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Abstract
The paper investigates a distributed control system scheme

for urban road traffic management. The control algorithm is
based on model predictive control (MPC) involving Jacobi itera-
tion algorithm to solve constrained and nonlinear programming
problem.

The signal controllers of traffic network constitute a network
of computers. They can distribute their computation realizing an
efficient traffic control without any central management. How-
ever the optimal control inputs can be also calculated by a single
traffic controller if the traffic network contains few intersections.

The control aim is to relieve traffic congestion, reduce travel
time and improve homogenous traffic flow in urban traffic area
using distributed control architecture. The MPC based control
strategy can be implemented in any urban transportation net-
work but adequate measurement system and modern traffic con-
trollers are needed. Theory, realization possibilities and simu-
lation of the control method are also presented. The simulation
results show that the system is able to ameliorate the network
efficiency and reduce travel time. The distributed MPC based
traffic control strategy proves the effectiveness by realizing a
dependable control operation and creating optimal flow in the
network subjected to control input constraints.
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1 Introduction
More and more people are concerned about the negative phe-

nomenon resulted by the negative effects of the growing traffic
motorization. Traffic congestion is the primary direct impact
which became everyday occurrence in the last decade. As world
trade is continuously increasing, it is obvious that congestions
represent also a growing problem. The capacity of the traffic
networks saturates during rush hours. At the same time, the tra-
ditional traffic management is getting less effective in sustaining
a manageable traffic flow. As a result, external impacts appear
causing new costs for the societies.

The development of new control strategies is a real demand of
nowadays. In case the distance is relatively short between sev-
eral intersections with traffic lights, it is advisable to coordinate
the operation of the intersection controller devices.

In case of designing a traffic control system one has to face
two important problems. Naturally, an efficient and dependable
control algorithm is a primary object. However designing suit-
able control system architecture is also indispensable, since a
control algorithm has several operation requirements.

One of the possible solutions for an efficient control algorithm
is the practical application of modern control theory. In case of
designing urban traffic control using state space theory, it is ad-
visable to choose a simple, possibly linear model. A model like
this is the store-and-forward approach [8] which describes the
queue building before the stop line. This model is also the base
of Papageorgiou’s urban control strategy in the TUC model [5].
The TUC system implements an LQ control algorithm which is
not able to satisfy the constraints of the system. A possible so-
lution can be the use of MPC [11] which is able to take these
constraints into consideration.

The classical scheme for adaptive road traffic management
structure is based on control center which processes and com-
putes all signal control for the network. Another method for the
control system architecture is the decentralized and distributed
control scheme. This approach has numerous economical and
technological advantages.

In the paper we present a distributed control system scheme
for urban road traffic management which operation is based on
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Fig. 1. The control loop of the traffic control system

MPC. The control aim is to relieve congestion, reduce travel
time and maintain homogenous traffic flow in urban traffic net-
work.

To test and validate our control strategy and architecture de-
sign we created a simulation program. The simulation results
show that the system is able to ameliorate the network efficiency
and reduce travel time. The MPC based traffic control strat-
egy proves effectiveness by creating optimal flow in the network
subjected to control input constraints.

2 Distributed control system scheme in urban road
traffic network
The traffic control problem can be identified as a traditional

control problem with a plant and feedback control as shown in
Subsec. 3. The actuators are the traffic lights at the junctions.
Sensors are loop detectors or cameras.

Generally, the architectures of traffic control systems can be
central, distributed (decentralized), or mixed. The central man-
agement architecture is a frequent strategy based on a central
processor which controls all signal controllers in the transporta-
tion network. Distributed and mixed control systems are not so
common applications yet. However they have many advantages
and represent a new way in traffic control technology. Decen-
tralized management systems carry a higher performance since
they can distribute their computations between the traffic con-
trollers. As well as they represent a higher operation safety be-
cause of their structural redundancy. Some of these distributed
realizations are for example SCATS [19] or Utopia [17].

The aim of our research is to elaborate a control process for
decentralized management architecture. The system has to per-
form the control of all the traffic lights in its sphere of action in
a coordinated way depending on the actual state of traffic. The
controller must be able to dynamically create the traffic signal
set of the intersections. From the point of view of realization,
this means that before every period a new traffic sign must be
generated regarding all the traffic lights, in harmony with the
actual traffic. To solve these requirements, one must choose a
method which is able to take all the constraints into consider-
ation in course of the control input setting and can be imple-
mented in a distributed control system scheme. Regarding the
above, the MPC based technology is suitable to fulfil these de-
mands [7, 11, 12]. The goal of this algorithm is translated into a
cost function expressed in terms of some traffic states (i.e. traffic
flows, traffic densities, average speeds). As the name cost func-
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Fig. 2. Store-and-forward model

tion states, the cost is associated with an undesirable traffic state
with congestion which needs to be minimized. Accordingly the
system intends to find the lowest value of the cost function.

