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Abstract— In this paper, we address distributed target track-
ing for mobile sensor networks using the extension of a
distributed Kalman filtering (DKF) algorithm introduced by
the author in [11]. It is shown that improvement of the quality
of tracking by mobile sensors (or agents) leads to the emergence
of flocking behavior. We discuss the benefits of a flocking-based
mobility model for distributed Kalman filtering over mobile
networks. This mobility model uses author’s flocking algorithm
with a natural choice of a moving rendezvous point that is
the target itself. As the agents “flock” towards the target, the
information value of their sensor measurements improves in
time. During this process, smaller flocks merge and form larger
flocks and eventually a single flock with a connected topology
emerges. This allows the agents to perform cooperative filtering
using the DKF algorithm which considerably improves their
tracking performance. We show that this flocking algorithm is
in fact an information-driven mobility that acts as a cooperative
control strategy that enhances the aggregate information value
of all sensor measurements. A metric for information value
is given that has close connections to Fisher information.
Simulation results are provided for a group of UAVs with
embedded sensors tracking a mobile target using cooperative
filtering.

Index Terms— mobile sensor networks, target tracking, dis-
tributed Kalman filters, information-driven mobility, flocking

I. INTRODUCTION

Multi-Sensor Tracking problems have attracted the atten-
tion of many researchers in robotics, systems, and control
theory over the past three decades [2]. Modern tracking
problems are of great importance in surveillance, security,
and information systems for monitoring the behavior of
adversarial/friendly agents using sensor networks [4]. Analo-
gous forms of Kalman filtering algorithms for target tracking,
called process query systems, have been recently developed
for network security applications [17].

In this paper, we focus on distributed target tracking for
mobile sensor networks. This problem has been mostly con-
sidered for static sensor networks and has gone practically
unnoticed for the case of mobile networks.

Decentralized estimation using Kalman filters has a long
tradition in control theory [1], [2], [21]. Modern implemen-
tations of decentralized Kalman filtering and information fu-
sion algorithms for multi-sensor platforms [15] have become
more popular due to the emergence of sensor networks as
a standard means of distributed sensing and monitoring. In
decentralized estimation, each node is permitted to commu-
nicate with all other nodes. This overlay network topology
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amounts to a communication cost of O(n2) for n sensors that
means such decentralized algorithms are not scalable. An
estimation algorithm is called “distributed” if each node only
talks to it neighbors. Under the assumption that each node
has either O(log(n)) or O(1) neighbors, the communication
cost of this class of distributed algorithms is O(n log(n)), or
O(n) which are both scalable in n.

Recently, a distributed Kalman filtering (DKF) algorithm
for sensor networks with a fixed topology was introduced by
the author in [11]. The DKF algorithm relies on embedded
consensus filters [14], [19] (shown in Fig. 1) that dynamically
compute time-varying averages of sensor data and covariance
data obtain from all sensors in a distributed way. Consensus
filtering algorithms fundamentally build on an earlier work
on average-consensus algorithms [13].

An alternative approach to the DKF algorithm is an
approximate algorithm for distributed particle filtering [18]
that is useful for nonlinear estimation problems. The work
provides no analysis for the role of the network topology in
convergence of particle filtering algorithms.

The problem of distributed estimation for mobile ad hoc
networks (MANETs) has received little attention in the
past years. The main focus of this paper is to address
distributed target tracking for mobile sensor networks with a
dynamic topology. A major obstacle in dealing with mobile
networks is to guarantee network connectivity. Preserving
(or improving) network connectivity is a key challenge in
this field that has attracted many researchers [6], [10], [20],
[3], [22].

We tackle the network connectivity issue using a flocking-
based mobility model. This mobility protocol uses a flocking
algorithm introduced by the author in [12]. Despite the
popularity of Reynolds rules of flocking [16], the author
has shown that these heuristic rules lead to fragmented
proximity networks that are disconnected for generic initial
conditions [12], i.e Reynolds rules are inadequate for creation
of connected networks.

