
Distributed Synthesis for Regular and
Contextfree Specifications?

Wladimir Fridman and Bernd Puchala

RWTH Aachen University, Germany
{fridman@automata,puchala@logic}.rwth-aachen.de

Abstract. We adress the controller synthesis problem for distributed
systems with regular and deterministic contextfree specifications. Our
main result is a complete characterization of the decidable architec-
tures for local specifications. This extends existing results on local spe-
cifications in two directions. First, we consider arbitrary, not necessari-
ly acyclic, architectures and second, we allow deterministic contextfree
specifications. Moreover, we show that for global deterministic context-
free specifications, even very simple architectures are undecidable.

1 Introduction

Open non-terminating reactive systems are computing systems which conti-
nously interact with an environment. Such systems are modeled as infinite games
between a controller for the system and the environment. As the behavior of the
environment is usually not constrained a priori in such settings, it is considered as
being antagonistic. Non-terminating reactive systems have first been considered
in the context of switching circuits. Church’s Synthesis Problem [2] is to de-
cide whether there exists a switching circuit such that all possible input/output
behaviors of the circuit satisfy a given specification and, if such a circuit ex-
ists, it should be constructed effectively. The first solution to this problem has
been given by Büchi and Landweber [1] who showed that for any specification
formulated in monadic second order logic over words, the synthesis problem is
decidable and finite state solutions can be constructed effectively.

Since then, non-terminating reactive systems have received growing attention
in computer science. Such systems naturally capture many settings where a given
plant should be controlled in such a way, that any constrained system behavior
satisfies a certain specification. Moreover, the prospect of being able to construct
such systems automatically from a given specification, rather than verifying a
system that has already been built, has led to intensive research on the controller
synthesis problem [9, 13, 15] and to extensions of the basic setting in various
directions. For example, other specification formalisms have been considered like
temporal logics [12] and contextfree specifications [17], the systems have been
extended to distributed systems which consist of several components [14], and
stochastic versions of reactive systems have been investigated [4].

? Full Version of [7].

We consider distributed systems with regular and contextfree specifications.
Such a distributed system is specified by an architecture which consists of a set
of processes and channels via which the processes can communicate. Distributed
systems have first been considered in [14] where it has been shown that in general,
the distributed controller synthesis problem is undecidable for specifications from
the linear time temporal logic LTL. Moreover, for pipelines, a special class of
acyclic architectures, decidability has been proved for LTL specifications. In [10]
the decidability results have been extended to certain classes of architectures
with cycles and to specifications from the branching time logic CTL. Finally,
in [5], a full characterization of the decidable architectures has been given by
means of certain patterns of information flow, called information forks: Two
processes form an information fork if they are incomparably informed and the
controller synthesis problem for an architecture is decidable if, and only if, it does
not contain an information fork. This holds for both LTL and CTL specifications.

In [11], the concept of local specifications was introduced. There, any sys-
tem process has an individual specification which defines the correct behaviors
of just this process instead of the whole system. Obviously, any set of regular
local specifications can be transformed into a regular global specification, so all
decidability results for global regular specifications hold for local regular speci-
fications as well. However, there are architectures, called two-flanked pipelines,
which contain an information fork but are decidable for local regular specifica-
tions [11]. Moreover, for the class of acyclic architectures, a characterization of
the decidable architectures was established for regular specifications.

We extend this result to architectures which may contain cycles and to speci-
fications which are regular or deterministic contextfree. Notice that in the case of
global specifiations, channels from processes with a lower level of information to
better informed processes (backward channels) are futile, so architectures with-
out information forks can be transformed into a normal form which does not
have cycles [5]. These techniques do not, however, preserve local specifications
and in fact, in the case of local specifications, backward-channels can be signif-
icant, as they may increase the access of the local specifications to the overall
(global) system behavior. Therefore, to deal with cycles in the case of local spec-
ifications, one has to use different methods. Also, processes not reachable from
the environment cannot be eliminated in general, so a decidable architecture
may consist of several basic decidable subarchitectures possibly connected via
such unreachable processes. Our analysis is centered around those two structural
aspects and the higher expressive power of deterministic contextfree specifica-
tions. In Section 4 we first prove decidability and undecidability results for some
special classes of architectures, followed by a complete characterization of the
decidable architectures in Section 5.

In Section 3, we also show that as soon as one considers global deterministic
contextfree specifications, even very simple architectures become undecidable.
For architectures with only one system process, it has been shown that they are
decidable for deterministic contextfree specifictions [17]. We show that this is

2

not the case for architectures with at least two system processes or at least one
channel from the environment which cannot be read by any system process.

2 Preliminaries

The set of natural numbers is denoted by N and for a set X the power set of X
is denoted by P(X). The boolean alphabet is denoted by B = {>,⊥}. Moreover,
for any alphabet Σ and words α, β ∈ Σ∗ ∪Σω and n ∈ N we write α(n) for the
n-th letter of α, α↑n= α(0) . . . α(n−1) and α v β if α is a prefix of β. For a set A
and a word α ∈ Aω, we denote Inf(α) = {a ∈ A |α(i) = a for infinitely many i}.

For an integer k > 0 let [k] denote the set {0, ..., k−1}. For a cartesian product
A = A0 × . . .×An−1 and I ⊆ [n] we denote AI =

∏
i∈I Ai. Moreover, PrI(a) =

(ai)i∈I for an element a = (a0, . . . , an−1) ∈ A, PrI(α) = PrI(α(0))PrI(α(1)) . . .
for a word α ∈ A∗ ∪Aω and PrI(L) = {PrI(α) |α ∈ L} for a language L ⊆ A∗ ∪
Aω. However, usually we do not refer to an explicit ordering of the components
of a cartesian product and write PrAI

instead of PrI . If A has certain identical
components, this is not unambigious, but it will be clear from the context to
which components the operator projects. Moreover, if α ∈ Xω and β ∈ Y ω,
α_β ∈ (X × Y)ω denotes the ω-word with (α_β)(i) = (α(i), β(i)) for all i ∈ N.

For a function σ : Σ∗ → Σ′, we define the finite iteration σ∗ : Σ∗ → (Σ′)∗

of σ by σ∗(u) = σ(u↑0)σ(u↑1) . . . σ(u↑|u|−1) and the ω-iteration σω : Σω → (Σ′)ω

of σ by σω(α) = σ(α↑0)σ(α↑1) The ω-language which is generated by σ over
a language Lin ⊆ Σω is Lω(σ) = {σω(α) |α ∈ Lin} ⊆ (Σ′)ω. Moreover, the
language of finite words generated by σ over Lin (or, more precisely, over {u ∈
Σ∗ |u v α for some α ∈ Lin}) is L∗(σ) = {σ∗(u) |u v α for some α ∈ Lin}.
Notice that L∗(σ) coincides with the set of all v ∈ (Σ′)∗ such that v v β for
some β ∈ Lω(σ). For any functions f : A → B and g : B → C the composition
f ◦g : A→ C is defined by (f ◦g)(a) = g(f(a)). Moreover, for A′ ⊆ A, we denote
f(A′) = {f(a) | a ∈ A′}.

Architectures. An architecture A = (P,C, r) consists of the following compo-
nents. P = {penv} ∪ Psys is the set of processes where penv = p0 takes the role
of the environment and Psys = {p1, . . . , pn} with n ≥ 1 are system processes.
Moreover, C =

⋃
p∈P Cp is the set of channels where the sets Cp are pairwise

disjoint and r : C → P is a function, assigning for each channel a process which
reads it such that r(Cp) ⊆ Psys for all p ∈ Psys. We assume that, for all p ∈ Psys,
r−1(p) 6= ∅ and Cp 6= ∅, i.e., each system process has at least one input and one
output channel. So basically, an architecture is a directed graph with multi-egdes.

An architecture A is called connected, if Psys induces a connected subgraph
of A. Consider a set Q ⊆ Psys. If the subgraph of A induced by Q∪ {penv} is an
architecture, then we denote this architecture by A(Q) and we say that A(Q)
is the subarchitecture of A induced by Q. (Notice that not each set Q ⊆ Psys

induces a subarchitecture of A.) An architecture A′ is a subarchitecture of A if
A′ = A(Q) for some set Q ⊆ Psys.

For p ∈ P , Hp = {c ∈ Cp|r(c) = p} are called hidden channels of p, i.e.,
they cannot be read by any other process. Cp0

are external input channels and

3

penv p1 p2 p3 penv p1 p2 p3

Fig. 1. Pipeline and two-flanked pipeline with backward-channels

Hp0
⊆ Cp0

are hidden input channels.
⋃n
i=1 Cpi \Hpi are internal communication

channels and the channels
⋃n
i=1Hpi are used to model external output channels.

We say that process p sends information to process p′ 6= p if there is some
channel c ∈ Cp such that p′ = r(c). Process p is called reachable, if there is a
directed path from penv to p. Process p is better informed than p′ 6= p if p is
reachable and each directed path from penv to p′ goes through p. Notice that a
process may send information to another process via multiple channels. However,
if more convenient, we can assume w.l.o.g. that there is at most one such channel.

An architecture A = (P,C, r) is called pipeline (two-flanked pipeline) with
backward-channels if r(Cp0

) = {p1} (r(Cp0
) = {p1, pn} in case of a two-flanked

pipeline) and, for i ∈ [n] \ {0}, r(Cpi) ⊆ {pj | 0 < j ≤ i + 1} (see Figure 1). A
channel c ∈ Cpi with r(c) = pj is called backward-channel if 0 < j < i and it is
called forward-channel if j = i+ 1. Moreover, A is called (two-flanked) pipeline
if it has no backward-channels.

A labeling (Σc)c∈C for A assigns to any channel c ∈ C a nonempty finite set
Σc of signals which can be sent along c. We define, for every p ∈ P , the input
and output alphabets of p as Σp

in =
∏
c∈r−1(p)Σc and Σp

out =
∏
c∈Cp

Σc. The

local alphabet of p is Σp = Σp
in × Σ

p
out. The global system alphabet is defined

as ΣA =
∏
c∈C Σc =

∏n
i=0Σ

pi
out. At each point in time i every process p writes

a letter αp(i) ∈ Σp
out to the corresponding channels c ∈ Cp. A global system

behavior is an ω-word α = αp0
_ . . ._ αpn from (ΣA)ω. For p ∈ Psys, the local

process behavior of p is βp
_αp, where βp = PrΣp

in
(α),

A global system specification is a language L ⊆ (ΣA)ω consisting of all correct
system behaviors. A local specification for process p is a language Lp ⊆ (Σp)ω.
For a collection (Lp1

, . . . , Lpn) of local specifications for the system processes,
the corresponding global system specification is the language L ⊆ (ΣA)ω such
that PrΣp(L) = Lp for any system process p ∈ Psys.

A local strategy for process p maps a local input history of process p to the
next output symbol of process p, i. e., it is a function σp : (Σp

in)∗ → Σp
out. The

local behavior βp
_αp of process p is consistent with σp, if αp(i) = σp(βp↑i) for

all i ∈ N. For a language Lin ⊆ (Σp
in)ω, the local strategy σp is called winning

on Lin if any local behavior βp
_αp of p with βp ∈ Lin which is consistent with

σp is in Lp. It is called winning for process p, if it is winning on (Σp
in)ω.

A joint strategy for p1, . . . , pn is a tuple σ = (σp1
, . . . , σpn) where each σpi

is a local strategy for process pi. A global system behavior α = αp0
_ . . ._ αpn

is consistent with σ, if the local process behavior of each system process p is
consistent with σp. The strategy σ is winning, if any system behavior which is

4

consistent with σ is in the global system specification L. Notice that a joint strat-
egy which consists of local winning strategies is also winning for L. The converse
is, however, not true in general: a local strategy for a process p which is part of
a joint winning strategy is not necessarily locally winning as the inputs that p
receives from other system processes are constrained by their local strategies.

A specification L ⊆ (ΣA)ω is realizable in an architecture A with labeling
(Σc)c∈C if there is a joint winning strategy for processes p1, . . . , pn. The realiz-
ability problem is to decide, given an architecture A, a labeling (Σc)c∈C and a
specification L ⊆ (ΣA)ω, whether L is realizable in A. For a class L of specifica-
tions we say that an architecture A is decidable for specifications from L if the
realizability problem is decidable for the fixed architecture A when specifications
are restricted to L.

Specifications. We consider regular and deterministic contextfree specifica-
tions. Regular specifications are those which can be recognized by parity au-
tomata. Notice that deterministic, nondeterministic and alternating parity au-
tomata over words have all the same expressive power [16].

Deterministic contextfree specifications are those which can be recognized
by deterministic parity pushdown automata (parity DPDA) [3], i.e., finite state
automata which additionally have access to a stack-memory. We also consider
deterministic 1-counter specifications, i.e., recognizable by parity DPDA with
only a single stack-symbol. Notice that deterministic contextfree languages form
a proper subclass of contexfree languages and that, while games with determinis-
tic contextfree winning condition are decidable [17], nondeterministic contextfree
games are undecidable (see, e.g., [6]). In the following, we fix our notation for
pushdown automata.

Pushdown Automata. A parity pushdown automaton has the form P =
(Q,Σ, Γ, qin, δ,⊥, col), where Q is the finite set of states with initial state qin,
Σ is the input alphabet, Γ is the pushdown alpahbet with initial stack sym-
bol ⊥ /∈ Γ and col : Q → [k] is a coloring function for some k ∈ N. Moreover,
δ : Q× (Σε)× Γ⊥ → P(Q× Γ ∗⊥) is the transition function, where Γ⊥ = Γ ∪ {⊥}
and Σε = Σ ∪ {ε} and we require that the initial stack symbol ⊥ can neither be
deleted from nor written to the stack, that means, for any (q, a,⊥) ∈ Q×Σε×⊥
we have δ(q, a,⊥) consists only of tuples of the form (q′, γ⊥) for some q′ ∈ Q
and γ ∈ Γ ∗. We call P deterministic, if for all a ∈ Σ, all A ∈ Γ⊥ and all q ∈ Q
we have |δ(q, a,A)|+ |δ(q, ε, A)| ≤ 1.

