## Distributed Systems Principles and Paradigms

### Maarten van Steen

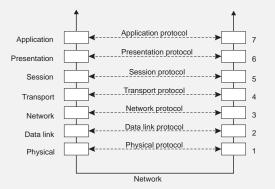
VU Amsterdam, Dept. Computer Science steen@cs.vu.nl

## Chapter 04: Communication

Version: November 5, 2012



vrije Universiteit amsterdam


4.1 Layered Protocols

## Layered Protocols

- Low-level layers
- Transport layer
- Application layer
- Middleware layer

4.1 Layered Protocols

## Basic networking model



#### **Drawbacks**

- Focus on message-passing only
- Often unneeded or unwanted functionality
- Violates access transparency

#### 4.1 Layered Protocols

## Low-level layers

### Recap

- Physical layer: contains the specification and implementation of bits, and their transmission between sender and receiver
- Data link layer: prescribes the transmission of a series of bits into a frame to allow for error and flow control
- Network layer: describes how packets in a network of computers are to be routed.

### Observation

For many distributed systems, the lowest-level interface is that of the network layer.

## **Transport Layer**

### Important

The transport layer provides the actual communication facilities for most distributed systems.

### **Standard Internet protocols**

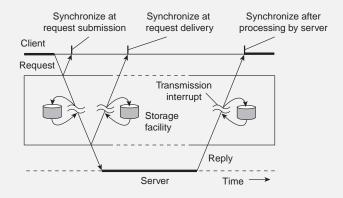
- TCP: connection-oriented, reliable, stream-oriented communication
- UDP: unreliable (best-effort) datagram communication

### Note

IP multicasting is often considered a standard available service (which may be dangerous to assume).

## Middleware Layer

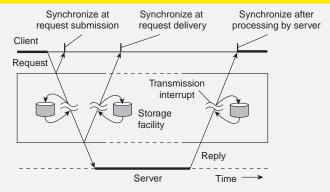
### Observation


Middleware is invented to provide common services and protocols that can be used by many different applications

- A rich set of communication protocols
- (Un)marshaling of data, necessary for integrated systems
- Naming protocols, to allow easy sharing of resources
- Security protocols for secure communication
- Scaling mechanisms, such as for replication and caching

### Note

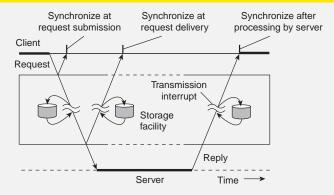
What remains are truly application-specific protocols... such as?


## Types of communication



### Distinguish

- Transient versus persistent communication
- Asynchrounous versus synchronous communication


## Types of communication



### Transient versus persistent

- Transient communication: Comm. server discards message when it cannot be delivered at the next server, or at the receiver.
- Persistent communication: A message is stored at a communication server as long as it takes to deliver it.

# Types of communication



### **Places for synchronization**

- At request submission
- At request delivery
- After request processing

## **Client/Server**

### Some observations

Client/Server computing is generally based on a model of transient synchronous communication:

- Client and server have to be active at time of commun.
- Client issues request and blocks until it receives reply
- Server essentially waits only for incoming requests, and subsequently processes them

### Drawbacks synchronous communication

- Client cannot do any other work while waiting for reply
- Failures have to be handled immediately: the client is waiting
- The model may simply not be appropriate (mail, news)

## **Client/Server**

### Some observations

Client/Server computing is generally based on a model of transient synchronous communication:

- Client and server have to be active at time of commun.
- Client issues request and blocks until it receives reply
- Server essentially waits only for incoming requests, and subsequently processes them

### Drawbacks synchronous communication

- Client cannot do any other work while waiting for reply
- Failures have to be handled immediately: the client is waiting
- The model may simply not be appropriate (mail, news)

## Messaging

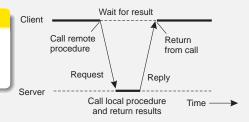
### Message-oriented middleware

Aims at high-level persistent asynchronous communication:

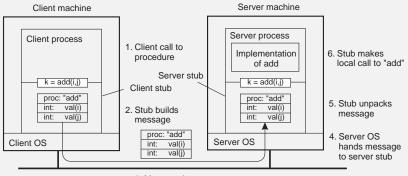
- Processes send each other messages, which are queued
- Sender need not wait for immediate reply, but can do other things
- Middleware often ensures fault tolerance

### Remote Procedure Call (RPC)

- Basic RPC operation
- Parameter passing
- Variations


## **Basic RPC operation**

### **Observations**


- Application developers are familiar with simple procedure model
- Well-engineered procedures operate in isolation (black box)
- There is no fundamental reason not to execute procedures on separate machine

### Conclusion

Communication between caller & callee can be hidden by using procedure-call mechanism.



