k∈N (i)

(xk − xi)−D
∑

l∈N (j)

(xl − xj)
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+ ηi(t)εi(t)

⎡
⎣ ∑
k∈N (i)

(xk − xi)

⎤
⎦

− ηj(t)εj(t)

⎡
⎣ ∑
l∈N (j)

(xl − xj)

⎤
⎦

⎫⎪⎬
⎪⎭

+
∑
i∈V

ηi
ξi
ξi(t) (εi(t)−c)

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T ⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦ .

(19)

From the definitions of eij , x, L and taking expectations of ηi(t)
and ξi(t), the following equalities hold:

1

2

∑
i∈V

∑
j∈N (i)

eTijeij

= xT (L⊗ In)x

∑
i∈V

⎛
⎝ ∑

j∈N (i)

eij

⎞
⎠

T ⎛
⎝ ∑

j∈N (i)

eij

⎞
⎠

= xT (L2 ⊗ In)x

E

⎧⎨
⎩

∑
i∈V

∑
j∈N (i)

eTijηi(t)εi(t)
∑

k∈N (i)

eki

⎫⎬
⎭

= −
∑
i∈V

ηiεi(t)

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T ⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦

E

⎧⎪⎨
⎪⎩

∑
i∈V

ηi
ξi
ξi(t) (εi(t)−c)

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
⎫⎪⎬
⎪⎭

= E

⎧⎪⎨
⎪⎩

∑
i∈V

ηi (εi(t)−c)

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
⎫⎪⎬
⎪⎭ . (20)

Then, using the inequality (16) in Theorem 1, Assumptions 1
and 2, (19) and (20), we have

ELV (t) =E
1

2

∑
i∈V

∑
j∈N (i)

eTij

×
{∑

m∈I
κm(t) [gm(xi, t)− gm(xj , t)− θmeij ]

}

+
1

2

∑
i∈V

∑
j∈N (i)

∑
m∈I

κm(t)θmeTijeij

−D
∑
i∈V

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T ⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦

− c
∑
i∈V

ηi

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T ⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦

≤E− 1

2

∑
I∈V

∑
j∈N (i)

∑
m∈I

κmΔmeTijeij

+
1

2

∑
I∈V

∑
j∈N (i)

∑
m∈I

κmθmeTijeij

−D
∑
i∈V

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T ⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦

− c
∑
i∈V

ηi

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T ⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦

=ExT

[(∑
m∈I

κm(θm−Δm)IN−cLH−DL

)
L⊗In

]
x

≤ExT

(
−

∑
m∈I

κmΔmL⊗ In

)
x (21)

where H = diag{η1, . . . , ηN}.
Hence, synchronization will be achieved in mean square.

This completes the proof. �
Remark 6: As seen from Theorem 1, the occurrence proba-

bilities of various nonlinearities κm, the forms of nonlinearities
θm, and the occurrence probabilities of controllers ηi have
strong effects on ensuring the synchronization performance of
networks of agent systems. Therefore, the conditions devel-
oped in this paper are probability-dependent or nonlinearity-
dependent criteria.

Corollary 1: Assume that only one nonlinearity exists in the
network of agent systems (1), i.e., m ∈ I = {1}. Suppose that
g1(x, t) is continuous on (x, t) ∈ R

n × R
+, satisfies Assump-

tions 1, 2, and 3, graph G is connected and c is a positive
constant, which makes the following inequality hold:

(θ1IN − cLH−DL)L ≤ 0

for any initial data xi(0) ∈ R
n, i ∈ V , then the network of agent

systems (4) under (6) and (8) will be globally synchronized
in mean square, and the coupling strengths will converge, i.e.,
limt→∞ εi(t) = εi,∞, where εi,∞(i ∈ V) ∈ R is a constant.

If the occurrence probabilities of MROCs are equal in all the
vertices, we have the following results.

