
Distributed Synthesis of Control Protocols for Smart Camera Networks

Necmiye Ozay, Ufuk Topcu, Tichakorn Wongpiromsarn and Richard M. Murray

last updated on March 10, 2011

Abstract— We considered the problem of designing control
protocols for pan-tilt-zoom (PTZ) cameras within a smart
camera network where the goal is to guarantee certain temporal
logic specifications related to a given surveillance task. We first
present a centralized control architecture for assigning PTZ
cameras to targets so that the specification is met for any ad-
missible behavior of the targets. Then, in order to alleviate the
computational complexity associated with LTL synthesis and to
enable implementation of local control protocols on individual
PTZ cameras, we propose a distributed synthesis methodology.
The main idea is to decompose the global specification into local
specifications for each PTZ camera. These decompositions allow
the protocols for each camera to be separately synthesized and
locally implemented while guaranteeing the global specifications
to hold. A thorough design example is presented to illustrate
the steps of the proposed procedure.

I. INTRODUCTION

Video surveillance has become a standard for indoor/out-

door security applications and traffic monitoring [1]. A

substantial research effort has been devoted to develop reli-

able computer vision algorithms for background subtraction,

object detection/recognition/identification and tracking [2]. A

higher level goal is to build systems that can reason about

the sensed and processed data in order to perform complex

tasks or make high level decisions about the dynamic envi-

ronment monitored. Distributed smart cameras are real-time

distributed embedded systems performing computer vision

tasks such as tracking and recognition [3]. Smart camera

systems can sense and process data; and can report “interest-

ing” events via a communication unit. Complementing such

systems with mobile cameras, such as pan-tilt-zoom (PTZ)

cameras can provide increased autonomy [3]. Moreover, as

argued by Soatto [4], active cameras have an information

theoretic advantage over the stationary ones.

In this paper, we consider a hierarchical visual surveillance

system similar to that in [5]. The idea is to supplement a

stationary camera network used for tracking with additional

PTZ cameras to guarantee certain temporal logic specifica-

tions. We consider a scenario where the tracking subsystem

tracks (almost in real-time) the targets in the area of interest

using a multi-camera multi-target tracking algorithm and

reports the target positions. Active recognition subsystem,

consisting of PTZs, is responsible for zooming into each

This work was supported in part by the Multiscale Systems Center,
AFOSR MURI FA9550-06-1-0303 and the Boeing Corporation.

N. Ozay, U. Topcu and R.M. Murray are with Control and
Dynamical Systems, California Institute of Technology, Pasadena,
CA 91125, USA. T. Wongpiromsarn is with Singapore-MIT Al-
liance for Research & Technology, Singapore. necmiye, utopcu,
murray@cds.caltech.edu; nok@smart.mit.edu

target to capture high-resolution images that can be used for

recognition. Our goal is to automatically synthesize a control

protocol that assigns PTZ cameras to targets to ensure that

each target has a close-up taken before leaving the area. The

challenge in this problem is two-fold: (i) the target behaviors

are not known a priori, (ii) the number of the targets in the

area at a given time could be greater than the number of PTZ

cameras available.

The networked visual surveillance system we consider is

a cyber-physical system that requires communication be-

tween the cameras, computation both for video processing

and decision-making, and control of the actuators on PTZ

cameras. Design and verification of distributed sense and

control systems that are interacting with a potentially dy-

namic environment is a challenging task. In a networked

system, distributing the decision-making to individual agents

has several advantages. First, since the information and

computation load decreases, such distributed protocols can

be implemented on simple devices, on each PTZ in our case.

Second, a distributed protocol is more robust to failures in

that even though one of the controllers fails, the other parts

of the system will continue to function. These advantages

come along with certain design challenges. In particular,

the information flows and the cooperative behavior between

distributed agents should be taken into account in the design.

We consider the synthesis problem in a discrete setup

where we use a discrete abstraction of the admissible be-

havior of the targets and PTZ camera dynamics. In general,

one can start with a continuous or hybrid model and reduce

it to a discrete one [6], [7], [8]. Our goal is to synthesize a

supervisory control protocol that determines at each time to

where the PTZ cameras should zoom in so that certain secu-

rity related specification is satisfied. We use linear temporal

logic (LTL) as a specification language [9], [10] and exploit

the tools for controller synthesis for LTL specifications [11],

[12]. Then, we consider decomposing the global specification

into local ones in order to enable distributed synthesis and

implementation of local control protocols on each PTZ.

Synthesizing distributed implementations from global spec-

ifications is generally hard [13], [14], [15]. However for

certain architectures, it is possible to synthesize distributed

controllers for local specifications [16]. We show that if

the PTZ cameras in the network are weakly coupled (e.g.

if the overlap between their areas of coverage is small), it

is possible to derive local specifications. We further show

that it may be possible to refine these local specifications

by adding new specifications through the existing interfaces

along which PTZ cameras can collaborate. These ideas are

illustrated with an example for which the design steps are

explained in detail.

The rest of the paper is organized as follows. In section

II, we summarize linear temporal logic and the digital

design synthesis problem. We recast the problem of control

protocol synthesis for PTZ cameras into a digital design

synthesis problem in section III. In section IV, we propose

a centralized and a distributed design procedure to solve

this problem. We work through the details of the design

procedure on an example in section V. Finally, section VI

concludes the paper with some remarks and directions for

future research.

II. BACKGROUND

Formal methods are mathematical techniques for rigor-

ously analyzing a design to ensure system correctness. These

approaches rely on constructing a mathematical represen-

tation of a system (i.e., a model) and its specification

(i.e., desired properties). Examples of such mathematical

objects typically used in modeling systems include finite

state machines, differential equations, timed automata and

hybrid automata. ω-regular languages and temporal logics are

widely used to describe system specifications [17]. Thanks to

their expressive power, a wide class of properties including

deadlocks, livelocks, correctness of system invariants, safety,

stability and non-progress execution cycles can be precisely

specified.

In this section, we first describe linear temporal logic,

which is used throughout the paper as a specification lan-

guage. Then, we provide a brief summary of automatic

synthesis of digital designs that satisfy a large class of

properties expressed in linear temporal logic even in the

presence of an adversarial environment [12].

A. Linear temporal logic

Temporal logic is a branch of logic that implicitly incor-

porates temporal aspects and can be used to reason about

infinite sequences [17], [10], [18]. Its use as a specifica-

tion language was introduced by Pnueli [9]. Since then,

temporal logic has been demonstrated to be an appropriate

specification formalism for reasoning about various kinds

of systems, and has been utilized to specify and verify

behavioral properties in various applications [19], [20], [21],

[22]. The version of temporal logic we employ in this paper

is LTL. Before we formally describe LTL, we define some

of the relevant concepts.

Definition 1: A system consists of a set V of variables.

