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Distributed Target Tracking Using Signal Strength
Measurements by a Wireless Sensor Network

Anand Oka, Member, IEEE, and Lutz Lampe, Senior Member, IEEE

Abstract—Wireless Sensor Networks are well suited for track-
ing targets carrying RFID tags in indoor environments. Tracking
based on the received signal strength indication (RSSI) is by
far the cheapest and simplest option, but suffers from secular
biases due to effects of multi-path, occlusions and decalibration,
as well as large unbiased errors due to measurement noise.
We propose a novel algorithm that solves these problems in
a distributed, scalable and power-efficient manner. Firstly, our
proposal includes a tandem incremental estimator that learns and
tracks the radio environment of the network, and provides this
knowledge for the use of the tracking algorithm, which eliminates
the secular biases due to radio occlusions etc. Secondly, we reduce
the unbiased tracking error by exploiting the co-dependencies in
the motion of several targets (as in crowds or herds) via a fully
distributed and tractable particle filter. We thereby extract a
significant “diversity gain” while still allowing the network to
scale seamlessly to a large tracking area. In particular, we avoid
the pitfalls of network congestion and severely shortened battery
lifetimes that plague procedures based on the joint multi-target
probability density.

Index Terms—Wireless Sensor Networks, Distributed Track-
ing, RSSI, Radio Environment Estimation, Particle Filter

I. INTRODUCTION
The ability to remotely locate and track mobile targets

is crucial in many applications like security, access control,
and robotics [1, 2]. Global Positioning Systems (GPS) tend
to be relatively costly, and do not give adequate precision
inside buildings, mines etc. A more accurate and inexpensive
alternative is a Wireless Sensor Network (WSN) [3], an ad hoc
network of battery powered motes having modest capabilities
of sensing, computation and multi-hop wireless communi-
cation. The sensor in each mote is a radio receiver that
detects radio signals from cheap unobtrusive radio frequency
identification (RFID) tags mounted on the targets to be tracked.
While such a WSN can be set up quickly and cheaply, its
computation and communication resources need to be used
frugally due to the severe power constraints on the motes.
A WSN can achieve localization of the targets by interpret-

ing several metrics of the tag transmissions such as the time
of arrival (TOA), time difference of arrival (TDOA), angle of
arrival (AOA), multi-path signature (MPS), and received signal
strength indication (RSSI) [1, 2]. RSSI based tracking has
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by far the lowest cost since it does not require multi-antenna
reception, accurate clocks, duplex communication with the tag,
or expensive signal processing by the motes. However, if the
operating environment has significant occlusions, shadowing
or multi-path propagation, it gives large biases in the position
estimates which cannot be eliminated even with an abundance
of observation data. The biasing effect also occurs if the
transmit power from the tags or the gains of the antennae
lose calibration. Furthermore, even the unbiased component
of the tracking error can be large due to the noisy nature of
RSSI measurements.
We present an advanced RSSI based tracking technique that

significantly ameliorates these problems by incorporating two
novel features: (1) It recursively learns and compensates for
the radio environment of the tags and the motes based on max-
imum likelihood principles, thereby eliminating the secular bi-
ases in the tracking errors. (2) It reduces the unbiased tracking
error by exploiting the dependencies in the motion of targets
that are moving in crowds or herds, thus achieving a diversity
gain. For this it uses a particle filtering approach [4–9], which
is known to be efficient in representing the highly multi-modal
a-posteriori probability density of the target states. However,
unlike [4–9], it implements a bank of distributed particle filters
on the marginal densities of the targets, that interact only
through conditional marginal expectations [10]. This enables
it to avoid the intractable manipulation of the joint multi-target
probability density (JMPD). Furthermore, each filter operates
on data aggregated solely from a local neighborhood of the
tag. In summary, we present a simple, inexpensive, distributed
and scalable tracking technique that works robustly in indoor
environments like hospitals or factories.
Outline: After defining the system model in Section II, we
present the tracking sub-algorithm in Section III, and the
radio-environment estimation sub-algorithm in Section IV.
Section V discusses the practical aspects of scalable imple-
mentation. In Section VI we present simulation results. We
use the following conventions: xT denotes transpose of x.
{Υa

b : a = 1, 2, . . . , A; b = 1, 2, . . . , B} denotes a set of
objects formed by letting the indices run over the prescribed
ranges. Where no confusion can arise we denote it by {Υa

b}
or {Υ}. Partially enumerated indices always specify a subset.
E.g., {Υa

b : b = 1, 2, . . . , B} will denote a subset of B
elements, where the superscript index is pinned to a.

II. SYSTEM MODEL AND OVERVIEW
Suppose we wish to track in D dimensions (D ∈ {1, 2, 3})

in some bounded tracking region, using a WSN. Within the
tracking area, N motes are placed at more or less uniformly
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Fig. 1. RSSI based target tracking in an indoor environment in a plane
(D = 2 dimensions), using a WSN. There are nine installed motes (of which
only N = 4 are shown to be active in the figure), M = 2 targets and L = 4

cells. The cells are defined to be the rooms of the building.