Corollary 2: Suppose that gm(x, t), (m ∈ I) is continuous
on (x, t) ∈ R

n × R
+, satisfies Assumptions 1, 2, and 3, graph

G is connected, ηi = η(i ∈ V) and c is a positive constant,
which makes the following inequality hold:(∑

m∈I
κmθmIN − cηL−DL

)
L ≤ 0

then the network of agent systems (4) under (6) and (8) will
be globally synchronized in mean square, and the coupling
strengths will converge for any initial data xi(0) ∈ R

n, i ∈ V ,
i.e., limt→∞ εi(t) = εi,∞, where εi,∞(i ∈ V) ∈ R is a constant.

Furthermore, the following corollary can be obtained.
Corollary 3: Suppose that gm(x, t), (m ∈ I) is continuous

on (x, t) ∈ R
n × R

+, satisfies Assumptions 1, 2, and 3, graph
G is connected, ηi = η(i ∈ V) and c is a positive constant,
which makes the following inequality hold:

N∑
i=2

[∑
m∈I

κm(θm −Δm)− cηλi(L)−Dλi(L)

]
< 0
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then the network of agent systems (4) under (6) and (8) will
be globally synchronized in mean square, and the coupling
strengths will converge for any initial data xi(0) ∈ R

n, i ∈ V ,
i e., limt→∞ εi(t) = εi,∞, where εi,∞(i ∈ V) ∈ R is a constant.

Proof: According to (21) of Theorem 1

ELV (t)≤ExT

[(∑
m∈I

κm(θm−Δm)IN−cηL−DL

)
×L⊗In

]
x.

(22)

From the matrix decomposition theory [56], there exists a
unitary matrix U such that L = UΛUT , where Λ = diag
{λ1(L), λ2(L), . . . , λN (L)} = diag{0, λ2(L), . . . , λN (L)},
U = [u1, u2, . . . , uN ], and u1 = 1/

√
N [1, 1, . . . , 1]T . Let

z(t) = (UT ⊗ In)x(t) = [zT1 (t), z
T
2 (t), . . . , z

T
N (t)]

T
, where

zi(t) ∈ R
n(i ∈ V). Therefore, it follows that:

xT

[∑
m∈I

κm(θm −Δm)L⊗ In

]
x

= zT (UT ⊗ In)

[∑
m∈I

κm(θm −Δm)L⊗ In

]
(U ⊗ In)z

=
N∑
i=2

zTi

[∑
m∈I

κm(θm −Δm)λi(L)

]
zi. (23)

Similarly

− cηxT (L2 ⊗ In)x

= −cηzT (UT ⊗ In)(L
2 ⊗ In)(U ⊗ In)z

= −cηzT (UTL2U ⊗ In)z

= −cη

N∑
i=2

λ2
i (L)z

T
i zi (24)

−DxT (L2 ⊗ In)x = −D
N∑
i=2

λ2
i (L)z

T
i zi. (25)

Therefore, substituting (23)–(25) into (22) yields

ELV (t) = E

N∑
i=2

zTi λi(L)

[ ∑
m∈I

κm(θm −Δm)

− cηλi(L)−Dλi(L)

]
zi ≤ 0. (26)

According to the inequality in Corollary 3, the synchronization
will be achieved in mean square. This completes the proof. �

Furthermore, the following corollary can be obtained.
Corollary 4: Suppose that gm(x, t), (m ∈ I) is continuous

on (x, t) ∈ R
n × R

+, satisfies Assumptions 1, 2, and 3, graph
G is connected, ηi = η(i ∈ V) and c is a positive constant,
which makes the following inequality hold:

η >

∑
m∈I κm(θm −Δm)−Dλ2(L)

cλ2(L)

then the network of agent systems (4) under (6) and (8) will
be globally synchronized in mean square, and the coupling

strengths will converge for any initial data xi(0) ∈ R
n, i ∈ V ,

i.e., limt→∞ εi(t) = εi,∞, where εi,∞(i ∈ V) ∈ R is a constant.
Remark 7: From this corollary, one can obtain the minimum

occurrence probability of the controllers in the network. c can
be arbitrarily large, and therefore, if the occurrence probability
of distributed controllers is nonzero, the synchronization of the
network of agent systems (4) can be always achieved in mean
square, when

∑
m∈I κm(θm −Δm)−Dλ2(L) > 0.