The domain of V , denoted by dom(V), is the set of valua-

tions of V . A state of the system is an element v ∈ dom(V).
Definition 2: An atomic proposition is a statement on

system variables υ that has a unique truth value (True or

False) for a given value of υ. Let v ∈ dom(V) be a state of

the system and p be an atomic proposition. We write v
 p
if p is True at the state v. Otherwise, we write v 1 p.

Definition 3: A finite transition system is a tuple T =
(V,V0,R) where V is a finite set of states, V0 ⊆ V is a

set of initial states, and R ⊆ V × V is a transition relation.

An execution of a finite transition system is an infinite

sequence of its states σ = v0v1v2 . . . where v0 ∈ V0, for

each i > 0, vi ∈ V and (vi−1, vi) ∈ R.

LTL has two kinds of operators: logical connectives and

temporal modal operators. The logic connectives are those

used in propositional logic: negation (¬), disjunction (∨),

conjunction (∧) and material implication (→). The tempo-

ral modal operators include next (©), always (�), eventually

(♦) and until (U). An LTL formula is defined inductively

as follows:

1) any atomic proposition p is an LTL formula; and

2) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, ©ϕ and

ϕ U ψ are also LTL formulas.

Other operators can be defined as follows: (a) ϕ ∧ ψ ,
¬(¬ϕ ∨ ¬ψ), (b) ϕ→ ψ , ¬ϕ ∨ ψ, (c) ♦ϕ , True U ϕ,

and (d) �ϕ , ¬♦¬ϕ.

A propositional formula is one that does not include

temporal operators. Given a set of LTL formulas ϕ1, . . . , ϕn,

their Boolean combination is an LTL formula formed by

joining ϕ1, . . . , ϕn with logical connectives.

Semantics of LTL: An LTL formula is interpreted over

an infinite sequence of states. Given an execution σ =
v0v1v2 . . . and an LTL formula ϕ, we say that ϕ holds at

position i ≥ 0 of σ, written vi |= ϕ, if and only if (iff) ϕ
holds for the remainder of the execution σ starting at position

i. The semantics of LTL is defined inductively as follows:

1) For an atomic proposition p, vi |= p iff vi
 p;

2) vi |= ¬ϕ iff vi 6|= ϕ;

3) vi |= ϕ ∨ ψ iff vi |= ϕ or vi |= ψ;

4) vi |= ©ϕ iff vi+1 |= ϕ; and

5) vi |= ϕ U ψ iff there exists j ≥ i such that vj |= ψ
and ∀k ∈ [i, j), vk |= ϕ.

Based on this definition, ©ϕ holds at position i of σ iff

ϕ holds at the next state vi+1, �ϕ holds at position i iff ϕ
holds at every position in σ starting at position i, and ♦ϕ
holds at position i iff ϕ holds at some position j ≥ i in σ.

Definition 4: An execution σ = v0v1v2 . . . satisfies ϕ,

denoted by σ |= ϕ, if v0 |= ϕ.

Definition 5: Let Σ be the set of all executions of a

system. The system is said to be correct with respect to its

specification ϕ, written Σ |= ϕ, if all its executions satisfy

ϕ.

Definition 6: Given an execution σ = v0v1 . . . of a finite

transition system, its set of prefixes is a set of finite sequences

pref(σ)
.
= {v0v1 . . . vn : for some finite integer n ≥

−1}1. The prefixes of an LTL formula ϕ are given by the

set of prefixes of all executions that satisfy ϕ, and denoted

by pref(ϕ) = {σ̂ ∈ pref(σ) : σ |= ϕ}.

Definition 7: A finite sequence of states α̂ = v0, . . . , vn

is a bad prefix for an LTL formula ϕ if and only if for all

infinite state sequences y = vn+1vn+2 . . ., the concatenation

α̂ · y .
= v0, v1, . . . does not satisfy ϕ; that is α̂ · y 6|= ϕ.

Definition 8: An LTL formula ϕ is called a safety formula

if and only if any sequence σ that does not satisfy ϕ has a

bad prefix.

1
n = −1 corresponds to the empty sequence ǫ.

B. Synthesis of a digital design: a two-player game approach

In many applications, systems need to interact with their

environments and whether they satisfy the desired properties

depends on the behavior of the environments. For example,

the feasibility of a surveillance task depends on how the

targets move and one should aim at designing a camera

network that could achieve a given task for a wide class

of target motions. In this section, we briefly describe the

work of Piterman, et al. [12]. We refer the reader to [12]

and references therein for detailed discussion of automatic

synthesis of a finite state automaton from its specification.

We refer the controllable part of the system (i.e., PTZ cam-

eras) as plant. When we say system, we refer the combined

behavior of the environment and the controlled plant. From

Definition 5, for a system to be correct, its specification ϕ
must be satisfied by all of its executions regardless of the

behavior of the environment in which it operates. Thus, the

environment can be treated as an adversary and the synthesis

problem can be viewed as a two-player game between the

plant and the environment: the environment attempts to

falsify ϕ while the plant attempts to satisfy ϕ. Let E and P be

the variables of the environment and the plant respectively.

A state s = (e, p) of the game is in dom(E) × dom(P).
A transition of the game is a move of the environment

Re followed by a move of the plant Rp. A strategy for

the plant is a partial function f : (s0s1 . . . st−1, et) 7→ pt

which chooses a move of the plant among its allowable

moves based on the state sequence so far and the behavior

of the environment. In this sense a control protocol is a

winning strategy for the plant such that for all behaviors

of the environment the specification is met. We say that ϕ is

realizable if such a control protocol exists, that is the system

can satisfy ϕ no matter what the environment does.

For specifications in the form of the so called Generalized

Reactivity(1) formulas, Piterman, et al. show that checking its

realizability and synthesizing the corresponding automaton

can be performed in polynomial time in the number of states

of the game automaton. In particular, we are interested in a

specification of the form

ϕ
.
= (ϕe → ϕs) (1)

where roughly speaking, ϕe characterizes the assumptions

on the environment and ϕs describes the correct behavior

of the system, including the valid transitions the plant can

make. We refer the reader to [12] for precise definitions of

ϕe and ϕs. Note that since Eq. (1) is satisfied whenever ϕe

is False, i.e., whenever the assumptions on the environment

ϕe are violated, then the correct behavior ϕs of the system

is not ensured, even though the specification ϕ is satisfied.

If the specification is realizable, the digital design syn-

thesis tool implemented in JTLV [12] generates a finite state

automaton that represents a set of transitions the plant should

follow in order to satisfy ϕ. Assuming that the environment

satisfies ϕe, then at any instance of time, there exists a node

in the automaton that represents the current state of the

system and the system can follow the transition from this

node to the next based on the current knowledge about the

environment. However, if ϕe is violated, the automaton is no

longer valid, meaning that there may not exist a node in the

automaton that represents the current state of the system, or

even though such a node exists and the system follows the

transitions in the automaton, the correct behavior ϕs is not

guaranteed.