The MPC strategy is a state-of-the-art technology which can
be implemented in any urban road transportation network. On
the other hand there are some preliminary conditions the net-
work has to correspond to. Adequate measurements system and
traffic controllers are indispensable for the functioning of the
optimization process.

3 Traffic modeling using state space theory
To create an efficient control design an adequate traffic model

is needed. Transportation model has to describe the accurate
dynamics of the traffic processes within the controlled traffic
network. Using traffic models it is possible to simulate traffic
processes faster than real-time. This allows a real-time evalu-
ation and optimization of different alternative control strategies
that would not be possible otherwise.

A wide variety of traffic models exists. These models can
be classified based on their properties [3]. The state space traf-
fic models describe traffic flow in combination with advanced
(adaptive) control design technologies. Hence a state space traf-
fic model approach is used in our control system.

The chosen traffic flow model contains the so called store-
and-forward model (Fig. 2) [8] which is similar to the model
used in TUC [5, 6] urban traffic control strategy. Fig. 2 shows
the coherence of two neighboring intersections (M, N ) in the
transportation network where qz is the inflow, hz is the outflow,
dz and sz are the demand and the exit flow of link z.

In the case of traffic networks with multiple ramifications, for
the portrayal of vehicles movement in the space state, one pro-
posed the following discrete time stochastic LTI state equation:

xz(k + 1) = xz(k) +

T

[
(1 − κz,0)

∑
w∈IM

αw,z

Sw
∑

i∈vw

gM,i (k)

C −

Sz
∑

i∈vz
gN ,i (k)

C

]
, (1)

where x(k) is the state vector, representing the number of vehi-
cles standing in a certain branch of the intersection, green time
g(k) is the control input. αw,z are the entering turning rates
which are considered constants. The values of turning rates have
strong influence on the system’s operation. The accurate infor-
mation of them represents an important problem in control de-
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sign. Turning rates are not easily measurable parameters. One
of the good solutions can be the estimation [9]. κ represents the
fixed and known exit rates. S denotes saturation flow, C means
the cycle time, T is the control interval, and k = 1, 2 · · · a is
the discrete time index. Index j denotes the junction identifier,
index i means the stage. The cycle time, the lost times of each
junction are fixed and it means that the sum of the green times
is also fixed in each junction.

The state and the measurement equation can be written in gen-
eral form as:

x(k + 1) = Ax(k) + Bg(k) + xin(k) + w(k) (2)

y(k) = Cx(k) + v(k), (3)

where xin means the number of input vehicles, w is the sum
of the non-measurable fault/noise, while v is the measurement
noise. The demands to enter at the boundaries of the network
are considered as measurable fault/noise.

4 Optimal solution of the MPC cost function using Ja-
cobi algorithm
To solve an MPC problem means the minimization of an ad-

equate cost function which contains the states of the controlled
system. Thus, the first step to realize our control is designing the
state space representation of the traffic network. The state equa-
tion is created using measurable traffic parameters. The cost
function contains the matrixes of this state space equation.

The final goal of this algorithm is to minimize the queue
lengths at the stop lines which yields to the maximization of the
number of vehicles passing the given transportation network.

4.1 MPC cost function
The state space equation for MPC design can be given as fol-

lows:
x(k + 1|1)

x(k + 1|2)
...

x(k + 1|N )


︸                   ︷︷                   ︸

x(k+1)

=


x(k) + xin(k)

x(k) + 2xin(k)
...

x(k) + N xin(k)


︸                         ︷︷                         ︸

c(k)

+


T 0 . . . 0
T T . . . 0
...

...
. . .

...

T T . . . T


︸                         ︷︷                         ︸

B


g(k|0)

g(k|1)
...

g(k|N − 1)


︸                   ︷︷                   ︸

g(k)

(4)

where x is a hyper vector of the state vectors, representing the
number of vehicles standing at each branch of the intersections,
c is a hyper vector of the combination of the previous state vec-
tors and the number of input vehicles vectors (xin). Automobiles
entering the controlled traffic network are considered input vehi-
cles. B is a lower triangular hyper matrix including the matrix of

turning rates of the traffic network (T ), g is hyper vector of the
control input vectors (green times), k = 1, 2... a is the discrete
time index, and N is the length of the MPC horizon.