If the occurrence probabilities of multiple random controllers
are equal in all vertices and only one kind of nonlinearity exists,
we have the following results.

Corollary 5: Assume that only one nonlinearity exists in
the network of agent systems (4), i.e., m ∈ I = {1}. Sup-
pose that g1(x, t) is continuous on (x, t) ∈ R

n × R
+, satisfies

Assumptions 1, 2, and 3, graph G is connected, ηi = η(i ∈ V)
and c is a positive constant, which makes the following inequal-
ity hold:

N∑
i=2

[(θ1 −Δ1)− cηλi(L)−Dλi(L)] < 0

then the network of agent systems (4) under (6) and (8) will
be globally synchronized in mean square, and the coupling
strengths will converge for any initial data xi(0) ∈ R

n, i ∈ V ,
i.e., limt→∞ εi(t) = εi,∞, where εi,∞(i ∈ V) ∈ R is a constant.

If we utilize the bounds of ηi, (i ∈ V), the following two
corollaries can be obtained by Theorem 1 and Corollary 3.

Corollary 6: Suppose that gm(x, t), (m ∈ I) is continuous
on (x, t) ∈ R

n × R
+, satisfies Assumptions 1, 2, and 3, graph

G is connected, and c is a positive constant, which makes the
following inequality hold:(∑

m∈I
κmθmIN − cη̌L−DL

)
L ≤ 0

then the network of agent systems (4) under (6) and (8) will
be globally synchronized in mean square, and the coupling
strengths will converge for any initial data xi(0) ∈ R

n, i ∈ V ,
i.e., limt→∞ εi(t) = εi,∞, where εi,∞(i ∈ V) ∈ R is a constant.

Corollary 7: Suppose that gm(x, t), (m ∈ I) is continuous
on (x, t) ∈ R

n × R
+, satisfies Assumptions 1, 2, and 3, graph

G is connected, and c is a positive constant, which makes the
following inequality hold:

N∑
i=2

[∑
m∈I

κm(θm −Δm)− cη̌λi(L)−Dλi(L)

]
< 0

then the network of agent systems (4) under (6) and (8)
will be globally synchronized in mean square, and the cou-
pling strengths will converge for any initial data xi(0) ∈ R

n,
i ∈ V , i.e., limt→∞ εi(t) = εi,∞, where εi,∞(i ∈ V) ∈ R is a
constant.

Proof: The proof is similar to Corollary 3 and hence
omitted. �

B. Expectation of Upper Bounds of ε and γ

In the following, the expectation of upper bounds of control
gain ε and convergence speed γ are derived. Here, we further
assume that α̌, η̌, and ξ̌ are not equal to 0.
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Theorem 2: If all assumptions and conditions in Theorem 1
are satisfied, then when εi(0) = 0, (∀i ∈ V),

(i) the expectation of the upper bound of ε is

ε ≤ ε̄ = U +

√
U2 +

2p0α̂ξ̂

η̌N

where p0 = (1/4)
∑

i∈V
∑

j∈N (i) ‖eij(0)‖2, ᾱ = α̂/α̌,

η̄ = η̂/η̌, ξ̄ = ξ̂/ξ̌, U = c(ᾱη̄ξ̄ − 1) + (
∑

m∈I κmθm −
Dλ2(L)/λ2(L)η̌). Specifically

ε̄ ≤ ε̂ =

⎧⎨
⎩ 2U +

√
2p0α̂ξ̂
η̌N , if U ≥ 0√

2p0α̂ξ̂
η̌N , else.

(27)

(ii) Additionally, the expectation of upper bound of γ is

γ ≤ γ̄ =
N

(N − 1)λ2
2(L)α̌ξ̌

⎡
⎣U +

√
U2 +

2p0α̂ξ̂

η̌N

⎤
⎦ . (28)

Specifically

γ̄ ≤ γ̂ =

⎧⎪⎨
⎪⎩

N
(N−1)λ2

2(L)α̌ξ̌

[
2U +

√
2p0α̂ξ̂
η̌N

]
, if U ≥ 0

N
(N−1)λ2

2(L)α̌ξ̌

√
2p0α̂ξ̂
η̌N , else.