From the begining, we do not assume that the mobility
model of a group of sensors is flocking-based by any
means. Instead, under mild assumptions on sensing model
of the agents, we show that a non-cooperative group of
self-interested agents with the objective of improving their
individual quality of tracking/estimation would end up per-
forming a moving rendezvous in space that eventually leads
to emergence of flocking behavior. As a result, flocking
is the byproduct of reducing estimation error for the in-
dividual mobile agents. Later, we establish that this form
of rendezvous is compatible with the flocking algorithms in



[12] which guarantee asymptotic connectivity of the network.
This enables performing cooperative and distributed Kalman
filtering on a mobile network that further improves the
performance of tracking.

The main contribution of this paper is to establish rigorous
connections between distributed target tracking and flocking-
based information-driven mobility for MANETs. In addition,
an extension of the DKF algorithm for mobile networks is
introduced together with a detailed discussion of the network
connectivity issues.

The outline of the paper is as follows. In Section II, the
connections between information-driven distributed track-
ing and emergence of flocking behavior is discussed. In
Section III, a flocking algorithm is given for an arbitrary
dimension. In Section IV, the distributed Kalman filtering
algorithm and consensus filters for mobile networks are
introduced. In Section V, the role of mobility model in en-
hancing the information value of the sensor data is explained.
Simulation results are presented in Section VI and some
concluding remarks are made in Section VII.

II. EMERGENCE OF FLOCKING IN TARGET TRACKING

Ground sensor networks are effective in detection of
mobile targets but due to their limited range, any agile or
maneuverable target can easily escape their sensing range,
particularly in perimeter security applications. This neces-
sitates the use of mobile sensor network for tracking agile
targets.

By a mobile sensor, we mean an unmanned autonomous
vehicle (UAV) or mobile robot equipped with various sen-
sors. The type of sensors include both imaging sensors
like cameras and non-imaging sensors such as sonar, radar,
and thermal signature sensors. A UAV (or mobile robot)
embedded with such sensors is called a mobile agent.

We argue that motion control for a group of mobile agents
with the objective of target tracking and high-performance
distributed estimation are “coupled” problems. To get a better
sense, let us consider a group of mobile agents with the
objective of tracking a moving target called target γ. Suppose
the following conditions hold:

1) Each agent has a finite interaction range r > 0 that
allows that agent to communicate with and sense the
presence of other agents;

2) Initially, no agent is within the range r of other agents;
3) None of the agents is aware of the mission of other

agents to track target γ;
4) The agents do not communicate their sensed data re-

garding the target;
5) All agents share a common sensing model in which the

quality of sensing improves as the target range ρ ≥ ρ0

decreases regardless of target bearing (ρ0 � r/2 is a
safe distance from the target).

Then, each agent has the incentive to get within a safe
close proximity of the target to monitor its behavior for the
purpose of increasing its information value (the opposite of
the uncertainty in sensor measurements that is defined in
Section V).

For n mobile sensors (n ≥ 2), soon all sensors would
find themselves near target γ and therefore they become
aware of the presence of each other because ρ0 � r/2. In
other words, the common objective of improving individual
information value of the sensors would force then to perform
an unplanned moving rendezvous near the mobile target.

In real-life, the agents have to avoid collision to each
other as they get closer to the target and thus each other.
The combination of inter-agent “collision avoidance” and
“moving rendezvous” in space leads to the emergence of
flocking behavior as explained in [12]. One concludes that
information-driven mobility leads to emergence of flocking
and self-assembly of connected networks (to be made precise
later).

Interestingly, emergence of flocking does not require any
cooperation (or information exchange) among the mobile
agents in terms of the task of tracking. This type of flocking
closely resembles the unplanned rendezvous in the vehicle
routing problem in [7].

Not all sensors in a flock have the same level of infor-
mation value. We will show that cooperative filtering and
information fusion can improve the performance of tracking
for flock of mobile sensors. From the above argument, it
is apparent that “cooperative and distributed tracking” and
“flocking” go hand in hand in distributed tracking for mobile
sensor networks. This idea is novel and main contribution of
this paper.

Another important benefit of using flocking algorithms in
[12] as the mobility model of a sensor network is that in
steady-state, the self-assembled flock has O(n) links (See
Theorem 4 in [12]). This implies the communication cost of
the mobile version of the DKF algorithm is O(n).