The MPC cost function is characterized by the weighted sys-
tem states and control inputs (5).

J (k) =
1
2

{
qxT (k) x (k) + rgT (k) g (k)

}
→ min (5)

The minimization of the cost function leads to the minimiza-
tion of the vehicle queues waiting for crossing intersections. The
control input green time is defined corresponding to the states of
intersection branches representing a fully adaptive traffic man-
agement. Where q = 0.1 and r = 1 are appropriately cho-
sen tuning parameters. The weightings reflect that the control
input variation is lightly punished compared to the state varia-
tion. The selection of the appropriate weightings is important,
because this could influence (especially the end-point weight)
the stability of the closed loop [10].

Different stability proofs exist for receding horizon control al-
gorithms. However, [11, 13] offer different methodological ap-
proaches, one prefers using a predefined terminal set (based on
the solution of the Algebraic Riccati Equation of a steady state
LQ feedback problem) [13, 20]. The terminal set is subjected to
the control input’s constraints. Therefore, the solution of the fi-
nite horizon minimization can be interpreted as an optimal state
feedback driving the closed loop into an invariant set. Substitut-
ing x (k) and g (k) in (5) one arrives to:

J (k) =
1
2

gT
(

q BT B + r I
)

g + qcT Bg +
1
2

qcT c

=
1
2

gT 8g + βT g + γ

(6)

As γ is a constant term, finally one has the objective function to
minimize:

J (k) =
1
2

gT (k) 8g (k) + βT (k) g (k) → min (7)

where

8 =


ϕ11 . . . ϕ1n
...

. . .
...

ϕn1 . . . ϕnn

 , β =


β1
...

βn

 . (8)

8 is constant matrix as it contains the combination of constant
turning rates and fixed tuning parameters. At the same time, β

contains values coming from the geometry of the traffic area.

4.2 Constraints of the system
The control objective of TUC is the minimization and balanc-

ing of the numbers of vehicles within the streets of the controlled
network. This control objective is approached through the ap-
propriate manipulation of the green splits at urban signalized
junctions, assuming given cycle times and offsets. The TUC has
some alternative control laws but the main concept is based on
LQ and LQI control theory.
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However, a control solution had been searched for which was
able to satisfy the two types of constraints on the control input:
the positive green times criterion and the linear combinations of
green times in each intersection coming from the geometry of
the intersections.

gi ≥ 0 ∀i (9)
O j∑

i=1

gi ≤ tMAX
j j = 1 · · · J, (10)

where O j is the number of vehicles’ columns in intersection j, J
is the number of controlled intersections. The constraints can be
also expressed as a matrix inequality:

Ag ≤ b (11)

where matrix A and vector b incorporate all constraints of the
system.

By employing the predictive control model, the dynamic de-
termination (per cycle) of the traffic light’s period is possible
even with the consideration of the natural constraints existing
in the system. A method had been elaborated for designing
an MPC controller which minimizes the number of vehicles in
queue. The controller ensures the control input in order to mini-
mize the functional (7) whereas satisfying dynamic equation (4),
measurement equations (5), (6) and constraints (9), (10).

4.3 Multivariable nonlinear programming
The solution of the MPC cost function (7) represents a multi-

variable nonlinear problem subject to linear constraints (11). It
formulates a standard quadratic optimization problem [4]:

J (k) =
1
2

gT 8g + βT g → min

s. t. Ag − b ≤ 0.

(12)

If 8 is a positive semi definite matrix, (12) gives a convex
optimization problem [2]. Otherwise one has to use the singular
value decomposition method to 8 which results a convex prob-
lem. This means a linear transformation to the original problem
(12).