spread-out but arbitrary locations, with position vectors rn ∈
RD, n = 1, 2, . . . , N . All these position vectors are assumed
to be known to each mote. We divide the tracking region into L
cells which are chosen such that there is no appreciable spatial
variability in the radio transmission characteristic from any
points within a cell to a mote, apart from the standard distance
dependent path-loss due to geometric spreading (this will be
clarified shortly). In many cases the cells may be chosen to be
the rooms in the building. The knowledge of the boundaries
of the cells is assumed to be available to all the motes. For
example, consider the system setup illustrated in Figure 1,
which we also use in some simulations in Section VI. The
tracking area is one floor of a building with four rooms of
dissimilar sizes, within which the mobile targets are confined.
The number of targets M is assumed fixed and known to
the tracking application. Each target carries an active RFID
tag. The position of target number m ∈ {1, 2, . . . , M} at
discrete time index t ∈ {1, 2, . . .} is denoted by Xt

m ∈ RD.
{Xt

m} is viewed as a random process governed by a known
maneuver model, which will be described in Section II-A. Let
Y t

m,n ∈ R denote the RSSI in decibel-milliwatt (dBmW) of
the signal from tag m received at mote n at time t. Then
{Y t

m,n}|{X
t
m} is governed by a known observation model,

which will be described in Section II-B. Let the power of the
signal transmitted by tag m at time t be Φt

m dBmW, and let
the gain of the path from cell l ∈ {1, 2, . . . , L} to mote n
at time t be Γt

l,n dB. Γt
l,n does not include the propagation

path loss due to geometric spreading. It may be helpful to
think of it as the (negative of the) loss due to attenuation
by intervening objects like walls. The quantities {Φt

m} and
{Γt

l,n} are viewed as unknown but deterministic quasi-static
parameters. For accurate tracking, the true values of these
parameters need to be estimated and used. Let Φ̂t

m and Γ̂t
l,n

denote the estimates of Φt
m and Γt

l,n respectively.

The aim of the tracking system is to find an estimate X̂t
m

for the position Xt
m of each tag m = 1, 2, . . . , M at time

t, based on all the observations up to and including that
epoch, namely {Y τ

m,n : all m, n; τ = 1, 2, . . . , t}. Ideally, the
estimates {X̂t

m : all m} should be optimal in the sense of the

normalized total mean squared tracking error at time t,

(∆2)
t
=

1

M

M
∑

m=1

E

[

‖X̂t
m − Xt

m‖2
]

. (1)

The over-all tracking system consists of a target tracking
algorithm based on particle filtering, and a stochastic in-
cremental radio environment estimation algorithm based on
Maximum Likelihood (ML) principles. This hybrid solution
compares favorably to a fully Bayesian approach that appends
all unknown parameters into an expanded “meta-state”.
A. Maneuver Model
Let V t

m ∈ RD denote the velocity of target m at time t.
Define the sub-state corresponding to tagm at time t as Zt

m
.
=

[Xt
m,1V

t
m,1X

t
m,2V

t
m,2 . . .Xt

m,DV t
m,D]T , and the total-state of

all the targets as Zt .
= [Zt

1
T
Zt

2
T

. . . Zt
M

T
]T . In this paper we

will use a class of maneuver models that is popular in the
literature of target tracking [4, 11–13], where the total-state is
assumed to be governed by a first-order Markov Chain (MC)

Zt+1 .
= AZt + B U t + εdepen g(B C Zt). (2)

In this equation the term AZt captures the inertia of each
individual target and the term B U t represents the effect of
the individual independent accelerations (‘maneuvers’) of the
targets. Hence A ∈ R2MD×2MD is a block-diagonal matrix
with the sub-matrix

h

1 T
0 1

i

repeated along the diagonal,
and B ∈ R2MD×MD is a block-diagonal matrix with the
sub-matrix

ˆ

T 2/2, T
˜T repeated along the diagonal, with T

being the time interval between successive maneuvers. The
acceleration U t ∈ RMD is assumed to be independently and
identically distributed for all t according to N (0,σ2

U IMD),
and is assumed to be active throughout the real-time interval
[(t − 1)T, tT ] (i.e. the physical acceleration is piecewise
constant). The term g(B C Zt) captures the effect of causal
interactions in-between the targets, with the scalar εdepen ≥ 0
controlling the relative strength of these interactions. C is
some suitably chosen interaction feedback matrix, and g(·) is
some suitable compressive non-linearity applied component-
wise to its vector argument.
Clearly, if we let εdepen = 0, we obtain a model where the

tags move independently of each other, with tagm accelerating
independently in each dimension according to component
numbers (m − 1)D + 1, . . . , (m − 1)D + D respectively of
U t. On the other hand if εdepen > 0, and C, g(·) are chosen
to mimic certain heuristic rules known as Reynolds’ flocking
rules [13], we can model the motion of a variety of herds
and swarms, and even deterministically constrained motion
like ‘convoy’ or ‘leapfrog’ [4]. In general, we can improve
the tracking accuracy by exploiting the mutual information
among such co-dependently moving targets.
B. Observation Model
A single transmission from a tag consists of a packet

of bits that uniquely identify it relative to other tags. An
incorrect decoding of these bits can be reliably detected using
a Cyclic Redundancy Check (CRC) code, and such packets
can be deemed invalid and rejected by the algorithm. For
valid packets, we can always correctly associate the RSSI



3

with the source of transmission, thus avoiding the problem
of data association [12]. For simplicity we will now assume
that the interval between the periodic transmissions from
the tags is also T seconds, and that these transmissions are
synchronous.1 A commonly used model for the strength of
the radio transmissions in the far-field of the transmitting tag
is the Friis model [14]. In the tracking scenario [12] this model
implies that the observations made by the motes at real time
tT are given (in dBmW) by

Y t
m,n = Φt

m +Γt
f(Xt

m),n−ρ10 log10 ‖X
t
m−rn‖+W t

m,n. (3)

Here ρ is a known path loss exponent (ρ = 2.0 in free-space)
and W t

m,n is a process of additive perturbations in the RSSI
measurements (expressed in dB) with i.i.d. components for all
t, m, n distributed according toN (0,σ2

W ). These perturbations
can be attributed to several causes like the data noise in
the signal, fast fading and other imperfections of the RSSI
measurement circuitry, and the thermal noise in the front-end
receiver of the motes, c.f. e.g. [1, 2, 4]. The function f(·) is a
position quantizer that takes a position vector in the tracking
area and returns its cell index:

f : R
D → {1, 2, . . . , L}, x &→ f(x). (4)