III. FLOCKING-BASED MOBILITY MODEL FOR MANETS

Consider n mobile agents with equations of motion

q̇i = pi

ṗi = fi
(1)

where qi, pi, and fi are, respectively, the position, the
velocity, and the input control (force) of agent i for i ∈
V = {1, . . . , n}. Given an interaction range r > 0, each
agent only interacts with a time-varying set of its neighbors
Ni defined as

Ni = {j ∈ V : ‖qj − qi‖ < r}. (2)

The set of neighbors that include agent i is denote by Ji =
Ni∪{i}. The configuration of all agents q = col(q1, . . . , qn)
induces a proximity net G(q) = (V,E(q)) that is a dynamic
graph [10] with a variable set of spatially-dependent edges

E(q) = {(i, j) ∈ V × V : ‖qj − qi‖ < r}.

A group of mobile agents with configuration q is called a
flock over an interval [t0, tf ) if the proximity net G(q(t)) of
the agents is connected over that interval.

Geometry of flocks can be modeled using lattice-type
structures called α-lattices that have an inherent spatial-order.



An α-lattice is a configuration q satisfying the following
condition:

‖qj − qi‖ = d, ∀j ∈ Ni (3)

A structure that approximately satisfies this condition is
called a quasi α-lattice, i.e. (‖qj − qi‖ − d)2δ2 for all
neighboring agents (i, j) ∈ E(q) and δ � d.

Here is the main flocking algorithm1 for an arbitrary
m-dimension space:

Algorithm 1 (Olfati-Saber, 2004 [12]):

q̇i = pi (4)

ṗi =
∑
j∈Ni

fijnij +
∑
j∈Ni

aij(q)(pj − pi) + fγ
i (5)

where fij = φα(‖qj − qi‖σ) is a gradient-based forced
applied to agent i by its neighbor j and

fγ
i = −c1(qi − q̂i,γ)− c2(pi − p̂i,γ), c1, c2 > 0 (6)

is a tracking feedback applied to agent i by target γ based on
estimated position and velocity (q̂i,γ , p̂i,γ) of the target. The
notations and definitions used in this algorithm are available
in [12]. Clearly, the mobility model is coupled with the
estimation of the state of the target.

Let U(q) = 1
2

∑
i,j 6=i ψα(‖qj−qi‖σ) denote the collective

potential of a group of mobile agents with configuration q
and

Uγ(q, q̂γ) =
1
2

∑
i

ρ2
i (7)

be the agent-target interaction potential T (q) between the
agents and target γ. Here, ρi = ‖qi − q̂i,γ‖ is the estimated
target range by sensor i and q̂γ = col(q̂1,γ , . . . , q̂n,γ) is the
vector of estimated position of the target by all nodes. Then,
defining the augmented potential

Uλ(q) = U(q) + λUγ(q, q̂γ) (8)

with a weight λ = c1 > 0 gives the potential function
associated with the gradient-based terms of Algorithm 1. As-
suming that all agents can asymptotically reach a consensus
regarding the estimated position of the target, we obtain the
following result:

Proposition 1. Consider n mobile agents applying the mo-
bility protocol of Algorithm 1 and assume each agent senses
a noisy measurement of position and velocity of a mobile
target with the state (qi,γ , pi,γ). Suppose that after some
finite time T > 0 all agents reach a consensus regarding
the estimate (q̂i,γ , p̂i,γ) of the state of mobile target γ and
q̂i,γ = q̄,∀i. If Conjectures 1 and 2 in [12] hold, then

i) The agents asymptotically self-assemble a flock (i.e. a
connected proximity net);

ii) The network topology is asymptotically invariant;
iii) The asymptotic conformation q∗λ of the agents is a quasi

α-lattice (i.e. the inter-agent distances are d± δ).

1This algorithm is referred to as Algorithm 2 in [12].

Proof: Given the assumption that after time T > 0,
qi,γ = q̄ for all i, we have Uγ(q, q̂γ) = J(q) = 1

2

∑
i ‖qi −

q̄‖2 where J(q) is the moment of inertia of the group of
agents. Now, the proof of parts i) and iii) follows from
Theorems 2 and 3 in [12]. Part ii) holds because all agents
asymptotically align and move with the same velocity. Thus,
their inter-agent distances remain invariant and the proximity
net becomes fixed.