If the specification is not realizable, the synthesis tool pro-

vides an initial state of the system starting from which there

exists a set of moves of the environment such that the system

cannot satisfy ϕ. The knowledge of the nonrealizability of

the specification is useful since it provides information about

the conditions under which the system will fail to satisfy its

desired properties.

The main limitation of the synthesis of finite state au-

tomata from its LTL specifications is the state explosion

problem. In the worst case, the resulting automaton may

contain all the possible states of the system. For example,

if the system has n variables, each can take any value in

{1, . . . ,M}, then there may be as many as Mn nodes in

the automaton. On the other hand, if the system can be

decomposed into N subsystems each having around n/N
variables and the specification can be divided into N pieces

each depending only on the corresponding variables, then

there would be N automata with size in the order of
N
√
Mn. We exploit this observation in order to overcome

the state explosion problem. In particular, we propose a

distributed synthesis scheme that starts with decomposing the

specification so that it is possible to solve smaller synthesis

problems for each PTZ camera separately.

III. PROBLEM FORMULATION

We would like to cast the problem of assigning PTZ cam-

eras to targets into a game as in Section II-B. To this effect,

in what follows we summarize the system model and the

system specification (which consists of the desired behavior

of the system and the assumptions on the environment). For

simplicity, we assume that the area monitored is divided into

cells as in Fig. 1. We also assume that all the cells are within

the area of coverage of at least one of the PTZ cameras.

We first define the system model which is an abstraction

that captures the PTZ camera properties such as field of

view and dynamics. By field of view, we mean the region a

PTZ camera sees when it zooms in to get a high resolution

image. All possible regions from which a PTZ camera can

take high resolution images is referred to as the area of

coverage of the camera. The active recognition subsystem

to be controlled consists of NPTZ PTZ cameras. When

zoomed in, the field of view of each camera i is limited.

This limitation together with the camera dynamics can be

specified either as, a PTZ camera can capture high resolution

images from C1 neighboring cells in one time step; or by

taking the delays into account as, a PTZ can traverse at most

C2 neighboring cells and can capture at most C1 images

from the C2 cells it scanned in a time step. Using this

information, it is possible to build a finite transition system

Fig. 1. PTZ Camera Network Setup. Gray triangles represent stationary
cameras. Blue triangles represent PTZ cameras. Red lines denote enter-
ances/exits of the area.

that models how the controllable variables of the game (i.e.,

PTZ cameras) can evolve.

Next, we characterize all possible behaviors of the en-

vironment against which correct behavior of the system is

expected. If there is no information with regard to the motion

capabilities of the targets (i.e., there is no restriction on the

environment behavior), the controller needs to deal with a

large amount of uncertainty in which case many interesting

tasks would be unachievable. Assumptions restricting the

behavior of the environment based on the knowledge about

the target motion should be incorporated into the model in

order to enrich the set of achievable properties. Such an

environment model can be learnt, for instance, by examining

the statistics of target tracks within the area of interest over

a period of time. Some sample assumptions modeling the

environment may be as follows:

• There can be at most Np people in the area at the same

time.

• There can be at most one person in a cell at a given

time.

• Every person always eventually exits the area.

• Everyone remains at least T time steps in the area.

• People can only enter and exit through designated

enter/exit spots (e.g. red lines in Fig. 1).

• A person can move to one of the neighboring cells or

stay at the same cell in one time step.

Finally, we state the system requirement that needs to be

guaranteed by the system as long as the assumptions on the

environment hold true. In particular, we want each person

to be zoomed-in (i.e., have a high resolution picture taken)

at least once when they are in the area. It is also possible

to include progress requirements such as a certain cell or

all cells should be scanned infinitely often, for instance, for

checking left/unoccupied items.

The control protocol decides which camera should zoom

into which cells taking into account the target locations, cur-

rent configurations of the cameras, dynamics of the cameras

and dynamics of the targets. If a camera zooms into a cell

occupied by a target, it takes a high resolution image of that

target. We do not keep target identity after a target exits the

area2. We next define the variables and their domains that

are used in formal problem statement.

Environment Variables: There are Np variables e
(i), i ∈

{1, . . . , Np} for the environment. Each e
(i) has three fields,

(x(i), n(i), isZoomed(i)). x(i) denotes the location of the

target corresponding to the variable i and takes values from a

set L which contains the possible target3 locations including

an element c0 representing the out of the area. n(i) is a

counter that takes values in {0, 1, . . . , T} that shows for how

long target i stayed in the area. isZoomed(i) is a boolean flag

that takes the value True after the target has been zoomed-in

and False otherwise.

Controllable (Plant) Variables: There are NPTZ states

p
(j), j ∈ {1, . . . , NPTZ}, one for each PTZ camera. Each

p
(j) has C1 fields, (z(j),1, . . . , z(j),C1), that correspond to

the locations of the last C1 cells scanned by camera j with

z(j),k ∈ L\c0 for all j, k. We drop the index k when the

cameras take a high quality image from a single location

(i.e., cell) at a time step.

We call x(i)’s independent environment variables since

their evolution is solely determined by the target motions.

On the other hand, we call n(i) and isZoomed(i) dependent

since the former is a function of target motion and the latter

is an output of the interaction between the targets and the

PTZ cameras.

The system properties, environment assumptions and re-

quirements listed above can be encoded using LTL for-

mulas in the environment and controllable variables. For

instance, the assumption that every person always even-

tually exits the area can be written as: �♦(x(i) = c0)
for all i ∈ {1, . . . Np}; or the assumption that everyone

remains at least T time steps in the area can be written as:

�
(

(x(i) 6= c0 ∧ n(i) < T) → ©(x(i) 6= c0)
)

for all i. Using

LTL, we can express the system model, the assumptions ϕe

on the environment variables and the desired behavior ϕs of

the system with a single formula of the form (1), i.e., when-

ever the environment variables satisfy their assumptions, then

the system meets its requirements. The problem we would

like to solve can be formally stated as follows:

Problem 1: Synthesize a control protocol such that (1)

holds.

This problem can be solved using the technique described in

Section II-B. If the specification is realizable, the procedure

in [12] gives us a control protocol. If it is unrealizable, the

procedure provides a counterexample for which there is no

control strategy to prevent a target leave the scene without

having a high resolution image taken. For the latter case, one

2If a target exits the scene and enters back in, we treat it as a new person
and want to take a high resolution image. Note that without zooming in, it is
hard to tell if this person has already been seen earlier since identification/-
face recognition engines work more reliably with high resolutions images.
Therefore, this assumption is indeed desired in a surveillance system.

