
INFORMATICA, 2021, Vol. 32, No. 2, 321–355 321
© 2021 Vilnius University
DOI: https://doi.org/10.15388/20-INFOR440

Distributed Trust, a Blockchain Election Scheme

Antonio M. LARRIBA1, Aleix CERDÀ I CUCÓ2, José M. SEMPERE1,
Damián LÓPEZ1,∗
1 VRAIN – Valencian Research Institute for Artificial Intelligence,

Universitat Politècnica de València, Spain
2 Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,

Spain
e-mail: anlarflo@dsic.upv.es, alcercu@inf.upv.es, jsempere@dsic.upv.es, dlopez@dsic.upv.es

Received: May 2020; accepted: December 2020

Abstract. Voting systems are as useful as people are willing to use them. Although many electronic
election schemes have been proposed through the years, and some real case scenarios have been
tested, people still do not trust electronic voting. Voting is not only about technological challenges
but also about credibility, therefore, we propose a voting system focused on trust. We introduce
political parties as active partners in the elections as a mechanism to encourage more traditional
electors to participate. The system we propose here preserves elector’s privacy, it operates publicly
through a blockchain and it is auditable by third parties.
Key words: electronic vote, distributed authority, blockchain, proof of authority, Monero.

1. Introduction

Voting is a crucial element of democratic societies. There have been numerous approaches
to improve and to automatize the voting process. First advancements were based on mod-
ification of the ballots (e.g. Rivest, 2006; Rivest and Smith, 2007) and mechanical and
optical readers to speed up the vote count. The advances of cryptography were key in the
development of electronic voting methods. On the one hand, e-voting provided not only
more accessible and faster ways to count votes, but also new properties unavailable to tra-
ditional voting systems such as: remote voting, universal verifiability and auditability. On
the other hand, e-voting also raised new security and privacy concerns. To address these
concerns, e-voting makes use of cryptographic constructs. Therefore, most electronic vot-
ing protocols can be categorized in four large groups, defined by their cryptographic com-
position: those systems based on blind signatures (e.g. Chaum, 1982; Camenisch et al.,
1994), based on mixnets (e.g. Chaum, 1981; Chaum et al., 2005), based on homomorphic
cryptography (e.g. Baudron et al., 2001; Cramer et al., 1997) and those based on ring
signatures (e.g. Rivest et al., 2001; Chen et al., 2008).

Usually, the later methods employ a public bulletin board to display the election pro-
cess and the results. They seek a way of publishing the voting information to later allow to

∗Corresponding author.

https://doi.org/10.15388/20-INFOR440


322 A. M. Larriba et al.

verify and audit the election. With the apparition of Bitcoin (Satoshi, 2008), Blockchain
technology proved itself as an effective, distributed and decentralized public ledger (Be-
lotti et al., 2019; Paulavicius et al., 2019). Since then, various voting protocols based on
blockchain have appeared (e.g. Ayed, 2017; Lee et al., 2016). Typically, the voting process
is embedded into the blockchain, which acts as the voting interface and a decentralized
public bulletin board as well.

One of the goals of e-voting is to incentive participation. However, although it provides
remote and, in some cases, multi-platform access, people do not trust e-voting. It is difficult
to trust a system based on abstract mathematical results that people do not fully understand.
In our opinion, e-voting should not be all about technological issues, but also about trust
and about actively engaging all the parties in the democratic process. For this reason, we
present an e-voting protocol in which traditional parties, to whom people trust to some
extent, take a dynamic and responsible side. We introduce a new voting scheme inspired
by Monero’s blockchain and ring signatures. In our approach, each party is given partial
power and full accountability in reaching a common interest despite their antagonistic
nature. The contributions of this paper are two-fold: we develop a new voting scheme
focused on trust, which is scalable, secure and preserves the anonymity and privacy of
the electors, and we also present a new and cheaper consensus algorithm which we name
Proof of Authorities, based on the distribution of trust on the adversarial interests of the
involved parties.