Using the duality theory [4] the primal problem can be for-
mulated into Lagrange dual standard form. The basic idea in
Lagrangian duality is to take the constraints into account by
augmenting the objective function with a weighted sum of the
constraint functions. We define the Lagrangian associated with
the problem as:

L (g, λ) = J (k) + λT (Ag − b) (13)

We refer to λi as the Lagrange multiplier associated with the i th
inequality constraint of (12). The dual function is defined as the
minimum value of the Lagrangian function. This can be easily
calculated by setting gradient of Lagrangian to zero [2]. This
yields an optimal green time vector (17) which minimizes the

primal problem. Hence one arrives to the dual of the quadratic
programming problem:

JDUAL (k) =
1
2
λT PT λ + wT λ → min

s. t. λ ≥ 0,

(14)

where P and w are coming from the original problem:

P = A8−1 AT , (15)

w = A8−1β + b (16)

It is shown that if λ∗ provides optimal solution for the
JDU AL (k) problem then

g∗
= −8−1

(
β + AT λ∗

)
(17)

gives also an optimal solution for the primal problem [15].
The dual problem has a simple constraint set compared with

the primal problem’s constraints. Hence (14) represents a stan-
dard minimization problem over nonnegative orthant which can
be resolved by several numerical algorithms.

A very efficient method, the Jacobi iteration was found to
solve the optimization problem. Since 8 is a positive semi defi-
nite matrix the j th diagonal element of P , given by

p j j = aT
j 8−1a j , (18)

is positive. This means that for every j the dual cost function
is strictly convex along the j th coordinate. Therefore the strict
convexity is satisfied and it is possible to use the nonlinear Ja-
cobi algorithm [4]. Because the dual objective function is also
quadratic the iteration can be written explicitly. Taking into ac-
count the form of the first partial derivative of the dual cost

w j +

n∑
k=1

p jkλk (19)

the method is given by:

λ j (t + 1) = max

{
0, λ j (t) −

κ

p j j

(
w j +

n∑
k=1

p jkλk (t)

)}
,

j = 1, . . . , n

(20)

Where κ > 0 is the stepsize parameter which should be cho-
sen sufficiently small and some experimentation may be needed
to obtain the appropriate range for κ . Convergence can be shown
when κ = n−1 but this value may lead to an unnecessarily slow
rate of convergence for some problems.

The importance of this method, over its efficiency, is the abil-
ity to satisfy the positivity since equation (20) excludes negative
solution for λ. During the MPC control process at each (kth)
step the optimal green times can be directly calculated from
equation (17) after solving the problem (12).
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Fig. 3. Decentralized control system scheme

5 Realization of the MPC based distributed traffic con-
trol system
The economical and technological innovation of the above

described control method is represented by the state-of-the-art
control design and the optional decentralized realization at the
same time.

The technology can be used in any road traffic network which
is equipped by adequate signal controllers and detectors, as well
as communication between controllers is also required. How-
ever no central management is needed to operate and this pro-
duces many advantages compared to the classical centralized
traffic control system. In the distributed control scheme the com-
putation is executed by the signal controllers’ CPUs. They com-
municate with each other at least at the beginning of every oper-
ation cycles. The decentralized control system is represented on
Fig. 3.

Generally one signal controller device belongs to one inter-
section. Nevertheless, some state-of-the-art control devices are
able to manage more than one intersection. For example AC-
TROS VTC 3000 [1] may control the signal sets of maximum
three junctions at simultaneously. ACTROS was used to test our
control algorithm which will be presented later in Sec. 6.2.

The control system scheme is designed in a decentralized way
without any central processor. Moreover the computing pro-
cess can be distributed between the signal controllers. Since
the solution of the Jacobi algorithm (20) is an iteration process
the computers can distribute their calculations during operation
cycle. After some iteration steps the controllers transmit their
computational results to the next controllers until the solution
is achieved. Hence in case of large traffic network the signal
controllers can resolve the calculation in a distributed way. Nat-
urally the computational need must be portioned uniformly.

If one wishes to control small traffic network with couple of
intersections the distributed solution is not certainly required.
As the calculation of one Jacobi iteration step means simple
multiplications and additions of scalars in case of few intersec-
tions a single controller’s performance is sufficient to compute
all signal sets of the network. For example: for a network con-
sisting twelve branches the computational time is less than 1 sec
using a modern signal controller device (see Sec. 6.2). In that
case the system is working with redundancy which is very useful
at the same time. The controllers can continuously check their
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Fig. 4. The simulation environment

operation comparing their computation results. On the other
hand, if one of the signal controllers fails in the network the
system can go on with safe functioning.

However with the growth of the number of the system states
(number of branches of intersections) the computational demand
increases quadratically. Thus larger network requires the dis-
tributed solution of the MPC control. Certainly the solution
method also largely depends on the performance of the actual
signal controllers.

6 Simulation and results
To test and verify the designed control system scheme one

created a simulation environment furthermore used a real signal
controller device.