A configuration of P is a tuple C = (q, γ) ∈ Q × Γ ∗⊥. For a ∈ Σε we write

(q, Aγ)
a7− (q′, γ′γ) if (q′, γ′) ∈ δ(q, a,A). A run ρ of P on a word α ∈ Σω is a

sequence C0C1 . . . of configurations of P such that C0 = (qin,⊥) and for any

i ∈ N we have Ci
β(i)7−− Ci+1 where β ∈ Σω

ε is some word such that α is obtained
from β by deleting all symbols ε.

The run ρ is accepting, if min[col(Inf(PrQ(ρ)))] is even. The language rec-
ognized by P is L(P) = {α ∈ Σω | there is an accepting run of P on α}. A
language L ⊆ Σω is called (deterministic) contextfree, if there is a (determinis-

5

tic) parity pushdown automaton P which recognizes L. A pushdown automaton
P is called 1-counter if |Γ | = 1.

Trees and Tree-Automata. For a set X, an X-tree is a prefix closed set
T ⊆ X∗. It is called full, if T = X∗. For an alphabet Σ, a Σ-labeled X-tree
is a function t : T → Σ for some X-tree T . The tree t is called full if T is full.
Unless explicitly mentioned otherwise, we consider only full trees here. By XΣ

we denote the set of all (full) Σ-labeled X-trees.
We use alternating parity tree automata (parity ATA) and nondeterministic

parity pushdown tree automata (parity NPDTA) on such trees, where X is finite.
Notice that for any parity ATA A there is an equivalent nondeterministic parity
tree automaton (parity NTA) N , that means, L(A) = L(N) [16]. Moreover, like
for parity NTA, the nonemptiness problem for parity NPDTA is decidable [8].
In the following, we fix our notation for tree-automata.

An alternating pushdown tree automaton (APDTA) over Σ-labeled X-trees
is given by a tuple A = (Q,Σ, Γ, qin, δ,⊥, acc) with a finite set Q of states, a
transition function δ : Q × Σε × Γ⊥ → B+(Dir	 × Q × Γ ∗⊥), where B+(Dir	 ×
Q × Γ ∗⊥) is the set of all positive Boolean formulas over propositional variables
from Dir	 ×Q× Γ ∗⊥ with Dir = {↓x |x ∈ X} and Dir	 = Dir∪ {	ε}. Moreover,
we have an acceptance component acc ⊆ Qω. For Boolean formulas we assume,
as usual, that ∧ has precendence over ∨. Notice that with this definition, every
formula from B+(Dir	 ×Q× Γ ∗⊥) is in disjunctive normalform. We denote such
formulas φ in DNF also as sets φ = {ψ1, . . . , ψk} of conjuncts and we denote
the conjuncts ψ also as sets ψ ⊆ Dir	 ×Q× Γ ∗⊥ of propositional variables. This
allows us to use the notation ψ ∈ φ and (d, q, γ) ∈ ψ unambigiously. As for
pushdown word automata we assume that the ⊥ symbol is neither written to
nor deleted from the pushdown stack.

We consider parity tree automata where the acceptance component acc is
given by a coloring function col : Q → [k] for some k ∈ N and Muller tree
automata where acc is given by a collection F of subsets of Q. For parity tree
automata, acc consists of those sequences α ∈ Qω such that min[col(Inf(α))] is
even. For Muller tree automata, acc consists of those sequences α ∈ Qω such
that Inf(α) ∈ F .

A run of A on a Σ-labeled X-tree t : X∗ → Σ is a not necessarily full Σr-
labeled N-tree ρ : T → Σr where Σr = X∗ ×Q × Γ ∗⊥, such that the following
conditions hold.

(1) ε ∈ T and ρ(ε) = (ε, qin,⊥).
(2) If y ∈ T with ρ(y) = (x, q,Aγ) and δ(q, t(x), A) = φ then there is some

conjunct ψ = {(d0, q0, γ0), . . . , (dn−1, qn−1, γn−1)} ⊆ Dir	 × Q × Γ ∗ in φ
such that the set of successors of y in T is precisely {y · i | i = 0, . . . , n− 1}
and ρ(y · i) = (x ·di, qi, γiγ) where x ·d = x ·z if d =↓z and x ·d = x if d =	ε.

The run ρ is called accepting, if for each infinite path π through T , PrQ(π) ∈
acc. For such a run ρ, we also sometimes refer to the X-component of ρ(y) for

6

some y ∈ T by which we mean the last symbol of the X∗-component of ρ(y),
i.e., x(|x| − 1) where ρ(y) = (x, q,Aγ).

The automaton A accepts a Σ-labeled X-tree t, if there is an accepting run
of A on t. The language of A is L(A) = {t ∈ XΣ | A accepts t}.

Now w.l.o.g. let X = [k] for some k ∈ N. The automaton A is called nonde-
terministic (NPDTA) if, for each (q,A) ∈ Q × Γ⊥, either for all a ∈ Σ there is
some (q′, γ) ∈ Q×Γ ∗ such that δ(q, a,A) = (ε, q′, γ) or, for all a ∈ Σ, δ(q, a,A)
has the form

n−1∨
j=0

(↓0, qj0, γ
j
0) ∧ . . . ∧ (↓k−1, q

j
k−1, γ

j
k−1)

for some n ∈ N.
An alternating (nondeterministic) tree automaton, ATA (NTA) for short, is

an APDTA (NPDTA) where δ : Q×Σ×{⊥} → B+(Dir×Q×{⊥}). We usually
omit the ⊥-symbol in the description of such an automaton and regard δ as a
function δ : Q×Σ → B+(Dir×Q).

Widening. The widening operator wide(t, Y) on a Σ-labeled X-tree t yields the
Σ-labeled X × Y -tree t′ = wide(t, Y) with t′(x, y) = t(x). For any parity NTA
A over Σ-labeled X × Y -trees, there is a parity NTA B over Σ-labeled X-trees,
which accepts a tree t if, and only if, wide(t, Y) ∈ L(A) [9].

Product of Automata. Usually, given two automata A and B of the same kind
and over the same objects, there is a canonical notion of the product of A and B,
denotedA×B, such that the language ofA×B is the intersection of the languages
of A and B. Here, we will need the (less standard) product of nondeterminis-
tic parity tree automata and nondeterministic parity pushdown tree automata
which we define as follows. Given a parity NTA A = (QA, Σ, qA0 , δ

A, colA) and
a parity NPDTA B = (QB, Σ, Γ, qB0 , δ

B,⊥, colB), both running over Σ-labelled
X-trees for some set X, we define the product of A and B to be the following
nondeterministic Muller pushdown tree automaton A×B = (Q,Σ, Γ, q0, δ,⊥,F):

– Q = QA ×QB
– q0 = (qA0 , q

B
0)

– F consists of those subsets F of Q such that min{colA(PrQA(x)) |x ∈ F} is

even and min{colB(PrQB(x)) |x ∈ F} is even.
– for all (p, q) ∈ Q, all a ∈ Σ and all A ∈ Γ such that δB(q, a,A) is not an
ε-transition,

δ((p, q), a, A) =
∨

[φA∈δA(p,a)]

∨
[φB∈δB(q,a,A)]

∧
[x∈X]

(↓x, (px, qx), γx)

where (↓x, px) ∈ φA and (↓x, qx, γx) ∈ φB

– for all (p, q) ∈ Q, all a ∈ Σ and all A ∈ Γ such that δB(q, a,A) = (ε, q′, γ),

δ((p, q), a, A) = (ε, (p, q
′), γ)

Proposition 1. L(A× B) = L(A) ∩ L(B).

7

3 Global Specifications

Theorem 2. The realizability problem for global deterministic contextfree spec-
ifications is undecidable for an architecture A if, and only if, Cp0 6= ∅ and addi-
tionally |Psys| ≥ 2 or Hp0

6= ∅.

Proof. If Cp0
= ∅ then the realizability problem for A is just the nonemptiness

problem for deterministic pushdown automata which is decidable. If |Psys| ≤ 1
and Hp0 = ∅ then the realizability problem for A is just the usual (nondis-
tributed) synthesis problem for deterministic contextfree winning condition which
is again decidable.

Now assume that Cp0
6= ∅ and |Psys| ≥ 2. To show undecidability we proceed

by a reduction from the Post’s Correspondence Problem PCP. Let p1 and p2 be
system processes and let cin ∈ Cp0 . W.l.o.g., assume that r(cin) = p1. Moreover,
let cout ∈ Cp2

. We silence all other channels by defining Σc = {]} for all c ∈
C \ {cin, cout}. Now given an instance I = ((u0, v0), . . . , (um−1, vm−1)) of the
PCP over an alphabet Θ (i.e., ui, vi ∈ Θ∗), consider the following specification
language L over Σ = Σcin×Σcout

×Σ′ where Σcin = {U, V }, Σcout
= [m]∪Θ∪{]}

and Σ′ is the product of all the other (unary) alphabets which is irrelevant for
the specifcation. Let L consist of all words αin

_αout
_α′ where αin ∈ {U, V }ω

and αout =]ik . . . i1]w]Σ
ω
cout

with ij ∈ [m] and w ∈ Θ∗ such that w = ui1 . . . uik
if αin(0) = U and w = vi1 . . . vik if αin(0) = V .

Clearly, the specification language can be recognized by a deterministic parity
pushdown automaton P: Depending on the first symbol of αin, P goes into
recognition mode U or V and then, reading ij , it pushes uRij (being in the U -

mode) or vRij (being in the V -mode) to the stack. After the second], P checks
whether the stack content coincides with the sequence w.

Notice that |Σp2

in | = 1, so any strategy σp2
: (Σp2

in)∗ → Σcout for process
p2 uniquely determines a joint strategy for all the system processes. Moreover,
I has a solution if, and only if, process p2 has such a strategy σp2

which is
winning: Clearly, a solution for I gives a winning strategy. On the other hand,
since process p2 does not observe αin it just writes its output]ik . . . i1]w] . . .
independently from the recognition mode of P. So it can only win if there is a
sequence ik . . . i1 such that w = ui1 · · ·uik = vi1 · · · vik which implies that I has
a solution.

To see that undecidability also holds for the case where |Psys| = 1 butHp0
6= ∅

just notice that in the above prove, the system process p1 is used only to block
the information which is sent by the environment so that it cannot be read by
process p2. So, if there is some channel c ∈ Hp0 which cannot be read by any
system process, the above proof can obviously be carried out for architectures
with only one system process. ut

Remark 3. By a reduction from the halting problem for 2-register machines one
can show that Theorem 2 also holds for deterministic 1-counter specifications.

8

4 Local Specifications

From now on, we consider architectures with specifications given by collections
of local specifications, one for each system process. For the class of acylic ar-
chitectures, it has been shown in [11], that the realizability problem for local
regular specifications is decidable if, and only if, each conntected subarchitec-
ture is a subarchitecture of a two-flanked pipeline. We continue the investigation
by classifying the decidable architectures for the more general case where cycles
are allowed and the local specifications may also be deterministic contextfree.
In this section, we first prove decidability and undecidability results for some
special classes of architectures.

4.1 Decidability

Pipelines with Backward-Channels. Let A = (P,C, r) be a pipeline with

backward-channels and let C = Cf ∪ Cb where Cf =
⋃n−1
i=1 {c ∈ Ci|r(c) = pi+1}

is the set of forward-channels of A and Cb =
⋃n
i=1{c ∈ Ci|r(c) = pj for j ≤ i} is

the set of backward-channels and external output-channels of A and let (Σc)c∈C
be a set of signal alphabets for the channels of A. Moreover, let Lp1

, . . . , Lpn be
local specifications for the system processes p1, . . . , pn where Lp1 , . . . , Lpn−1 are
regular and Lpn is regular or deterministic contextfree.

For any process pi with i ≥ 1 we define the accumulated output alphabet
Σ≥iout :=

∏
j≥iΣ

pj
out which labels all the output channels of all processes pj with

j ≥ i and the alphabet Σb,pi
out :=

∏
c∈Cb∩Cpi

Σc which labels all the backward-

channels and external output channels of process pi. Moreover, for 0 ≤ i < n,
Σi :=

∏
c∈Cf∩Cpi

Σc denotes the alphabet on the channels from pi to pi+1.

To prove decidability, we adopt the B-labeled trees used in [11] to represent
communication languages of the processes, that means, sets of infinite sequences
of signals which can be sent along certain channels in the given architecture.
Given an alphabet Σ, a B-labeled Σ-tree t represents the ω-language Lω(t) =
{α ∈ Σω | t(α↑k) = > for all k ∈ N}. and the language L∗(t) = {u ∈ Σ∗ | t(u) =
>} of finite words.

Now if such a tree t represents in fact a communication language, then the
>-labelled nodes of t form a nonempty subtree of t, containing the root of t. More
formally, t has the following properties: (C1) t(ε) = >, (C2) if t(u) = ⊥, then
t(ua) = ⊥ for all a ∈ Σ and (C3) if t(u) = >, then t(ua) = > for some a ∈ Σ.
We call B-labeled Σ-trees which have the properties (C1) - (C3) communication
trees over Σ and we denote the set of all such trees by TC(Σ). Notice that for
t ∈ TC(Σ), L∗(t) = {u ∈ Σ∗ |u v α for some α ∈ Lω(t)}, that means, L∗(t) is
precisely the set of all finite prefixes of elements from Lω(t).

Now, given a tree tin which represents input sequences that a process receives
and a tree tout which represents output sequences that the process may write,
we define the strategy product tin↪→ tout of tin and tout as a set of trees t, each of
which defines an assignment of input sequences from Lω(tin) to output sequences
from Lω(tout), so it yields a strategy σ(t) for the process.

