
Distributed Transactional Memory for

Metric-Space Networks

Maurice Herlihy and Ye Sun

Brown University, Providence, RI 02912-1910 USA

Abstract. Transactional Memory is a concurrent programming API in
which concurrent threads synchronize via transactions (instead of locks).
Although this model has mostly been studied in the context of multipro-
cessors, it has attractive features for distributed systems as well. In this
paper, we consider the problem of implementing transactional memory in
a network of nodes where communication costs form a metric. The heart
of our design is a new cache-coherence protocol, called the Ballistic pro-
tocol, for tracking and moving up-to-date copies of cached objects. For
constant-doubling metrics, a broad class encompassing both Euclidean
spaces and growth-restricted networks, this protocol has stretch logarith-
mic in the diameter of the network.

1 Introduction

Transactional Memory is a concurrent programming API in which concurrent
threads synchronize via transactions (instead of locks). A transaction is an ex-
plicitly delimited sequence of steps to be executed atomically by a single thread.
A transaction can either commit (take effect), or abort (have no effect). If a
transaction aborts, it is typically retried until it commits. Support for the trans-
actional memory model on multiprocessors has recently been the focus of several
research efforts, both in hardware [13, 16, 32, 36, 38, 42] and in software [14, 15,
17, 23, 31, 33, 41].

In this paper, we propose new techniques to support the transactional mem-
ory API in a distributed system consisting of a network of nodes that commu-
nicate by message-passing with their neighbors. As discussed below, the trans-
actional memory API differs in significant ways from prior approaches to dis-
tributed transaction systems, presenting both a different high-level model of
computation and a different set of low-level implementation issues. The proto-
cols and algorithms needed to support distributed transactional memory require
properties similar to those provided by prior proposals in such areas as cache
placement, mobile objects or users, and distributed hash tables. Nevertheless, we
will see that prior proposals typically fall short in some aspect or another, rais-
ing the question whether these (often quite general) proposals can be adapted
to meet the (specific) requirements of this application.

Transactions have long been used to provide fault-tolerance in databases and
distributed systems. In these systems, data objects are typically immobile, but

computations move from node to node, usually via remote procedure call (RPC).
To access an object, a transaction makes an RPC to the object’s home node,
which in turn makes tentative updates or returns results. Synchronization is
provided by two-phase locking, typically augmented by some form of deadlock
detection (perhaps just timeouts). Finally, a two-phase commit protocol ensures
that the transaction’s tentative changes either take effect at all nodes or are all
discarded. Examples of such systems include Argus [28] and Jini [44].

In distributed transactional memory, by contrast, transactions are immobile
(running at a single node) but objects move from node to node. Transaction
synchronization is optimistic: a transaction commits only if, at the time it fin-
ishes, no other transaction has executed a conflicting access. In recent software
transactional memory proposals, a contention manager module is responsible
for avoiding deadlock and livelock. A number of contention manager algorithms
have been proposed and empirically evaluated [12, 17, 22]. One advantage of this
approach is that there is no need for a distributed commit protocol: a transaction
that finishes without being interrupted by a synchronization conflict can simply
commit.

These two transactional models make different trade-offs. One moves con-
trol flow, the other moves objects. One requires deadlock detection and commit
protocols, and one does not. The distributed transactional memory model has
several attractive features. Experience with this programming model on multi-
processors [17] suggests that transactional memory is easier to use than locking-
based synchronization, particularly when fine-grained synchronization is desired.
Moving objects to clients makes it easier to exploit locality. In the RPC model,
if an object is a “hot spot”, that object’s home is likely to become a bottleneck,
since it must mediate all access to that object. Moreover, if an object is shared
by a group of clients who are close to one another, but far from the object’s
home, then clients must incur high communication costs with the home.

Naturally, there are distributed applications for which the transactional mem-
ory model is not appropriate. For example, some applications may prefer to store
objects at dedicated repositories instead of having them migrate among clients.
In summary, it would be difficult to claim that either model dominates the other.
The RPC model, however, has been thoroughly explored, while the distributed
transactional memory model is novel.

To illustrate some of the implementation issues, we start with a (somewhat
simplified) description of hardware transactional memory. In a typical multi-
processor, processors do not access memory directly. Instead, when a processor
issues a read or write, that location is loaded into a processor-local cache. A
native cache-coherence mechanism ensures that cache entries remain consistent
(for example, writing to a cached location automatically locates and invalidates
other cached copies of that location). Simplifying somewhat, when a transaction
reads or writes a memory location, that cache entry is flagged as transactional.
Transactional writes are accumulated in the cache (or write buffer), and are not
written back to memory while the transaction is active. If another thread in-
validates a transactional entry, that transaction is aborted and restarted. If a

transaction finishes without having had any of its entries invalidated, then the
transaction commits by marking its transactional entries as valid or as dirty, and
allowing the dirty entries to be written back to memory in the usual way.