IV. DISTRIBUTED KALMAN FILTER FOR MANETS

In this section, we present a slightly modified version
of the distributed Kalman filtering (DKF) algorithm in [11]
for mobile sensor networks with uncorrelated measurement
noise.

A. Target and Sensing Models

The model of the target is a dynamic system

x(k+1) = Akx(k)+Bkw(k); x(0) ∼ N (x̄(0), P0). (9)

Every sensor measures the following output

zi(k) = Hi(k)x(k) + vi(k), zi ∈ Rp (10)

Both wk and vk are zero-mean white Gaussian noise (WGN)
and x(0) ∈ Rm is the initial state of the target. The statistics
of the measurement noise is given by

E[w(k)w(l)′] = Qkδkl, (11)
E[vi(k)vj(l)′] = Ri(k)δklδij . (12)

where δkl = 1 if k = l, and δkl = 0, otherwise.
Let z(k) = col(z1(k), . . . , zn(k)) ∈ Rnp be the collective

measurement data of the entire network at time k. Given
the measurements Zk = {z(0), z(1), . . . , z(k)}, the state
estimates for the target in Kalman filter theory [1] can be
expressed as

x̂k = E(xk|Zk), x̄k = E(xk|Zk−1), (13)
Pk = Σk|k−1,Mk = Σk|k (14)

where Σk|k−1 and Σk|k−1 are state covariance matrices and
Σ0|−1 = P0.

B. Distributed Kalman Filter

The main theorem that forms the basis of consensus-based
Kalman filtering for a connected network with is restated in
the following:

Theorem 1. (Distributed Kalman Filter, [11]) Consider a
sensor network with n sensors and a connected network
topology G observing a target with an m-dimensional state
using a p-dimensional vector of observations (p ≤ m). Sup-
pose the nodes of the network solve two average-consensus
problems regarding the fused inverse-covariance matrices

S(k) =
1
n

n∑
i=1

H ′
i(k)R

−1
i (k)Hi(k) (15)

and fused measurements

y(k) =
1
n

n∑
i=1

H ′
i(k)R

−1
i (k)zi(k) (16)



at every iteration k. Then, the nodes of the network can
calculate identical state estimates x̂ of the target using the
following micro-Kalman filtering equations

Mµ(k) = (Pµ(k)−1 + S(k))−1,

x̂(k) = x̄(k) +Mµ(k)[y(k)− S(k)x̄(k)],
Pµ(k + 1) = AkMµ(k)A′

k +BkQµ(k)B′
k,

x̄(k + 1) = Akx̂(k).

where the µ-indexed matrices satisfy the scaling relationships
Mµ(k) = nMk, Pµ(k) = nPk, and Qµ(k) = nQk.
Furthermore, the obtained estimate is identical to the one
computed via a central Kalman filter.

Interestingly, the possibility that the nodes of a sensor
network can provide identical state estimates of a mobile
target matches the requirement of Proposition 1. The remain-
ing challenge is that all nodes cannot solve such average-
consensus problems from the beginning when the network
consists of multiple flocks (i.e. is disconnected). The solution
to this problem of initial network disconnectivity is that each
agent only needs to perform cooperative filtering with the
members of its own flock.

The proximity net G(q(t)) at any time t consists of
ν(t) ≥ 1 flocks F1(q(t)), . . . , Fν(q(t)), or connected com-
ponents. Fragmentation of a flock creates two new flocks
and increases ν(t). In [12], it is discussed in detail that
fragmentation does not occur when Algorithm 1 is applied.
To take this fact into account, one can equivalently assume
that the number of flocks ν(t) is monotonically decreasing
under the mobility protocol specified by Algorithm 1. With
this simplifying assumption (that flocks do not fragment),
based on Proposition 1, after some finite time τ > 0, only
a single flock remains that asymptotically has a fixed con-
nected topology G∗ = G(q∗λ). We refer to this simplifying
monotonicity condition on ν(t) as the sequential merger of
flocks.

According to the above argument, since a flock is a
connected network with a variable topology, it makes sense
to propose a DKF algorithm that runs in the lth flock Fl(q)
of agents with consensus filters that use time-varying sets of
neighbors Ni(t).