9

Formally, for a tree tin ∈ TC(Σ) and a tree tout ∈ TC(Σ′), the strategy
product tin↪→ tout is defined as the set of all B-labeled Σ ×Σ′-trees t such that:
(S1) if tin(u) = ⊥ or tout(v) = ⊥ then t(u_v) = ⊥, (S2) if tin(u) = > then
there is exactly one v ∈ (Σ′)|u| such that t(u_v) = > and (S3) if t(u_v) = >
then there is some b ∈ Σ′ such that for all a ∈ Σ with tin(ua) = > we have
t(ua_vb) = > and t(ua_vc) = ⊥ for c ∈ Σ′ \ {b}. Given a tree tin ∈ TC(Σ),
a tree tout ∈ TC(Σ′) and a tree t ∈ tin ↪→ tout, the strategy σ(t) represented
by t is defined as follows. For u ∈ Σ∗ with tin(u) = >, let v be the unique
element from (Σ′)∗ with t(u, v) = > and let a be the unique element from Σ′

with t(ub, va) = > for any b ∈ Σ with tin(ub) = >. Then, σ(t)(u) = a. Moreover,
if tin(u) = ⊥ then σ(t)(u) = a for some a ∈ Σ′.

Notice that in fact for any such t, PrΣ(Lω(t)) = Lω(tin) and PrΣ′(L
ω(t)) ⊆

Lω(tout). Moreover, notice that tin↪→ tout ⊆ TC(Σ ×Σ′).
The key argument for the decidability result for pipelines with backward-

channels is that a system process pi is better informed than any system process
pj with j > i. In particular, a strategy for pi needs only to depend on the input
that it receives from the previous process pi−1 and not on the input received via
backward-channels.

Lemma 4. There is a joint winning strategy σ = (σ1, . . . , σn) for the system
processes if, and only if, there are functions τi : Σ

∗
i−1 → Σpi

out for i = 1, . . . , n
such that any global system behavior which is consistent with τ = (τ1, . . . , τn) is
in the global system specification.

Proof. If there are such functions τi, then we define σi for i = 1, . . . , n by σi(u) =
τi(PrΣi−1)(u)). Obviously, any global system behavior which is consistent with
σ is also consistent with τ and is therefore in the global system specification.
Hence, σ is a joint winning strategy for the system processes.

Now let conversely σ be a joint winning strategy for the system processes.
First we show that, for any 1 ≤ i ≤ n and any u ∈ Σ∗i−1, there is exactly one

v ∈ (Σ≥iout)
|u| such that u_v is consistent with (σi, . . . , σn). We show this, for

any i, by induction on |u|. As u = ε is trivial, let |u| > 0 and let u = u′a for

some a ∈ Σi−1. By induction hypothesis, there is a v′ ∈ (Σ≥iout)
|u′| such that

u′
_
v′ is consistent with (σi, . . . , σn) and we define vj := σj(Pr

Σ
pj
in

(v′)) for j ≥ i.
Obviously, v̂ = vi

_ . . ._ vn ∈ Σ≥iout)
|u| and u_v̂ is consistent with (σi, . . . , σn).

Now let v ∈ (Σ≥iout)
|u| such that u_v is consistent with (σi, . . . , σn). We show

that v = v̂. Notice that u′
_

(v−1) is consistent with (σi, . . . , σn) so, by induction
hypothesis, v−1 = v̂−1. Moreover, as u_v is consistent with (σi, . . . , σn), we

have Pr
Σ

pj
out

(v) = σj(Pr
Σ

pj
in

(v−1)) = σj(Pr
Σ

pj
in

(v̂−1)) = Pr
Σ

pj
out

(v̂) and as Σ≥iout =∏n
j=iΣ

pj
out we have v = v̂.

Now we define the functions τi for i = 1, . . . , n as follows. For u ∈ Σ∗i−1, let

v ∈ (Σ≥iout)
|u| be the unique word such that u_v is consistent with (σi, . . . , σn)

and let τi(u) = σi(u
_PrΣpi

in
(v)). To prove that τ is winning for the system

processes, consider any global system behavior α which is consistent with τ . By
induction on k we show that any finite prefix α↑k of α is consistent with σ.

10

Clearly, α↑0 is consistent with σ, so let k > 0 and let 1 ≤ i ≤ n. As α↑k−1 is
consistent with σ, PrΣi−1

(α↑k−1)_Pr
Σ
≥i
out

(α↑k−1) is consistent with (σi, . . . , σn).

Moreover, since α is consistent with τ , the definition of τi yields PrΣpi
out

(α↑k) =

τi(PrΣi−1(α↑k−1)) = σi(PrΣpi
in

(α↑k−1)) so α↑k is consistent with σi. As i has

been chosen arbitrarily, α↑k is consistent with σ. Therefore, α is consistent with
σ and hence, α is in the global system specification. ut

Due to this observation, the following definition of an extended local strategy
is meaningful. For 1 ≤ i ≤ n, an extended local strategy for process pi is a tuple
σ≥i = (σi, . . . , σn) of functions σj : (Σi−1)∗ → Σ

pj
out, i.e., it takes the local input

history of process pi, ignoring the backward-channels read by pi, and yields the
next output symbol for each process pj with j ≥ i. Such a strategy is called
locally winning on inputs from Lin ⊆ Σω

i−1, if each global system behavior α of
A with PrΣi−1

(α) ∈ Lin which is consistent with σ≥i fulfills Lpi , i.e., PrΣpi (α) ∈
Lpi . The main technical argument how these strategies can be used to decide
the realizability problem for A is given in the following Lemma. We give here
only a rough proof sketch, a full proof can be found in Appendix A.

Lemma 5. For any 1 ≤ i < n there is a parity NTA Ni over B-labeled Σ≥iout-

trees which accepts a tree tout ∈ TC(Σ≥iout) if, and only if, there are a B-labeled
Σi−1-tree tin ∈ TC(Σi−1), a tree t ∈ tin ↪→ tout and strategies σ1, . . . , σi−1 for
processes p1, . . . , pi−1 such that σ(t) is locally winning on Lω(tin) and

– σ1 ◦ PrΣ1
◦ . . . ◦ σi−1 ◦ PrΣi−1

generates a language L ⊆ Lω(tin) over Σω
0

– (σ1, . . . , σi−1, σ(t)) is winning for p1, . . . , pi.

Proof. (Sketch) We prove this by induction on i. We omit the base case i = 1
and consider only the case i > 1. For this, let Ni−1 be a parity NTA over
B-labeled Σ≥i−1

out -trees according to the induction hypothesis. Then there is a

parity NTA N ′i−1 over B-labeled Σi−1 × Σ≥iout-trees which accepts a tree t if,

and only if, wide(t, Σ
b,pi−1

out) ∈ L(Ni−1). Now we construct a parity ATA Ai
over B-labeled Σ≥iout-trees which, roughly, works as follows: Running on a tree

tout, in each step, Ai guesses an output signal b ∈ Σ≥iout and a set ∅ 6= X ⊆
Σi−1 of possible input signals and sends, for each (x, y) ∈ Σi−1 × Σ≥iout, a copy
into direction y. If x ∈ X and y = b, it sends a >-copy, otherwise it sends
a ⊥-copy. Moreover, if Ai encounters a ⊥-symbol in tout when being in a >-
copy (that means, output b should not have been chosen in the previous step
according to tout), it immediately rejects. In this way, Ai guesses a tree tin ∈
TC(Σi−1) and a tree t ∈ tin ↪→ tout. While doing so, Ai simulates N ′i−1 on t
and it simulates a deterministic parity automaton recognizing Lpi on all paths
α ∈ Lω(t). Therefore, Ai accepts iff t ∈ L(N ′i−1) and σ(t) is locally winning
on Lω(tin). Now using the induction hypothesis, one can show that Ai fulfills
all conditions of the lemma. Moreover, there is a parity NTA Ni with L(Ni) =
L(Ai), which concludes the proof. ut

For the last process pn, we need the following Lemma.

11

Lemma 6. There is a parity NPDTA Nn over B-labeled Σn−1×Σpn
out-trees which

accepts a tree t if, and only if, t ∈ tin↪→ tout for some tin ∈ TC(Σn−1) and some
tout ∈ TC(Σpn

out) such that σ(t) is locally winning on Lω(tin).

Proof. We abbreviate Σ = Σn−1 and Σ′ = Σpn
out and we consider a deterministic

PDA S = (QS , Σ × Σ′, ΓS , δS , qS0 ,⊥, colS) with L(S) = Lpn . We define A =
(Q,B, Γ, δ, q0,⊥, col) as follows.

– Q = QS ∪ {qreject, q⊥}
– Γ = ΓS

– col(q) = colS(q) for all q ∈ QS

– col(qreject) = 1 and col(q⊥) = 0

– q0 = qS0
– for q ∈ QS and A ∈ Γ with δS(q, ε, A) 6= ∅,

δ(q,>, A) = (ε, δ
S(q, ε, A))

– for q ∈ QS and A ∈ Γ with δS(q, ε, A) = ∅,

δ(q,>, A) =
∨

[∅6=X⊆Σ]

∨
[a∈Σ′]

∧
[(x,y)∈Σ×Σ′]

(↓(x,y), (qxy, γxy))

where (qxy, γxy) =

{
δS(q, (x, y), A) if (x, y) ∈ X × {a}
(q⊥, A) else

– for A ∈ Γ , δ(q⊥,⊥, A) =
∧

[(x,y)∈Σ×Σ′](↓(x,y), q⊥, A)

– for A ∈ Γ , δ(q⊥,>, A) =
∧

[(x,y)∈Σ×Σ′](↓(x,y), qreject, A)

– for q ∈ QS and A ∈ Γ ,
δ((q,>),⊥, A) = δ((q,⊥),>, A) =

∧
[(x,y)∈Σ×Σ′](↓(x,y), qreject, A)

– for (ζ, ζ ′) ∈ B2 and A ∈ Γ ,
δ((qreject, ζ), ζ ′) =

∧
[(x,y)∈Σ×Σ′](↓(x,y), qreject, A)

For the correctness of the automaton, we give here only the idea: A guesses
a strategy σ : Σ∗ → Σ′ and checks, whether this strategy is represented by
t, i.e., σ(t) = σ. For this, being in a node u_v ∈ (Σ × Σ′)∗, A guesses the
answer a of σ to the input sequence u and it also guesses a subset X ⊆ Σ′ of
possible input signals which it may receive in the next step. Then the elements
from X × {a} are exactly the signals which may occur in the next step, so
precisely those successors of u_v should be labeled > and the automaton checks
this, by sending a corresponding copy of the specification automaton S to those
successors and a distinguished state q⊥ to all other successors. ut

Now by applying a widening argument for Σ
b,pn−1

out , similar as in the proof
of Lemma 5, one obtains an automaton N ′n−1 from Nn−1 and there is a parity
NPDTA N recognizing the intersection of L(N ′n−1) and L(Nn), where Nn is the
parity NPDTA obtained from Lemma 6. Then one can show that (Lp1

, . . . , Lpn)
is realizable in A if, and only if, L(N) 6= ∅ and as nonemptiness of L(N) is
decidable, the decidability result is established.

12

Theorem 7. The realizability problem for A is decidable if Lp1
, . . . , Lpn−1

are
regular and Lpn is regular or deterministic contextfree.

Proof. First, if n = 1, the theorem follows easily from Lemma 6. So let n >
1 and let Nn−1 be the parity NTA over B-labeled Σ≥n−1

out -trees according to

Lemma 5. Then there is a parity ATA A′n−1 over B-labeled Σn−1 × Σ≥nout-trees

which accepts a tree t if, and only if, wide(t, Σ
b,pn−1

out) ∈ L(Nn−1). Furthermore,
A′n−1 can be transformed into an equivalent parity NTA N ′n−1. Moreover, let
Nn be the parity NPDTA over B-labeled Σn−1×Σpn

out-trees according to Lemma
6. Then there is a parity NPDTA N over B-labeled Σn−1×Σpn

out-trees such that
L(N) = L(N ′n−1) ∩ L(Nn) 6= ∅. Now we prove that Lp1

, . . . , Lpn are realizable
in A if L(N) 6= ∅. The converse direction can be proved using similar ideas. As
emptiness of L(N) is decidable, the theorem follows.

So, let t ∈ L(N). As t ∈ L(Nn), t ∈ tin↪→ tout for some tin ∈ TC(Σn−1) and
some tout ∈ TC(Σpn

out) such that σ(t) is locally winning on Lω(tin). Moreover,

as t ∈ L(N ′n−1), sout = wide(t, Σ
b,pn−1

out) ∈ L(Nn−1) that means, there are a
B-labeled Σn−2-tree sin, a tree s ∈ sin ↪→ sout and strategies σ1, . . . , σn−2 for
processes p1, . . . , pn−2 such that σ1◦PrΣ1◦. . .◦σn−2◦PrΣn−2 generates a language
L ⊆ Lω(sin) over Σω

0 and (σ1, . . . , σn−2, σ(s)) is winning for p1, . . . , pn−1.

We denote σ(s) = (σn−1, τn) and σ(t) = σn. It is easy to show that the
language generated by σ1 ◦ PrΣ1 ◦ . . . ◦ σn−2 ◦ PrΣn−2 ◦ σn−1 ◦ PrΣn−1 over Σω

0

is a subset of Lω(tin) = LωΣn−1
(t).

Now we show that σn(ε) = τn(ε) and σn(PrΣn−1(σ∗n−1(u−1))) = τn(u) for
all u ∈ L∗(sin) = L∗Σn−2

(s) ⊆ Σ∗n−2 with |u| ≥ 1. First, by definition of σ(s),

for all a ∈ Σn−2 with sin(a) = > we have s((a, σ(s)(ε))) = > which, by defini-

tion of sin↪→ sout, implies sout(σ(s)(ε)) = >. Since sout = wide(t, Σ
b,pn−1

out) this
yields t(Pr

Σn−1×Σ≥n
out

(σ(s)(ε))) = > so, by definition of σ(t), σn(ε) = σ(t)(ε) =

Pr
Σ
≥n
out

(σ(s)(ε)) = τn(ε). Now let u ∈ L∗Σn−2
(s) with |u| ≥ 1, that means, there

is some v ∈ (Σ≥n−1
out)|u| with s(u_v) = >. By definition of σ(s) we have v

= σ(s)∗(u−1) and, for all a ∈ Σn−2 with sin(ua) = >, s(ua_vσ(s)(u)) =
> which, by definition of sin ↪→ sout, implies sout(vσ(s)(u)) = >. This yields
t(Pr

Σn−1×Σ≥n
out

(vσ(s)(u))) => and as PrΣn−1
(σ∗n−1(u−1)) = PrΣn−1

(σ(s)∗(u−1)),

by definition of σ(t), σn(PrΣn−1(σ∗n−1(u−1))) = σ(t)(PrΣn−1(σ(s)∗(u−1))) =
σ(t)(PrΣn−1

(v)) = Pr
Σ
≥n
out

(σ(s)(u)) = τn(u).