III. TRACKING WITH A SAMPLING
IMPORTANCE-RESAMPLING PARTICLE FILTER

In this section we will use the current parameter estimates,
namely {Φ̂t

m : all m} and {Γ̂t
l,n : all l, n}, as if they are the

true parameters, and perform the filter update of the propagated
probability density function (p.d.f.) of the total system state.
The optimal estimate of the state in the sense of minimum
mean squared error (MMSE) is Ẑt =

∫

R2MD zt q(zt)dzt,
where qt(zt) is the a-posteriori density of the total-state at
time t conditioned on all the observations up to and including
sampling time index t, given by the Bayesian recursion

qt(zt) ∝ p(yt|zt)

∫

R2MD

p(zt|zt−1) qt−1(zt−1) dzt−1. (5)

This recursion has no closed form solution, and in fact
becomes intractable as M increases. Hence, for achieving a
tractable algorithm, we must use some type of approximation.
A particle filter is known to give the best approximation
of the highly multi-modal qt(zt) when tracking with RSSI
[4–6]. In particular, we will use a bank of particle filters,
one each for the sub-state of the corresponding target. Let
R2D ( ζt

m,π,π = 1, 2, . . . ,Π be the Π particles representing
qt
m(zt

m), the marginal a-posteriori distribution at time t of the
sub-state of target m. The particle representation is made via
the identity qt

m(zt
m) ≈ 1

Π

∑Π
π=1 δζt

m,π
(zt

m), where δζ(z) is
the Dirac-delta function centered at ζ, that satisfies the sifting
property

∫

h(z)δζ(z) dz = h(ζ). Then the estimate of the sub-
state of target m is given by Ẑt

m =
∫

R2D zt
m qm(zt

m)dzt
m ≈

1
Π

∑Π
π=1 ζ

t
m,π.

For a given targetm, the particles {ζt
m,π,π = 1, . . . ,Π} are

calculated using the previous particles {ζt−1
m,π,π = 1, 2, . . . ,Π}

and the a-posteriori marginal expectations of all the other

1These assumptions are not critical and can be relaxed in practice.

Algorithm 1 SIR particle filter-bank
1: For each m = 1, 2, . . . , M , do steps 2 through 6.
2: Initialize sub-state particles {ζt−1

m,π,π = 1, 2, . . . ,Π} from
a uniform distribution over the (finite) tracking region.
Then for each t = 1, 2 . . ., execute steps 3 through 6.

3: From the Π sub-state particles {ζt−1
m,π,π = 1, 2, . . . ,Π}

create Π full-state particles {ξt−1
m,π,π = 1, 2, . . . ,Π} as

follows:

ξt−1 T
m,π = [Ẑt−1 T

1 . . . Ẑt−1 T
m−1 ζt−1 T

m,π Ẑt−1 T
m+1 . . . Ẑt−1 T

M ].

4: Propagate according to the maneuver model:

ξt
m,π ← A ξt−1

m,π + B Û t + εdepen g(B F ξt−1
m,π). (6)

In doing so we generate an innovation process Û t hav-
ing the same statistical properties as U t. (This consti-
tutes sampling from the conditionally Gaussian proposal
p(zt|zt−1), also known as the ‘kinematic prior’ [7].)

5: Importance-Resample based on the observation likelihood.
That is, calculate the weight of particle π as

wt
m,π

.
= p({Y t

m,n : all n}|ξt
m,π) (7)

=
N
∏

n=1

exp

{

−1
2σ2

W

(Y t
m,n − Φ̂t

m − Γ̂t
f(ξt

m,π),n

+ρ10 log‖ξt
m,π − rn‖)2

}

.(8)

Normalize these weights so that they sum to one. Then
draw Π numbers from 1, . . . ,Π (with replacement) using
the distribution {wt

m,π : π = 1, 2, . . . ,Π}. Use these as
indices to select Π particles from the pool {ξt

m,π : π =
1, 2, . . . ,Π}. Call them {χt

m,π : π = 1, 2, . . . ,Π}.
6: Project {χt

m,π : π = 1, 2, . . . ,Π} to the mth sub-state,
by discarding the components corresponding to m′ += m.
Call them {ζt

m,π : π = 1, 2, . . . ,Π}.

targets at time t−1, namely {Ẑt−1
m′ : m′ = 1, 2, . . . , M, m′ +=

m}. The calculation is done by using a Sampling-Importance-
Resampling (SIR) particle filter [15], whose pseudo-code is
given in Algorithm 1. While the SIR particle filter is well-
known, our algorithm involves certain important modifica-
tions that allow the consistent integration of the information
available from the other cooperating sub-state filters. This
involves uplifting particles to the full state-space and merging
the information about the other targets (steps 2 and 3), before
performing the SIR update (step 4 and 5). Subsequently we
project the particles back to the marginal state-space (step 6).
It is known [15] that while the re-sampling operation

eliminates the need to explicitly maintain particle weights
and hence avoids the problem of degeneracy, it can in turn
lead to particle impoverishment. One can use more elaborate
proposals to combat this problem, and the ‘optimal’ proposal
in this sense is p(zt|zt−1, yt) which minimizes the variance of
the weights [6]. Unfortunately, it cannot be written in a simple
tractable closed form and some kind of approximation needs
to be calculated. Comparing the complexity of drawing fewer
particles from a complex prior vs the complexity of drawing
somewhat more particles from a simple conditional normal,
we concluded that the latter was a better option. Moreover
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we found that impoverishment does not seem to be a very
serious problem under the choice of p(zt|zt−1), and can be
easily side-stepped by the simple stratagem of ensuring that
the particle innovation process {Û t} has a significant power by
design. That is, even though {Û t} is deemed to be statistically
identical to the true innovation process {U t}, we choose its
power to be max(σ2

thresh,σ2
U ). By using a σ2

thresh as large
as possible while still being compatible with the maneuver
interval T and the end application, we ensure that we do not
suffer from particle impoverishment even if σ2

U is itself small.