Fig. 1 shows the architecture of the micro-Kalman filter
(MKF) with two embedded consensus filters that run with the
same frequency as the MKF at the node level. The low-pass
consensus filter is used for fusion of the measurement data
to compute an estimate ŷi and the band-pass consensus filter
is used to compute the estimate Ŝi of the average inverse-
covariance matrices.
Algorithm 2 (Micro-Kalman Filter Iterations): Node i ap-
plies the following MKF state estimate updates:

Mi(k) = (Pi(k)−1 + Ŝi(k))−1,

x̂i(k) = x̄i(k) +Mi(k)[ŷi(k)− Ŝi(k)x̄i(k)],
Pi(k + 1) = AkMi(k)A′

k + niBkQkB
′
k,

x̄i(k + 1) = Akx̂i(k).

Sensor
Data

Covariance
Data

Low-Pass
Consensus Filter

Band-Pass
Consensus Filter

Micro
Kalman

Filter
Iterations

Node i

x̂

MKF Architecture

Fig. 1. Micro-Kalman Filter with embedded consensus filters at every
node.

where ni = |Ni| + 1 is an approximation of the number of
agents (the transient effects of this choice will go away by
time). The effect of the network topology appears nowhere
in the MKF iteration (or Algorithm 2) other than in Ni(t).

The MKF iterations for a fixed network and a mobile
network are practically the same. The fundamental difference
in the DKF algorithm is hidden in the role of embedded
consensus filters.

The formal analysis of this DKF algorithm coupled with
a flocking-based mobility model is fairly complex and the
subject of ongoing research. However, the precise statement
of the algorithm is useful and has produced successful
numerical estimation results as demonstrated in Section VI.

C. Consensus Filters for Mobile Networks

Based on [14], the dynamics of a discrete-time low-pass
consensus filter (LCF) for member i of flock Fl can be
expressed as follows

ξi(k + 1) = ξi(k) + ε
∑

j∈Ni(t)

(ξj(k)− ξi(k))

+ ε
∑

j∈Ji(t)

(yj(k)− ξi(k))

where Ji(t) = Ni(t) ∪ {i}. The input data yj(k) is set to
H ′

j(k)Rj(k)−1zj(k) and the step-size ε satisfies the bound
ε < 1/∆j(k). Here, ∆j is the maximum node degree of
members of the flock that contains node i. The typical value
of the maximum degree in 2-D flocking with Algorithm 1 is
∆j = 6 (due to the triangular crystal structure of the induced
proximity graphs of α-lattices).

It turns out that regardless of the connectivity of the
network G(q(t)), LCF remains a stable filter. In the extreme
case that the networks has no links, the dynamics of LCF
reduces to

ξi(k + 1) = ξi(k) + ε(yi(k)− ξi(k))

which is a stable low-pass filter for 0 < ε < 1.
The band-pass consensus filter in the architecture of

the MKF is the combination of an LCF and a high-pass



consensus filter (HCF) [19]. The discrete-time band-pass
consensus filter BCF for fusion of the inverse-covariance data
Si(k) = H ′

i(k)Ri(k)−1Hi(k) is in the following form [14]:

Yi(k) = Xi(k) + Si(k) (17)

Xi(k + 1) = Xi(k) + ε
∑

j∈Ni(t)

(Yj(k)− Yi(k)) (18)

Zi(k + 1) = Zi(k) + ε
∑

j∈Ni(t)

(Zj(k)− Zi(k)) (19)

+ ε
∑

j∈Ji(t)

(Yj(k)− Zi(k)) (20)

with inputs Sj(k), j ∈ Ji(t) and output Ŝi(k) = Zi(k) that
is used in Algorithm 2.

The main reason that “network connectivity” is required
for the DKF algorithm is because the convergence of the
high-pass consensus filter in [19] to the average of the inputs
only holds for connected networks.

Since the network connectivity does not initially hold
in general, we implement the band-pass consensus filter
over each flock. This is justified because as the flocks
gradually merge, asymptotically the network becomes a fixed
connected network which is compatible with the asymptotic
convergence proofs in [19].