The rest of the paper is structured as follows: Section 2 reviews and describes signif-
icant works in the literature, Section 3 provides a brief background of the key concepts
used in the protocol, Section 4 exposes and describes our proposal, Section 5 analyses the
computational time complexity of the proposed protocol and Section 6 studies the proper-
ties of our election scheme. Finally, Section 7 reviews the contributions and conclusions
of our work.

2. Related Work

In this section, we review relevant research papers. We distinguish between three cate-
gories tightly related with our proposal. We inspect the usual problems these approaches
face and assert the new contributions our scheme brings.

2.1. Ring Signature Based Voting Systems

Exploring the security requirements of a democratic society, Salazar et al. proposed in
(Salazar et al., 2010) a voting system based on short-linkable ring signatures (Tsang and
Wei, 2004). These signatures allow for a linking tag that permits to relate votes from the
same elector without revealing their identity. The aim of the authors was to reduce the
number of the third-parties involved in the voting process. Only a certification authority,
responsible of issuing the keys and validating the certificates, and a recount authority
are needed. Ring signatures grant signer ambiguity, and linking tags act as receipt and
allow the removal of duplicates. Thus, only the public key of the recount authority is used



Distributed Trust, a Blockchain Election Scheme 323

for encryption, which gives too much sway to a single authority. The protocol was later
implemented in Tornos et al. (2014), which provided a modular implementation in a multi-
platform environment: a desktop client, an android native app and a Firefox extension were
developed to boost usability and engagement in the voting process.

In Chen et al. (2008), Chen et al. propose an electronic voting system based on a mod-
ified version of linkable ring signatures. In this modification, only designated verifiers can
check the validity of the ring signature. Ring signatures are encrypted with the verifier’s
public key. Therefore, a designated verifier cannot convince a third party of the integrity
of a signature without revealing its private key. This prevents designated verifiers from
broadcasting information about a private signature. The system uses a (k, l)-threshold
sharing scheme to generate and distribute the secrecy of the private key (Gennaro et al.,
2007) between l tallying authorities. The public key is made public before the election
starts. For an elector to cast a vote, she has to select the direction of her vote and encrypts
it using the public key of the election. Then, the ballot is sent through an anonymous chan-
nel to an administrator. The administrator signs the ballot, adds a timestamp and returns
the ballot to the elector. If the signature returned by the administrator is valid, the elector
crafts the linked ring signature, encrypts it with the public key of a tallying authority of
her choice and publishes it on the bulletin board. After the election, at least k tallying
authorities cooperate to recover the private key. When the private key of the election is
recovered, each tallying authority is responsible for checking the validity of the received
ring signatures and publishing the votes.

2.2. Blockchain Based Voting Systems

In Noizat (2015), Noizat proposes a voting system based on blockchain and Merkle trees
(Merkle, 1980) for elector’s verification. Each elector uses three public keys: a key from
the candidate she decided to vote for (KeyC); a key from the election organizers (KeyA),
and a key from the voting application (KeyB). The system provides privacy through 2-of-3
multi-signature addresses (Ruffing and Moreno-Sanchez, 2017). To prepare the ballot,
the elector prepares a 2-of-3 multi-signature address and a transaction. There is no way
to guess the elector nor the candidate from a multi-signature address without knowing all
three public keys and knowing to whom they belong. To verify that the ballot is counted as
intended, the elector can use block explorers to check whether his vote has been confirmed.

In his proposal Lee et al. (2016) describes a blockchain voting system. For an elector to
vote for a candidate, they have to make a transaction to a candidate’s address. To do so, the
elector first needs to register as a valid elector. To avoid election organizers from knowing
who voted for which candidate, the registration process is decoupled in two organizations
(the registration organization itself and a trusted third party (TTP)). To cast a vote, the
elector sends a hash of her secret to the registration organization and the TTP. The TTP
asks the organization if that hash is linked to a valid elector. If the answer is positive, the
TTP asks the elector for the secret and checks if it matches the one received. If they match,
the elector is registered as a valid elector. Then, the elector can make the transaction to
vote for the candidate of their choice. At the end, transactions are inspected and checked



324 A. M. Larriba et al.

against a permutation of the TTP verified elector’s list. Multiple voting, and unverified
electors are removed from the tally.