3With slight abuse of terminology, we say “target” or “target i” to refer
to the target associated with the i

th environmental variable rather than a
specific target identity.

can modify the design of the camera network (e.g. increase

the number of PTZs) and check the realizability again.

IV. SYNTHESIS OF CONTROL PROTOCOLS

A. Centralized Control Protocol Synthesis

In this section, we consider a centralized control archi-

tecture as shown in Fig. 2. In this set-up, a control protocol

that solves Problem 1 is implemented on the discrete planner.

This system is centralized in the sense that a central discrete

planner needs to (i) collect all the tracking data from static

cameras and current PTZ positions, (ii) decide on the strategy

based on the current system state, and (iii) send the appro-

priate target assignments, the PTZs should follow, back to

the continuous controllers on PTZs. All the communication

and control scheme is governed by these rules and has the

discrete planner at its center.

Tracking

Subsystem

Discrete

Planner

PTZ
1
	

PTZ
N
	

Fig. 2. Centralized control architecture for camera network. Arrows denote
the communication.

In this scheme, the discrete planner uses information

from each target and each camera to make a decision.

Although the centralized design is less conservative in terms

of realizability, it is inefficient in design phase due to state

explosion problem. Since each PTZ camera has an embedded

controller, it is possible to design a decentralized control

protocol. This can be done, for instance, by incorporating

some communication constraints into the centralized design

as in [23] so that the resulting controllers can be implemented

on individual PTZs. However, a more efficient approach

would be not only to decentralize the implementation of the

control protocol but also to distribute the computations in

the synthesis which we discuss next.

B. Distributed Control Protocol Synthesis

Modern PTZ cameras have onboard computational capa-

bilities. Instead of having a central discrete planner as in Fig.

2, it is possible to implement local controllers on each PTZ.

This requires synthesizing a distributed control protocol.

Although it is not always possible to achieve the performance

of a centralized design; when the system is composed of

weakly coupled subsystems, it is possible to distribute the

design without too much conservatism. We now exploit this

idea to synthesize distributed control protocols that can be

implemented on individual PTZs. This approach not only

leads to a compositional system but also substantially re-

duces the computational cost of the synthesis procedure. The

corresponding architecture is shown in Fig. 3. In this set-up

each PTZ has its own local planner. The tracking subsystem

sends only the tracks related to a PTZ camera’s mission to

that PTZ (e.g. tracks of targets within that camera’s area of

coverage). PTZ cameras can also communicate with each

other and cooperate if necessary.

Tracking	

Subsystem	

PTZ1	
 &	

Planner1	

PTZ2	
 &	

Planner2	

PTZN	
 &	

PlannerN	

Fig. 3. Distributed control architecture for camera network. Arrows denote
the communication. Dashed line from tracking subsystem represents the fact
that only partial track information is communicated to the PTZ cameras.

Next, we discuss how the global specification can be

decomposed into local ones so that the control protocols that

are implemented on each local planner can be synthesized

separately4. The following proposition is the basis of our

approach.

Proposition 1: Let ϕe, ϕe1
, ϕe2

, ϕs, ϕs1
and ϕs2

be LTL

formulas that contain variables only from the respective sets

of environment variables E , E1, E2 and system variables S,

S1, S2. Let P , P1, P2 be the sets of all controllable variables

in S, S1, S2 that satisfy P1 ∪ P2 = P and P1 ∩ P2 = ∅. If

the conditions:

1) any execution of the environment that satisfies ϕe; also

satisfies (ϕe1
∧ ϕe2

),
2) any execution of the system that satisfies (ϕs1

∧ϕs2
);

also satisfies ϕs,

3) and, there exist two control protocols that make the

local specifications (ϕe1
→ ϕs1

) and (ϕe2
→ ϕs2

)
true,

hold, then implementing these two control protocols together

would lead to a system where the global specification ϕ
.
=

(ϕe → ϕs) is met.

Proof: The conditions on P , P1 and P2 ensure that the

synthesized local control protocols do not conflict and can be

implemented separately at the same time5. Let ν1
.
= ((ϕe1

→
ϕs1

)∧ (ϕe2
→ ϕs2

)) and ν2
.
= ((ϕe1

∧ϕe2
) → (ϕs1

∧ϕs2
)).

It can be shown that any execution of the system that

satisfies ν1, also satisfies ν2. That is, if there exist control

protocols as in condition 3 of the proposition, the system

meets the specification ν2 when these control protocols are

implemented simultaneously. Conditions 1 and 2 respectively

mean ϕe → (ϕe1
∧ϕe2

) and (ϕs1
∧ϕs2

) → ϕs are tautologies

(i.e., they evaluate to True for any execution). Hence, it

follows that for all executions that satisfy ν2, (ϕe → ϕs)

4For notational simplicity, we discuss decomposing a system into two
subsystems. The generalization to N subsystems follows similar lines.

5If the same controllable variable is included in two different local spec-
ifications, the corresponding local control protocols might assign different
moves to this variable. Hence, these protocols can not be implemented
simultaneously.

is satisfied. Therefore, for all executions that satisfy ν1,

specification ϕ is met.

There are two factors that should be taken into account

while choosing ej , sj and ϕej
, ϕsj

, j ∈ {1, 2}. The first

is the number of variables involved in the local synthesis

problems. If the possible valuations of the variables involved

in local specifications ϕej
→ ϕsj

are substantially less

than the possible valuations of the variables in the global

specification, then distributed synthesis would be computa-

tionally more efficient than the centralized one (assuming

the lengths of LTL formulas for the global and the local

specifications are of the same order). The second is the

conservatism of the distributed synthesis. Since Proposition 1

provides only sufficient conditions, it is possible that even if

the centralized problem is realizable, the local specifications

in decentralized synthesis may be unrealizable. Indeed, let

the sets of executions be defined as:

Σe
.
= {σ|σ |= ϕe}; Σe′

.
= {σ|σ |= (ϕe1

∧ ϕe2
)};

Σs
.
= {σ|σ |= ϕs}; Σs′

.
= {σ|σ |= (ϕs1

∧ ϕs2
)}.

Condition 1 in Proposition 1 implies that Σe′ ⊇ Σe, whereas

condition 2 implies that Σs′ ⊆ Σs. Local variables and

specifications should be chosen so that conditions 1 and 2

are satisfied. Moreover, the conservatism can be reduced by

choosing ϕej
and ϕsj

such that Σe′ is as small as possible,

and the set Σs′ is as large as possible in the sense of set

inclusion order.