## **Basic RPC operation**



Message is sent across the network



Client procedure calls client stub. Stub builds message; calls local OS. OS sends message to remote OS. Remote OS gives message to stub. Stub unpacks parameters and calls server.

- Server makes local call and returns result to stub.
- Stub builds message; calls OS.
- OS sends message to client's OS.
- Client's OS gives message to stub.
- O Client stub unpacks result and returns to the client.

### Parameter marshaling

There's more than just wrapping parameters into a message:

- Client and server machines may have different data representations (think of byte ordering)
- Wrapping a parameter means transforming a value into a sequence of bytes
- Client and server have to agree on the same encoding:
  - How are basic data values represented (integers, floats, characters)
  - How are complex data values represented (arrays, unions)
- Client and server need to properly interpret messages, transforming them into machine-dependent representations.

#### **RPC parameter passing: some assumptions**

- Copy in/copy out semantics: while procedure is executed, nothing can be assumed about parameter values.
- All data that is to be operated on is passed by parameters. Excludes passing references to (global) data.

#### Conclusion

Full access transparency cannot be realized.

#### Observation

A remote reference mechanism enhances access transparency:

- Remote reference offers unified access to remote data
- Remote references can be passed as parameter in RPCs

### **RPC parameter passing: some assumptions**

- Copy in/copy out semantics: while procedure is executed, nothing can be assumed about parameter values.
- All data that is to be operated on is passed by parameters. Excludes passing references to (global) data.

#### Conclusion

Full access transparency cannot be realized.

#### Observation

A remote reference mechanism enhances access transparency:

- Remote reference offers unified access to remote data
- Remote references can be passed as parameter in RPCs

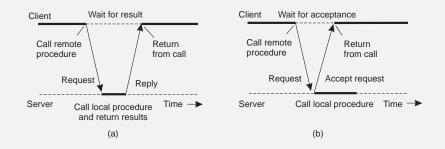
#### **RPC parameter passing: some assumptions**

- Copy in/copy out semantics: while procedure is executed, nothing can be assumed about parameter values.
- All data that is to be operated on is passed by parameters. Excludes passing references to (global) data.

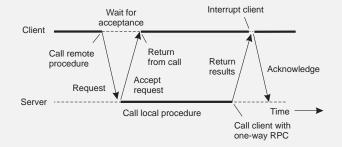
#### Conclusion

Full access transparency cannot be realized.

### Observation


A remote reference mechanism enhances access transparency:

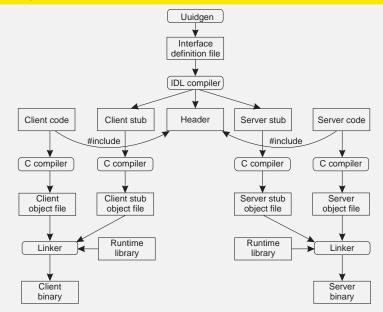
- Remote reference offers unified access to remote data
- Remote references can be passed as parameter in RPCs


## Asynchronous RPCs

#### Essence

Try to get rid of the strict request-reply behavior, but let the client continue without waiting for an answer from the server.

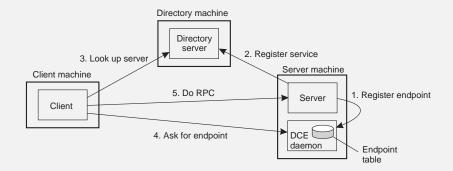



## Deferred synchronous RPCs



#### Variation

Client can also do a (non)blocking poll at the server to see whether results are available.


## **RPC** in practice



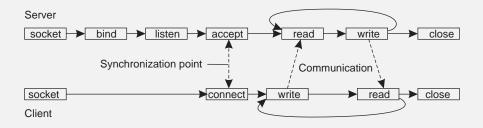
## Client-to-server binding (DCE)

#### Issues

(1) Client must locate server machine, and (2) locate the server.