(29)

Proof: Part I. First, let vi be the eigenvector of L as-
sociated with the eigenvalue λi(L) ordered by 0 = λ1(L) ≤
λ2(L) ≤ λ3(L) ≤ . . . ≤ λN (L). We pick the eigenvectors that
correspond to the same eigenvalue with multiplicity such that
v1, . . . , vN compose an orthogonal standard basis of RN . For
any v ∈ R

N , v can be written as v =
∑

i∈V rivi, (i ∈ V). Thus,
one gets vTi vj = 0, ∀i �= j

vT

{[
(cη̌ +D)−

∑
m∈I

κmθm
λ2(L)

]
L2

−
[
(cη̌ +D)L−

∑
m∈I

κmθmIN

]
L

}
v

=
∑
i∈V

vTi vi

[(
cη̌ +D −

∑
m∈I

κmθm
λ2(L)

)
λ2
i (L)

− (cη̌ +D)λ2
i (L) +

∑
m∈I

κmθmλi(L)

]
r2i

+ 2
∑
i∈V

∑
j>i

vTi

[(
cη̌ +D −

∑
m∈I

κmθm
λ2(L)

)
L2

−
(
(cη̌ +D)L−

∑
m∈I

κmθmIN

)
L

]

× vjrirj

=

N∑
i=2

∑
m∈I

vTi vi

[
− 1

λ2(L)
λi(L) + 1

]
κmθmλi(L)r

2
i

≤ 0. (30)

By integrating both sides of (8), it yields that

E

⎧⎨
⎩

∑
i∈V

∞∫
0

ε̇i(t)dt

⎫⎬
⎭=E

∑
i∈V

∞∫
0

αiξi

⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦
T⎡
⎣ ∑
j∈N (i)

eij

⎤
⎦dt.
(31)

The expectation of ε is obtained from (31)

E{ε} = E

⎧⎨
⎩ 1

N

∞∫
0

xT (LJL⊗ In)xdt

⎫⎬
⎭ (32)

where J = diag{α1ξ1, . . . , αNξN}. One gets from (32) that

E

⎧⎨
⎩ α̌ξ̌

N

∞∫
0

xT (L2 ⊗ In)xdt

⎫⎬
⎭ ≤ E{ε} (33)

E{ε} ≤ E

⎧⎨
⎩ α̂ξ̂

N

∞∫
0

xT (L2 ⊗ In)xdt

⎫⎬
⎭ . (34)

From Corollary 6, we get

ELV≤E

{
xT (t)

[(∑
m∈I

κmθmIN−(cη̌+D)L

)
L⊗In

]
x(t)

}
.

(35)

Thus, combining (17), (30), (32), (34) and (35), one gets

E{ε} =E

⎧⎨
⎩ 1

N

∞∫
0

xT (t)(LJL⊗ In)x(t)dt

⎫⎬
⎭

≤E

⎧⎨
⎩ α̂ξ̂λ2(L)

N
[
(cη̌ +D)λ2(L)−

∑
m∈I κmθm

] ∞∫
0

xT (t)

×
[(

(cη̌+D)L−
∑
m∈I

κmθmIN

)
L⊗In

]
x(t)dt

}

≤ −E

⎧⎨
⎩ α̂ξ̂λ2(L)

N
[
(cη̌+D)λ2(L)−

∑
m∈I κmθm

]
⎡
⎣ ∞∫

0

LV dt

⎤
⎦
⎫⎬
⎭

=E

{
α̂ξ̂λ2(L)

N
[
(cη̌ +D)λ2(L)−

∑
m∈I κmθm

] [V0 − V∞]

}

=E

{
α̂ξ̂λ2(L)