In some sense, modern multiprocessors are like miniature distributed sys-
tems: processors, caches, and memories communicate by message-passing, and
communication latencies outstrip processing time. Nevertheless, there is one key
distinction: multiprocessor transactional memory designs extend built-in cache
coherence protocols already supported by modern architectures. Distributed sys-
tems (that is, nodes linked by communication networks) typically do not come
with such built-in protocols, so distributed transactional memory requires build-
ing something roughly equivalent.

The heart of a distributed transactional memory implementation is a dis-
tributed cache-coherence protocol. When a transaction attempts to access an
object, the cache-coherence protocol must locate the current cached copy of the
object, move it to the requesting node’s cache, invalidating the old copy. (For
brevity, we ignore shared, read-only access for now.)

We consider the cache-coherence problem in a network in which the cost of
sending a message depends on how far it goes. More precisely, the communication
costs between nodes form a metric. A cache coherence protocol for such a network
should be location-aware: if a node in Boston is seeking an object in New York
City, it should not send messages to Australia.

In this paper, we propose the Ballistic distributed cache-coherence protocol,
a novel location-aware protocol for metric space networks. The protocol is hi-
erarchical: nodes are organized as clusters at different levels. One node in each
cluster is chosen to act as leader for this cluster when communicating with clus-
ters at different levels. Roughly speaking, a higher-level leader points to a leader
at the next lower level if the higher-level node thinks the lower-level node “knows
more” about the object’s current location.

The protocol name is inspired by its communication patterns: when a trans-
action requests for an object, the request rises in the hierarchy, probing leaders
at increasing levels until the request encounters a downward link. When the re-
quest finds such a link, it descends, following a chain of links down to the cached
copy of the object.

We evaluate the performance of this protocol by its stretch: each time a node
issues a request for a cached copy of an object, we take the ratio of the protocol’s
communication cost for that request to the optimal communication cost for that
request. We analyze the protocol in the context of constant-doubling metrics, a
broad and commonly studied class of metrics that encompasses low-dimensional
Euclidean spaces and growth-restricted networks [1, 2, 9, 11, 21, 24–26,34, 37, 40,
43]. (This assumption is required for performance analysis, not for correctness.)
For constant-doubling metrics, our protocol provides amortized O(log Diam)
stretch for non-overlapping request to locate and move a cached copy from one
node to another. The protocol allows only bounded overtaking: when a trans-
action requests an object, the Ballistic protocol locates an up-to-date copy of
the object in finite time. Concurrent requests are synchronized by path reversal :

when two concurrent requests meet at an intermediate node, the second request
to arrive is “diverted” behind the first.

Our cache-coherence protocol is scalable in the number of cached objects it
can track, in the sense that it avoids overloading nodes with excessive traffic
or state information. Scalability is achieved by overlaying multiple hierarchies
on the network and distributing the tracking information for different objects
across different hierarchies in such a way that as the number of objects increases,
individual nodes’ state sizes increase by a much smaller factor.

The contribution of this paper is to propose the first protocol to support
distributed transactional memory, and more broadly, to call the attention of the
community to a rich source of new problems.

2 Related Work

Many others have considered the problem of accessing shared objects in net-
works. Most related work focuses on the copy placement problem, sometimes
called file allocation (for multiple copies) or file migration (for single copy). These
proposals cannot directly support transactional memory because they provide
no ability to combine multiple accesses to multiple objects into a single atomic
unit. Some of these proposals [5, 8] compare the online cost (metric distance)
of accessing and moving copies against an adversary who can predict all future
requests. Others [4, 30] focus on minimizing edge congestion. These proposals
cannot be used as a basis for a transactional cache-coherence protocol because
they do not permit concurrent write requests.

The Arrow protocol [39] was originally developed for distributed mutual ex-
clusion, but was later adapted as a distributed directory protocol [10, 18, 19].
Like the protocol proposed here, it relies on path reversal to synchronize con-
current requests. The Arrow protocol is not well-suited for our purposes because
it runs on a fixed spanning tree, so its performance depends on the stretch of
the embedded tree. The Ballistic protocol, by contrast, “embeds itself” in the
network in a way that provides the desired stretch.

The Ballistic cache-coherence protocol is based on hierarchical clustering, a
notion that appears in a variety of object tracking systems, at least as early
as Awerbuch and Peleg’s mobile users [7], as well as various location-aware dis-
tributed hash tables (DHTs) [2, 20, 21, 37, 40]. Krauthgamer and Lee [25] use
clustering to locate nearest neighbors. Talwar [43] uses clustering for compact
routing, distance labels, and related problems. Other applications include lo-
cation services [1, 26], animal tracking [9], and congestion control ([11]). Of
particular interest, the routing application ([43]) implies that the hierarchical
construct we use for cache coherence can be obtained for free if it has already
been constructed for routing. Despite superficial similarities, these hierarchical
constructions differ from ours (and from one another) in substantial technical
ways.