6.1 Simulation of the MPC based distributed control design
To verify the designed control system scheme a closed loop

simulation environment was created. For traffic network mod-
eling we used VISSIM [18]. This software is a microscopic
traffic simulator for analyzing traffic operations. It is able to
simulate network consisting of several intersections and allow
the use of external control algorithm in the control processes.
VISSIM uses a so-called psycho-physical driver behavior model
based on the car-following model of Wiedemann. As the model
is microscopic it describes all the vehicles moving in the system
representing accurate simulation. Access to model data and sim-
ulations in VISSIM is provided through a COM interface [14],
which allows VISSIM to work as an automation server and to
export the objects, methods and properties. Hence COM inter-
face programming was used to create our complex simulation
model and control system for VISSIM. The MPC control algo-
rithm was written in Microsoft Visual C++. The created closed
loop simulation environment is shown on Fig. 4.

The traffic network used for simulation consists of 4 junctions
with twelve controlled branches. The C++ program gets traffic
parameters via COM interface from VISSIM. After minimizing
the cost function, the new control signals arrive to the traffic
simulator on the same path. The process runs every 60 sec while
VISSIM is working continuously.

To prove the applicability of the MPC based distributed con-
trol design it was compared with classical fixed time control sys-
tem simulated also in VISSIM. The same input traffic volumes
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Tab. 1. Simulation results of the four junction traffic network

Parameter
Fixed time MPC based Change

control distributed control

Total travel time per vehicle [sec] 110 96 ↓ 13%

Average speed [km/h] 18.4 23.6 ↑ 28%

Average delay time per vehicle [sec] 71 52 ↓ 27%

Average number of stops per vehicles 1.5 1.2 ↓ 20%
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Fig. 5. The VISSIM–ACTROS system

were set for both simulations. The simulation results show that
the MPC based distributed system could manage the traffic more
efficiently compared with the classical control system. The re-
sults are presented in Tab. 1. All important traffic parameters
changed in a right way. The total travel time means an average
time which is needed to cross the test network. This value re-
duced by more than 10%. Average speed value augmented the
most intensively which is due to the diminution of the stops be-
fore the traffic lights. Average delay time gives the difference
between the ideal (network without any traffic and traffic lights)
and the necessary travel time to cross the traffic area. As a con-
sequence of the previous results the average delay time also re-
duced strongly. The simulation time was 2 hour.

The aim of the MPC based control is the minimization of the
number of vehicles waiting at the stop line. The classical control
system cannot adapt to increased volume. The average queue
length grew strongly during the simulations. However, the MPC
strategy is able to manage heavier traffic situations real-time.

It shows unambiguously the effectiveness of the MPC based
system as controller. On the other hand the signal controllers
provide the same solutions in distributed as in central architec-
ture [16]. This represents an important advantage since the lo-
cal signal controllers can solve easily the control problem (see
Sec. 4.3). No central processor is needed.

6.2 Testing on a real intersection signal controller
To verify if our algorithm can run smoothly on a modern sig-

nal controller we used the device ACTROS VTC 3000. AC-
TROS includes an industrial computer running JAVA applica-
tions. Hence a JAVA program was also created to run MPC
algorithm. VISSIM was connected to ACTROS via LAN com-
munication (Fig. 5).

As expected the controller could operate without any prob-
lem. It could suitably manage the previously used traffic net-
work (see Sec. 6.1) in a real time functioning. The computing
time of the iteration process is less than 1 sec which is time is not

significant. These results show that the required computational
demand is very small for a modern signal controller’s CPU in
case of few controlled intersections.

7 Conclusion
Several alternative urban traffic management methodologies

and implementation technologies are in use. However the ex-
isting methods cannot incorporate physical constraints of the
system and/or have operational disadvantages resulted by their
control system architectures. To avoid these problems a new,
distributed traffic control system scheme was designed.

The control algorithm uses a model based and constrained
predictive terminology which is able to take the constraints into
consideration. The solution of the problem represents a multi-
variable nonlinear optimization involving Jacobi iteration. Fur-
thermore, the algorithm can be implemented in a decentralized
traffic control system which yields numerous advantages.

The control design was tested using VISSIM traffic simulator
and also a real signal controller. The simulation results show
that the MPC based control is able to suitably manage the urban
traffic control problem and the distributed system operates with
significant efficiency and safety. Moreover such control algo-
rithm was found which allows its use in nowadays signal con-
trollers. Generally speaking, the designed strategy can provide
effective traffic flow and stable operation in the traffic network.
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