It remains to prove that (σ1, . . . , σn−2, σn−1, σ(t)) is winning for p1, . . . , pn.
By Lemma 5, (σ1, . . . , σn−2, σ(s)) is winning for p1, . . . , pn−1. Moreover, the
language generated by σ1 ◦ PrΣ1 ◦ . . . ◦ σn−2 ◦ PrΣn−2 ◦ σn−1 ◦ PrΣn−1 over Σω

0

is a subset of Lω(tin) and σn is locally winning on Lω(tin). Furthermore, as we
have shown above, τn(ε) = σn(ε) and τn(u) = σn(PrΣn−1

(σ∗n−1(u−1))) for all
u ∈ L∗(sin) with |u| ≥ 1. Now, if α is some global system behavior which is
consistent with (σ1, . . . , σn−2, σn−1, σn) then this shows that α is also consistent
with (σ1, . . . , σn−2, σn−1, τn), so all specifications Lp1 , . . . , Lpn−1 are satisfied and
as σn is locally winning on Lω(tin), Lpn is satisfied as well. ut

13

Two-Flanked Pipelines with Backward-Channels. Let A = (P,C, r) be a
two-flanked pipeline with backward-channels, let (Σc)c∈C be a labeling of A and
let Lp1 , . . . , Lpn be regular local specifications for the system processes.

First we consider the case where there are no backward-channels from the
last process. The main idea and the constructions are essentially the same as
for the case of pipelines with backward-channels. Clearly, the construction has
to be adapted to account for the fact, that processes pi for i < n can determine
the decisions of all processes pj with i ≤ j < n, but not those of process pn, as
a strategy for process pn depends not only on the input from pn−1 but also on a
part of the input from the environment. However, since these decisions are not
relevant for the satisfaction of the local specification of pi, it is not necessary
that process pi makes those decision.

Lemma 4 and the definition of an extended local strategy have to be adapted
as follows.

Lemma 8. There is a joint winning strategy σ = (σ1, . . . , σn) for the system
processes if, and only if, there are functions τi : Σ∗i−1 → Σpi

out for i = 1, . . . , n−1
and a local strategy τn for process pn such that any global system behavior which
is consistent with (τ1, . . . , τn) is in the global system specification.

So, an extended local strategy for pi is now a tuple σ≥i = (σi, . . . , σn−1) of
functions σj : (Σi−1)∗ → Σ

pj
out.

Such a strategy is called locally winning on a language Lin ⊆ (Σi−1)ω if
any global system behavior α with PrΣi−1

(α) ∈ Lin which is consistent with
(σi, . . . , σn−1) fulfills PrΣpi (α) ∈ Lpi . Moreover, if σ≥i = (σi, . . . , σn−1) is an
extended local strategy for process pi and σ1, . . . , σi−1 are strategies for processes
1, . . . , i− 1, then (σ1, . . . , σi−1, σ≥i) is called winning for processes p1, . . . , pi, if
any global system behavior α which is consistent with (σ1, . . . , σi−1, σ≥i) fulfills
PrΣpj (α) ∈ Lpj for j = 1, . . . , i.

The accumulated output alphabets are now defined by Σ≥iout :=
∏n−1
j=i Σ

pj
out.

Moreover, due to the additional input channel from the environment, we define
Σ01 :=

∏
c∈C0,r(c)=p1

Σc and Σ0n :=
∏
c∈C0,r(c)=pn

Σc. The alphabets Σi for

i = 1, . . . , n− 1 and Σb,pi
out for i = 1, . . . , n are defined as before.

Now Lemma 5 holds just as before with the new definition ofΣ≥iout and the new
notion of an extended local strategy. Lemma 6 however, has to be reformulated
as follows.

Lemma 9. There is a parity NPDTA Nn over B-labelled Σn−1-trees which ac-
cepts a tree tin ∈ TC(Σn−1) if, and only if, there is a local strategy for process
pn which is locally winning on {α_β |α ∈ Lω(tin), β ∈ Σω

0n}.

Proof. We abbreviate Σ := Σ0n and Σ′ := Σpn
out. Let S = (QS , ΣS , δS , qS0 , colS)

be a deterministic parity automaton such that L(S) = Lpn . We define the alter-
nating parity ATA A = (Q,B, δ, q0, col) as follows.

– Q = (QS ∪ {qaccept})× [Σε ×Σ′ε]
– q0 = (qS0 , [ε, ε])

14

– col(q, [a2, a3]) = col(q) for all (q, a) ∈ (QS × ([Σε ×Σ′ε]) and col(qaccept) = 0

– for (q, [a2, a3]) ∈ QS × [Σε ×Σ′ε]

δ((q, [a2, a3]),>) =
∨

[b3∈Σ′]

∧
[(b1,b2)∈Σn−1×Σ]

(↓b1 , (δS(q, (b1, b2, b3)), [b2, b3]))

– for (q, [a2, a3]) ∈ Q,

δ((q, [a2, a3]),⊥) =
∨

[b3∈Σ′]

∧
[(b1,b2)∈Σn−1×Σ]

(↓b1 , (qaccept, [b2, b3]))

ut

Now Lemma 5 holds just as before with the new definition ofΣ≥iout and the new
notion of an extended local strategy. Lemma 6 however, has to be reformulated.

Lemma 10. There is a parity NTA Nn over B-labeled Σn−1-trees which accepts
a tree tin ∈ TC(Σn−1) if, and only if, there is a local strategy for process pn which
is locally winning on {α ∈ (Σpn

in)ω |PrΣn−1
(α) ∈ Lω(tin)}.

Theorem 11. The realizability problem for regular local specifications is decid-
able for A if there is no backward-channel from the last process pn.

Now we prove decidability for the case n = 2, where we also have backward-
channels from the last process, so let P = {p0, p1, p2}, let Γi =

∏
c∈C0,r(c)=pi

Σc,

Σ1 =
∏
c∈C1,r(c)=p2

Σc and Σ2 analogous. For convenience, we omit the external
output channels of p1 and p2, it is straightforward how to account for these
channels in the proof given below, if they are present.

For the proof, we extend the B-labeled trees as here, ω-languages over Σ =
Σ1 × Σ2 are represented, but we want to maintain access to the components.
A B2-labeled Σ-tree t represents the language Lω(t) ⊆ Σω with α ∈ Lω(t) if,
and only if, for each finite prefix w of α we have t(w) = (>,>). However, more
information is stored in such a tree: the components PrΣi(α) may depend on
each other which is expressed in the inidividual components of the B-tuples.
If t(u_v) = (>,⊥), then this tells us that v↑|v|−1 may be answered by u but
u↑|u|−1 may not be answered by v, analogous for t(u_v) = (⊥,>). Clearly this
is different from just saying that u_v will not occur.

Of course, any such tree t which in fact represents a joint output language
of p1 and p2 has properties analogous to the properties (C1) - (C3) of the com-
munication trees TC(Σ). However, as we don’t need those properties in the
decidability proof, we do not require them explicitly.

Theorem 12. The realizability problem for regular local specifications is decid-
able for any two-flanked pipeline with backward-channels and n = 2.

Proof. We construct two parity ATA A1 and A2 over B2-labeled Σ-trees which,
roughly, work as follows. When running on a tree t, at each step, A1 guesses an
output signal b ∈ Σ1 and sends, for any possible input signal (x, y) ∈ Γ1×Σ2, a

15

copy into direction (b, y). If the corresponding node is labeled with ⊥ in the Σ1-
component (that means, output b should not be chosen in this situation according
to t), thenA1 rejects immediately and if it is labeled with ⊥ in the Σ2-component
(that means, input y will not occur in the next step according to t), A1 goes
into a special accepting state. This way, A1 guesses a local strategy for p1 on all
inputs from Γ1 and those inputs from Σ2 which it may receive according to the
intended joint strategy for p1 and p2. Moreover, on all paths which are consistent
with this strategy, it simulates a deterministic parity automaton, recognizing the
local specification Lp1 . The automaton A2 works analogously and thus one can
show that L(A1) ∩ L(A2) 6= ∅ iff a joint winning strategy for p1 and p2 exists.

To be more formal, consider parity automata Si = (QSi , Σpi , δSi , qSi0 , colSi)
with L(Si) = Lpi for i = 1, 2. We construct the alternating parity tree automata
Ai = (Qi,B2, δi, qi0, coli) i = 1, 2 over B2-labeled Σ1 × Σ2-trees as follows. We
only describe A1 = (Q,B2, δ, q0, col) using S1 = (QS , Σp1

, δS , qS0 , colS), A2 is
defined completely analogously.

– Q = (QS] {qaccept, qreject})× (Γ1)ε

– q0 = (qS0 , ε)

– col(q, a1) = colS(q) for (q, a1) ∈ QS × (Γ1)ε

– col((qaccept, a1)) = 0 and col((qreject, a1)) = 1 for all a1 ∈ (Γ1)ε

– for (q, a1) ∈ QS × (Γ1)ε,

δ((q, a1), (>,>)) =
∨

[b3∈Σ1]

∧
[(b1,b2)∈Γ1×Σ2]

(↓(b3,b2), (δ
S(q, (b1, b2, b3)), b1))

– for (q, a1) ∈ QS × (Γ1)ε and ζ2 ∈ B,
δ((q, a1), (⊥, ζ2)) =

∨
[b3∈Σ1]

∧
[(b1,b2)∈Γ1×Σ2](↓(b3,b2), (qreject, b1))

– for a1 ∈ (Γ1)ε and (ζ1, ζ2) ∈ B2,
δ((qreject, a1), (ζ1, ζ2)) =

∨
[b3∈Σ1]

∧
[(b1,b2)∈Γ1×Σ2](↓(b3,b2), (qreject, b1))

– for (q, a1) ∈ QS × (Γ1)ε,
δ((q, a1), (>,⊥)) =

∨
[b3∈Σ1]

∧
[(b1,b2)∈Γ1×Σ2](↓(b3,b2), (qaccept, b1))

– for (ζ1, ζ2) ∈ B and a1 ∈ (Γ1)ε,
δ((qaccept, a1), (ζ1, ζ2)) =

∨
[b3∈Σ1]

∧
[(b1,b2)∈Γ1×Σ2](↓(b3,b2), (qaccept, b1))

Now we claim that L(A1)∩L(A2) 6= ∅ if, and only if, there is a joint winning
strategy σ = (σ1, σ2) for p1 and p2. To prove this, first let t ∈ L(A1) ∩ L(A2).
Moreover, for i = 1, 2, let ρi : T i → (Σ1×Σ2)∗×Qi with T i ⊆ N∗ be a run of Ai
on t. We define the strategy σ1 according to ρ1 as follows. Using the definition
of A1 an easy induction on k yields that, for any α1↑k_α2↑k ∈ (Γ1 ×Σ2)∗, the
following holds. There is exactly one vertex x in ρ1 such that the unique path
from the root of ρ1 to x is labeled with α1↑k_α2↑k in the Γ1 ×Σ2-components
and there is some b3 ∈ Σ1 such that any successor of x in ρ1 is labeled with b3

16

in the Σ1-component. Now we define σ1(α1↑k_α2↑k) = b3. The strategy σ2 is
defined completely analogously, using the run ρ2.

Now let α = α1
_α2

_α3
_α4 ∈ (Γ1 × Γ2 × Σ1 × Σ2)ω be a global system

behavior which is conistent with the joint strategy σ = (σ1, σ2). First, as above,
there is exactly one path π1 in ρ1 which is labeled with α1

_α4 in the Γ1 ×Σ2-
components and there is exactly one path π2 in ρ2 which is labeled with α2

_α3

in the Γ2 × Σ1-components. Now as α is consistent with σ, β1 := α1
_α4

_α3

is consistent with σ1 and β2 := α2
_α3

_α4 is consistent with σ2. Therefore, by
definition of σ1 and σ2, the path π1 is labeled with α3 in the Σ1-component
and the path π2 is labeled with α4 in the Σ2-component. So the path which
corresponds to π1 in the tree t is π = α3

_α4 and the path which corresponds
to π2 in the tree t is π as well. As both ρ1 and ρ2 are accepting, each node on π
is labeled with (>,>).

Now by construction of A1, this yields, that only states from QS1 occur in the
Q1-component of π1 and the infinite sequence ρS = (qj)j∈N ∈ (QS1)ω of states
of S1 constitutes a run of S1 on the ω-word from (Σp1)ω which is obtained from
the corresponding components of the labels of π1. Now this ω-word is presicely
β1 and since ρ1 is accepting, so is ρS . Hence, β1 ∈ Lp1 and in the same way we
obtain β2 ∈ Lp2

.
Now let conversely σ = (σ1, σ2) be a joint strategy for p1 and p2. We define

the tree t : (Σ1×Σ2)→ B2 as follows. For u_v ∈ (Σ1×Σ2)∗ let t(u_v) = (>, ζ)

if, and only if, there is some w ∈ Γ |u|1 such that w_v_u is consistent with σ1 and

let t(u_v) = (ζ,>) if, and only if, there is some w ∈ Γ |v|2 such that w_u_v is
consistent with σ2. Now we define the run ρ1 : T 1 → (Σ1×Σ2)∗×Q1 inductively
such that, for all x ∈ T 1, the unique path π from the root of ρ1 to x is labeled
with elements from (QS1 ∪{qaccept})×Γ ε1 in the Q1-components and w_v_u ∈
(Γ1 × Σ2 × Σ1)∗ is consistent with σ1, where (u, v) = Pr(Σ1×Σ2)∗(ρ1(x)) and

w ∈ Γ |u|1 is the labeling of π in the Γ1-components (of the Q1-components). The
run ρ2 is constructed completely analogously.