IV. STOCHASTIC INCREMENTAL ESTIMATOR OF THE
RADIO ENVIRONMENT

Now we consider the problem of incrementally estimating
the radio environment, utilizing the observations made by the
motes as well as the results of the tracking algorithm described
in Section III. Unlike [16] we use a mixed ML-Bayesian
approach, i.e. while the target tracking is done with a Bayesian
particle filter, the radio environment estimation is done via ML
principles. This is because the radio environment parameters
are quasi-static, almost nothing is known about their priors
or dynamics, and a fully Bayesian implementation is not
amenable to a distributed power efficient implementation.
Recall that qt

m(zt
m), m = 1, 2, . . . , M are the a-posteriori

marginal distributions of all the tag sub-states at time t, and
these are approximately calculated by the bank of particle
filters and presented in the form of particles {ζt

m,π : π =
1, 2, . . . ,Π}, m = 1, 2, . . . , M . As far as the estimator is
concerned the joint distribution of the tags is assumed to be
the product of these marginals, hence the sub-states of the tags
are assumed to be independent of each other and distributed
according to qt

m(zt
m), m = 1, 2, . . . , M respectively. (This

is a commonly used strategy for combating the exponential
complexity of working with joint distributions. For example,
the same idea is used in the sum-product decoding of cyclic
factor graphs like Low density Parity Check codes, and in
the Mean-Field approximation in statistical physics.) Similarly,
we know the current estimate of the parameters, namely Φ̂t

m

and Γ̂t
l,n, and we have access to the current observations

{Y t
m,n : all m, n}. Based on this data, and the knowledge

of the observation model, we want to calculate the updated
estimates of the parameters, namely Φ̂t+1

m and Γ̂t+1
l,n .

For conciseness, let us stack the parameters {Φ̂t
m : all m}

and {Γ̂t
l,n : all l, n} into a single vector parameter Υ̂t using

a stacking function fstack : RM × RL×N → RM+LN . Now
consider a stochastic incremental ‘partial-M step’ Expectation
Maximization (EM) algorithm [17, 18] for updating Υ̂t,

Υ̂t+1 = Υ̂t + εF−1 S(Υ̂t; {Y t
m,n : all m, n}). (9)

Here S(Υ̂t; {Y t
m,n : all m, n}) denotes the score of the log-

likelihood of the observations {Y t
l,n : all m, n} viewed as a

function of the parameter Υ̂t. That is, letting λ(Υ̂t; {Y t
m,n :

all m, n})
.
= log(p({Y t

m,n : all m, n}|Υ̂t)),

S(Υ̂t; {Y t
l,n : all m, n})

.
=

∂λ(Υ̂t; {Y t
m,n : all m, n})

∂Υ
. (10)

The expression for the score has been evaluated in Ap-
pendix A, where we also indicate how it can be calculated
in practice by using the particles provided by the tracking
algorithm. The scalar ε is a step size that controls the trade-
off between the parameter tracking speed and steady-state
error variance, and F−1 is a suitably chosen positive definite
pre-scaling matrix for the score. Note that (9) is a stochastic
recursion since the score S(Υ̂t; {Y t

m,n : all m, n}) is a random
vector. It is known that the score, when evaluated at the
true parameter value governing the observations, yields a
random vector of zero mean [19]. Hence it follows that the
averaged gradient [20] version of recursion (9) respects the
true parameter as a fixed point. Its stability is determined by
the covariance matrix of the score, i.e. the Fisher information
FΥ of the parameter Υ, which can be equivalently written as

FΥ = −E

[

∂2λ(Υ; {Ym,n})

∂Υ2

]

. (11)

Provided FΥ > 0, and we start from a suitable initial estimate
Υ̂0, recursion (9) converges to the true (quasi-static) parameter
and stays in its vicinity with high probability [17, 18].
An exact closed form derivation of the Fisher information

in the present scenario seems infeasible, hence in Appendix A
we calculate an optimistic approximation

FΥ
<
≈ F̂Υ =

1

σ2
W

(

NIM
1
L1M×LN

1
L1LN×M

M
L ILN

)

, (12)

where IM denotes an M × M identity matrix and 1M×LN

denotes an M ×LN matrix whose entries are all ones. Closer
inspection of this matrix reveals that it is rank deficient by one.
That is, it is a square matrix of size M + LN but has rank
M+LN−1. Hence there is one degree of ambiguity regarding
the parameter, given the observations. The physical reason for
this is easily understood by noting that if we increase all the
transmit powers {Φ} by an arbitrary amount and reduce all the
gains {Γ} by an equal amount, we will get exactly the same set
of observations from the model in equation (3). In other words,
the observations cannot uniquely determine the model. This
also implies that a gradient ascent algorithm (with or without
pre-scaling), where the gradient is averaged w.r.t. all sources of
stochasticity, is not asymptotically stable at the true parameter
even though it respects it as a fixed point. As a result, the
underlying stochastic algorithm will also be unstable.
Fortunately, this problem is easily solved by fixing at least

one parameter from the set Υ and postulating that it does
not need to be re-estimated. This reduces the size of the
Fisher information matrix, which is now some principal sub-
matrix of the above matrix and is therefore guaranteed to have
full rank, thus ensuring asymptotic stability. For example one
could postulate that one tag has been very accurately calibrated
so that its transmit power is perfectly known. Another good
choice of the parameters that can be fixed is the following:

Γ̂t
f(rn),n = Γt

f(rn),n = 0, n = 1, 2, . . . , N, ∀t (13)

That is, we assume that there is no attenuation (excluding
geometric spreading loss) of the radio transmission from a tag
to a mote whenever the tag is in the same cell as the mote.
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Whatever the choice of the parameters to be fixed, let
µ(F̂Υ) denote the corresponding principal sub-matrix of F̂Υ.
Let COV (Υ̂t − Υ) = E

[

(Υ̂t − Υ)(Υ̂t −Υ)T
]

denote the
expected covariance matrix of the error in estimating a con-
stant truth parameter Υ. Then, in steady state and under the
simplifying assumptions of Appendix A, we have an optimistic
approximation of the Cramer-Rao lower bound (CRLB) [19]

µ
(

COV (Υ̂t −Υ)
)

≥
ε

2 − ε
µ
(

F̂Υ

)−1
. (14)

In the above expression, the factor ε
2−ε accounts for the time-

constant (data-window) of the incremental estimation algo-
rithm. Note that the bound (14) is not necessarily achievable
since we are using an optimistic approximation of FΥ. In
recursion (9), if F is chosen to be an identity matrix, the
algorithm performs a regular gradient ascent. On the other
hand, if F is chosen to be FΥ, the algorithm performs a natural
gradient ascent which has better stability and acquisition
properties. Furthermore, natural gradient ascent of the log-
likelihood asymptotically achieves the minimal possible steady
state estimation variance specified by the CRLB [18].