To avoid creating directory bottlenecks, we use random hash ids to assign ob-
jects to directory hierarchies. Similar ideas appear as early as Li and Hudak [27].

Recently, location-aware DHTs (for example, [2, 20, 21, 37, 40]) assign objects to
directory hierarchies based on object id as well. These hierarchies are random-
ized. By contrast, Ballistic provides a deterministic hierarchy structure instead
of a randomized one. A deterministic node structure provides practical benefits.
The cost of initializing a hierarchical node structure is fairly high. Randomized
constructions guarantee good behavior in the expected case, while deterministic
structures yield good behavior every time.

While DHTs are also location aware, they typically manage immutable im-
movable objects. DHTs provide an effective way to locate an object, but it is
far from clear how they can be adapted to track mobile copies efficiently. Prior
DHT work considers the communication cost of publishing an object to be a
fixed, one-time cost, which is not usually counted toward object lookup cost.
Moving an object, however, effectively requires republishing it, so care is needed
both to synchronize concurrent requests and to make republishing itself efficient.

There have been many proposals for distributed shared memory systems (sur-
veyed in [35]), which also present a programming model in which nodes in a
network appear to share memory. None of these proposals, however, support
transactions.

3 System Overview

Each node has a transactional memory proxy module that provides interfaces
both to the application and to proxies at other nodes. An application informs
the proxy when it starts a transaction. Before reading or writing a shared object,
it asks the proxy to open the object. The proxy checks whether the object is
in the local cache, and if not, calls the Ballistic protocol to fetch it. The proxy
then returns a copy of the object to the transaction. When the transaction asks
to commit, the proxy checks whether any object opened by the transaction has
been invalidated (see below). If not, the proxy makes the transaction’s tentative
changes to the object permanent, and otherwise discards them.

If another transaction asks for an object, the proxy checks whether it is in
use by an active local transaction. If not, it sends the object to the requester and
invalidates its own copy. If so, the proxy can either surrender the object, aborting
the local transaction, or it can postpone a response for a fixed duration, giving
the local transaction a chance to commit. The decision when to surrender the
object and when to postpone the request is a policy decision. Nodes must use a
globally-consistent contention management policy that avoids both livelock and
deadlock. A number of such policies have been proposed in the literature [12,
17, 22]. Perhaps the simplest is to assign each transaction a timestamp when it
starts, and to require that younger transactions yield to older transactions. A
transaction that restarts keeps its timestamp, and eventually it will be the oldest
active transaction and thus able to run uninterrupted to completion.

The most important missing piece is the mechanism by which a node locates
the current copy of an object. As noted, we track objects using the Ballistic cache
coherence protocol, a hierarchical directory scheme that uses path reversal to

coordinate concurrent requests. This protocol is a distributed queuing protocol:
when a process joins the queue, the protocol delivers a message to that process’s
predecessor in the queue. The predecessor responds by sending the object (when
it is ready to do so) back to the successor, invalidating its own copy.

For read sharing, the request is delivered to the last node in the queue, but
the requester does not join the queue. The last node sends a read-only copy of
the object to the requester and remembers the requester’s identity. Later, when
that node surrenders the object, it tells the reader to invalidate its copy. An
alternative implementation not discussed here lets read join the queue as well.

4 Hierarchical Clustering

In this section we describe how to impose a hierarchical structure (called the
directory or directory hierarchy) on the network for later use by the cache co-
herence protocol.

Consider a metric space of diameter Diam containing n physical nodes, where
d(x, y) is the distance between nodes x and y. This distance determines the cost
of sending a message from x to y and vice-versa. Scale the metric so that 1 is
the smallest distance between any two nodes. Define N(x, r) to be the radius-r
neighborhood of x in the metric space.

We select nodes in the directory hierarchy using any distributed maximal
independent set algorithm (for example, [3, 6, 29]). We construct a sequence of
connectivity graphs as follows:

– At level 0, all physical nodes are in the connectivity graph. They are also
called the level 0 or leaf nodes. Nodes x and y are connected if and only if
d(x, y) < 21. Leader0 is a maximal independent set of this graph.

– At level �, only nodes from leader�−1 join the connectivity graph. These
nodes are referred to as level � nodes. Nodes x and y are connected in this
graph if and only if d(x, y) < 2�+1. Leader� is a maximal independent set of
this graph.

The construction ends at level L when the connectivity graph contains exactly
one node, which is called the root node. L ≤ �log2 Diam� + 1 since the connec-
tivity graph at level �log2Diam� is a complete graph.