First, ε ∈ T 1 and ρ1(ε) = (ε, q1
0). Now let T 1∩Nm and the values of ρ1 on this

set be defined for some natural number m such that the conditions formulated
above are fulfilled. Consider some x ∈ T 1 ∩ Nm, let ρ1(x) = (u_v, (q, a)) for
some u_v ∈ (Σ1 × Σ2)m and some (q, a) ∈ Q1 and let t(u_v) = (ζ1, ζ2) for
some ζ1, ζ2 ∈ B. Moreover, let σ1(w_v) = b3 ∈ Σ1, where w ∈ Γm1 is the
labeling of the unique path π from the root of ρ1 to x in the Γ1-components (of
the Q1-components). By definition of A1, in δ(((q, a), (ζ1, ζ2)) there is a conjunct∧

[(b1,b2)∈Γ1×Σ2](↓(b3,b2), (q
(b1,b2), b1)) and we define the set of successors of x in

T 1 as {x · i | i = 1, . . . , r}, where Γ1 × Σ2 = {(b11, b12), . . . , (br1, b
r
2)}. Moreover,

ρ1(x · i) = ((u · b3)_(v · b2), (q(bi1,b
i
2), b1)) for i = 1, . . . , r.

Now we prove that, for i = 1, . . . , r, the node x · i fulfills the conditions for-
mulated above. So let i ∈ {1, . . . , r} and denote (bi1, b

i
2) = (b1, b2). As w_v_u is

consistent with σ1, by definition of b3, (w · b1)_(v · b2)_(u · b3) is also consistent
with σ1. For the proof that q(b1,b2) 6= qreject, first notice that q 6= qreject. More-
over, as w_v_u is consistent with σ1, by definition of t we have t(u_v) = (>, ζ)
for some ζ ∈ B, that means, ζ1 6= ⊥. Now we consider the remaining two cases. If

17

q ∈ QS1 and ζ1 = ζ2 = >, then q(b1,b2) = δS1(q, (b1, b2, b3)) ∈ QS1 . If q = qaccept
or q ∈ QS1 and additionally ζ1 = > and ζ2 = ⊥ then q′ = qaccept for i = 1, . . . , r.

Obviously, by construction, ρ1 is a run of A1 on t. To prove that ρ1 is
accepting, let π1 be some infinite path through ρ1. Then, by construction of
ρ1, α1↑k_α4↑k_α3↑k is consistent with σ1 for all k ∈ N, where α1

_α4
_α3 ∈

(Γ1 ×Σ2 ×Σ1)ω is the labeling of π1 in the Γ1 ×Σ2 ×Σ1-components. Hence,
α1

_α4
_α3 is consistent with σ1.

Now first, by construction of ρ1, we have PrQ1(π1↑k) ∈ (QS1∪{qaccept})×Γ ε1 .
Moreover, if PrQ1(π1↑k) ∈ {qaccept}×Γ ε1 for some k ∈ N, then π1 is accepting, so
assume that Pr(Q1)(π1↑k) ∈ QS1×Γ ε1 for all k ∈ N. Then t(α3↑k_α4↑k) = (>,>)
for all k ∈ N so by construction of t, for all k ∈ N, there is some w ∈ Γ ∗2 such
that w_α3↑k_α4↑k is consistent with σ2. Therefore, by König’s Lemma, there is
some α2 ∈ Γω2 such that α2

_α3
_α4 is consistent with σ2 and as α1

_α4
_α3 is

consistent with σ1, α = α1
_α2

_α3
_α4 is consistent with σ. Since σ is winning,

α1
_α4

_α3 ∈ Lp1 , so the unique run of S1 on α1
_α4

_α3 is accepting. As, by
the definition of A1, this run coincides with the labeling in the QS1-components
of π1, the path π1 is accepting. As π1 was chosen arbitrarily, ρ1 is accepting.
Completely analogously, one shows that ρ2 is an accepting run of A2 on t. Hence,
t ∈ L(A1) ∩ L(A2). ut

4.2 Undecidability

First, if there are at least two connected processes which may have a determin-
istic 1-counter specification, then those two processes can directly simulate a
2-register machine. As the halting problem for such machines is undecidable, we
obtain the following result.

Theorem 13. The realizability problem is undecidable for any connected archi-
tecture with at least two local deterministic 1-counter specifications.

Proof. We proceed by a reduction from the halting problem for 2-register ma-
chines. For this, let R be a 2-register machine consisting of a sequence I0, . . .,
Ik−1, Ik = stop of instructions Ij ∈ {inc(Ri), dec(Ri), if Ri = 0 goto l | i ∈
[2], l ∈ [k]} with the usual decrease and increase operations.

Let pi0 , . . . , pim be processes such that pi0 and pim have pushdown specifica-
tions and such that, for all j ∈ [m], pij sends information to pij+1 or vice versa.
Moreover, we choose a set channels Cm = {cj |j ∈ [m]} such that, for all j ∈ [m],
cj ∈ Cpj and r(cj) = pj+1 or vice versa. We define Σc = [k] for all c ∈ Cm and
we silence all other channels c /∈ Cm by defining Σc = {]}.

For a process pj with 0 < j < m we define Lpj = {α ∈ Σpj
in ×Σ

pj
out|PrΣcj

(α) =

PrΣcj+1
(α)}. So, if the processes have a joint winning strategy, the information

sent via c0 and cm has to be identical in each step.
The specifications Lpi0 and Lpim are given by deterministic 1-counter au-

tomata which recognize them. We define P0 = (Q,Σ, {A}, qin, δ,⊥, col) as fol-
lows, where we consider only the component from Σc0 . Q = {qi | i ∈ [k]} ∪
{qbelieve, qaccept, qreject}, qin = q0, Σ = [k] and col(q) = 1 for all q ∈ Q\{qaccept}

18

and col(qaccept) = 0. We define the transition function δ by a case distinction.
For any i ∈ [k]

– if Ii ∈ {inc(R1), dec(R1)}, δ(qi, i, Z) = δ(qbelieve, i, Z) = (qi+1, Z)
– if Ii = if R1 = 0 goto l, δ(qi, i, Z) = δ(qbelieve, i, Z) = (qbelieve, Z)
– if Ii = inc(R0), δ(qi, i, Z) = δ(qbelieve, i, Z) = (qi+1, AZ)
– if Ii = dec(R0), δ(qi, i, Z) = δ(qbelieve, i, Z) = (qi+1, ε)
– if Ii = if R0 = 0 goto l,
δ(qi, i, A) = δ(qbelieve, i, A) = (qi+1, A) and
δ(qi, i,⊥) = δ(qbelieve, i,⊥) = (ql,⊥)

– if Ii = stop, δ(qi, i, Z) = δ(qbelieve, i, Z) = (qaccept, Z)
– δ(qi, j, Z) = (qreject, Z) if j 6= i
– δ(q, i, Z) = (q, Z) for q ∈ {qaccept, qreject}

The automaton P1 is defined in a completely analogous way with registers R0

and R1 swapped. Then obviously a sequence γ ∈ Qω is in L(P0)∩L(P1) if, and
only if, the run of R which is uniquely determined by this sequence of states
(and the empty registers at the beginning) is finite. ut

The next result restricts the decidable architectures which may have one
deterministic 1-counter specification.

Theorem 14. The realizability problem is undecidable for any architecture with
two connected processes p 6= p′ such that p is reachable and has a deterministic
1-counter specification and p′ is not better informed than p.

Proof. We proceed by a reduction from the halting problem for 2-register ma-
chines. For this, let R be a 2-register machine as in the proof of Theorem 13.

First, we show the result for an architecture consisting only of the two system
processes p, p′ where penv sends information to p via some channel c0 ∈ Cpenv

and p and p′ communicate via some channel c1. Moreover, p′ has some channel
c2 ∈ Cp′ which may be c1 or, in case c1 ∈ Cp, c2 6= c1. Roughly, the local
specification of p′ requires that p′ writes a sequence of configurations of R and
that its output symbol equals the input symbol that it receives from p in each
step. Notice that those symbols have to be chosen simultaneously. In each step,
the environment may trigger the 1-counter automaton recognizing Lp to check
whether the next two configurations are in the successor relation w.r.t. one of
the registers. For this, the environment has two special symbols sj for j ∈ {1, 2}
where j determines which of the registers should be checked. Obviously, the
system processes have a joint winning strategy iff R does not halt.

To be more formal, we start by defining the alphabets for the channels as
Σc0 = {], 0, 1} and Σc1 = Σc2 = [k] ∪ {A0, A1} and we define Lp′ = {α ∈
(Σp′)ω|PrΣc1

(α) = PrΣc2
(α)} and Lp = {α ∈ (Σp)ω|Pr(Σc0×Σc1)(α) ∈ L} where

L ⊆ Σc0 ×Σc1 is the deterministic 1-counter language defined as follows.
α = α_0 α1 ∈ L if, and only if either α0 =]ω and α1 does not contain the

symbol k − 1 or the following conditions hold.

19

– α1 has the form C0C1 . . . where Ci ∈ [k] ·{A0}∗ ·{A1}∗ for each i and C0 = 0,
that is, Ci represents a configuration of R and C0 represents the initial
configuration with empty registers. Moreover, for any i ∈ N, if Ci = λAx0

0 Ax1
1

then λ 6= k − 1.
– α0 has the form]i−1sβ with β ∈ Σω

c0 and for the smallest j ≥ i such
that α1(j) ∈ [k] the following holds. If α1 = α1 ↑j CxCyβ where Cx =
λxA

x0
0 Ax1

1 , Cy = λyA
y0

0 A
y1

1 and β ∈ Σω
c1 and Cz = λzA

z0
0 A

z1
1 is the successor

configuration of Cx, then λy = λz and Ayss = Azss

If R does not halt if started with initially empty registers then p and p′

have the following joint winning strategy. They write an infinite sequence of
configurations of R into c1 and c2 simultaneously which represents the run of
R. Obviously, both local specifications will be fulfilled.

If, on the other hand, R halts if started with empty registers, then let σ be
any joint strategy of p and p′. First, the same information has to be written to
c1 and c2 in each step.

To see how the environment can spoil σ, let α1
_α2 ∈ (Σc1 × Σc2)ω be

the word produced by σ when p receives input α0 =]ω from the environment
and let α1 = α2 = C0C1 . . . ∈ Σω

c1 . If α0
_α1 /∈ L, then σ is not a winning

strategy, so assume α0
_α1 ∈ L. Since R halts if started with empty registers,

α1 cannot be the run of R on initially empty registers. Let i be minimal, such
that Ci 6` Ci+1 = λAx0

0 Ax1
1 and let C = γAy0

0 A
y1

1 be the successor configuration
of Ci (notice that since α0

_α1 ∈ L, α1 does not contain the symbol k − 1, so
Ci is not the halting configuration). If x0 6= y0, define s = 0, if x1 6= y1, define
s = 1 and if λ 6= γ define s arbitrary. Now let α1

_α2 ∈ (Σc1×Σc2)ω be the word
produced by σ when p receives input α0 =]|C0...Ci−1|s]ω from the environment.
Obviously, α2(0) = α2(0) which implies α1(0) = α1(0), so α2(1) = α2(1), thus
α1(1) = α1(1) and so on, hence α2 = α2 and α1 = α1. Since α0

_α1 is consistent
with σ and α0

_α1 = α0
_α1 /∈ L, σ is not a winning strategy.

To extend the proof to the general case, we simulate the communication
between p and p′ as above using a sequence of channels connecting p and p′.
Furthermore, the signal s from the environment can be transmitted to p via the
(directed) path from penv to p. Notice that the signal s will arrive at p with a
delay (which depends only on the given architecture), so we have to adapt the
specifications to postpone the starting point of the production of a sequence of
configurations by p and p′ so that penv will be able to denounce already the
first two configurations. Moreover, although the set of channels used for this
transmission is, in general, not disjoint from the set of channels connecting p
and p′, by a simple adaption of the alphabets and specifications, the different
information can be sent along the same channels. Finally, since p′ is not better
informed than p, the signal s can be kept away from p′. ut

Notice that to apply the automata constructions from the decidability proofs
of Section 4.1 to an architecture as in Theorem 14, one has to construct alternat-
ing pushdown tree automata since the process with the pushdown specification
is not the one with the lowest level of information. However, nonemptiness of
alternating pushdown tree automata is not decidable.

20

The remaining two results concern regular local specifications and we just
state them here without giving proofs. Essentially, those results can be proved
by combining and refining ideas from [14], [5] and [11]. Some details can be found
in Appendix B.

Theorem 15. The realizability problem for regular local specifications is un-
decidable for any architecture with a reachable process p1 such that p1 sends
information to processes p2 6= p3 which are not better informed than p1.

Theorem 16. The realizability problem for regular local specifications is unde-
cidable for any architecture with at least two incomparably informed processes p1

and p2 which are both reachable such that there is a process p3 /∈ {p1, p2} which
is reachable from both p1 and p2.

5 Characterization

Now we characterize the exact classes of architectures which are decidable for
local regular specifications and, for each such decidable class, we determine the
exact set of processes which may have a deterministic contextfree specification
such that decidability still holds. Notice that an architecture which is already
undecidable for regular local specifications is clearly undecidable if we addition-
ally allow deterministic contextfree specifications. Since for local specifications
the realizability problem for some architecture is decidable if, and only if, it is
decidable for every connected subarchitecture, w.l.o.g. we restrict our attention
to connected architectures. We also note that in the case of local specifications
the hidden channels of the environment are futile.

In the following, we denote the class of all pipelines with backward-channels
by K1 and the class of all two-flanked pipelines with backward-channels which
have either only two system processes or which do not have a backward-channel
from the last process by K2. Moreover, for an architecture A, M(A) denotes the
set of all system processes of A which are not reachable. Notice that Psys \M(A)
induces a subarchitecture of A.