Ayed describes in Ayed (2017) a simple blockchain based voting protocol. In his sys-
tem, each candidate has its own blockchain and every block, but the first, represents a vote
for the candidate. The first block of each chain contains information about the candidate.
To vote, an elector must identify himself or herself as a valid elector using their address
and some private information. Then, they can decide the direction of their vote. When the
vote is decided, some private elector’s information is hashed alongside the hash of the
previous block to constitute the hash of the new block. Finally, the new block is added to
the corresponding blockchain. Ayed’s proposal addresses a few of the issues of centralized
voting systems, but it fails to properly define some of the crucial parts of the protocol: reg-
istration is not supported and identification is assumed to be solved. Also, the encryption
and identification is managed by a centralized interface.

Tarasov and Tewari introduce in Tarasov and Tewari (2017) a Zcash based voting pro-
tocol. Zcash (Bowe et al., 2018) emerged as a Bitcoin fork with privacy as concern. Zcash
supports two different kind of addresses: t-addresses, which work like regular pseudony-
mous Bitcoin addresses and allow transparent transactions, and z-addresses, which pre-
serve the anonymity and privacy of the transactions. Private-anonymous transactions are
based on special zero-knowledge proofs, zk-SNARKS (Bowe et al., 2018). These proofs
permit the interchange of the secret values required to establish a private transaction be-
tween the sender and the receiver. After registration, the elector can make a transaction
to the z-address of the desired candidate. The elector is required to provide also a valid
t-address. Thus, the direction of the vote is private, but the transaction is still public. When
the voting phase ends, candidates send all the vote tokens to a central pool where the fi-
nal tally is computed. This requires some trust on the system and the candidates, because
the candidates are expected to send the tokens and collaborate, and a malicious candidate
could interfere in the voting process.

Yang et al. propose in (Yang et al., 2020) a blockchain voting protocol for range voting,
in which each candidate receives a score and the candidate with the highest score wins the
election. To preserve elector’s privacy they propose a novel encryption scheme based on
ElGamal (1985) and group-based encryption. Each vote is encrypted by using the public
key of the elector and the public keys of the candidates. This way, even at the end of the
election, when the candidates release their secret keys, the individual votes remain secret.
To compute the final tally, they take advantage of the homomorphic properties of El Gamal
to compute the final score without decrypting individual votes. Then, the final score is
decrypted by the candidates. Each transaction contains a vote, and each vote is formed by
a set of scores, one for each candidate. The only drawback of this approach is that each
individual score needs to be double encrypted, and accompanied by a zero-knowledge
proof, and a partial-knowledge proof to ensure it is a valid score from a valid voter. This
affects both the time and spatial complexity of the system. However, the authors are able
to provide a performance analysis that proves the validity of their election scheme.

Gao et al. present in (Gao et al., 2019) an anti-quantum e-voting protocol based on
blockchain technology. To achieve quantum computing resistance, they base their method



Distributed Trust, a Blockchain Election Scheme 325

on code-based cryptography (Niederreiter, 1985) (a NP complete problem) instead of us-
ing traditional public key cryptography based on the difficulty of number theory. Their
protocol is equipped with an audit function, based on public key certificates (Al-Riyami
and Paterson, 2003; Hua-jie et al., 2014), that allows to detect fraudulent voters. To handle
the certificates, the authors introduce the figure of the regulator, who, although does not
participate in the election, has the authority to revoke voter’s privacy. The authors report
a complete and exhaustive computational time analysis of their protocol.