A. Initialization in Tough Radio Environments
The recursive estimator of equation (9) will blindly converge

to the correct solution from the initial value Υ̂0 = 0 provided
the radio environment is such that even without accounting
for the true parameter value Υ the estimated positions of
the targets fall in the correct cells. (This is analogous to
how a decision directed LMS equalizer will converge blindly
provided the “eye” is not closed.) However in a tough radio
environment, where the above condition is not satisfied, it is
likely that the tandem operation of the estimator and filter will
result in a false lock, in which case the corresponding position
estimates will also remain highly biased.
This problem can be solved by a one-time coarse calibration

of the system during the first set-up. A few targets (humans
or mobile robots) are equipped with RFID tags and made to
move to several predetermined locations in the tracking area
at predetermined times (each cell should be visited at least
once). This known trajectory of their motion (i.e. a training
sequence) is used in the calculation of the score and Fisher
information for the estimator recursion of equation (9), rather
than the estimates provided by the PF in the form of sub-
state particles (cf. Appendix A). Once the estimator converges
coarsely, the parameter is recorded for future use as the initial
value Υ̂0. This calibration need not be repeated because the
radio environment (walls, shelves, doors, windows etc) shows
only slow variation with time which can be subsequently
tracked in the normal (“decision directed”) mode of operation.

V. DISTRIBUTED IMPLEMENTATION AND SCALABILITY
In a centralized implementation of the filter bank of Sec-

tion III, all valid observations of all motes need to be streamed
to a Fusion Center via multi-hop communication. Hence, as
the network scales, the communication load of each mote
increases monotonically and unboundedly, and a regime in-
evitably occurs when the network is pushed into congestion

and/or the lifetime of the motes becomes unacceptably small.
This serious drawback of centralized tracking is inescapable
whether or not we choose to exploit inter-target dependen-
cies. As a solution to this problem, we will now propose a
distributed power efficient implementation of the filter bank
which allows the system to scale seamlessly to larger tracking
regions without encountering problems of network congestion
and short lifetimes. Our proposal is based on two ideas:
(A) Localized ownership: At any point in time, a single
‘owner’ mote lying in close proximity to a target is responsible
for tracking that target. (B) Localized data aggregation: While
tracking, an owner mote relies on measurements and sub-state
information solely from a local neighborhood of the target.
In the following, a transmission by a mote means a single-
hop broadcast transmission to one or more of its nearest
neighbors. The normalized communication load means the
average number of transmissions made by one mote in each
observation interval T .

A. Localized Ownership
Definition: At each time t, every target m has a unique owner
mote Ωt(m) ∈ {1, 2, , . . . , N}, who is solely responsible for
maintaining and updating the sub-state particles {ζt

m,p : p =
1, 2, . . . ,Π}, according to the algorithm of Section III.
Initial ownership may be assigned arbitrarily. Later, the deci-
sion to change the ownership of tag m can be made only by
its current owner Ωt(m). It periodically examines the tag’s
current position, which it knows with high certainty from
the particles it maintains. If tag m has moved out of its
proximity, Ωt(m) polls the mote that is now nearest to the
target, and transfers ownership to that mote, provided it is
willing to take on the responsibility. Otherwise it polls the
next closest one, and so on. Assuming that the targets visit
various parts of the tracking region equi-probably, this simple
change-of-ownership protocol ensures an equitable distribution
of the computation and communication load across the sensor
network. We will require that the owner Ωt(m) should make
his ownership ofm known to the motes that belong to a certain
set which we call the tracking neighborhood of target m at
time t. It is defined as

ηt
'(m) = {n ∈ {1, 2, . . . , N} : ‖rΩt(m) − rn‖ < -}, (15)

where - is a user specified aggregation radius (in meters),
that controls the size of the tracking neighborhood. Using
an efficient localized broadcast algorithm like [21], which as-
sures guaranteed delivery throughout the neighborhood using
O(|ηt

'(m)|) fixed-length messages, the normalized communi-
cation load of publishing the ownership information can be
shown to be O(M'D

Ntch
), where tch is the average time between

the change of ownership of a target.

B. Localized Data Aggregation
The propagation of the sub-state particles for tag m via

equation (6) requires that the previous sub-state estimates of
all the other tags, namely Ẑt−1

m′ , m′ += m, be made available
for the creation of the full-state particles, which entails a
normalized communication load of O(M). (Of course, if the
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tags are known, or presumed, to be moving independently,
this contribution to the communication load will be zero.).
Similarly, the importance sampling via equation (7) requires
that all the valid observations {Y t

m,n : all n} be made available
for calculation of the weights, which entails a normalized
communication load of O(N). For achieving a truly scalable
tracking system we need to ensure that both these contributions
are reduced to O(1), via some kind of approximation.