The (lookup) parent set of a level � node x is the set of level � + 1 nodes
within distance 10 · 2l+1 of x. In particular, the home parent of x is the parent
closest to x. By construction, home parent is at most distance 2�+1 away from
x. The move parent set of x is the subset of parents within distance 4 · 2l+1 of x.

A directory hierarchy is a layered node structure. Its vertex set includes the
level-0 through level-L nodes defined above. Its edge set is formed by drawing
edges between parent child pairs as defined above. Edges exist only between
neighboring level nodes. Figure 1 illustrates an example of such a directory
hierarchy. Notice that nodes above level 0 are logical nodes simulated by physical
nodes.

We use the following notation:

Fig. 1. Illustration of a directory hierarchy

– home�(x) is the level-� home directory of x. home0(x) = x. home i(x) is the
home parent of homei−1(x).

– moveProbe�(x) is the move-parent set of home�−1(x). These nodes are probed
at level-� during a move started by x.

– lookupProbe�(x) is the lookup-parent set of home�−1(x). These nodes are
probed at level-� during a lookup started by x.

5 The Cache-Coherence Protocol

For now, we focus on the state needed to track a single cached object, postponing
the general case to Section 6. Each non-leaf node in the hierarchy has a link state:
it either points to a child, or it is null. If we view non-null links as directed edges
in the hierarchy, then they always point down. Intuitively, when the link points
down, the parent “thinks” the child knows where the object is.

Nodes process messages sequentially: a node can receive a message, change
state, and send a message in a single atomic step. We provide three operations.
When an object is first created, it is published so that other nodes can find it.
(As discussed briefly in the conclusions, an object may also be republished in
response to failures.) A node calls lookup to locate the up-to-date object copy
without moving it, thus obtaining a read-only copy. A node calls move to locate
and move the up-to-date object copy, thus obtaining a write copy.

1. Publish(): An object created at a leaf node p is published by setting each
homei(p).link = homei−1(p), leaving a single directed path from root to p,
going through each home directory in turn.
For example, Figure 1 shows an object published by leaf A. A’s home direc-
tories all point downwards. In every quiescent state of the protocol, there is
a unique directed path from the root to the leaf where the object resides,
although not necessarily through the leaf node’s home directories.

2. Lookup(): A leaf q started a lookup request. It proceeds in two phases. In
the first up phase, the nodes in lookupProbe�(q) are probed at increasing
levels until a non-null downward link is found. At each level �, home�−1(q)
initiates a sequential probe to each node in lookupProbe�(q). The ordering
can be arbitrary except that the home parent of home�−1(q), which is also
home�(q), is probed last. If the probe finds no downward links at level �,
then it repeats the process at the next higher level.

If, instead, the probe discovers a downward link, then downward links are
followed to reach the leaf node that either holds the object or will hold the
object soon. When the object becomes available, a copy is sent directly to q.

3. Move(): The operation also has two phases. In the up phase, the protocol
probes the nodes in moveProbe�(q) (not lookupProbe�(q)), probing home�(q)
last. Then home�(q).link is set to point to home�−1(q) before it repeats the
process at the next higher level. (Recall that probing the home parent’s link
and setting its link are done in a single atomic step.)
For the down phase, when the protocol finds a downwards link at level �,
it redirects that link to home�−1(q) before descending to the child pointed
to by the old link. The protocol then follows the chain of downward links,
setting each one to null, until it arrives at a leaf node. This leaf node either
has the object, or is waiting for the object. When the object is available, it
is sent directly to q.

Figure 2 shows the protocol pseudocode for the up phase and down phase
of lookup and move operations. As mentioned, each node receives a message,
changes state, and sends a message in a single atomic step.

5.1 Cache Responsiveness

A cache-coherence protocol needs to be responsive so that an operation issued
by any node at any time is eventualy completed.

In the Ballistic protocol, overtaking can happen in satisfying concurrent
writes: A node B may issue a move request at a later (wall clock) time than
A, and yet B’s request may be ordered first if B is closer to the object. Nev-
ertheless, we will show that such overtaking can occur only during a bounded
“window” in time. Therefore, a write operation eventually completes. That a
read operation always completes follows.

Two parameters are used in proving that each write operation eventually
completes but not in the actual protocol: One parameter is TE , the maximum
enqueue delay, is the time it takes for a move request to reach its predecessor.
This number is network-specific but finite, since a request never blocks in reach-
ing its predecessor. The other parameter is TO, the maximum time it takes for
an object to travel from one requester to its successor, also finite. TO includes
the time it takes to invalidate existing read-only copies before moving a writable
copy.

By invariant analysis, the successor ordering established by the Ballistic pro-
tocol never forms a cycle. Also observe that a request cannot be overtaken by
another request generated more than n · TE later.