Theorem 17. Let A = (PA, CA, rA) be a connected architecture. Then A is
decidable for regular local specifications if, and only if, any connected subarchi-
tecture of A(PA

sys \ M(A)) is in K1 ∪ K2. Moreover, A remains decidable for
deterministic contextfree specifications if, and only if, one of the following con-
ditions hold.

(1) A ∈ K1 and Lp1
, . . . , Lpn−1

are regular.
(2) There is a p ∈M(A) such that Lp′ is regular for all p′ ∈ PA

sys \ {p}.

Proof. We prove here only that A is decidable, if any connected subarchitecture
of A(PA

sys \M(A)) is in K1 ∪ K2 (see Figure 2) and there is a p ∈ M(A) such
that Lp′ is regular for all p′ ∈ Psys \ {p}. For this, we define M := M(A) and
CM :=

⋃
p∈M Cp and we consider some labeling (Σc)c∈C of A.

21

First, let L̃p = {α ∈ Σω
M |PrΣp(α) ∈ Lp} for p ∈M and let L̃M =

⋂
p∈M L̃p.

Then αM ∈ L̃M iff there is a joint strategy σM = (σp)p∈M for the processes in M
such that any global system behavior β of A which is consistent with σM fulfills
all local specifications of the processes in M and PrΣM

(β) = αM . Moreover, as
at most one specification Lp for p ∈M is deterministic contextfree and all others

are regular, L̃M is deterministic contextfree.
Now consider any connected subarchitecture B = (P,C, r) of A(Psys \M)

and let CM→B = CM ∩ (rA)−1(P). As all specifications Lp for p ∈ PA
sys \M

are regular, it suffices to consider the case where B is a two-flanked pipeline
with backward-channels and here, we only consider the case where B has no
backward-channel from the last process. We define the architecture B̂ = (P, Ĉ, r̂)
as follows.

The channels from M to P are simulated by new channels CM→B ⊆ Ĉ of
process pn−1, via which pn−1 sends information to the respective receipients of
the original channels. Moreover, pn−1 has a set of duplicate channels CdM→B

which are read by process pn and the specification L̂pn−1
requires that the in-

formation sent along the channels CM→B is the same as the information sent
along the channels CdM→B. Apart from this requirement, the specifications of

the processes are just as before, i.e, L̂pi = Lpi for i = 1, . . . , n − 2, L̂pn is Lpn ,

adapted to the new channels (on which L̂pn does not impose any conditions) and

L̂pn−1
is Lpn−1

together with the additional requirement described above. For

i = 1, . . . , n−1, by Σ̂i we denote the alphabet which labels all the channels from
process pi to process pi+1 in the new architecture B̂ (notice that this labeling is

uniquely determined by the definition of B̂).

Now let Nn−1 be the parity NTA over B-labeled Σ̂≥n−1
out -trees according to

Lemma 5, applied to B̂. Then there is a parity NTA N ′n−1 over B-labeled Σ̂n−1-

trees which accepts a tree t iff wide(t, Σ̂
b,pn−1

out) ∈ L(Nn−1). Moreover, let Nn
be the parity NTA over B-labeled Σ̂n−1-trees according to Lemma 10, applied

to B̂. Then there is a parity NTA NB over B-labeled Σ̂n−1-trees such that
L(NB) = L(N ′n−1) ∩ L(Nn). Furthermore, we construct an alternating parity

automaton AB = (Q,Σp̄
M,d, δ, q0, col) such that µ ∈ L(AB) iff there is a tree

t ∈ TC(Σ̂n−1) such that PrΣd
M→B

(Lω(t)) = {µ} and t ∈ L(NB).

– Q = QN × B× (Σ̂n−1)ε
– q0 = (qN0 ,>, ε)
– col(q, ζ, b) = col(q) for all q ∈ QN , all ζ ∈ B and all b ∈ (Σ̂n−1)ε
– for (q,>, a1) ∈ Q and b1 ∈ Σp̄

M,d

δ((q,>, a1), b1) =
∨

[∅6=X⊆Σ̂n−1]

∨
[φ∈δN (q,>)]

∧
[a2∈Σ̂n−1]

(↓a2
, q(X,φ,a2,b1))

where

q(X,φ,a2,b1) =

{
(p,>, a2) if a2 ∈ X and PrΣp̄

M,d
(a2) = b1 and (↓a2

, p) ∈ φ
(p,⊥, a2) if (a2 /∈ X or PrΣp̄

M,d
(a2) 6= b1) and (↓a2

, p) ∈ φ

22

– for (q,⊥, a1) ∈ Q and b1 ∈ Σp̄
M,d

δ((q,⊥, a1), b1) =
∨

[φ∈δN (q,>)]

∧
[a2∈Σ̂n−1]

(↓a2
, q(φ,a2))

where q(φ,a2) = (p,⊥, a2) if (↓a2
, p) ∈ φ

Now consider some µ ∈ L(AB), that means, there is a tree t ∈ TC(Σ̂n−1)
such that PrΣd

M→B
(Lω(t)) = {µ} and t ∈ L(NB). As t ∈ L(NB), there is a

joint winning strategy σ̂ = (σ̂1, . . . , σ̂n) for the processes p1, . . . , pn such that
the language generated by σ̂1 ◦ PrΣ̂1

◦ . . . ◦ σ̂n−1 ◦ PrΣ̂n−1
over Σω

env is a subset

of Lω(t). So any global system behavior α̂ of Â which is consistent with σ̂ fulfills
PrΣd

M→B
(α̂) = µ. We define strategies σ1, . . . , σn for the processes p1, . . . , pn in

the architecture A as follows. First, σi = σ̂i for i = 1, . . . , n − 2 and σn−1 =
σ̂n−1 ◦ Pr

Σ
pn−1
out

. Moreover, σn(u) = σ̂n(u_µ↑|u|) for all u ∈ (Σpn
in)∗.

Now consider any global system behavior β of A which is consistent with σ =
(σ1, . . . , σn) and fulfills PrΣM→B

(β) = µ. We define α̂ = PrA(β)_µ where A =∏
c∈Ĉ∩CA Σc. Then PrΣpi (α̂) = PrΣpi (β) for i = 1, . . . , n− 2, so by definition of

the strategies σ1, . . . , σn−2 the global system behavior α̂ of B̂ is consistent with
σ̂1, . . . , σ̂n−2. Moreover, PrΣd

M→B
(α̂) = PrΣM→B

(α̂), so as σ̂ is a joint winning

strategy, by definition of σn−1 and L̂pn−1
we have that α̂ is consistent with σ̂n−1.

Finally, by definition of σn, α̂ is consistent with σ̂n. As σ̂ is a joint winning
strategy, PrΣ̂pi

(α̂) ∈ L̂pi for i = 1, . . . , n and thus PrΣpi (β) ∈ Lpi for i =
1, . . . , n.

So we have shown that, if µ ∈ L(AB), then there is a strategy σ = (σ1, . . . , σn)
for processes p1, . . . , pn such that any global system behavior β of A which is
consistent with σ and fulfills PrΣM→B

(β) = µ fulfills all local specifications of
the processes p1, . . . , pn. Using this, one can furthermore show that µ ∈ L(AB)
if, and only if, there is a strategy σ = (σ1, . . . , σn) for processes p1, . . . , pn in the
architecture A such that any global system behavior β of A which is consistent
with σ and fulfills PrΣM→B

(β) = µ, fulfills all local specifications of the processes
p1, . . . , pn.

Finally, for any connected subarchitecture B of A(Psys \M) let L̃(AB) =

{α ∈ Σω
M |PrΣM→B

(α) ∈ L(AB)} and L =
⋂

B L̃(AB)∩ L̃M . Then L 6= ∅ iff the
system processes have a joint winning strategy. As L is deterministic contextfree,
emptiness of L can be decided. ut

References

1. J.R. Büchi and L.H. Landweber. Solving Sequential Conditions by Finite-State
Strategies. Trans. Amer. Math. Soc., 138 (1969), pages 367- 378.

2. A. Church. Applications of Recursive Arithmetic to the Problem of Circuit Syn-
thesis. Sum. of the Sum. Inst. of Symb. Log., N.Y. 1957, Volume I, pages 3-50.

23

◦ ◦ ◦ ◦

◦

◦ ◦

◦ ◦

◦

◦ ◦
◦

◦
M

Fig. 2. Generic decidable architecture with non-reachable processes M

3. R. S. Cohen and A. Y. Gold. Theory of Omega-Languages. I. Characterizations of
Omega-Context-Free Languages. J. Comput. Syst. Sci., 15(2), 1977.

4. L. de Alfaro, T. A. Henzinger, and O. Kupferman. Concurrent Reachability Games.
In FOCS, 1998.

5. B. Finkbeiner and S. Schewe. Uniform Distributed Synthesis. In LICS ’05, pages
321–330. IEEE, 2005.

6. O. Finkel. Topological Properties of Omega Context-Free Languages. Theor.
Comput. Sci., 262(1), 2001.

7. W. Fridman and B. Puchala. Distributed Synthesis for Regular and Contextfree
Specifications. In 36th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2011. Springer, 2011.

8. O. Kupferman, N. Piterman, and M. Y. Vardi. Pushdown Specifications. In LPAR,
2002.

9. O. Kupferman and M. Y. Vardi. Church’s Problem Revisited. Bulletin of Symbolic
Logic, 5(2), 1999.

10. O. Kupferman and M. Y. Vardi. Synthesizing Distributed Systems. In LICS, 2001.
11. P. Madhusudan and P.S. Thiagarajan. Distributed Controller Synthesis for Local

Specifications. In ICALP ’01, pages 396–407. Springer, 2001.
12. A. Pnueli. The Temporal Logic of Programs. In FOCS ’77. IEEE, 1977.
13. A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL ’89,

pages 179–190, 1989.
14. A. Pnueli and R. Rosner. Distributed Reactive Systems are Hard to Synthesize.

In FOCS ’90, pages 746–757. IEEE, 1990.
15. M.O. Rabin. Automata on Infinite Objects and Churchs Problem. Amer. Math.

Soc., Providence RI, 1972.
16. S. Safra. On the Complexity of Omega-Automata. In FOCS, 1988.
17. I. Walukiewicz. Pushdown Processes: Games and Model Checking. In CAV ’96,

pages 62–74. Springer, 1996.

24

A Proofs of Section 4.1

In this section, we give a technical proof of Lemma 5. We devide the proof of
into two lemmata, one for the base case and one for the induction step. First, we
give the lemma for the base case as well as some technical details of the proof.

Lemma 18. There is a parity ATA A over B-labeled Σ≥1
out-trees which accepts a

tree tout ∈ TC(Σ≥1
out) if, and only if, there is a tree t ∈ tin↪→ tout where tin(u) = >

for all u ∈ Σ∗0 such that σ(t) is locally winning on Lω(tin) = Σω
0 .

Proof. We abbreviate Σ = Σ0 and Σ′ = Σ≥1
out. Let S = (QS , Σ ×Σ′, δS , qS0 , col)

be a parity automaton with L(S) = {α ∈ (Σ ×Σ′)ω|PrΣp1
(α) ∈ Lp1

}.
We define the alternating parity tree automaton A = (Q,B, δ, q0, col) as

follows.

– Q = ((QS ∪ {qaccept})× B×Σε) ∪ {qreject}

– q0 = (qS0 ,>, ε)

– col(q, ζ, a) = colS(q) for (q, ζ, a) ∈ (QS ∪{qaccept})×B×Σε where we define

colS(qaccept) := 0 and col(qreject) = 1

– for q ∈ QS and a ∈ Σε,

δ((q,>, a),>) =
∨

[b∈Σ′]

∧
[(x,y)∈Σ×Σ′]

(↓y, q(b,x,y))

where

q(b,x,y) =

{
(δS(q, (x, y)),>, x) if y = b

(qaccept,⊥, x) if y 6= b

– for q ∈ QS , a ∈ Σε and ζ ∈ B,
δ((qaccept,⊥, a), ζ) =

∧
(x,y)∈Σ×Σ′(↓y, (qaccept,⊥, x))

– for q ∈ QS and a ∈ Σε, δ((q,>, a),⊥) =
∧
y∈Σ′(↓y, qreject)

– for ζ ∈ B, δ(qreject, ζ) =
∧
y∈Σ′(↓y, qreject)

Now we prove that the automaton is correct. We only consider the direction
from left to right, the converse direction can be proved using similar arguments.
So, let tout ∈ L(A) and let ρ : T → (Σ′)∗ ×Q with T ⊆ N∗ be an accepting run
of A on tout.

First, by induction on m, one can easily prove that for any u_v ∈ (Σ×Σ′)m
there is exactly one k ∈ T which corresponds to u_v, that means, the unique
path from the root of T to k is labeled with u in the Σε-components (of the Q-
components) and with v in the Σ′-components or, more precisely, ρ(k) = (v, q)
and PrΣ(PrQ(ρ(π(0)) . . . ρ(π(|k| − 1)))) = u.

Therefore, ρ yields the B-labeled Σ×Σ′-tree t with t(u_v) = PrB(PrQ(ρ(k)))
for the unique k which corresponds to u_v. Moreover, we define the B-labeled
Σ-tree tin by tin(u) = > for all u ∈ Σ∗.

25

First we show that t ∈ tin↪→ tout. Notice that, by definition of A, t ∈ TC(Σ×
Σ′). As A immediately rejects a tree, if it encounters a ⊥-symbol in tout when
having guessed a >-symbol for t, we have that if tout(v) = ⊥, then t(u_v) = ⊥
for all u ∈ Σ∗. Moreover, by definition of tin, if tin(u) = ⊥, then t(u_v) = ⊥ for
all v ∈ (Σ′)∗. Therefore, condition (S1) holds.

We show conditions (S2) and (S3) simultaneously by induction on |u|. For
u = ε, condition (S2) is obvious. Moreover, according to the definition of A,
there is some set S = {(↓y1 , q

(b,x1,y1)), . . . , (↓yr , q(b,xr,yr))} ∈ δ((q0,>, ε),>) for
some b ∈ Σ′ such that q(b,xl,yl) ∈ (QS ∪ {qaccept}) × B × {xl} and the set
of successors of ε in T is precisely {1, . . . , r} where ρ(l) = (yl, q

(b,xl,yl)). By
definition of q(b,xl,yl), PrB(PrQ(ρ(l)) = > if, and only if, yl = b. Moreover, as
1, . . . , l correspond precisely to the successors of ε in t, the definition of t yields
that for all a ∈ Σ we have t(a, b) = > and t(a, c) = ⊥ for all c ∈ Σ′ \{b}. Hence,
condition (S3) holds.