In a PTZ camera network the choice of local specifica-

tions and variables involved in them is guided by physical

constraints such as network topology, areas of coverage

of cameras; and domain knowledge such as knowledge of

motion patterns of the targets. When the system consists

of weakly coupled subsystems (e.g. not totally overlapping

areas of coverage), it may be possible to find a tradeoff

between conservatism and computational complexity. To start

with, we fix the communication rules between cameras. We

assume that all PTZ cameras receive the locations (i.e.,

tracks) of targets within their areas of coverage from the

tracking subsystem. By assumption, the isZoomed and n
values of a target that gets into the area of coverage of a

PTZ from outside of the area monitored, is False and 1,

respectively. Targets that have been already in the area but

just enter to the area of coverage of kth PTZ, should have

been in the area of coverage of lth PTZ, for some k 6= l.
Then the isZoomed and n values of such targets are sent

from the kth PTZ to the lth PTZ.

For simplicity, let us assume that there are two PTZ

cameras, denoted by PTZ1 and PTZ2. We next give brief

guidelines on how to decompose the global specification into

local ones for each PTZ camera. A local specification for a

PTZ camera only involves the dynamics of that camera and

targets within that camera’s area of coverage. For instance,

the requirement that no one exits the area before having

a high resolution image taken can be divided into local

requirements such that no target within the area of coverage

of PTZi (i ∈ {1, 2}) exits the area before being zoomed

in. This requirement together with the camera dynamics

constitute ϕsi
. Note that with such a local requirement,

PTZi does not aim to capture images of targets that leave

its area of coverage through PTZj’s area of coverage.

Targets entering the area of coverage of PTZi through the

area of coverage of PTZj , j 6= i, and targets’ allowable

motion within PTZi’s area of coverage are included in

the local environment assumption ϕei
for i, j ∈ {1, 2}.

Following these simple guidelines, it is possible to derive

local specifications of the form (ϕei
→ ϕsi

) that satisfies

the assumptions and first two conditions in Proposition 1.

Therefore, if Condition 3 in Proposition 1 holds, it is possible

to synthesize distributed control protocols which guarantee

that the global specification is met.

On the other hand, if Condition 3 in Proposition 1 does

not hold, we attempt to refine the local specifications to

make them realizable. While deriving the local specifica-

tions, we initially assume no collaboration between cameras.

However, the boundary (or intersection) of areas of coverage

of different PTZ cameras forms a natural interface through

which cameras can collaborate. The requirement that PTZ1

zooms into some of the targets that leave its area of coverage

through the area of coverage of PTZ2, restricts the possible

environment behavior that PTZ2 needs to handle. Assume

(ϕe1
→ ϕs1

) is realizable and (ϕe2
→ ϕs2

) is not realizable,

then we have the following proposition for refinement.

Proposition 2: Let ϕe, ϕe1
, ϕe2

, ϕs, ϕs1
and ϕs2

, E , E1,

E2, S, S1, S2, P , P1, P2 be defined as in Proposition 1.

Assume conditions 1 and 2 in Proposition 1 are satisfied. If

1) there exist two formulas φ1 and φ′1, containing vari-

ables respectively from S1 and E2, such that (φ1 → φ′1)
is a tautology,

2) and, there exist two control protocols that make the

following local specifications hold:

ϕe1
→ (ϕs1

∧ φ1) (2)

(φ′1 ∧ ϕe2
) → ϕs2

, (3)

then, implementing these two control protocols together

would lead to a system where the global specification ϕ
.
=

(ϕe → ϕs) is met.

Proof: Assume for a given execution σ of the system,

σ |= ϕe. Then, by condition 1 in Proposition 1, σ |= ϕe1

and σ |= ϕe2
. When a control protocol that meets the

specification in (2) is implemented, σ |= ϕs1
and σ |= φ1

whenever σ |= ϕe1
. Since (φ1 → φ′1) is a tautology, σ |= φ′1.

Hence, the left side of (3) is true for σ which implies that

the synthesized control protocol will guarantee σ |= ϕs2
.

Finally, from condition 2 in Proposition 1, we have σ |= ϕs

which shows that the global specification is met.

When (ϕe2
→ ϕs2

) is unrealizable, specification (3) could

be realizable since the set of executions of the environment

for the latter is a subset of that of former. However, if

(ϕe1
→ ϕs1

) is unrealizable, specification (2) would be

unrealizable as well. Hence, when both local specifications

are unrealizable, one should impose constraints on both sides

of the equations simultaneously in the refinement step.

Proposition 3: Let ϕe, ϕe1
, ϕe2

, ϕs, ϕs1
and ϕs2

, E , E1,

E2, S, S1, S2, P , P1, P2 be defined as in Proposition 1.

Assume conditions 1 and 2 in Proposition 1 are satisfied. If

1) there exist safety formulas φ1, φ′1, φ2 and φ′2, contain-

ing variables respectively from S1, E2, S2 and E1, such

that for any execution that satisfies the environment

assumption ϕe, for all n and for i ∈ {1, 2}, if α̂ =
s0s1 . . . sn is not a bad prefix for φi, α̂ · sn+1 is not a

bad prefix for φ′i; and s0 is not a bad prefix for φ′i,
2) and, there exist two control protocols that render the

following local specifications true:

(φ′2 ∧ ϕe1
) → (ϕs1

∧ φ1), (4)

(φ′1 ∧ ϕe2
) → (ϕs2

∧ φ2), (5)

then implementing these two control protocols together

would lead to a system where the global specification ϕ
.
=

(ϕe → ϕs) is met.

Proof: Assume for a given execution σ of the system,

σ |= ϕe. Then, by condition 1 in Proposition 1, σ |= ϕe1

and σ |= ϕe2
. First, we show that σ |= φ′i. Assume by

contradiction that σ 6|= φ′i. Since φ′i is a safety formula,

there exists a prefix of σ which is a bad prefix for φ′i. Let σ̂,

the shortest prefix of σ which is a bad prefix for φ′i, be of

length k. According to condition 1, the initial state s0 is not

a bad prefix of φ′i hence k > 1. Then, for a control protocol

realizing (4)-(5), we have fj(ǫ, e0) = p
(j)
0 which guarantees

that s0 = (e0, p
(1)
0 , p

(2)
0) is not a bad prefix of φj for i 6=

j; i, j ∈ {1, 2}. Note that otherwise for an execution that

satisfies the assumptions in (4)-(5), the requirements would

be violated for the protocol fj . From condition 1 above,

whenever s0 is not a bad prefix for φj , s0s1 is not a bad

prefix for φ′j for j ∈ {1, 2}. By induction on the location t,
it can be shown that σ̂ = s0 . . . sk cannot be a bad prefix of

φ′i for any finite k which is a contradiction. Hence, when the

environment satisfies its assumption, a control protocol that

satisfies (4)-(5) renders the left side of the formulas True.
Therefore, the right side has to evaluate to True, meaning

σ |= ϕs1
and σ |= ϕs2

. Then, it follows from Condition 2

in Proposition 1, that σ |= ϕs.

Remark 1: In the discussion above an execution σ =
s0s1s2 . . . of the system (i.e. si ∈ dom(S), ∀i) satisfying a

formula ψ where ψ contains variables only from a subset S ′

of S refers to the sequence that is formed by projecting si

onto S ′.