Theorem 1 (Finite write response time). Every move request is satisfied
within time n · TE + n · TO from when it is generated.

// search (up) phase, d is requesting node’s home directory
void up(node* d, node* request) {

node* parent = null;

iterator iter = LookupParent(d); // home parent ordered last
[iterator iter = MoveParent(d);] // (move only,) a different set
for (int i=0; i<sizeof(iter); i++) {
parent = iter.next();

// --transfer control to next parent in probe set--
if (parent.link != null) { // found link

node* oldlink = parent.link; // remember link
[parent.link = d;] // (move only,) redirect link
// --transfer control to oldlink instead of going back to d--
down(oldlink, request); // start trace phase
break;

}
// --transfer control back to d except if current parent is home parent--

}
// no links seen, in the middle of probing home parent now
// control already at home parent, will not go back to d
[parent.link = d;] // (move only,) add link to reverse path
up(parent, request); // probe at next level from home parent

}

// trace (down) phase, following links starting from d
void down(node* d, node* request) {

if (d is leaf) { // end of link chain, predecessor found
d.succ = request;

return;
}
oldlink = d.link; // remember link
[d.link = null;] // (move only,) link erased after taken
// --transfer control to oldlink--
down(oldlink, request); // move down

}

Fig. 2. Pseudocode for lookup and move operations, lines in “[]” are for move operation
only

5.2 Implementing Serializable Transactions

Recall from Section 3 that an object is opened before being read or written.
Creating a new writable copy invalidates existing read-only copies and writable
copies, and creating a new read-only copy downgrades existing writable copy to
a read-only copy. This allows only mutul-exclusive write, shared-read accesses
for each object.

A transaction accesses multiple objects using the Ballistic cache-coherence
protocol. Acceses to multiple objects appear to happen instantaneously. As dis-

cussed in Section 3, this is achieved by letting the local transactional memory
proxy watch for conflicting accesses.

5.3 Performance

The Ballistic cache coherence protocol works in any network, but our perfor-
mance analysis focuses on constant-doubling metrics. A metric is a constant-
doubling metric if there exists a constant dim , such that each N(x, r) can be
covered by at most 2dim radius- r

2 neighborhoods. This focus is not overly re-
strictive. Constant-doubling networks (and even stronger models such as growth-
restricted or Euclidean space networks) arise often in practice and are common
in the literature (for example, [1, 2, 9, 11, 21, 24–26, 34, 37, 40, 43]).

In the performance analysis, we consider only the case when move requests
do not overlap.

The protocol’s work is the communication cost of an operation. For publish,
we count the communication cost of adding links on the publishing leaf’s home
parent path. For move and lookup, we count the communication cost of finding
the leaf node that will eventually send back the up-to-date object copy.

The protocol’s distance for a move or lookup operation is the cost of commu-
nicating directly from the requesting node to its destination (which is the metric
distance between these two nodes).

The protocol’s stretch is the ratio of the work to the distance. The communi-
cation cost of replying to the requesting node can be ignored since the message
is sent directly via the underlying routing protocol.

Constant-doubling metrics have the following properties.

1. Bounded Link Property: The distance between a level-� child and its
level-(� + 1) parent is less than or equal to cb · 2�, for some constant cb.

2. Constant Expansion Property: The network expansion rate is at most a
constant: any node has no more than a constant number of lookup parents
and lookup children.

3. Lookup Overlap Property: Suppose a lookup request peaks at level �
after discovering a downward link at a level � node A. Then the distance
between the requesting node and its destination is at least cl · 2� for some
constant cl.

4. Move Overlap Property: Suppose a move request peaks at level � after
discovering a downward link at a level � node A. Define this request’s level-�
predecessor as the node whose request added that downward link at A. Then
the distance between the current requesting node and its level-� predecessor
is at least cm · 2� for some constant cm.

Theorem 2. The publish operation has work O(Diam).

Theorem 3. The stretch for a lookup operation is constant, even after the ob-
ject has moved away from its original location.

For move, we are interested in the amortized work and distance across a
sequence of object movements.

Theorem 4. If an object has moved a combined distance of d since its initial
publication, the amortized move stretch is O(min{log2 d, L}).

The stretch results hold when move requests do not overlap. Move requests
that concurrently probe overlapping parent sets may “miss” one another. The
protocol is still correct, because the requests will eventually meet, but perhaps at
a higher level. If this particular race condition can be avoided, then the stretch
results in this section still apply when there are overlapping move requests.

6 Support for Multiple Objects

In this section, we provide load-balanced support for multiple objects. Load-
balanced solutions are given for growth-restricted networks. Growth-restricted is
slightly more restrictive than constant doubling: there exists a constant which
bounds the ratio between the number of nodes in N(x, 2r) and the number
of nodes in N(x, r) for arbitrary node x and arbitrary number r. The multiple
object solution works correctly for any metrics, but without provable load results.
Load-balancing in the more general metrics is hard due to the possible “non-
smooth” population change when moving between neighboring areas or when
expanding size of area under inspection. There is a load-balancing multiple object
solution for static objects in the more general constant-doubling metrics, which
is beyond the scope of this paper.