## Message-Oriented Communication


- Transient Messaging
- Message-Queuing System
- Message Brokers
- Example: IBM Websphere

## Transient messaging: sockets

### **Berkeley socket interface**

| SOCKET  | Create a new communication endpoint           |
|---------|-----------------------------------------------|
| BIND    | Attach a local address to a socket            |
| LISTEN  | Announce willingness to accept N connections  |
| ACCEPT  | Block until request to establish a connection |
| CONNECT | Attempt to establish a connection             |
| SEND    | Send data over a connection                   |
| RECEIVE | Receive data over a connection                |
| CLOSE   | Release the connection                        |

## Transient messaging: sockets



### Sockets: Python code

#### Server

### Client

```
import socket
HOST = 'distsys.cs.vu.nl'
PORT = SERVERPORT
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send('Hello, world')
data = s.recv(1024)
s.close()
```

## Message-oriented middleware

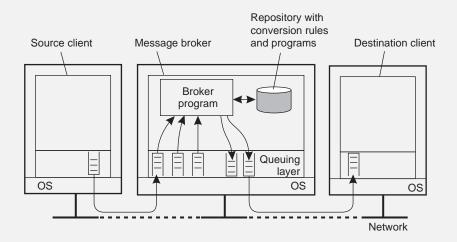
#### Essence

Asynchronous persistent communication through support of middleware-level queues. Queues correspond to buffers at communication servers.

| PUT    | Append a message to a specified queue                                          |
|--------|--------------------------------------------------------------------------------|
| GET    | Block until the specified queue is nonempty, and re-<br>move the first message |
| POLL   | Check a specified queue for messages, and remove the first. Never block        |
| NOTIFY | Install a handler to be called when a message is put into the specified queue  |

## Message broker

### **Observation**

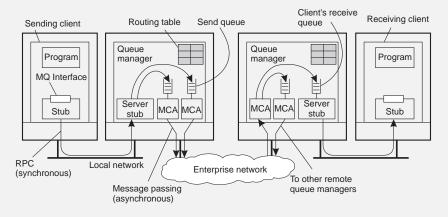

Message queuing systems assume a common messaging protocol: all applications agree on message format (i.e., structure and data representation)

### Message broker

Centralized component that takes care of application heterogeneity in an MQ system:

- Transforms incoming messages to target format
- Very often acts as an application gateway
- May provide subject-based routing capabilities ⇒ Enterprise Application Integration

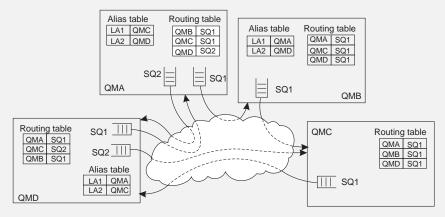
## Message broker




### **Basic concepts**

- Application-specific messages are put into, and removed from queues
- Queues reside under the regime of a queue manager
- Processes can put messages only in local queues, or through an RPC mechanism

### Message transfer


- Messages are transferred between queues
- Message transfer between queues at different processes, requires a channel
- At each endpoint of channel is a message channel agent
- Message channel agents are responsible for:
  - Setting up channels using lower-level network communication facilities (e.g., TCP/IP)
  - (Un)wrapping messages from/in transport-level packets
  - Sending/receiving packets



- Channels are inherently unidirectional
- Automatically start MCAs when messages arrive
- Any network of queue managers can be created
- Routes are set up manually (system administration)

### Routing

By using logical names, in combination with name resolution to local queues, it is possible to put a message in a remote queue



### Stream-oriented communication

- Support for continuous media
- Streams in distributed systems
- Stream management

## Continuous media

### Observation

All communication facilities discussed so far are essentially based on a discrete, that is time-independent exchange of information

### **Continuous media**

Characterized by the fact that values are time dependent:

- Audio
- Video
- Animations
- Sensor data (temperature, pressure, etc.)

# Continuous media

### Transmission modes

Different timing guarantees with respect to data transfer:

- Asynchronous: no restrictions with respect to when data is to be delivered
- Synchronous: define a maximum end-to-end delay for individual data packets
- Isochronous: define a maximum and minimum end-to-end delay (jitter is bounded)

### Stream

### Definition

A (continuous) data stream is a connection-oriented communication facility that supports isochronous data transmission.

### Some common stream characteristics

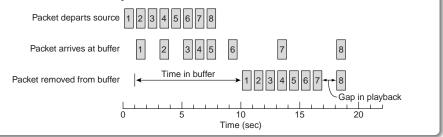
- Streams are unidirectional
- There is generally a single source, and one or more sinks
- Often, either the sink and/or source is a wrapper around hardware (e.g., camera, CD device, TV monitor)
- Simple stream: a single flow of data, e.g., audio or video
- Complex stream: multiple data flows, e.g., stereo audio or combination audio/video

### Streams and QoS

#### Essence

Streams are all about timely delivery of data. How do you specify this Quality of Service (QoS)? Basics:

- The required bit rate at which data should be transported.
- The maximum delay until a session has been set up (i.e., when an application can start sending data).
- The maximum end-to-end delay (i.e., how long it will take until a data unit makes it to a recipient).
- The maximum delay variance, or jitter.
- The maximum round-trip delay.