V. EXAMPLE

In this section, we illustrate the proposed control protocol

synthesis methods on a simple example both in a centralized

setup and a distributed setup. First, we state the domains

of the variables introduced in Section III for this example;

and express the specification for the centralized design using

LTL. Then, we derive local specifications and show how

they can be refined to reduce the conservatism in distributed

synthesis. For synthesizing controllers we used TuLiP [24],

a software package for automatic synthesis of embedded

control software, which provides a user-friendly interface to

JTLV [12].

Figure 4 shows the layout of the area monitored. The area

is partitioned into 12 cells with labels from the set C =
{c1, c2, . . . , c12}. There are two PTZ cameras; one on the left

and one on the right side of the area. The area of coverage of

the left PTZ is limited to the cells Cl = {c1, . . . , c6}; and that

of the right PTZ is limited to the cells Cr = {c7 . . . , c12}.

The field of view of each PTZ covers single cell. We assume

that there could be at most 3 targets on each side of the area

(a total of Np = 6 targets) at a given time. x
(i)
t ∈ C ∪ {c0}

is the position of the ith target at time t, where c0 denotes

the outside of the area. Hence the number of targets in the

area at time t is the cardinality of the set {x(i)
t |x(i)

t 6= c0, i ∈
{1, . . . , 6}}. We model the permissible target motion with

simple rules. At each time step a target either remains in the

cell it was in the previous step, or moves to a neighboring cell

(transition to diagonal neighbors is not allowed). Also, the

targets can exit through designated doors; that is, ∀i x(i)
t+1 =

c0 only if x
(i)
t ∈ {c0, c1, c3, c10, c12}. Similarly, for entering

the area the following rule holds: ∀i, t if x
(i)
t = c0 then

x
(i)
t+1 ∈ {c0, c1, c3, c10, c12}. We further assume that people

are “uniformly” distributed within the area or not packed in

a particular region. More precisely, there can be at most 3
people in Cr and at most 3 people in Cl at a given time. All

the rules regarding a target’s motion can be collected into an

LTL formula of the form

ψx,i
.
=

∧

k∈{0,...,12}

�

(

(x(i) = ck) → ©
(

∨

l∈Lk

(x(i) = cl)

))

(6)

for appropriate choices of k and Lk. In (6) Lk is the set

of the cells target is allowed to move from the current cell

ck in one time step; and it is a function of all x’s for the

targets on the boundary of Cr and Cl to preserve uniformity

constraint. In addition, everyone always eventually leaves the

area which can be expressed as

ψf,i
.
= �♦(x(i) = c0). (7)

We assume that a target remains in the area for at least T = 3
time steps

ψd,i
.
= �

(

(x(i) 6= c0 ∧ n(i) < T) → ©(x(i) 6= c0)
)

(8)

where the variable n(i), counting the number of time steps

target i remains inside, satisfies

ψn,i
.
= �

[(

(x(i) = c0) → (n(i) = 0)
)

∧
((

©(x(i) 6= c0)
)

→
(

©(n(i)) = min(n(i) + 1, 3)
))]

.
(9)

In order to take a high resolution image of a target at ci,
the camera should zoom into that single cell ci. We assume

that the camera dynamics are significantly faster than the

target dynamics. In particular, for the controllable variables

z
(j)
t with j = l (or, j = r) that denote the cell the left

(right) camera points to, we assume ∀t z(j)
t ∈ Cj without

Fig. 4. Layout used for the illustrative example.

any further restriction. The LTL formula for this expression

is

ψc,j
.
= �

∨

l∈Cj

(z(j) = cl) for j ∈ {l, r}. (10)

The goal is to synthesize a control protocol for the cameras

that determines z
(j)
t given z

(j)
0:t−1 and x

(i)
0:t so that it is

guaranteed that no target leaves the area before having a high

resolution image taken. isZoomed(i) is the boolean variable

that indicates whether a high resolution image of the ith

target has been taken yet. Let,

o1,i
.
=

(

(x(i) = z(l)) ∨ (x(i) = z(r))
)

→
(

©(isZoomed(i))
)

o2,i
.
=

(

isZoomed(i) ∧ (x(i) 6= c0) ∧©(x(i) 6= c0)
)

→
(

©(isZoomed(i))
)

o3,i
.
=

(

(x(i) 6= z(l)) ∧ (x(i) 6= z(r)) ∧ ¬isZoomed(i)
)

→
(

©(¬isZoomed(i))
)

o4,i
.
=

(

(x(i) = c0)
)

→
(

©(¬isZoomed(i))
)

.

The LTL formulas isZoomed(i)s follow are:

ψo,i
.
=

∧

k∈{1,...,4}

�ok,i. (11)

The camera network system is initialized when the area is

empty which identifies the initial conditions as

ψinit,i
.
= ((x(i) = c0) ∧ (n(i) = 0) ∧ ¬isZoomed(i)). (12)

Let escapei be a proposition, which indicates that target i
leaves the area without having a high resolution image taken,

defined as follows:

escapei
.
=

(

(x(i) 6= c0) ∧ ¬isZoomed(i) ∧©(x(i) = c0)∧
©(¬isZoomed(i))

)

.

Then, the goal of the discrete controller can be written as:

ψg
.
= �





∧

i∈{1,...,6}

¬escapei



 . (13)

Collecting all environmental assumptions into a single

formula, we obtain:

ϕe
.
=

∧

i∈{1,...,6}

(ψx,i∧ψf,i∧ψd,i∧ψn,i∧ψo,i∧ψinit,i). (14)

Similarly, the requirement is:

ϕs
.
= ψg ∧ ψc,l ∧ ψc,r. (15)

By using TuLiP [24], it is possible to find a centralized

control protocol that satisfies the specification

ϕ
.
= ϕe → ϕs. (16)

Such a control protocol can be implemented using a central-

ized architecture as in Fig. 2.

A. Distributed Synthesis

We present a decomposition of the specification for dis-

tributed synthesis for the example above. The constraints on

the areas of coverage of the cameras and the assumption that

people are not dense either on the left or right side of the area

enables defining local specifications of the form ϕj
e → ϕj

s,

j ∈ {l, r}. Each PTZ camera has partial track information

that includes only the locations of the targets within their own

area of coverage. Additionally, the PTZs have some limited

communication capability through which they can exchange

n and isZoomed values of the targets that cross from one

side of the area to the other. We derive the local specification

that is used for synthesizing the control protocol for the left

PZT camera (i.e., j = l); the control protocol for the right

camera is the same due to symmetry.