Follow My Vote (2018) and Bitcongress (Rockwell, 2017) are online projects of
blockchain based e-voting. While they are not backed by research papers, they are pio-
neers of providing remote blockchain based voting to the public, being open source and
supplying a real working service as an alternative to traditional voting. FollowMyVote
is based on elliptic curves and blind signatures (Chaum, 1982), and requires a central
authority to deal with elector registration and ballot lending. BitCongress is another de-
centralized e-voting proposal, it is based on digital signatures and smart contracts. It is
also compatible with distributed legislation which is enforced through the blockchain. It
requires a timestamp server for the system to work. The developers provide a front-end
wallet called AXIOMITY that handles the working modes of BitCongress.

2.3. Ring Signatures & Blockchain Based Voting Systems

In Wu (2017), Wu develops a voting system based on ring signatures (Rivest et al., 2001)
and Bitcoin’s blockchain. There are two authorities on the protocol: a Registration Author-
ity (RA) and an Election Authority (EA). It is assumed these authorities are trustworthy
and will not share information. Before the election starts, the EA is responsible for gen-
erating and managing a public pool of Bitcoin addresses. Since Bitcoin is not private, but
anonymous, a two-phase registration is carried out by the RA. This process decouples
the elector identity from the Bitcoin address and preserves elector’s privacy. As a result
of the registration process, the elector gets her public key certified as a valid key. For an
elector to create a ballot, they must perform a ring signature, using their private key and
a list of public keys, on their desired vote. This results in a signer ambiguous signature
that makes impossible to link the vote to their public key. Once the ballot is created, he
or she selects a Bitcoin address from the pre-computed pool of addresses. The EA will
provide the elector with the associated private key to that address. Then, the elector can
send the ballot as a transaction from their own address to the EA’s address, with the ballot
encoded in the transaction itself. The EA is responsible for retrieving all the ballots and
verifying the integrity of ring signatures to compute the final tally. When the election is
over, the list of public keys of electors is released to the public and everyone can verify
the correctness of the tally. Since the ring signature used in this method allows double
voting, EA checks the transactions coming from the same address. For each address, only
the latest transaction will be considered valid. As a drawback of this method, it is to note
the great sway of the authorities in the voting process. As a result, one of the requirements
of the protocol is that authorities comply with the desired conduct. Wu also developed
a complete implementation of the system on Bitcoin’s testnet, with a great definition of
classes and cases of use.



326 A. M. Larriba et al.

Lai and Wu propose in Lai and Wu (2018) an elegant voting system based on Ethereum
smart contracts and one-time ring signatures (Van Saberhagen, 2013). A transaction is
considered a vote, electors make a transaction to their selected candidate. The privacy
of the elector is protected by ring signatures, which also prevent double voting. To keep
the election fair and to avoid the leak of information until the tally phase, the electors
should consider the stealth addresses of the candidates to cast the vote. This way, until
the stealth addresses are revealed, votes are kept secret. To expose the stealth addresses,
key managers are needed. Key managers share the first private key of a candidate through
a Diffie-Hellman interchange. Key managers store some ETH in a deposit previous to
the election, to recover it they must open their secret on the tally phase. Once the stealth
addresses are exposed, the whole election process is public and auditable on the Ethereum
blockchain. All the requirements of the protocol are contained in a smart contract.

3. Background

In this section we present a brief and concise review of the key concepts and protocols
needed to define our proposal. We also introduce the notation that will be used along the
rest of the work.

3.1. Notation

In this work, we use both RSA cryptosystem and Elliptic Curve Cryptography (ECC). The
former is used by the electors to encrypt their vote and by the parties to sign the transac-
tions. The latter is used for generating ring signatures in the context of a blockchain in or-
der to allow correct and anonymous identification of electors. We assume some familiarity
of the reader with these notions. We recommend (Menezes et al., 1996) to the not accus-
tomed reader. Now, we summarize the notation that will be used in the rest of the paper.

• Modular product and exponentiation operations are expressed as ab mod n or
cd mod n.