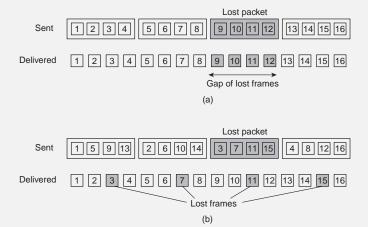

# **Enforcing QoS**

### Observation

There are various network-level tools, such as differentiated services by which certain packets can be prioritized.

### Also

### Use buffers to reduce jitter:




### Enforcing QoS

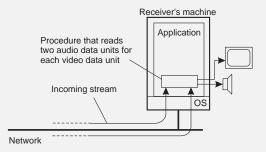
### **Problem**

How to reduce the effects of packet loss (when multiple samples are in a single packet)?

# **Enforcing QoS**



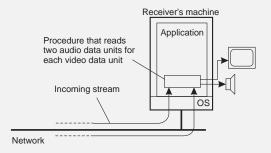
### Stream synchronization


### **Problem**

Given a complex stream, how do you keep the different substreams in synch?

### Example

Think of playing out two channels, that together form stereo sound. Difference should be less than  $20-30 \ \mu \text{sec}!$ 


### Stream synchronization



#### Alternative

Multiplex all substreams into a single stream, and demultiplex at the receiver. Synchronization is handled at multiplexing/demultiplexing point (MPEG).

## Stream synchronization



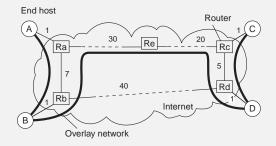
### **Alternative**

Multiplex all substreams into a single stream, and demultiplex at the receiver. Synchronization is handled at multiplexing/demultiplexing point (MPEG).

### Multicast communication

- Application-level multicasting
- Gossip-based data dissemination

# Application-level multicasting


#### Essence

Organize nodes of a distributed system into an overlay network and use that network to disseminate data.

#### Chord-based tree building

- Initiator generates a multicast identifier *mid*.
- Lookup succ(mid), the node responsible for mid.
- Request is routed to *succ(mid)*, which will become the root.
- If P wants to join, it sends a join request to the root.
- When request arrives at Q:
  - Q has not seen a join request before ⇒ it becomes forwarder; P becomes child of Q. Join request continues to be forwarded.
  - *Q* knows about tree ⇒ *P* becomes child of *Q*. No need to forward join request anymore.

### ALM: Some costs



- Link stress: How often does an ALM message cross the same physical link? Example: message from A to D needs to cross (Ra, Rb) twice.
- Stretch: Ratio in delay between ALM-level path and network-level path. Example: messages *B* to *C* follow path of length 71 at ALM, but 47 at network level ⇒ stretch = 71/47.

# **Epidemic Algorithms**

- General background
- Update models
- Removing objects

### **Principles**

#### **Basic idea**

Assume there are no write-write conflicts:

- Update operations are performed at a single server
- A replica passes updated state to only a few neighbors
- Update propagation is lazy, i.e., not immediate
- Eventually, each update should reach every replica

### Two forms of epidemics

- Anti-entropy: Each replica regularly chooses another replica at random, and exchanges state differences, leading to identical states at both afterwards
- Gossiping: A replica which has just been updated (i.e., has been contaminated), tells a number of other replicas about its update (contaminating them as well).

# Anti-entropy

### **Principle operations**

- A node *P* selects another node *Q* from the system at random.
- Push: P only sends its updates to Q
- Pull: P only retrieves updates from Q
- Push-Pull: *P* and *Q* exchange mutual updates (after which they hold the same information).

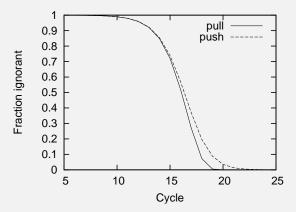
### **Observation**

For push-pull it takes  $\mathcal{O}(log(N))$  rounds to disseminate updates to all N nodes (round = when every node as taken the initiative to start an exchange).

# Anti-entropy: analysis (extra)

### **Basics**

Consider a single source, propagating its update. Let  $p_i$  be the probability that a node has not received the update after the i-th cycle.