N
[
(cη̌ +D)λ2(L)−

∑
m∈I κmθm

]
×

[
p0 +

∑
i∈V

ηi
2αiξi

(2cεi,∞ − ε2i,∞)

]}

≤E

{
α̂ξ̂λ2(L)

N
[
(cη̌ +D)λ2(L)−

∑
m∈I κmθm

]
×

[
p0 +

cNη̂

α̌ξ̌
ε− Nη̌

2α̂ξ̂
ε2

]}
(36)

where V0 = V (0), V∞ = limt→∞ V (t) and p0 =

(1/4)
∑

i∈V
∑

j∈N (i) ‖eij(0)‖2. Denote ᾱ = α̂/α̌, ξ̄ = ξ̂/ξ̌.
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By solving the inequality (36)

E{ε} ≤ {ε̄} = U +

√
U2 +

2p0α̂ξ̂

η̌N
(37)

where

U = c(ᾱη̄ξ̄ − 1) +

∑
m∈I κmθm −Dλ2(L)

λ2(L)η̌
. (38)

By using the inequality
√
a2 + b2 ≤ a+ b, where a and b ∈

R are a, b ≥ 0

{ε̄} ≤{ε̂} = U + |U|+

√
2p0α̂ξ̂

η̌N

=

⎧⎨
⎩ 2U +

√
2p0α̂ξ̂
η̌N , if U ≥ 0√

2p0α̂ξ̂
η̌N , else.

(39)

Part II. Next, the expectation of the upper bound of
γ is given. Let U = (uij) with uij = −1/N if i �= j and
uii = 1− 1/N(∀i ∈ V) and W = (1/(N − 1))UTU . γ can be
represented as follows:

γ =

∞∫
0

xT (t)(W ⊗ In)x(t)dt. (40)

As shown in [48], the following inequality holds:

W ≤ 1

(N − 1)λ2
2(L)

L2.

Therefore, we get from (33) and (40) that

E{γ} ≤E
1

(N − 1)λ2
2(L)

∞∫
0

xT (t)(L2 ⊗ In)x(t)d

≤E
N

(N − 1)λ2
2(L)α̌ξ̌

ε

≤E
N

(N − 1)λ2
2(L)α̌ξ̌

⎡
⎣U+

√
U2+

2p0α̂ξ̂

η̌N

⎤
⎦ . (41)

Again, by utilizing
√
a2 + b2 ≤ a+ b, we have

{γ̄} ≤ N

(N − 1)λ2
2(L)α̌ξ̌

⎡
⎣U + |U|+

√
2p0α̂ξ̂

η̌N

⎤
⎦ . (42)

Specifically, one has from (42)

γ̂ =

⎧⎪⎨
⎪⎩

N
(N−1)λ2

2(L)α̌ξ̌

[
2U +

√
2p0α̂ξ̂
η̌N

]
, if U ≥ 0

N
(N−1)λ2

2(L)α̌ξ̌

√
2p0α̂ξ̂
η̌N , else.

(43)

This completes the proof. �

Remark 8: From Theorem 2, the upper bounds of ε and γ

depend largely on α̌, ξ̌, η̌, α̂, ξ̂, κm, θm. The nonlinearities and
their occurrence probabilities have impacts on the upper bounds
of ε and γ. Note that c can be arbitrarily large which might affect
the estimations of ε and γ. Therefore, in the following, we will
develop an algorithm to reduce c, and thus the estimations of ε
and γ will be more exact.

If α̌ = α̂ = α and ξ̌ = ξ̂ = ξ, then we have the following
theorem.

Theorem 3: If all assumptions and conditions in Theorem 1
are satisfied and α̌ = α̂ = α, ξ̌ = ξ̂ = ξ, then when εi(0) =
0, (∀i ∈ V),

(i) the expectation of the upper bound of control cost ε is

ε ≤ ε̄ = X +

√
X 2 +

2p0αξ

η̌N

where p0 = (1/4)
∑

i∈V
∑

j∈N (i) ‖eij(0)‖2 and

X = c(η̄ − 1) +

∑
m∈I κmθm −Dλ2(L)

λ2(L)η̌
.