To this end, we postulate that data aggregation at Ωt(m)
be performed only from the tracking neighborhood ηt

'(m).
That is, the propagation of the sub-state particles {ζt−1

m,π,π =
1, 2, . . . ,Π} is based only on the sub-states {X̂t

m′ : Ωt(m′) ∈
ηt
'(m)}, with the unavailable sub-states being set to zero.
(The interaction feedback matrix C also needs to be appro-
priately modified; for an example see Section VI.) Similarly,
the importance re-sampling of the particles of target m at
time t is performed only on the basis of the measurements
{Y t

m,n : n ∈ ηt
'(m)}. Our basic premise is that we can

use a very localized neighborhood (i.e. a small -), and still
achieve a performance close to what can be achieved with
non-localized tracking (- = ∞). This is possible because
the signal received at the motes in ηt

'(m) is considerably
more informative about the position of tag m at time t, while
the signal received by motes outside ηt

'(m) is dominated by
the measurement noise and contains relatively little position
information. (Errors in ranging and angle estimation are more
deleterious in measurements from far-away motes.)

We will give convincing simulation evidence of this hypoth-
esis in Section VI for the case of RSS based tracking, though,
of course, this principle applies to TOA, DOA etc as well.
Assuming for now that there is no loss in choosing a small con-
stant value for -, we now proceed to note that the data transfer
from each mote in ηt

'(m) to Ωt(m) can be accomplished with
a small constant number of hops proportional to -, possibly
even a single hop. Hence it follows that the contribution to
the normalized communication load from data aggregation is
reduced to O(M'D+1

N ). Thus it follows that our proposal for
a distributed implementation of the particle filter bank has a
total normalized communication load of O(M'D

Ntch
+ M'D+1

N ),
which implies that we have a truly scalable implementation.
That is, provided the tracking area, the number of motes and
the number of targets are all increased in the same proportion,
i.e. M ∝ N ∝ ℵ,ℵ ↑ ∞, and the spatial density of the
motes is kept roughly constant over the tracking region, the
normalized communication load, and hence the power drain
in each mote, remains invariant. Furthermore, since typically
tch 1 1 in sparsely deployed networks, data aggregation
dominates ownership publication.

A fully distributed implementation of the incremental pa-
rameter estimator is also possible, with a somewhat larger
complexity of inter-mote coordination and two kinds of own-
ers. We will not discuss the details except noting that: (a) An
O(M) normalized communication load is sufficient in the
most general case. (b) By restricting the gradient calculation of
Γ̂l,n to be based on particles only from tags that are (estimated
to be) in cell l, the load can be reduced to O(1).

VI. SIMULATIONS AND DISCUSSION
In Section VI-A we simulate the tracking system of Sec-

tions III and IV, and in Section VI-B its distributed imple-
mentation as proposed in Section V.

A. Simulations of Tracking and Parameter Estimation
The simulations in this section are done in two parts.

In the first part (target tracking) we assume a static radio
environment, initialize the incremental estimator with the true
environment parameters {Φ}, {Γ} and keep it operational,
and investigate the root-mean-squared (RMS) tracking error.
In the second part (parameter estimation) we investigate the
parameter estimator’s performance in static as well as dynamic
environments. We use a realistic synthetic two-dimensional
radio environment consisting of four rooms of unequal sizes,
as displayed in Figure 1. The total tracking area is a square of
side 20.0 meters, with nine motes placed in it on a uniform
square grid of minimum distance 10 meters, and labelled as
shown. The number of active motes is denoted by 1 ≤ N ≤ 9,
with a default value N = 9 unless otherwise specified. We
assume that each room is a cell (thus L = 4) and that
the nominal gain of the tag’s signal because of a wall is
γwall = −2.0 dB. Let νl,n denote the number of walls
crossed by a straight-line path from the cell l to the mote
n. The numbers νl,n can be gleaned from the building plan
in Figure 1. As discussed in Section IV, in order to ensure a
full rank for the Fisher information, we will freeze at zero a
few components of Γ and Γ̂ according to equation (13). We
assume that M = 8 targets are moving around in the tracking
area, with an innovation power of σ2

U = 10−35/10 (i.e. −35
dB). In the tracking algorithm we use σ2

thresh = 0.1 (i.e. −10
dB) and Π = 128. For now we will consider only independent
motion of targets by choosing εdepen = 0.
1) Static Radio Environment Model: The transmission from

cell l to mote n is modelled to undergo a time-invariant gain
given by Γl,n = νl,nγwall + ηl,n (1 − Il(rn)),, where ηl,n are
independently drawn from a normal distribution of zero mean
and standard deviation σΓ = 3.0 dB. (The function Il(·) is
defined in Appendix A.) Similarly, the actual transmit power
of tag m is modelled to be a time-invariant quantity given by
Φm = Φnominal + φm where φm are independently drawn,
for all m, from a normal distribution with zero mean and a
standard deviation σΦ = 3.0 dB. Once the parameters {Γl,n}
and {Φm} are drawn, they are kept fixed for the duration of
an experiment.
2) Dynamic Radio Environment Model: The cell-to-mote

gains are modelled to be functions of time, given by Γt
ln =

νl,nγwall +σΓ sin(2πt/tΓ) (1−Il(rn)). Similarly the transmit
powers are modelled as Φt

m = Φnominal + σΦ sin(2πt/tΦ).
We choose the hyper-parameter values σΦ = σΓ = 3.0. Also,
since our experiments on a real-life WSN test-bed suggest that
the transmit power changes more slowly than the radio gains,
we choose the following practically relevant time constants:
tΓ = 5 × 104 and tΦ = 2 × 105. For the static as well as the
dynamic model, the estimated parameters {Γ̂l,n} and {Φ̂} are
initialized to their known nominal values, namely {νl,nγwall}
and Φnominal respectively.
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Fig. 2. Effect on tracking accuracy of (a) the number of motes N , with σW
fixed at 2.0, and (b) the measurement noise standard deviation σW , with N
fixed at 9.
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Fig. 3. An example of acquisition of a static radio environment. (a)
Estimated parameter Φ̂t with a natural gradient recursion (circle markers),
estimated parameter Φ̂t with a regular gradient recursion (star markers), and
true parameter Φ (no markers). (b) Estimated parameter Γ̂t with natural
gradient (circle), estimated parameter Γ̂t with regular gradient (stars) and
true parameter Γ (no markers). (c) ∆t

Υ, the total parameter estimation error.