• Concatenation of binary sequences is expressed as a‖b.
• g represents a generator in a given finite group.
• A finite group defined by a prime number q is represented as Fq .
• G represents the generator or base point of an elliptic curve E.
• In ECC, private keys are expressed in lowercase a, while public keys are expressed in

uppercase A. In such way that A = aG.
• Hs is a hash function which maps a binary sequence into an element of a finite group

{0, 1}∗ → Fq .
• Hp is a hash function which maps an element of a finite group into an elliptic curve

point Fq → E.

3.2. One Time Public Keys

Monero is a cryptocurrency based on the cryptographic protocol described in Van Saber-
hagen (2013). Its main focus is to achieve private and untraceable transactions over a pub-



Distributed Trust, a Blockchain Election Scheme 327

lic ledger. Here, we present a brief description of how Monero achieves those goals and
an example of how an untraceable transaction works. For further details, we recommend
the review done by Koe et al. (2020) to the interested reader.

In order to anonymize the sender, ring signatures are used to sign transactions with
a group of keys, thus giving ambiguity to the sender. To anonymize the receiver, they
use stealth addresses. One Time Public Keys (OTPKs) are derived from the receiver’s
stealth address, and allow the sender to use a new public key for each transaction (using
a Diffie-Hellman-like (Diffie and Hellman, 1976) exchange). Sending transactions using
these keys preserves the anonymity of the receiver. The receiver, and only the receiver, is
able to recover the private key of the stealth address and use its funds.

In our proposal, we take advantage of Monero’s OTPKs in order to allow elector iden-
tification. Thus, we here present a brief summary of how OTPKs are derived. Each user
on the blockchain has two public keys (A,B). For any sender to make a transaction, he
needs to compute the OTPK that will be used in the transaction using the two public keys
of the receiver. He also selects a random number r .

OTPK = Hs(rA)G + B.

The derived OTPK is used as the public address of the transaction. Note that R, being
rG, is also added in the transaction information. Once the transaction is done, the receiver
will be able to recover the private key x associated to the OTPK using his own private keys
(a, b):

x = Hs(aR) + b,

such that:

OTPK = xG,

indeed:

Hs(rA)G + B = (Hs(aR) + b)G,

(Hs(rA) + b)G = (Hs(aR) + b)G,

(Hs(raG) + b)G = (Hs(arG) + b)G,

(Hs(aR) + b)G = (Hs(aR) + b)G.

3.3. Ring Signatures

Ring signatures are a special kind of cryptographic signature. They receive this name
because they are created using a ring structure, where the public keys of several peers
(electors in this framework) are used in order to provide a signer-ambiguous signature.
No information about the signer is revealed, only his membership to certain group. Any
person involved in a ring signature could be the signer.



328 A. M. Larriba et al.

Multiple versions of ring signatures exist. Originally, they were proposed by Chaum
and van Heyst (1991) as group signatures. They were limited because a group coordinator
was required to set up the signing scheme. To overcome this issue, Rivest introduced in
Rivest et al. (2001) the first ring signatures. They provided unconditional signer ambiguity
without group coordinator. Any user can define a set of possible signers, including them-
selves, and sign the message using their public and secret key and others’ public keys.
Neither a coordinator, nor the permission (or even the knowledge) of the owners of the
third party public keys is required.

Ring signatures are a great and solid solution to achieve the anonymity needed in the
voting protocols. Nevertheless, since it is impossible to know who is the actual signer,
nothing would prevent the use of another ring to vote. In order to prevent that, we will
use the Ring Signature Confidential Transaction algorithm described in Noether (2015),
Van Saberhagen (2013). This algorithm is the result of combining the modifications for
reducing space consumption described by Back (2015) and the introduction of Key Im-
ages.

Key images are a public commitment of the signer’s private and public key, they do not
reveal information about the signer’s private key. As a result, we can anonymously link
the private key of the signer, independently of the public keys on the ring, to the signature.
This allows to prevent the use of the same key to sign two different rings, which would
imply double spending the same resource.