Now let |u| ≥ 1. As tin(u−1) = >, by induction hypothesis for (S2) there
is some v̂ ∈ (Σ′)∗ such that t((u−1)_(v̂)) = > and by induction hypothesis

for (S3) there is some b̂ ∈ Σ′ such that t((u−1a)_(v̂b̂)) = > for all a ∈ Σ (as

tin(u−1a) = >). Hence, t(u_(v̂b̂)) = >. Now let v ∈ Σ′ such that t(u_v) = >.
As t ∈ TC(Σ×Σ′), t((u−1)_(v−1)) = > and therefore the induction hypothesis
for (S2) yields v−1 = v̂. By induction hypothesis for (S3), t((u−1a)_v̂b) = ⊥ for

all b ∈ Σ′ \ {b̂} and hence, v = v̂b̂. As tin(u) = > for all u ∈ Σ∗, condition (S3)
can be proved in the induction step just as in the base case.

To verify that σ(t) is locally winning, let α ∈ (Σ × Σ′)ω be a local system
behavior with PrΣ(α) ∈ Lω(tin)(= Σω) which is consistent with σ(t). By defi-
nition of σ(t), α ∈ Lω(t) and by definition of A, the unique (infinite) path π in
T corresponding to α is labeled with states from QS in the Q-components. As
ρ is accepting, any such infinite state sequence is accepting and by definition of
A, any such infinite state sequence forms a run of S on the corresponding word
from (Σ × Σ′)ω. So each such local system behavior α is in L(S) which yields
that σ(t) is locally winning on Lω(tin). ut

The following lemma establishes the induction step.

Lemma 19. For any 1 < i < n and any given parity NTA N over B-labeled
Σi−1×Σ≥iout-trees there is a parity ATA A over B-labeled Σ≥iout-trees which accepts

a tree tout ∈ TC(Σ≥iout) if, and only if, there are a tree tin ∈ TC(Σi−1) and a tree
t ∈ tin↪→ tout such that t ∈ L(N) and σ(t) is locally winning on Lω(tin).

Proof. We abbreviate Σ = Σi−1 and Σ′ = Σ≥iout. Let S = (QS , Σ×Σ′, δS , qS0 , col)
be a parity automaton with L(S) = {α ∈ (Σ × Σ′)ω|PrΣpi

(α) ∈ Lpi} and let

N = (QN ,B, δN , qN0 , colN).
We define the alternating Muller tree automaton A = (Q,B, δ, q0,F) as fol-

lows. Notice that this automaton can be transformed into an equivalent parity
tree automaton.

– Q = ((QS ∪ {qaccept})× [QN × B]×Σε) ∪ {qreject}

26

– q0 = (qS0 , [q
N
0 ,>], ε)

– F consists of those subsets X ⊆ Q such that min{colS(PrQS (x))|x ∈ X} is

even and min{colN (PrQN (x))|x ∈ X} is even, where colS(qaccept) := 0

– for q ∈ QS , p ∈ QN and a ∈ Σε,

δ((q, [p,>], a),>) =
∨

[∅6=X⊆Σ]

∨
[b∈Σ′]

∨
[φ∈δN (p,>)]

∧
[(x,y)∈Σ×Σ′]

(↓y, q(X,b,φ,x,y))

where

q(X,b,φ,x,y) =

{
(δS(q, (x, y)), [r,>], x) if (x, y) ∈ X × {b} and (↓(x,y), r) ∈ φ
(qaccept, [r,⊥], x) if (x, y) /∈ X × {b} and (↓(x,y), r) ∈ φ

– for p ∈ QN , ζ ∈ B and a ∈ Σε,

δ((qaccept, [p,⊥], a), ζ) =
∨

[φ∈δN (p,⊥)]

∧
[(x,y)∈Σ×Σ′]

(↓y, (qaccept, [pxy,⊥], x))

if (↓(x,y), pxy) ∈ φ

– for q ∈ QS , p ∈ QN and a ∈ Σε, δ((q, [p,>], a),⊥) =
∧
y∈Σ′(↓y, qreject)

– for ζ ∈ B, δ(qreject, ζ) =
∧
y∈Σ′(↓y, qreject)

Now we prove that the automaton is correct. Again, we only consider the
direction from left to right. So, let tout ∈ L(A) and let ρ : T → (Σ′)∗ × Q
with T ⊆ N∗ be an accepting run of A on tout. By definition of A, for any
u_v ∈ (Σ × Σ′)∗ there is exactly one k ∈ T , such that ρ(k) = (v, q) and, for
the unqiue path π from the root of ρ to k, PrΣ(PrQ(π)) = u. So, ρ yields the B-
labeled Σ×Σ′-tree t with t(u_v) = PrB(PrQ(ρ(k))) for this unique k. Moreover,
we define the B-labeled Σ-tree tin by tin(u) = > iff there is some v ∈ (Σ′)∗ such
that t(u_v) = >.

First we show that t ∈ tin ↪→ tout. As A immediately rejects a tree, if it
encounters a ⊥-symbol in tout when having guessed a >-symbol for t, we have
that if tout(v) = ⊥, then t(u_v) = ⊥ for all u ∈ Σ∗. Moreover, by definition of
tin, if tin(u) = ⊥, then t(u_v) = ⊥ for all v ∈ (Σ′)∗. Therefore, condition (S1)
holds. Conditions (S2) and (S3) can be proved easily by a simultanous induction
on |u|.

To verify the other conditions, first notice that the infinite paths of t cor-
respond exactly to the infinite paths of ρ which are labeled with states from
QN and as ρ is accepting, any such infinite state sequence is accepting. Since
by definition of A, all these infinite state sequences form a run of N on t we
have t ∈ L(N). Moreover, Lω(t) contains exatly those words α ∈ (Σ×Σ′)ω with
PrΣ(α) ∈ Lω(tin) which are consistent with σ(t) and all the corresponding paths
in ρ are labeled with states from QS . As ρ is accepting, any such infinite state
sequence is accepting and by definition of A, any such infinite state sequence
forms a run of S on the corresponding word from (Σ×Σ′)ω, so all these words α
are in L(S) which yields, that σ(t) is locally winning on inputs from Lω(tin). ut

27

Now we put those two lemmata together which provides a full proof of
Lemma 5.

Lemma 5. For any 1 ≤ i < n there is a parity NTA Ni over B-labeled Σ≥iout-

trees which accepts a tree tout ∈ TC(Σ≥iout) if, and only if, there are a B-labeled
Σi−1-tree tin ∈ TC(Σi−1), a tree t ∈ tin ↪→ tout and strategies σ1, . . . , σi−1 for
processes p1, . . . , pi−1 such that σ(t) is locally winning on Lω(tin) and

– σ1 ◦ PrΣ1
◦ . . . ◦ σi−1 ◦ PrΣi−1

generates a language L ⊆ Lω(tin) over Σω
0

– (σ1, . . . , σi−1, σ(t)) is winning for p1, . . . , pi.

Proof. We prove this by induction on i. The base case i = 1 follows immedi-
ately from Lemma 18, so let i > 1 and let Ni−1 be a parity NTA over B-labeled
Σ≥i−1

out -trees according to the induction hypothesis. Then there is a parity ATA

A′i−1 over B-labeled Σi−1 × Σ≥iout-trees which accepts a tree t if, and only if,

wide(t, Σ
b,pi−1

out) ∈ L(Ni−1). Furthermore,A′i−1 can be transformed into an equiv-
alent parity NTA N ′i−1. Now, let Ai be a parity ATA according to Lemma 19,
using the automaton N ′i−1 and let Ni be a parity NTA equivalent to Ai.

To show that Ni fulfills conditions of the lemma, first let tout ∈ L(Ni), that

means there are a B-labeled Σi−1-tree tin and a B-labeled Σi−1 × Σ≥iout-tree
t ∈ tin↪→ tout such that t ∈ L(N ′i−1), and σ(t) is locally winning on Lω(tin).

Since t ∈ L(N ′i−1), s′ = wide(t, Σ
b,pi−1

out) ∈ L(Ni−1), that means, there are
a B-labeled Σi−2-tree sin, a tree s ∈ sin ↪→ sout and strategies σ1, . . . , σi−2 for
processes p1, . . . , pi−2 such that σ1◦PrΣ1 ◦. . .◦σi−2◦PrΣi−2 generates a language
L ⊆ Lω(sin) over Σω

0 and (σ1, . . . , σi−2, σ(s)) is winning for p1, . . . , pi−1.
We denote σ(s) = (σi−1, τi, . . . , τn) and σ(t) = (σi, . . . , σn) and we abbreviate

(σi, . . . , σn) = σ and (τi, . . . , τn) = τ . Now the language generated by σ1 ◦PrΣ1
◦

. . . ◦ σi−2 ◦ PrΣi−2
over Σω

0 is a subset of Lω(sin) so the language generated by
σ1 ◦PrΣ1

◦ . . . ◦σi−2 ◦PrΣi−2
◦σi−1 ◦PrΣi−1

over Σω
0 is a subset of the language

generated by σi−1 ◦ PrΣi−1
over Lω(sin), which is LωΣi−1

(s) ⊆ LωΣi−1
(sout) =

LωΣi−1
(t) = Lω(tin).

Now we show that σ(ε) = τ(ε) and σ(PrΣi−1
(σ∗i−1(u−1))) = τ(u) for all

u ∈ L∗(sin) = L∗Σi−2
(s) ⊆ Σ∗i−2 with |u| ≥ 1.

First, by definition of σ(s), for all a ∈ Σi−2 with sin(a) = > we have
s((a, σ(s)(ε))) = > which, by definition of sin↪→sout, implies sout(σ(s)(ε)) = >.

Since sout = wide(t, Σ
b,pi−1

out) this yields t(Pr
Σi−1×Σ≥i

out
(σ(s)(ε))) = > so, by defi-

nition of σ(t), σ(ε) = σ(t)(ε) = Pr
Σ
≥i
out

(σ(s)(ε)) = τ(ε).

Now let u ∈ L∗Σi−2
(s) with |u| ≥ 1, that means, there is some v ∈ (Σ≥i−1

out)|u|

with s(u_v) = >. By definition of σ(s) we have v = σ(s)∗(u−1) and, for
all a ∈ Σi−2 with sin(ua) = >, s(ua_vσ(s)(u)) = > which, by definition of

sin↪→ sout, implies sout(vσ(s)(u)) = >. Since sout = wide(t, Σ
b,pi−1

out) this yields
t(Pr

Σi−1×Σ≥i
out

(vσ(s)(u))) = > and, as PrΣi−1
(σ∗i−1(u−1)) = PrΣi−1

(σ(s)∗(u−1)),

by definition of σ(t) we have, σ(PrΣi−1(σ∗i−1(u−1))) = σ(t)(PrΣi−1(σ(s)∗(u−1)))
= σ(t)(PrΣi−1(v)) = Pr

Σ
≥i
out

(σ(s)(u)) = τ(u).

28

It remains to prove that (σ1, . . . , σi−2, σi−1, σ(t)) is winning for p1, . . . , pi. By
induction hypothesis, (σ1, . . . , σi−2, σ(s)) is winning for p1, . . . , pi−1 which means
that (σ1, . . . , σi−2, σi−1, τ) is winning for p1, . . . , pi−1. Moreover, the language
generated by σ1 ◦PrΣ1 ◦ . . . ◦σi−1 ◦PrΣi−1 over Σω

0 is a subset of Lω(tin) and σi
is locally winning on Lω(tin). Furthermore, as we have shown above, τ(ε) = σ(ε)
and τ(u) = σ(PrΣi−1

(σ∗i−1(u−1)) for all u ∈ L∗(sin) with |u| ≥ 1. Now, if α is
some global system behavior which is consistent with (σ1, . . . , σi−2, σi−1, σ(t))
then this shows that α is also consistent with (σ1, . . . , σi−2, σi−1, τ), so all lo-
cal specifications Lp1 , . . . , Lpi−1 are satisfied and as σ(t) is locally winning on
Lω(tin), Lpi is satisfied as well.

Now let conversely tout be a B-labeled Σ≥iout-tree such that there are a B-
labeled Σi−1-tree tin, a tree t ∈ tin↪→ tout and strategies σ1, . . . , σi−1 for processes
p1, . . . , pi−1 such that σ1 ◦ PrΣ1

◦ . . . ◦ σi−1 ◦ PrΣi−1
generates a language L ⊆

Lω(tin) over Σω
0 and (σ1, . . . , σi−1, σ(t)) is winning for p1, . . . , pi.

As Ni has been constructed according to Lemma 19 using the automaton
N ′i−1, the automaton Ni accepts tout if there are a B-labeled Σi−1-tree tin and a
tree t ∈ tin↪→ tout such that t ∈ L(N ′i−1) and σ(t) is locally winning on Lω(tin). So

all that remains to show is t ∈ L(N ′i−1), that means, sout = wide(t, Σ
b,pi−1

out) ∈
L(Ni−1). Now, by induction hypothesis, to prove this it suffices to find a B-
labeled Σi−1-tree sin and a tree s ∈ sin↪→sout such that σ1 ◦ PrΣ1

◦ . . . ◦ σi−2 ◦
PrΣi−2

generates a language L ⊆ Lω(sin) over Σω
0 and (σ1, . . . , σi−2, σ(s)) is

winning for p1, . . . , pi−1.
First, we define sin(u) = > if, and only if, u is in the language generated

by σ1 ◦ PrΣ1 ◦ . . . ◦ σi−2 ◦ PrΣi−2 over Σ∗0 . Hence, for the corresponding ω-
language Lω, we have Lω = Lω(sin). Now we define the extended local strategy

τ : Σ∗i−2 → Σ≥i−1
out for process pi−1 as follows: τ(ε) = (σi−1(ε), σ(t)(ε)) and

τ(u) =
(
σi−1(u), σ(t)(PrΣi−1(σ∗i−1(u−1)))

)
for u ∈ Σ+

i−2.
Now if u ∈ L∗(sin) then v = PrΣi−1

(σ∗i−1(u−1)) (or v = ε, if u = ε) and va
with a = PrΣi−1

(σi−1(u)) are both in the language generated by σ1 ◦PrΣ1
◦ . . .◦

σi−1 ◦ PrΣi−1
over Σ∗0 . Hence, v, va ∈ L∗(tin), so t((va)_σ(t)∗(v)) = > and as

as sout = wide(t, Σ
b,pi−1

out) we have sout(Pr
Σ

b,pi−1
out

(σ∗i−1(u))_(va)_σ(t)∗(v)) = >.