### Analysis: staying ignorant

- With pull,  $p_{i+1} = (p_i)^2$ : the node was not updated during the i-th cycle and should contact another ignorant node during the next cycle.
- With push,  $p_{i+1} = p_i(1 \frac{1}{N})^{N(1-p_i)} \approx p_i e^{-1}$  (for small  $p_i$  and large N): the node was ignorant during the i-th cycle and no updated node chooses to contact it during the next cycle.

• With push-pull: 
$$(p_i)^2 \cdot (p_i e^{-1})$$

4.5 Multicast Communication

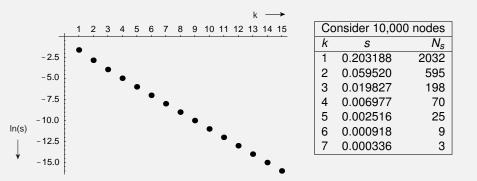
# Anti-entropy performance



# Gossiping

### **Basic model**

A server *S* having an update to report, contacts other servers. If a server is contacted to which the update has already propagated, *S* stops contacting other servers with probability 1/k.

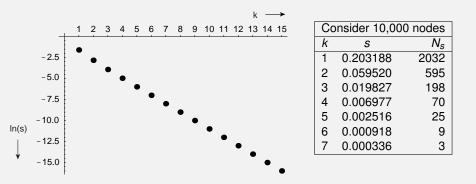

### **Observation**

If s is the fraction of ignorant servers (i.e., which are unaware of the update), it can be shown that with many servers

$$s = e^{-(k+1)(1-s)}$$

#### 4.5 Multicast Communication

# Gossiping




### Note

If we really have to ensure that all servers are eventually updated, gossiping alone is not enough

#### 4.5 Multicast Communication

# Gossiping



### Note

If we really have to ensure that all servers are eventually updated, gossiping alone is not enough

### **Deleting values**

### **Fundamental problem**

We cannot remove an old value from a server and expect the removal to propagate. Instead, mere removal will be undone in due time using epidemic algorithms

### Solution

Removal has to be registered as a special update by inserting a death certificate

# **Deleting values**

#### **Next problem**

When to remove a death certificate (it is not allowed to stay for ever):

- Run a global algorithm to detect whether the removal is known everywhere, and then collect the death certificates (looks like garbage collection)
- Assume death certificates propagate in finite time, and associate a maximum lifetime for a certificate (can be done at risk of not reaching all servers)

#### Note

It is necessary that a removal actually reaches all servers.

### Question

What's the scalability problem here?

### **Example applications**

### Typical apps

- Data dissemination: Perhaps the most important one. Note that there are many variants of dissemination.
- Aggregation: Let every node *i* maintain a variable x<sub>i</sub>. When two nodes gossip, they each reset their variable to

$$x_i, x_j \leftarrow (x_i + x_j)/2$$

Result: in the end each node will have computed the average  $\bar{x} = \sum_i x_i / N$ .

# Example application: aggregation

### **Aggregation (continued)**

When two nodes gossip, they each reset their variable to

$$x_i, x_j \leftarrow (x_i + x_j)/2$$

Result: in the end each node will have computed the average  $\bar{x} = \sum_i x_i / N$ .

#### Question

What happens if initially  $x_i = 1$  and  $x_j = 0, j \neq i$ ?

#### Question

How can we start this computation without pre-assigning a node *i* to start as only one with  $x_i \leftarrow 1$ ?

# Example application: aggregation

### **Aggregation (continued)**

When two nodes gossip, they each reset their variable to

$$x_i, x_j \leftarrow (x_i + x_j)/2$$

Result: in the end each node will have computed the average  $\bar{x} = \sum_i x_i / N$ .

### Question

What happens if initially  $x_i = 1$  and  $x_j = 0, j \neq i$ ?

#### Question

How can we start this computation without pre-assigning a node *i* to start as only one with  $x_i \leftarrow 1$ ?

# Example application: aggregation

### **Aggregation (continued)**

When two nodes gossip, they each reset their variable to

$$x_i, x_j \leftarrow (x_i + x_j)/2$$

Result: in the end each node will have computed the average  $\bar{x} = \sum_i x_i / N$ .

### Question

What happens if initially 
$$x_i = 1$$
 and  $x_j = 0, j \neq i$ ?

### Question

How can we start this computation without pre-assigning a node *i* to start as only one with  $x_i \leftarrow 1$ ?