A physical node which stores information about an object is subject to two
kinds of load: it stores state, and it must respond to requests. Moreover, since
multiple logical nodes can be mapped to a single physical nodes, a physical node
may be subject to loads for multiple logical nodes. We now consider how to
balance these loads.

If multiple objects share a single directory, then objects higher in the common
hierarchy will bear a greater load. Instead, the load can be more evenly shared
by mapping different directory structures onto the physical nodes.

Each object has a random hash id between 0 and 2�log n� − 1, where n is the
number of physical nodes. In load analysis, we assume that applications generate
a uniform load in the following sense: (1) each leaf node (physical node) stores
m objects, (2) each leaf generates r requests, and (3) each request is for an
object with a random id located at a random node. Moreover, we assume these
conditions continue to hold even after objects have moved around.

Intuitively, nodes low in the hierarchy will have light loads, since they handle
requests originating from or ending in a small neighborhood and store links
for objects located in a small neighborhood. At higher levels, we “perturb” the
directory structure for each object to avoid overloading any particular node.

Here is how the multiple directories are built:

1. Find a base directory as in Section 4. This base directory may not actually
be used.

2. Using this directory as a skeleton, n overlapping replacement directories are
built. Each is isomorphic to the base directory in the following sense: ∀A,

where A is a level � node in the base directory, A is mapped to some physical
node a ∈ N(A, 2�).

This node mapping naturally induces an edge mapping. By the triangle in-
equality, the cost of a mapped level � edge is still bounded by a constant factor
of 2�.

We next describe how to choose a replacement node for A for a given object
id. Define h(A, �) = �log2 |N(A, 2�)|�. Then a subset of 2h(A,�) physical nodes are
selected (arbitrarily) from N(A, 2�) to actually replace A in directory for some
object id(s). Each of these 2h(A,�) nodes is assigned a unique h(A, �) bit label
and plays the role of A in the directory for objects whose id has this label as a
prefix. Obviously, each such node is responsible for 1

2h(A,�) portion of object ids.

Theorem 5. Stretch results for the base directory carry over to the replacement
directory with a constant factor increase.

Theorem 6. In growth-restricted networks, each physical node x has O(log Diam)
child degree and parent degree in the multiple directory structure.

Theorem 7. In growth-restricted metrics, the expected link storage load at each
physical node x is O(m · log Diam). This expectation is taken over a uniform
object id distribution.

Theorem 8. In growth-restricted metrics, the expected request handling load at
each physical node x is O(r · log Diam). This expectation is taken over uniform
request distribution.

7 Discussion

Distributed transactional memory has fault-tolerance properties comparable to
distributed transactions under the RPC model. A complete discussion of fault-
tolerance is beyond the scope of this paper, but here is an overview of the
principal issues. A reliable protocol should be used to pass a cached object from
one node’s cache to another’s, to ensure that the sender invalidates its local copy
only if the receiver actually receives the object.

Naturally, if the node holding an object crashes, that object will become
unavailable (just as in the RPC model). It is sensible to back up long-lived
objects on non-volatile storage so they will become available again when the
node recovers. The directory information used by the Ballistic protocol can be
treated as soft state, in the sense that it can be regenerated if it is lost. One
can detect that part of the directory has been lost if the root sends periodic
ping messages down the chain to the object’s current location. If a node holding
an object fails to receive a ping for too long, then it can republish the object,
routing around any failed nodes in the former path, in much the same way that
routing protocols rebuild broken paths.

We have assumed a static physical network. When nodes can enter or leave
the physical network, it may be necessary to rerun the maximal independent
set protocol to rebuild the hierarchy. Distributed maximal independent set al-
gorithms typically limit changes to the area around the affected nodes.

References

1. Ittai Abraham, Danny Dolev, and Dahlia Malkhi. Lls: a locality aware location
service for mobile ad hoc networks. In DIALM-POMC, pages 75–84, 2004.

2. Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. Land: stretch (1+ ε) locality-
aware networks for dhts. In Proceedings of the fifteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 550–559, 2004.

3. N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7:567–583, 1986.

4. Friedhelm Meyer auf der Heide, Berthold Vöcking, and Matthias Westermann.
Caching in networks (extended abstract). In Proceedings of the eleventh annual
ACM-SIAM symposium on Discrete algorithms, pages 430–439, 2000.

5. Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file allo-
cation. In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 164–173, 1993.

6. Baruch Awerbuch, Lenore J. Cowen, and Mark A. Smith. Efficient asynchronous
distributed symmetry breaking. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 214–223, 1994.