Specifically

ε̄ ≤ ε̂ =

⎧⎨
⎩

2X +
√

2p0αξ
η̌N , if X ≥ 0√

2p0αξ
η̌N , else.

(44)

(ii) Additionally, the expectation upper bound of γ is

γ ≤ γ̄ =
N

(N − 1)λ2
2(L)

[
Y +

√
Y2 +

2p0αξ

η̌N

]
(45)

where

Y =
1

αξ

[
c(η̄ − 1) +

∑
m∈I κmθm −Dλ2(L)

λ2(L)η̌

]
.

Specifically

γ̄ ≤ γ̂ =

⎧⎨
⎩

N
(N−1)λ2

2(L)

[
2Y +

√
2p0

αξη̌N

]
, if Y ≥ 0

N
(N−1)λ2

2(L)

√
2p0

αξη̌N , else.
(46)

If α̌ = α̂ = α, ξ̌ = ξ̂ = ξ and η̌ = η̂ = η, then we have the
following corollary.

Corollary 8: If all assumptions and conditions in Theorem 1
are satisfied and α̌ = α̂ = α, ξ̌ = ξ̂ = ξ, η̌ = η̂ = η, then when
εi(0) = 0, (∀i ∈ V),

(i) the expectation of the upper bound of control cost ε is

ε ≤ ε̄ = X +

√
X 2 +

2p0αξ

ηN

where p0 = (1/4)
∑

i∈V
∑

j∈N (i) ‖eij(0)‖2 and

X =

∑
m∈I κmθm −Dλ2(L)

λ2(L)η
.
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Specifically

ε̄ ≤ ε̂ =

⎧⎨
⎩

2X +
√

2p0αξ
ηN , if X ≥ 0√

2p0αξ
ηN , else.

(47)

(ii) Additionally, the expectation of the upper bound of γ is

γ ≤ γ̄ =
N

(N − 1)λ2
2(L)

[
Y +

√
Y2 +

2p0αξ

ηN

]
(48)

where

Y =

∑
m∈I κmθm −Dλ2(L)

λ2(L)αξη
.

Specifically

γ̄ ≤ γ̂ =

⎧⎨
⎩

N
(N−1)λ2

2(L)

[
2Y +

√
2p0

αξηN

]
, if Y ≥ 0

N
(N−1)λ2

2(L)

√
2p0

αξηN , else.
(49)

If α̌ = α̂ = α, ξ̌ = ξ̂ = ξ, η̌ = η̂ = η and there exists only
one nonlinearity in (4), then we have the following corollary.

Corollary 9: If all assumptions and conditions in Theorem 1
are satisfied and α̌ = α̂ = α, ξ̌ = ξ̂ = ξ, η̌ = η̂ = η, then when
εi(0) = 0, (∀i ∈ V),

(i) the expectation of the upper bound of control cost ε is

ε ≤ ε̄ = Z +

√
Z2 +

2p0αξ

ηN

where p0 = (1/4)
∑

i∈V
∑

j∈N (i) ‖eij(0)‖2 and

Z =
θ1 −Dλ2(L)

λ2(L)η
.

Specifically

ε̄ ≤ ε̂ =

⎧⎨
⎩

2Z +
√

2p0αξ
ηN , if Z ≥ 0√

2p0αξ
ηN , else.

(50)

(ii) Additionally, the expectation of the upper bound of γ is

γ ≤ γ̄ =
N

(N − 1)λ2
2(L)

[
K +

√
K2 +

2p0αξ

ηN

]
(51)

where

K =
θ1 −Dλ2(L)

λ2(L)αξη
.

Specifically

γ̄ ≤ γ̂ =

⎧⎨
⎩

N
(N−1)λ2

2(L)

[
2K +

√
2p0

αξηN

]
, if K ≥ 0

N
(N−1)λ2

2(L)

√
2p0

αξηN , else.
(52)

Remark 9: From Theorem 3 and Corollaries 8–9, we get that
η, ξ, κm, α, D, λ2(L), and θm influence the values of ε and γ.