V. INFORMATION-DRIVEN MOBILITY

Information-driven mobility for multi-sensor platforms has
been recently studied by several researchers [8], [23], [5],
[9]. Though, the connections between information-driven
mobility and emergence of flocking has not been considered.

We show that adding the agent-target interaction potential
Uγ(q, q̂γ) to the flocking potential (or cost) of the agents is a
way to take the “information value” of sensor measurements
into account in motion planning. We introduce a metric that
measures the information value of sensor data with similar-
ities to Fisher Information [8], [9] that has applications in
information theory.

We define the information value Ii of the measurements of
sensor i with covariance Ri, output matrix Hi, and inverse-
covariance data Si = H ′

iR
−1
i Hi as the following

Ii = tr(Si) > 0 (21)

(tr(·) denotes the trace of a matrix and the time index k is
dropped for clarity). Note that S = 1

n

∑n
i=1 Si and the trace

operation has an additive property. Hence, denoting the fused
information value by I = tr(S), we obtain the following
identity:

I =
1
n

∑
i

Ii (22)

The quantity 1/I can be viewed as a metric for the average
information uncertainty across the sensor network.

To better understand the application of information value
as a tool, let us consider a widely used sensor model
for target tracking called the range-bearing model [1]. Let
ρi and θi, respectively, denote the estimated range and
bearing of a mobile target with associated Gaussian noise

variances σ2
ρ and σ2

θ . Each sensor makes the measurement
zi = (ρi cos θi, ρi sin θi)′ for a target moving in R2 with the
sensing model zi = Hixi + vi and an output matrix

Hi =
[

1 0 0 0
0 1 0 0

]
that measures the noisy version of position of the target. The
covariance of the noise of the sensor data is given in [1] as

Ri = E[viv
′
i] = Γ′

i

[
σ2

ρ 0
0 ρ2

iσ
2
θ

]
Γi = Γ′

iD(ρi)Γi (23)

where Γi is the rotation matrix

Γi =
[

cos θi − sin θi

sin θi cos θi

]
.

We obtain

Si = H ′
iR

−1
i Hi = H ′

iΓ
′
iD(ρi)−1ΓiHi

where the rows of ΓiHi have unit length. Thus, tr(Si) can
be explicitly calculated and the information value of the data
of sensor i can be obtained as

Ii =
∑

j

D−1
jj (ρi) =

1
σ2

ρ

+
1

ρ2
iσ

2
θ

. (24)

After some further simplifying assumptions that hold for
sonar sensors, suppose σ2

ρ = g(ρi) and ρ2
iσ

2
θ = h(ρi) where

g(ρ) and h(ρ) are both increasing and positive functions of ρ,
one can explicitly express the information value Ii in terms
of functions g(ρ) and h(ρ) as

Ii = f(ρi) :=
1

g(ρi)
+

1
h(ρi)

(25)

where f(ρ) is a decreasing function of the target range ρ.
i.e. ρi = f−1(Ii). Here is the main result that connects the
information value of all nodes to flocking-based mobility.

Proposition 2. Consider a group of n mobile sensors with
individual information value Ii and a nonlinear aggregate
information value Iγ =

∑n
j=1(f

−1(Ij))2. Then, the aug-
mented potential Uλ in (8) is the weighted sum of the
structural potential U(q) of a group of particles and the
aggregate information value Iγ of the range-bearing sensor
data across the mobile network, i.e.

Uλ = U(q) + λIγ (26)

(here, f−1(·) is the inverse map of f(·)).

Proof: Since f(ρ) is a decreasing function, it is
invertible and ρi = f−1(Ii). The proof follows from the
fact that Uγ(q, q̂γ) = Iγ =

∑
j ρ

2
j .

The flocking-based mobility model of the MANETs (i.e.
Algorithm 1) seeks to minimize the augmented potential
Uλ. As a byproduct, the individual target ranges decrease
in time and the information value Iγ increases. Hence, an
information-driven flocking algorithm with the coupled cost
Uλ will increase the aggregate information value.

The maximum value for Iγ occurs when ρi = 0 for all
agents. This means that the best aggregate information value



is achieved when all agents perform a moving rendezvous at
the target location as predicted earlier. However, that is not
possible in real-life as all sensors will collide. Thus, the cost
of collision-avoidance is taken into account via the addition
of U(q). The combination of both costs leads to emergence
of flocking and improvement of the aggregate information
value.