7. Baruch Awerbuch and David Peleg. Concurrent online tracking of mobile users.
In SIGCOMM ’91: Proceedings of the conference on Communications architecture
& protocols, pages 221–233, 1991.

8. Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for distributed
data management (extended abstract). In STOC ’92: Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 39–50. ACM Press,
1992.

9. M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A hierarchy-based fault-local sta-
bilizing algorithm for tracking in sensor networks. In 8th International Conference
on Principles of Distributed Systems (OPODIS), 2004.

10. M. J. Demmer and M. P. Herlihy. The arrow directory protocol. In 12th Interna-
tional Symposium on Distributed Computing, 1998.

11. Matthias Grünewald, Friedhelm Meyer auf der Heide, Christian Schindelhauer, and
Klaus Volbert. Energy, congestion and dilation in radio networks. In Proceedings of
the 14th ACM Symposium on Parallel Algorithms and Architectures, 10 - 13 August
2002.

12. R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. In Proceedings of the tenty-fourth annual symposium on Prin-
ciples of distributed computing, 2005. To appear.

13. Lance Hammond, Vicky Wong, Mike Chen, Ben Hertzberg, Brian D. Carlstrom,
John D. Davis, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and
Kunle Olukotun. Transactional memory coherence and consistency. In Proceedings
of the 31st Annual International Symposium on Computer Architecture, June 2004.

14. Tim Harris and Keir Fraser. Language support for lightweight transactions. In
Proceedings of the 18th ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, pages 388–402, 2003.

15. Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable
memory transactions. In Principles and Practice of Parallel Programming, 2005.
To appear.

16. Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In Proceedings of the 23rd International
Conference on Distributed Computing Systems (ICDS), pages 522–529, May 2003.

17. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Soft-
ware transactional memory for dynamic-sized data structures. In Proceedings of
the twenty-second annual symposium on Principles of distributed computing, pages
92–101. ACM Press, 2003.

18. Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer. Competitive con-
current distributed queuing. In Proceedings of the twentieth annual ACM sympo-
sium on Principles of distributed computing, pages 127–133, 2001.

19. M.P. Herlihy and S. Tirthapura. Self-stabilizing distributed queueing. In Proceed-
ings of 15th International Symposium on Distributed Computing, October 2001.

20. Kirsten Hildrum, Robert Krauthgamer, and John Kubiatowicz. Object location
in realistic networks. In Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, pages 25–35, 2004.

21. Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distributed
object location in a dynamic network. In Proceedings of the Fourteenth ACM
Symposium on Parallel Algorithms and Architectures, pages 41–52, August 2002.

22. W. N. Scherer III and M. L. Scott. Contention management in dynamic software
transactional memory. In PODC Workshop on Concurrency and Synchronization
in Java Programs, July 2004.

23. Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of
strong shared memory primitives. In Proceedings of the thirteenth annual ACM
symposium on Principles of distributed computing, pages 151–160, 1994.

24. David R. Karger and Matthias Ruhl. Finding nearest neighbors in growth-
restricted metrics. In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 741–750. ACM Press, 2002.

25. Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for
proximity search. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 798–807. Society for Industrial and Ap-
plied Mathematics, 2004.

26. Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert
Morris. A scalable location service for geographic ad hoc routing. In Proceedings
of the 6th annual international conference on Mobile computing and networking,
pages 120–130. ACM Press, 2000.

27. Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Trans. Comput. Syst., 7(4):321–359, 1989.

28. Barbara Liskov. Distributed programming in argus. Commun. ACM, 31(3):300–
312, 1988.

29. Michael Luby. A simple parallel algorithm for the maximal independent set prob-
lem. SIAM J. Comput., 15(4):1036–1055, 1986.

30. B. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westermann. Exploiting
locality for data management in systems of limited bandwidth. In FOCS ’97:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 284–293. IEEE Computer Society, 1997.

31. V. J. Marathe, W. N. Scherer III, and M. L. Scott. Design tradeoffs in modern soft-
ware transactional memory systems. In 7th Workshop on Languages, Compilers,
and Run-time Support for Scalable Systems, October 2004.

32. Jos F. Martnez and Josep Torrellas. Speculative synchronization: applying thread-
level speculation to explicitly parallel applications. In Proceedings of the 10th
international conference on architectural support for programming languages and
operating systems (ASPLOS-X), pages 18–29. ACM Press, 2002.

33. Mark Moir. Practical implementations of non-blocking synchronization primitives.
In Proceedings of the sixteenth annual ACM symposium on Principles of distributed
computing, pages 219–228. ACM Press, 1997.

34. E. Ng and H. Zhang. Predicting internet network distance with coordiantes-based
approaches. In Proceedings of IEEE Infocom, 2002.