IV. NUMERICAL EXAMPLES

In this section, several numerical examples are presented to
verify the performance of the proposed MROCs and MROULs
for the network of agent systems (4) with MRONs. The effects
of η and ξ on synchronization are also discussed.

A. Model Description

A Hopfield neural network is considered on each vertex as an
agent [57]

dx(t) = f(x, t)dt =
∑
m∈I

κm(t) [−Cmx+Amhm(x)] dt

(53)

where x(t) = [x1(t), x2(t), x3(t)]
T , Am and Cm(m ∈ I) are

picked as follows:

Am =

⎛
⎝ 1.25 −3.2 −3.2

−3.2 1.1 −4.4
−3.2 4.4 1

⎞
⎠ , Cm =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ .

For the sake of simplicity, we consider two cases of non-
linearities, i.e., q = 2. The activation functions hm(x) =
[hm(x1), hm(x2), hm(x3)]

T are chosen as h1(x) = (|x+ 1| −
|x− 1|)/2, and h2(x) = (|x+ 1| − |x− 1|)/1.8. The occur-
rence probabilities κ1 and κ2 of nonlinearities are 0.8 and 0.2,
respectively. The simulation time is set as T = 10. The step size
of our algorithm is chosen as 0.001.

B. Algorithm for Solving the Main Results

When solving Theorem 1 and for measuring ε and γ more
exactly, we convert the optimization problem into an SDP
problem. Together with Assumption 1 [53], the algorithm is
formulated as follows:

min
∑
m∈I

θm + c

⎧⎨
⎩

(∑
m∈I κmθmIN − cLH−DL

)
L ≤ 0[

2B − Σm ∗W 2
m − 2Δm −Am

−AT
m Σm

]
< 0

(54)

where B = (Cm + θmIn), m ∈ I, θm > 0, Σm > 0,
and Δm > 0.

Remark 10: Although c could be chosen arbitrarily large to
ensure the synchronization of the network of agent systems (4),
the estimations of the upper bounds of ε and γ will be overlarge.
Here, the estimations of the upper bounds of ε and γ are solved
easily by SDP, which is an efficient method to deal with the
proposed optimization problem.

C. Example 1

First, MROCs (6) and MROULs (8) are used to synchronize
the network of agent systems (4) under distributed control. The
coupling graph considered here is a scale-free network [58],
in which the degree distribution obeys a power law that were
observed in many fields. The parameters are set as αi = ηi =
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Fig. 1. Distributed synchronization of the network of agent systems (1) when N = 100, αi = ηi = ξi = 0.5 + 0.005 ∗ i,D = 0.5. The figures show the
synchronization errors of the network (1) with or without distributed controllers. (a) x1j − xij , i ∈ V, j = 1, . . . , n without distributed control; (b) xij , i ∈
V, j = 1, . . . , n without distributed control; (c) x1j − xij , i ∈ V, j = 1, . . . , n under distributed control; (d) xij , i ∈ V, j = 1, . . . , n with distributed control.
Fig. 1(a) and (b) shows that synchronization cannot be achieved without distributed control. Fig. 1(c) and (d) illustrates that synchronization can be realized with
distributed control.

ξi = 0.5 + 0.005 ∗ i, D = 0.5, N = 100. It can be checked that
W1 = 1 and W2 = 10/9.

By using Yalmip [49] to solve (54), the solutions are listed as
follows:

c =11.9947, Δ1 = 4.4966e− 004, θ1 = 5.5655

Σ1 =diag{6.6541, 7.3625, 5.6707}
Δ2 =8.6447e− 004, θ2 = 6.2961

Σ2 =diag{5.9897, 6.6270, 5.1049}. (55)

Hence, the distributed synchronization of the network of agent
systems (4) with MRONs under MROCs (6) and MROULs (8)
is ensured in mean square. When MROCs are not added to the
network, the distributed synchronization of the network cannot
be achieved, as shown in Fig. 1(a) and (b). The synchronization
errors under distributed control are shown in Fig. 1(c) and (d),
which shows that synchronization of the network (4) is realized
in mean square. Therefore, the criteria developed in this paper
are feasible, and the distributed controllers are useful to realize
synchronization.