3) Simulation Results: Target Tracking: Figure 2 displays
the effect on the RMS tracking accuracy ∆ in meters, as
defined in equation (1), of the number of motes N and the
measurement noise standard deviation σW , in a static radio
environment.
The mean squared tracking accuracy ∆2, in principle an en-

semble expectation, is estimated by doing a single sufficiently
long run and taking a time-average of the squared error. It
is seen that the dependence on both quantities N and σW is
roughly linear, except when N is large and σW is small. The
saturation effects can be attributed to our use of a finite number
of particles and an artificially inflated power for the particle
innovation process (cf. Section III). The results indicate that
we can exchange the mote density for an improved RSSI
measurement accuracy, without sacrificing the tracking error.
4) Simulation results: Parameter Estimation: In Figure 3

we illustrate an example of acquisition of a randomly chosen
static radio environment, as described in Section VI-A1. We
have chosen the system parameters N = 9 and σW = 2.0.
The subplots (a) and (b) show the trajectories of the com-
ponents of estimated parameters Φ̂ and Γ̂ respectively. The
lines with circle markers indicate a natural gradient algorithm
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Fig. 4. Acquisition and tracking performance averaged over ten independent
experiments. (a) ∆t

Υ, the RMS estimation error in Υ, along with the
corresponding Cramer-Rao lower bound estimate given by equation (14). (b)
∆t, the normalized RMS tracking error in the positions of the targets, in
meters.

(F−1 = F−1
Υ ) while lines with star markers indicate a

regular gradient algorithm (F−1 = ‖F−1
Υ ‖ I). The true values

are also shown (as solid lines) for reference. (In the case
of Γ, Γ̂, for clarity we have shown only the components
corresponding to the gains from the first cell to all the motes.).
We see that this ‘step-response’ has rapid acquisition (within
500 samples). With natural gradient all components tend to
converge together, while with regular gradient the speeds are
more varied. Similarly, subplot (c) shows the absolute error in
the total estimated parameter, ∆t

Υ = ‖Υ̂t −Υt‖. We see that
the MSE remains uniformly small after acquisition.
In Figure 4, we provide the average acquisition performance

where the averaging is done over ten experiments. In each
experiment a new random static environment is chosen, and
a new measurement noise process is simulated. Subplot (a)
shows the RMS error in the parameter estimate, and the
optimistic estimate of the CRLB resulting from equation (14),
while subplot (b) shows the RMS tracking error (in meters) of
the particle filter as it uses the parameter values provided by
the estimator. We see that we practically achieve the estimate
of the CRLB when a natural gradient is used, indicating that
our estimator is close to being efficient. A small loss is suffered
w.r.t. the estimated CRLB when a regular gradient is used.
Similarly, we see that initially, when the radio environment is
not yet acquired, the average tracking error is quite large (of
the order of four meters), but after acquisition is completed it
drops to a fraction of a meter.
Finally, in Figure 5, we illustrate an example of tracking a

time-varying radio environment of Section VI-A2. We use the
natural gradient, and N = 9 and σW = 2.0. The trajectories of
the true parameters (solid lines) and the estimated parameter
(lines with markers) are displayed in subplots (a) and (b)
respectively for Φ and Γ. Subplot (c) shows the absolute
parameter estimation error and subplot (d) shows the target
tracking error (in meters) during the same time interval. We
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Fig. 6. Snapshots of herd motion of M = 16 targets governed by maneuver
model of Section II-A with selection of parameters as in Section VI-B.

see that the estimated parameter agrees well with the true
parameter, yielding a target tracking error comparable to the
experiments done with a static environment (Figure 4).

B. Simulations of Distributed Implementation
In this section we will present simulation results for RSS

based tracking of co-dependently moving targets with the
distributed implementation of the cooperative particle filter as
described in Section V. For simplicity, we will assume that the
radio parameters are perfectly known to the tracking algorithm.
We simulate M = 16 targets moving co-dependently in a
large square tracking region of dimensions 100× 100 meters,
within which N = 121 motes are deployed on a square grid.
We choose εdepen = 0.25, σ2

U = −20 dB, σ2
thresh = −10

dB and Π = 128. We use an interaction feedback matrix
C = KRON(KRON(1M×M − MIM , ID), [1, 0]) (KRON is the
c©MATLAB function for the Kronecker tensor product ). The
non-linearity used is g(s) = tanh(sinh(x)/100), which is
characterized by saturation to ±1.0 for large inputs, and a
‘dead zone’ for small inputs. These choices mimic the flocking
rules postulated by [13], and result in a type of ‘herd’ motion,
whose snapshots are displayed in Figure 6.
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Fig. 7. Target tracking with σW = 3.0. Big figure shows the true path of
target m = 1, and its estimate. The arrow shows the direction of travel. The
inset shows an illustration of target ownership and tracking neighborhood at
epoch t = 80, with " = 20 meters.