From this we conclude τ �L∗(sin)= σ(s)�L∗(sin) for the tree s ∈ sin ↪→ sout with
s(uin

_uout) = > if, and only if, uin = ε (and hence uout = ε) or uin ∈ L∗(sin)
and τ(u−1

in) = uout.
Finally, by definition of σ(s), any global system behavior which is consis-

tent with (σ1, . . . , σi−2, σ(s)) is also consistent with (σ1, . . . , σi−1, σ(t)). So, as
(σ1, . . . , σi−1, σ(t)) is winning for p1, . . . , pi−1, (σ1, . . . , σi−2, σ(s)) is winning for
p1, . . . , pi−1 as well. ut

B Proofs of Section 4.2

Now we give some details of the proof of Theorem 15. For this, we proof unde-
cidability of two special cases. First we consider A0 = (P,C, r) with

– P = {p0, p1, p2, p3}

29

– C = {c0, c12, c13, c2, c3}
– ci, cij ∈ Ci, r(cij) = pj , r(c0) = p1 and r(ci) = pi for i ∈ {2, 3}.

Notice that the realizability problem for this architecture has already been
proven undecidable in [11]. However, we give a different proof of this result here,
which can readily be adapted to the case where c2 and c3 are not necessarily
external output channels but may be read by any other system process. The
main idea for the proof given here is the same as in [14]. However, we have to
take care of the fact that we have only local specifications at our disposal.

Theorem 20. The realizability problem is undecidable for regular local specifi-
cations for the architecture A0.

Proof. We proceed by a reduction from the halting problem for Turing-Machines,
so let M = (Q,Σ, δ, qin, qaccept) be a deterministic TM and denote Σconf = Σ ∪
Q∪{]}, Σsign = { ,y}. We define the alphabets Σc0 = Σsign2

×Σsign3
where

Σsign2
= Σsign3

= Σsign Σc12
= Σc13

= Σsign ×Σconf and Σc2 = Σc3 = Σconf .
We define the local specifications Lp1 , Lp2 and Lp3 as follows. First, for some

local behavior α = α0
_α12

_α13 ∈ (Σc0 ×Σc12 ×Σc13)ω of process p1, let Ijy :=
{i ∈ N|PrΣsignj

(α0(i)) =y} for j = 2, 3 and let fd(w) = |PrΣsign2
(w)|y −

|PrΣsign3
(w)|y for any prefix w v α0. Now we define α to be in Lp1 if, and only

if, one of the following conditions does not hold

1. for all i ∈ N and all j ∈ {2, 3} such that PrΣconf
(α1l(i)) 6=] we have

prΣsignj
(α0(i)) 6=y

2. for all i ∈ N such that PrΣsignj
(α0(i)) =y for some j ∈ {2, 3} we have

PrΣsignl
(α0(i+ 1)) 6=y for all l ∈ {2, 3}

3. for all j ∈ {2, 3}, Ijy is infinite
4. for all w v α0 we have |fd(w)| ≤ 1

or all of the following conditions hold:

5. PrΣconf
(α12) and PrΣconf

(α13) are of the form]+C0]
+C1]

+ . . . where each
Ci is a configuration of M and C0 = qin is the initial configuration of M
when started on the empty tape

6. for all i ∈ N and all j ∈ {2, 3}, PrΣsign(α1j(i+ 1)) = PrΣsignj
(α0(i))

7. for all j ∈ {2, 3}, if PrΣconf
(α1j(i)) =], then PrΣconf

(α1j(l)) =] for all
i ≤ l ≤ min{k ∈ Ijy | k ≥ i}+ 1

8. for all j ∈ {2, 3} and all i ∈ Ijy, PrΣconf
(α1j(i+ 2)) 6=]

9. for all i ∈ N, if PrΣconf
(α12(i)) = PrΣconf

(α13(i)) =] and PrΣconf
(α12(i +

1)) 6=] and PrΣconf
(α13(i + 1)) 6=], then α12 = α12↑i]C]α′12 and α13 =

α13↑i]Ĉ]α′13 and

– if fd(α0↑i) = 1, then Ĉ ` C

– if fd(α0↑i) = −1, then C ` Ĉ

30

– if fd(α0↑i) = 0, then C = Ĉ

For some local behavior α = α12
_α2 ∈ (Σp2)ω of process p2, we define

α ∈ Lp2 if, and only if, PrΣconf
(α12(i)) = PrΣconf

(α2(i)). Analogously, for some
local behavior α = α13

_α3 ∈ (Σp3)ω of process p3, we define α ∈ Lp3 if, and
only if, PrΣconf

(α13(i)) = PrΣconf
(α3(i)).

Obviously, Lp1
, Lp2

and Lp3
are all regular. Now we claim that M does not

halt on the empty tape if, and only if, p1, p2 and p3 have a joint winning strategy.
First assume that M doesn’t halt on the empty tape. Then p2 and p3 use the

following strategies. They start writing] symbols and they write configurations
of the run of M (started on the empty tape) when prompted by the signals y
via channel c12 or c13, respectively. If they have finished writing a configuration
they continue by writing] symbols until they receive the next y.

Process p1 uses the following strategy. It forwards the Σsignj
-component that

it receives on c0 to pj for j ∈ {2, 3} in the next step. Furthermore, process p1

writes] symbols to the channels c1j for j ∈ {2, 3} until it has to send a y symbol
to process pj . Moreover, each time p1 sends a y-symbol to the channel c1j for
some j ∈ {2, 3}, in the next step, it starts writing the next configuration of the
run of M into the same channel. Process p1 also ends each configuration it has
written with a] and writes only] to the channel c1j until it sends the next y
to process pj .

Now let α be a global system behavior which is consistent with the re-
sulting joint strategy of the system processes. Obviously, PrΣp2 (α) ∈ Lp2

and
PrΣp3 (α) ∈ Lp3

. Now if one of the conditions 1, 2, 3 and 4 is not fulfilled, then
by definition we have PrΣp1 (α) ∈ Lp1

. If, on the other hand, all these conditions
are fulfilled then condition 5 is fulfilled, as, due to condition 3, both processes
pj for j ∈ {2, 3} are requested to start a new configuration infinitely many times
and, if they are requested to start a new configuration, due to condition 2 they
will be given the opportunity to do so. Moreover, each time a process starts
to write a configuration, according to condition 1, it will be able to finish this
configuration. Conditions 6, 7 and 8 are obviously fulfilled by the definition of
the strategy. Finally, if both processes start a new configuration at the same
time then, according to condition 4 and the definition of the strategy which
writes, successively on demand, the run of M , condition 9 is fulfilled. Hence,
PrΣp1 (α) ∈ Lp1

. Concluding, the joint strategy is winning.
Now assume, conversely, that the machine halts on the empty tape and as-

sume there is a joint winning strategy σ = (σ1, σ2, σ3) for the system processes.
First notice that σ2 cannot take advantage of the information that it receives

in the Σconf -component of c12, that is, if α0
_α12

_α2
_β ∈ (Σc0 ×Σc12

×Σc2 ×
Σp3)ω and α′0

_
α′12

_
α′2

_
β′ ∈ (Σc0 × Σc12

× Σc2 × Σp3)ω are two global be-
haviors which are consistent with σ such that PrΣsign(α12) = PrΣsign(α′12) then
PrΣconf

(α12) = PrΣconf
(α′12) and α2 = α′2. Analogous for process p3.

Therefore, as σ2 uses only the information given in the Σsign-component
of c12, a sequence i0, . . . , ik ∈ N \ {0} for some k ∈ N determines the output
]i0C0]

i1 . . .]ikCk] of process p2 (according to σ2), in the following way: if process
p2 receives the y symbol for the first time after i0 steps, σ2 prescribes to write

31

some configuration C0 of M . Then p2 finishes C0 by writing a] and if, after
additional i1 − 1 steps, p2 receives the next y symbol then σ2 again prescribes
to write a configuration C1 of M and so on. Analogous for process p3.

Now let k ∈ N be maximal such that for all sequences i0, . . . , ik the output
]i0C0]

i1 . . .]ikCk] of process p2 and the output]i0C ′0]
i1 . . .]ikC ′k] of process p3

both represent the run of M (up to step k), that means, Cj `M Cj+1 and
C ′j `M C ′j+1 for all j ∈ {0, . . . , k − 1}. Notice that such a k exists as both
p2 and p3 start with the initial configuration of M according to condition 5.
Then, for some l ∈ {2, 3} there is a sequence i0, . . . , ik, ik+1 such that the output
]i0C0]

i1 . . .]ikCk]
ik+1Ck+1] of process pl does not represent the run of M (up to

step k+1) and by the choice of k, Ck 6`M Ck+1. W.l.o.g., let l = 2. Now consider
the following global system behavior α = α0

_α12
_α13

_α2
_α3 ∈ (ΣA0)ω:

– α2 =]i0C0]
i1 . . .]ik−1Ck−1]

ikCk]
ik+1Ck+1]β for some β ∈ Σω

c2

– α3 =]i0C0]
i1 . . .]ik−1Ck−1]

ik]|Ck|]ik+1Ck]β
′ for some β′ ∈ Σω

c3
– α0 is defined by
Ijy = {n ∈ N |αj(n+ 1) =] and αj(n+ 2) 6=]} for j ∈ {2, 3}

Due to the choice of k, the output of process p3 which is determined by the
sequence i0, i1, . . . , ik−1, ik + |Ck|+ ik+1 is]i0C0]

i1 . . .]ik−1Ck−1]
ik]|Ck|]ik+1Ck].

Therefore, since σ is a winning strategy, given α0, α2 and α3, there is exactly
one ω-word α12

_α13 ∈ (Σc12
× Σc13

)ω such that the resulting global system
behavior α is consistent with σ. However, due to condition 9, PrΣp1 (α) /∈ Lp1

as
Ck 6`M Ck+1. ut

Theorem 21. The realizability problem for regular local specifications is unde-
cidable for any architecture with at least three system processes p1, p2 and p3 and
channels c0 ∈ C0 and c12, c13 ∈ C1 with r(c0) = p1 and r(c1j) = j for j ∈ {2, 3}.

Proof. Let A = (P,C, r) be any architecture with p1, p2, p3 ∈ P , c0 ∈ C0,
c12, c13 ∈ C1, r(c0) = p1 and r(c1j) = j for j ∈ {2, 3}. First notice that Cj 6= ∅
for j = 2, 3. Now if, ⊥ ∈ r(C2) ∩ r(C3) then Theorem 20 immediately yields
undecidability. Moreover, if r(C2) ∩ (P \ {p3} 6= ∅ and r(C3) ∩ (P \ {p2}) 6= ∅
then it is easy to see that the proof of Theorem 20 works for this architecture as
well, as process p1 is better informed than p2 and p3 with respect to the external
input channel c0.

Therefore, we only have to consider the case where r(C2) = {p3} or r(C3) =
{p2}. For the proof of this case one can use the same idea as in [5]. We provide
the environment with the possibility to send two different encryption functions in
each step and we demand of process p1 that it distributes them to the processes
p2 and p3. Then, processes p2 and p3 have to encrypt their output using the
function which they have received in the last step. The set of functions available
to the environment can, for example, be chosen as the set of all permutations
on Σconf . Using these encryption functions, the environment can garuantee that
processes p2 and p3 cannot derive any information from the input that it receives
from the other process [5]. Hence, the proof of Theorem 20 can be adapted to
the architecture A. ut

32

Now it easy to see that the previous theorem can be easily extended to
Theorem 15: It is not necessary that the environment has a direct channel to the
process p1 but there must be merely a (directed) path from the environment to
p1 which neither contains p2 nor p3. This is guaranteed by the assumption that
p1 is reachable and p2 and p3 are both not better informed than p1.

As to the proof of Theorem 16, we first notice that undecidability has been
proved in [11] for the following two architectures A1 and A2.

A1 = (P,C, r) with

– P = {p0, p1, p2, p3}
– C0 = {c01, c02}, C1 = {c13}, C2 = {c23}
– r(c0i) = pi and r(ci3) = p3 for i ∈ {1, 2}.

A2 = (P,C, r) with

– P = {p0, p2, p2, p3}
– C0 = {c01, c02}, C1 = {c1}, C2 = {c2}, C3 = {c3}
– r(c0i) = pi for i ∈ {1, 2}, r(ci) = pi+1 for i ∈ {1, 2} and r(c3) = p3.

Now, to prove undecidability of A1 it is not important which processes read
the output channels of process p3: The process is only needed so that a single
(local) specification can talk about both the channels c13 and c23 at the same
time. Then, the original undecidability proof of [14] can be simulated straightfor-
wardly. Moreover, this result can be easily extended to Theorem 16 in the case
where p1 and p2 are reachable from the environment via two disjoint (directed)
paths.

If, on the other hand, this is not the case then w.l.o.g. there is a path from
p0 to p2 which contains p1 and there is a path from p2 to p3. If any path from
p2 to p3 contains p1 then we are again in the situation of Theorem 15 so assume
that there is at least one such path which does not contain p1. If, moreover, p3

has an external output channel then undecidability can be proved just as for
the architecture A2. Finally, if any output channel of p3 is read by some other
system process then the proof has to adapted with a similar idea as in the proof
of Theorem 21.

33