Since there could be at most 3 people in cells Cl, we

consider x(i) ∈ Cl ∪ {c0} for i ∈ {1, 2, 3}. Unlike the

centralized design, the right side of the area is also rep-

resented by c0. The rules for the target motion is the same

when xi
t = ck for k ∈ {1, 2, 3}. Since the left PTZ camera

does not have the information about the targets on the right,

we need to modify the assumptions on the target motion to

account for people passing from one side to the other. We

assume that a target in c4, c5 or c6 can freely pass to the

right side. That is, L4 = {0, 1, 4, 5}, L5 = {0, 2, 4, 5, 6} and

L6 = {0, 3, 5, 6} where Lk is defined similarly as in Eq.

(6). Also, whenever x(i) = c0 for some i, someone can enter

from the right side of the area as well as the entrances; that is

L0 = {0, 1, 3, 4, 5, 6}. Finally we obtain the following target

motion model:

ψl
x,i

.
=

∧

k∈{0,...,6}

�

(

(x(i) = ck) → ©
(

∨

l∈Lk

(x(i) = cl)

))

.

(17)

We replace the condition that every target always eventually

leaves the area with

ψl
f,i

.
= �♦(x(i) = c0), (18)

which means every target always eventually leaves the left

side of the area. When combined with the symmetric condi-

tion ψr
f,i for the right side of the area, a target who keeps

passing from the left to the right and vice versa infinitely

often will satisfy the environment assumption although such

a behavior is not allowed by the assumption (7). However

since any behavior compatible with (7) is also compatible

with ψl
f,i ∧ ψr

f,i, the condition 1 in Proposition 1 holds.

We assume a target should remain in the area for at least

T = 3 time steps. However, while defining the rules related

to n(i), we need to make a distinction between outside of the

area and the right side of the area. Taking into account the

facts that a target on the left side of the area can only get out

of the area from c1 or c3 and someone crossing from right

to left might have already stayed in the area for a while, we

have:

ψl
d,i

.
= �

(

((x(i) = c1 ∨ x(i) = c3) ∧ (n(i) < T)) →
©(x(i) 6= c0)

)

(19)

and

ψl
n,i

.
= �

[(

(x(i) = c0) → (n(i) = 0)
)

∧
((

(x(i) 6= c0) ∧©(x(i) 6= c0)
)

→
(

©(n(i)) = min(n(i) + 1, 3)
))

∧
((

(x(i) = c0) ∧©(x(i) = c1 ∨ x(i) = c3)
)

→
(

©(n(i)) = 1
))]

.
(20)

Camera dynamics remain the same; that is ψl
c

.
= ψc,l. As for

isZoomed, we have

ol
1,i

.
= (x(i) = z(l)) →

(

©(isZoomed(i))
)

ol
2,i

.
=

(

isZoomed(i) ∧ (x(i) 6= c0) ∧©(x(i) 6= c0)
)

→
(

©(isZoomed(i))
)

ol
3,i

.
=

(

(x(i) 6= z(l)) ∧ ¬isZoomed(i)
)

→
(

©(¬isZoomed(i))
)

ol
4,i

.
=

(

(x(i) = c0) ∧ (©(x(i) 6= c4 ∧ x(i) 6= c5∧
x(i) 6= c6))

)

→
(

©(¬isZoomed(i))
)

which lead to the formula

ψl
o,i

.
=

∧

k∈{1,...,4}

�ol
k,i. (21)

Initial conditions are the same as before (i.e., ψl
init,i

.
=

ψinit,i). We need to modify the proposition escapei as

follows:

escapel
i

.
=

(

((x(i) = c1) ∨ (x(i) = c3)) ∧ ¬isZoomed(i)∧
©(x(i) = c0) ∧©(¬isZoomed(i))

)

.

The goal of the planner on the left PTZ is

ψl
g

.
= �





∧

i∈{1,2,3}

¬escapel
i



 . (22)

Collecting all environmental assumptions into a single

formula, we obtain:

ϕl
e

.
=

∧

i∈{1,2,3}

(ψl
x,i∧ψl

f,i∧ψl
d,i∧ψl

n,i∧ψl
o,i∧ψl

init,i). (23)

Similarly, the requirement is:

ϕl
s

.
= ψl

g ∧ ψl
c. (24)

From Proposition 1, it follows that if there exist two local

control protocols satisfying (ϕl
e → ϕl

s) and (ϕr
e → ϕr

s);
then implementing these control protocols on local planners

will guarantee that the global specification in (16) is met.

However, using TuLiP we determine that (24) is unrealizable

which is a certificate that there exists no control protocol that

guarantees (24) (nor the symmetric counterpart for the right

PTZ). The specification (24) is not realizable mainly because

there is no collaboration on the boundary of the two regions.

Each camera tries to ensure none of the targets gets out of

the area without being zoomed. Yet, they do not guarantee

any exposure of the targets leaving their area of coverage to

cross to the other camera’s area of coverage. Hence, when

multiple un-zoomed targets cross to the left of the area from

the right, the left PTZ can not guarantee that they will all be

zoomed in before they leave the area.

If the cameras cooperate by restricting the number of

un-zoomed targets that cross from one side to the other,

it might be possible to achieve realizability. Strengthening

the specification for the right camera by including additional

requirements, that ensure some of the targets passing from

right to left to be zoomed-in, restricts the allowable behavior

of the environment for the left camera. Therefore, both sides

of (24) should be refined simultaneously due to the symmetry

of the system considered in this example. We refine ϕl
e by

assuming that two un-zoomed targets do not cross from right

side of the area to the left at the same time. Let in be a

proposition defined as

inl
i,j

.
= (x(i) = c0) ∧

(

∨

k∈{4,5,6} ©(x(i) = ck)
)

∧
©(¬isZoomed(i)) ∧ (x(j) = c0)∧
(

∨

k∈{4,5,6} ©(x(j) = ck)
)

∧©(¬isZoomed(j)),

then, the additional assumption on the environment is

ϕl
e,refine

.
= �





∧

i,j∈{1,2,3},i 6=j

¬inl
i,j



 . (25)

Similarly, let out be defined as

outli,j
.
=

(

∨

k∈{4,5,6}(x
(i) = ck)

)

∧©(x(i) = c0)∧
©(¬isZoomed(i)) ∧

(

∨

k∈{4,5,6}(x
(j) = ck)

)

∧
©(x(j) = c0) ∧©(¬isZoomed(j)).

The additional requirement that represents the cooperative

effort of left PZT at the boundary is

ϕl
s,refine

.
= �





∧

i,j∈{1,2,3},i 6=j

¬outli,j



 . (26)

Finally we obtain the refined specification:

ϕl
refined

.
=
(

(ϕl
e,refine ∧ ϕl

e) → (ϕl
s ∧ ϕl

s,refine)
)

. (27)

We used TuLiP [24] to verify the realizability of this spec-

ification and to synthesize local control protocols. Imple-

menting these control protocols on local planners of PTZs

guarantees that the global specification ϕ in (16) is met. A

simulation for this example is shown in Figure 5 where each

PTZ camera moves according to its local control protocol.