VI. SIMULATIONS

Consider a target moving in a 2-D space with constant
velocity driven by zero-mean Gaussian noise [2], i.e.

q̇γ = pγ , ṗγ = w̃(t) (27)

where w̃(t) = (w̃1(t), w̃2(t))′ and the w̃i(t)’s are WGN with
variance σ2. This system with state x = col(qγ , pγ) ∈ R4

can be written in discrete-time as a linear system

x(k + 1) =
[

I2 εI2

0 I2

]
x(k) +

[
(ε2/2)I2

εI2

] [
w1(k)
w2(k)

]
where Im is an m×m identity matrix and w1(k), w2(k) are
zero-mean Gaussian noise with variance σ2. To consider the
role of target range, we assume a sensor model zi = Hx+vi

with output matrix H = [I2 0] and covariance

Ri = E[vv′] =
1
I0

(a+ b+ (a− b)
ρi − l√

1 + (ρi − l)2
)I2

where I0, > 0, l� 1, and a > b > 0. The information value
of sensor i is Ii = I0f(ρ) with

f(ρ) = 2[a+ b+ (a− b)
ρ− l√

1 + (ρ− l)2
]−1.

For a far away target ρ � 1, f(ρ) ≈ 1/a. Thus, parameter
a determines the worst level of uncertainty, or the minimum
information value of Ii = I0/a.

We consider the task of target tracking using n = 20
UAVs (or mobile sensors) with the aforementioned described
models with parameters σ2 = 10, ε = 0.05, I0 = 0.1,
a = 10b, b = 1, l = 11.5d, r = 1.2d, and d = 7. Two
cases are considered: 1) cooperative filtering and 2) non-
cooperative filtering. In the first case, the agents use the DKF
algorithm to estimate the state of the target based on noisy
position measurements of the target. In the non-cooperative
case case, ever agent assumes that it has no neighbors, i.e.
Ni = ∅, only for the purpose of tracking (not flocking). The
agents use Algorithm 1 as the mobility protocol.

Fig. 2 shows the difference in mean-square-error (MSE)
of the target state estimates for the cases of cooperative and
non-cooperative filtering. The configuration of the sensors
with a flocking-based mobility model is depicted in Fig. 3.
Fig. 4 demonstrate the snapshots of target position estimates
obtained via distributed Kalman filtering (or cooperative
filtering) versus non-cooperative filtering. The performance
of tracking in the cooperative case is apparently better than
the non-cooperative case. According to Fig. 3, a connected
mobile network is self-assembled in less than 50 iterations.
The network remains connected thereafter (not shown due
to space limitations). The estimates in the non-cooperative
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Fig. 2. MSE for tracking using cooperative micro-Kalman filtering vs.
non-cooperative filtering.

(a) (b)

(c) (d)
Fig. 3. Emergence of a connected mobile network (or flock) of 20 sensors
(triangles) in less than 50 iterations during cooperative tracking of a mobile
target (red square): (a)–(c) k ≤ 50 iterations and (d) k = 400 iterations.

filtering case is slightly delayed and off. Even in case of non-
cooperative filtering, a single flock is formed and maintained.

VII. CONCLUSIONS

We addressed distributed tracking for mobile sensor net-
works with a flocking-based mobility model using a coop-
erative network of micro-Kalman filters (i.e. the DKF algo-
rithm). A metric for information value of a sensor measure-
ment was introduced. We demonstrated that a flocking-based
mobility model that uses the author’s flocking algorithm
is in fact an information-driven motion control algorithm
for cooperative tracking. This done by establishing that the
aggregate information value of all sensors appears as part of
the cost of flocking. A byproduct of flocking is self-assembly
of a connected networks that is ideal for distributed Kalman
filtering. The main contribution of the paper is to establish
direct connections between distributed tracking for mobile
networks and flocking-based information-driven mobility.
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Fig. 4. Position estimates (blue circles) of the target (red square): (a)–(f)
cooperative filtering (left) and (a’)–(f’) non-cooperative filtering (right).