According to Corollary 9, the effects of α, D, η, and ξ on
the control strengths ε and convergence rate γ are shown. The
network scale here is set as N = 25. Then, the parameters α,
D, η, ξ are tuned gradually, and their interplays are shown.
In Fig. 2, it is shown that the simulation results confirm the
bounds of ε and γ. When η increases gradually from 0 to 1, it
is observed that ε and γ decrease gradually. However, different

from η, when ξ is adjusted gradually from 0 to 1, it is found
that ε increases and γ decreases. The parameter α has the same
effect as ξ on ε and γ. To summarize, the above simulation
results show the dependence of ε and γ on η and ξ well, which
is consistent with the corollaries and remarks.

D. Example 2

In the second example, we compare the performance of
MROCs and the conventional adaptive controller for synchro-
nization of the network of agent systems (4). The traditional
adaptive controller is written as follows:

ui(t) = εi(t) (x1(t)− xi(t)) , i ∈ V (56)

and the updating laws are

dεi(t) = α [(x1(t)− xi(t))]
T [(x1(t)− xi(t))] dt. (57)

The parameters are set as follows: η = 0.8, ξ = 0.8, α =
1, D = 0.5. The performance of γ when using MROCs
(6) is 1.5228, while the performance of γ when using the
conventional adaptive controller (57) is 2.9841. Although ε =
4.5481 when distributed control is used and ε = 2.8664 when
adaptive control is employed, the distributed control is closer to
real-world applications [19]. The results indicate that synchro-
nization of the network of agent systems (4) using MROCs has
a faster convergence speed than using the conventional adaptive
controller.
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Fig. 2. Effects of α, D, η and ξ on ε and γ when N = 25. (a) Effects of tuning η and ξ on ε when α = 1, D = 1; (b) effects of tuning η and ξ on γ when
α = 1, D = 1; (c) effects of tuning D and ξ on ε when α = 1, η = 1; (d) effects of tuning D and ξ on γ when α = 1, η = 1; (e) effects of tuning α and η on ε
when ξ = 1, D = 1; (f) effects of tuning α and η on γ when ξ = 1, D = 1. The results verify the theoretical results in Theorems 2 and 3 very well.

V. CONCLUSION

We have studied the problem of networks of agent sys-
tems via multiple random controllers and nonlinearities. The
occurrences of distributed controllers, updating laws of con-
trol gain, and nonlinearities are described by three sets of
Bernoulli stochastic variables. By utilizing the Lyapunov func-
tion method, the distributed synchronization criteria of net-
works of agent systems under multiple random controllers and
probabilistic nonlinearities are presented, which can ensure that
synchronization can be achieved in mean square. The presented
conditions can be solved by SDP. Furthermore, we show that
the overall coupling strength, the probabilities of the Bernoulli
stochastic variables, and the form of nonlinearities have sig-
nificant effects on the convergence speed and the terminal
control strength. Specially, the probabilities of occurrence of
distributed controllers and updating laws play different roles
in terms of convergence speed. The presented synchronization
criteria and observed phenomena are confirmed by several
numerical simulation examples. In addition, several advantages
of distributed adaptive controllers over conventional adaptive
controllers are explicitly provided.

In the end, it is valuable to give some further discussions
and possible research topics. The first one is to extend our
results to synchronization of complex networks or consensus
of multi-agent systems with directed and weighted graphs [19],
[59]. The second interesting topic is to extend our results to
the case of networks with coupling delay [60]–[62]. The third
one is to extend our results to two coupled networks [63] or

networks of networks [64]. Also, the fourth one is to develop
sufficient and necessary conditions under stochastic effects [65]
to reduce conservativeness [42], [66]. Finally, we can use some
sophisticated intelligent techniques to counteract the effects of
nonlinearities [67]–[69].
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