As seen in the figure, no one leaves the area before being

zoomed in.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, we considered the problem of designing

control protocols for PTZ cameras within a smart camera

Fig. 5. Results for a sample run of the system. Numbers denote the target identities. Red (blue) circles indicate the cells left (right) PTZ camera zoom
in according to the distributed control protocol. Snapshots from first twelve time steps are shown ordered from left to right starting on the first row.

network where the goal is to guarantee certain temporal

logic specifications related to a given surveillance task. We

recast this problem into a two-player game between the

targets and the PTZ cameras. We employed the digital design

synthesis method of Piterman et al. [12] to synthesize control

protocols. However, this method does not scale well with

increasing number of variables due to the state explosion

problem. To partially alleviate this problem, we proposed a

distributed synthesis procedure which is based on decom-

posing the global specification into local ones so that it is

possible to implement local controllers on each PTZ. We

also presented some preliminary ideas as to how the local

specifications can be refined in order to reduce conservatism

by imposing cooperation between the PTZ cameras.

B. Discussions and Future Directions

The proposed distributed control protocol synthesis

methodology is restrictive and should be considered as an

initial step. We now discuss these specific restrictions and

potential extensions. If the local specifications are unreal-

izable it could be either because of the conservatism of

Propositions 1-3 or because the global specification is unre-

alizable. Obviously, refining the local specifications would be

pointless if the global specification is unrealizable. One of the

drawbacks of our approach is its lack of providing any insight

about the unrealizability of the global specification when

local specifications turn out to be unrealizable. An interesting

research direction is to use the counterexamples for local

specifications to search for unrealizability certificates for the

global specification. Also, a better characterization of the

LTL formulas that can be decomposed and LTL formulas

that can be used in the refinement procedure is necessary.

Another direction for current research is to automate the

refinement procedure, for instance using counterexample

guided approaches (e.g., [25]) or random formula generation.

For the PTZ cameras, we considered a cyclic topology,

but it is possible to consider different network topologies as

well. For instance in a traffic monitoring application a serial

topology along the traffic flow would be more appropriate.

It is worth studying how different interconnections/interac-

tions of the subsystems affect the design. In this paper,

we fixed the communication rules between the cameras

a priori. Designing communication rules subject to some

communication constraints within the synthesis procedure is

a worthwhile endeavor. Finally, we are exploring applications

of our distributed synthesis methodology in different control

protocol design problems, such as those arising in vehicle

management systems or autonomous robotic teams.

VII. ACKNOWLEDGMENTS

We thank Mani Chandy for useful discussions. We also

thank Scott Livingston for proofreading an earlier draft of

the paper and for his suggestions.

REFERENCES

[1] P. Remagnino, C. S. Regazzoni, G. A. Jones, and N. Paragios, eds.,
Video-Based Surveillance Systems: Computer Vision and Distributed

Processing. Norwell, MA, USA: Kluwer Academic Publishers, 2001.

[2] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Prentice Hall, 2002.

[3] B. Rinner and W. Wolf, “An introduction to distributed smart cameras,”
Proceedings of the IEEE, vol. 96, pp. 1565–1575, October 2008.

[4] S. Soatto, “Actionable information in vision,” in Proceedings of the

International Conference on Computer Vision, October 2009.
[5] C. Micheloni, G. Foresti, and L. Snidaro, “A network of co-operative

cameras for visual surveillance,” Vision, Image and Signal Processing,

IEE Proceedings -, vol. 152, pp. 205 – 212, apr. 2005.
[6] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete

abstractions of hybrid systems,” in Proceedings of the IEEE, pp. 971–
984, 2000.

[7] P. Tabuada and G. J. Pappas, “Linear time logic control of linear
systems,” IEEE Transactions on Automatic Control, vol. 51, no. 12,
pp. 1862–1877, 2006.

[8] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
2010. submitted.

[9] A. Pnueli, “The temporal logic of programs,” in Proc. of the 18th

Annual Symposium on the Foundations of Computer Science, pp. 46–
57, IEEE, 1977.

[10] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent

systems. Springer-Verlag, 1992.
[11] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller synthesis

for timed automata,” in IFAC Symposium on System Structure and

Control, pp. 469–474, 1998.
[12] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1)

designs,” in Verification, Model Checking and Abstract Inter-

pretation, vol. 3855 of Lecture Notes in Computer Science,
pp. 364 – 380, Springer-Verlag, 2006. Software available at
http://jtlv.sourceforge.net/.

[13] A. Pneuli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” in SFCS ’90: Proceedings of the 31st Annual Sympo-

sium on Foundations of Computer Science, (Washington, DC, USA),
pp. 746–757 vol.2, IEEE Computer Society, 1990.

[14] M. Mukund, “From global specifications to distributed implementa-
tions,” in Synthesis and control of discrete event systems, pp. 19–34,
Kluwer, 2002.

[15] E. Filiot, N. Jin, and J.-F. Raskin, “Compositional algorithms for ltl
synthesis,” in Automated Technology for Verification and Analysis,
pp. 112–127, 2010.

[16] P. Madhusudan and P. Thiagarajan, “Distributed controller synthesis
for local specifications,” in Automata, Languages and Programming

(F. Orejas, P. Spirakis, and J. van Leeuwen, eds.), vol. 2076 of Lecture

Notes in Computer Science, pp. 396–407, Springer Berlin, 2001.
[17] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,

2008.
[18] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT

Press, 1999.
[19] A. Pnueli, “Applications of temporal logic to the specification and

verification of reactive systems: a survey of current trends,” Current

Trends in Concurrency. Overviews and Tutorials, pp. 510–584, 1986.
[20] A. Galton, ed., Temporal Logics and Their Applications. San Diego,

CA: Academic Press Professional, Inc., 1987.
[21] G. Holzmann, “The theory and practice of a formal method: New-

CoRe,” in Proc. of the IFIP World Computer Congress, vol. 1, pp. 35–
44, North-Holland Publ., 1994.

[22] S. Cerrito and M. C. Mayer, “Using linear temporal logic to model
and solve planning problems,” in AIMSA, pp. 141–152, 1998.

[23] M. Kloetzer and C. Belta, “Automatic deployment of distributed
teams of robots from temporal logic motion specifications,” IEEE

Transactions on Robotics, vol. 26, no. 1, pp. 48–61, 2010.
[24] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Mur-

ray, “TuLiP: a software toolbox for receding horizon temporal
logic planning,” in HSCC, 2011. submitted. Software available at
http://www.cds.caltech.edu/tulip.

[25] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer Aided Verification

(E. Emerson and A. Sistla, eds.), vol. 1855 of Lecture Notes in

Computer Science, pp. 154–169, Springer Berlin, 2000.