In Figure 7, we first illustrate the notion of localized track-
ing. For this experiment, we choose the tracking neighborhood
radius - = 20 meters and noise deviation σW = 3.0. The filter
update for target m at time t uses a modified interaction feed-
back matrix C = KRON(KRON(1M×M −αtM IM , ID), [1, 0]),
where αt denotes the fraction of the sub-states that were
available at time t from the tracking neighborhood ηt

ρ(m).
For clarity we only display the path of target number m = 1,
though all M = 16 targets have been being simulated. Also
shown are the estimated path and the error vectors at various
points in time. The inset graph shows a zoomed out picture
with the following elements at an arbitrary time t = 80: the
true position of the target Xt

m (circle), the estimated position
X̂t

m (plus), the tracking neighborhood ηt
'(m) (stars) and the

owner mote Ωt(m) (square).
Finally, in Figure 8 we come to the crucial observation of

these simulations. We consider the RMS tracking error ∆ as
a function of σW , and let - be a parameter. We simulate
the cooperative filter bank proposed in this paper, as well
as a ‘non-cooperative’ filter bank as a benchmark. By non-
cooperative, we mean that although the targets move with
dependencies, the filter bank presumes independent motion
and hence uses εdepen = 0, thus implementing an independent
filter for each target. Our main interest is in estimating (i) what
aggregation radius - is sufficient to extract almost all the
tracking accuracy possible, and (ii) how much ‘gain’ our
cooperative filter bank gives over the non-cooperative scheme.
Both these questions are answered in Figure 8 (note that the
ordinate axis is logarithmic). Firstly, we see that a very modest
value of - = 20meters is sufficient to give most of the tracking
accuracy. (Recall from Figure 7 that this corresponds to a
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" = 10, 20, 30, 40 meters.

tracking neighborhood of size |ηt
'(m)| ≈ 13 motes.) Secondly,

we see that there is a huge gain in tracking accuracy due to
the use of the cooperative filter bank, ranging from a factor
of 8.0 to 20.0. Furthermore, this gain is enhanced for large
values of measurement noise, which is exactly the regime of
interest for low cost WSN tracking systems. (The saturation
of the curves at high noise levels is an artifact of the finite
square tracking.)
In summary, we have demonstrated a simple WSN based

solution for tracking multiple co-dependently moving targets
in indoor environments. The tracking component of the so-
lution exploits the temporal and spatial dependencies in the
motion of the targets via a distributed tractable particle filter,
and achieves good tracking accuracy and stability. At the same
time, by using a tandem incremental estimator for the radio
environment, the solution achieves a high level of robustness
to effects like multi-path and occlusions that are commonly
found in indoor environments.

APPENDIX A
CALCULATION OF THE SCORE AND FISHER INFORMATION

Denote the projection of a sub-state to its spatial position by
ψ : R2D → RD, ψ(a) = [a1, a3, . . . , a2D−1]T . In the follow-
ing development, for clarity we drop the temporal index for the
various quantities. Using the presumed mutual independence
of the sub-states, the log-likelihood of the parameters is

λ(Υ; {Yl,n}) ∼
M

X

m=1

log

Z

p({Ym,n : all n}|Φm, {Γ}, zm)
qm(zm)dzm

(16)
Due to equation (3),

p({Ym,n : all n}|Φm, {Γ}, zm) =

exp

(

−1
2σ2

W

PN
n=1

„

Ym,n − Φm − Γf(ψ(zm)),n

+ρ10 log ‖ψ(zm) − rn‖

«2
)

(2πσ2
W )N/2

.

The score of the parameter components is given by

SΦ;m
.
=

∂λ({Yl,n})

∂Φm
=

1
D

Z dzmqm(zm) p({Ym,n′ : all n′}|Φm, {Γ}, zm)
PN

n=1(Ym,n − Φm − Γf(ψ(zm)),n+
ρ10 log ‖ψ(zm) − rn‖)

,

SΓ;l,n
.
=

∂λ({Yl,n})

∂Γl,n
=

1
D

PM
m=1

Z

dzmqm(zm) Il(ψ(zm))
p({Ym,n′ : all n′}|Φm, {Γ}, zm)
(Ym,n − Φm − Γf(ψ(zm)),n+
ρ10 log ‖ψ(zm) − rn‖)

,

where Il(a) = 1 if l = f(a), zero otherwise (i.e. an indicator
function for the condition that position a lies in cell number l),
and D = σ2

W

∫

qm(zm)p({Ym,n′ : all n′}|Φm, {Γ}, zm)dzm.
Hence the total score is given by

S(Υ; {Yl,n})
.
= fstack({SΦ;m}, {SΓ;l,n}). (17)

The integrations above are approximated in practice by tak-
ing sample averages over the set of sub-state particles. For
calculating the Fisher information FΥ we need to further
differentiate the score and take an expectation w.r.t. the joint
distribution of the state and the observations made available
to the estimator. Since no closed form expression is available
for the propagated density q(·) of the total-state (which is the
reason why we use a particle representation in the first place),
it appears infeasible to obtain a closed form expression for
FΥ. However we can calculate an optimistic approximation
by differentiating the conditional likelihood assuming perfect
state information at the estimator. That is,

FΥ
<
≈ F̂Υ = E

[

−
∂2

∂Υ2
log p({Ym,n}|Υ, Ztrue)

]

, (18)

where the expectation is w.r.t. the joint distribution of the true
state and the observations, p(Ztrue)p({Ym,n}|Υ, Ztrue). For
clarity let us denote p({Ym,n}|Υ, Ztrue) simply as p(Υ). Then
the expectations w.r.t. {Ym,n}|Υ, Ztrue of the various second
derivatives of the log-likelihood log p(Υ) are given by

E

»

∂2 log p(Υ))
∂Φm∂Φm′

–

=

 −N
σ2

W

, if m = m′

0, otherwise
, (19)

E

»

∂2 log p(Υ))
∂Γl,n∂Γl′,n′

–

=

8

<

:

−
PM

m=1 Il(ψ(Ztrue,m))

σ2
W

, if (l, n) = (l′, n′)

0, otherwise
,

(20)

E

»

∂2 log p(Υ))
∂Φm∂Γl,n

–

=
−Il(ψ(Ztrue,m))

σ2
W

. (21)

Finally, let us make the simplifying assumption that all the
cells are of equal area and that, after the state MC of
equation (2) becomes stationary, the true positions of the tags
are a-priori uniformly distributed in the tracking region (the
velocity distribution is immaterial). By taking the expectations
of the (negative of the) RHS of the equations above under such
a p(Ztrue), and packing them into a matrix form compatible
with the stacking operation fstack, we get the final form of
the optimistic approximation F̂Υ given by equation (12).
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