35. B Nitzberg and V. Lo. Distributed shared memory: a survey of issues and algo-
rithms. Computer, 24(8):52–60, 1991.

36. Jeffrey Oplinger and Monica S. Lam. Enhancing software reliability with specula-
tive threads. In Proceedings of the 10th international conference on architectural
support for programming languages and operating systems (ASPLOS-X), pages
184–196. ACM Press, 2002.

37. C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In ACM Symposium on
Parallel Algorithms and Architectures, pages 311–320, 1997.

38. Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-
based programs. In Proceedings of the 10th international conference on archi-
tectural support for programming languages and operating systems (ASPLOS-X),
pages 5–17. ACM Press, 2002.

39. Kerry Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Trans. Comput. Syst., 7(1):61–77, 1989.

40. Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware 2001,
pages 329–350, 2001.

41. Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, pages
204–213. ACM Press, 1995.

42. Janice M. Stone, Harold S. Stone, Phil Heidelberger, and John Turek. Multiple
reservations and the Oklahoma update. IEEE Parallel and Distributed Technology,
1(4):58–71, November 1993.

43. Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics.
In STOC ’04: Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, pages 281–290, 2004.

44. Jim Waldo and Ken Arnold, editors. The Jini Specifications. Jini Technology
Series. Pearson Education, 2000.

Appendix: Proofs

Theorem 1 Every request is satisfied within time n · TE + n · TO from when
it is generated.

Proof. The result for lookup requests is trivial once the result for move requests
is shown. So we only examine move requests here.

Let λ be a dummy request at the initial publisher of the object.
Suppose a request r0 is generated at time g0. By time at most g0+n·TE, either

all the successor links between r0 and its n predecessors have been established,
or there exists I ≤ n − 1 such that rI is λ, the dummy request.

For the first case, at least two requests ri and rj must come from the same
leaf node. By Lemma ?? below, these two requests are different, otherwise, there

is a cycle. Since a leaf does not generate a new request until an outstanding one
has been satisfied, at least one of ri or rj must have seen the object by time
g0 + n · TE . Afterwards, the object is forwarded using successor links.

In either case, by time g0 + n · TE , if the object has not visited request r0

yet, it is not more than n steps away from r0 using established successor links.
Therefore, r0 has the object in the local cache by time g0 + n · TE + n · TO.

Corollary ?? (Bounded overtaking window:) If a request r is generated at
time t, then all requests generated after time t + n · TE will be ordered after r.

Proof. All successor links from the original object owner to r have been filled by
time t + n · TE .

Similarly, all requests generated prior to time t − n · TE will be ordered before
r in the order induced by successor links. (All successor links from the original
owner of the object to those requests generated prior to time t−n ·TE have been
filled by time t.)

Lemma ?? There exists no set of finite number of requests R = {r1, r2, . . . , rf},
such that they form a cycle by following successor links.

Proof. We prove that there is at least one request in R enqueued behind some
request not in R.

We call a downward link (an arrow) from a parent node P to child node C
established by a request r if r’s visit added this arrow. We call arrows established
by request outside R outside arrows.

The following invariants can be proved by simple case analysis:

1. The root node always has an arrow.
2. Each request has a level which is the peak level it reaches before starting its

down phase. At the root level, if not earlier, a downward arrow is seen.
3. Once a request starts its down phase, it sees a down arrow at every interme-

diate directory node until it reaches a leaf where it discovers its predecessor.
4. Before a request x adds a down arrow from a parent P to a child C, it must

have already added a down arrow at C to a grandchild at an earlier time.
And from the time that x added that down arrow at C, until the time that
x’s down arrow at P gets erased by request r and r reaches C from P , C
keeps having a down arrow. But that down arrow can be redirected from
one grandchild to another multiple times in between.

Let H be the highest peak level reached by requests in R. Then the request
in R that reaches level H earliest sees an outside arrow.

We show by induction that for any level between H and 1, some request
ri ∈ R sees at that level an outside arrow. In particular, at level 1, it implies
that some ri ∈ R is enqueued behind an outside request.

Base case is level H , already shown.
Induction from level k to level k − 1 follows.

Let r be any request in R that sees an outside arrow at a level k node. r
exists by induction hypothesis. Let that encountering time be t and let that level
k node be P (parent). Assume the arrow seen by r was established by request
x, an outsider.

r is forwarded to C, which is a child of P pointed by the down arrow r saw.
Since down arrow from P to C was established prior to time t, by Invariant

4, x must have established a down arrow at C at an even earlier time. Let that
time be t−.

Let t+ be the time that request r reaches C, also by invariant 4, C always
had a down arrow (the arrow might be redirected) between t− and t+.

If some request from R sees the down arrow at C between time t− and t+,
then the first doing so completes the induction step. Otherwise, r sees an outside
arrow at time t+, which also completes the induction step.