Algorithm 1 details the steps an elector should perform to apply a ring signature to
their vote. Since the ring signature generation has some random coefficients involved and
depends on the signer’s private key, votes in the same direction signed with the same ring
of public keys are still different. Algorithm 2 specifies the process the authorities must
follow in order to verify the correctness of a given signature.

4. Our Proposal

We devote this section to explain our voting scheme proposal. We present a fully auditable,
public and distributed voting system based on Blockchain technologies. All the informa-
tion is registered into the blockchain, a vote itself is a transaction, and all the blocks are
free to be publicly consulted. As a mechanism to engage the elector in the election pro-
cess, we give political parties a special role in our system: they act like miners, listening
and processing transactions. Therefore, any political party willing to participate must sup-
ply computing power. Electors do not need to trust these parties, all the voting process is
public and auditable, privacy and anonymity are provided. In our opinion, people feel con-
fident if they have someone to blame if something goes wrong. People who feel reluctant
about new electronic voting systems, may trust a scheme in which traditional factions take
an active part and are accountable for their actions.

We employ a Proof of Authority (PoA) consensus algorithm (Xiao et al., 2020; Bari-
nov et al., 2018), as an alternative to running a traditional Proof of Work. This variation
reduces the computational cost required to run a functional blockchain. PoA is a permis-
sioned blockchain where only some certified participants are allowed to carry out cer-
tain actions. In our system, parties are responsible for listening to transactions, verifying



Distributed Trust, a Blockchain Election Scheme 329

Algorithm 1 Ring Signature Generation
Require: N ← Number of keys that will participate in the ring.

P = {P1, P2, . . . , PN } ← List of public keys that will be linked to the vote.
s ← The index in the list P where the public key of the signer is located.
x ← Private key associated to signer’s public key (Ps).
m ← Message to sign.

1: Let r be a list of random numbers empty in the s index.
2: Let α be a random number.
3: Let L,R, c be empty lists.
4: K ← xHp(Ps) //Key image. Note that Hp(Ps) is a point of the curve.
5: Ls ← αG

6: Rs ← αHp(Ps)

7: c(s+1) mod N ← Hs(m,Ls, Rs)

8: i ← (s + 1) mod N

9: while i �= s do
10: Li ← riG + ciPi

11: Ri ← riHp(Pi) + ciK

12: c(i+1) mod N ← Hs(m,Li, Ri)

13: i ← (i + 1) mod N

14: end while
15: rs ← α − csx

16: return (P,K, c0, r)

the signature of the encrypted vote and making sure the vote is correctly written on the
blockchain. Parties are the only partners with write access to the blockchain, while the
rest of participants have read-only access. PoA can be seen as a variation of Proof of
Stake (Xiao et al., 2020), but instead of staking monetary tokens, parties stake their iden-
tity. Their reputation will be discredited if they misbehave. To our knowledge, no other
adaptation of PoA to anonymous electronic voting has been presented.

We consider the process as five different stages: election setup, registration, vote cast-
ing, vote processing and tallying. The algorithm is discussed in detail in the next sections.

4.1. Election Setup

Before the election, parties must collaborate to generate the parameters of the election.
To encrypt the votes electors send to the parties, we employ RSA, therefore, parties must
generate the RSA parameters: the public modulo n, the public verification key v and the
private signature key s. Since giving the private key s to a single party would result in
giving up too much power, l parties apply the threshold RSA key generation protocol pro-
posed by Damgård and Koprowski (2001). This protocol relies on the work of Frankel
et al. (1998) to remove the necessity of a trusted dealer. It introduces a (k, l)-threshold
RSA sharing scheme in which the parameters are computed in a distributed way and the
secret key is generated in l fragments. To recover the secret key, any subset of at least k



330 A. M. Larriba et al.

Algorithm 2 Ring Signature Validation
Require: N ← Number of keys in the ring signature.

{P1, P2, . . . , PN } ← List of public keys linked to the vote.
K ← key image associated to the signature.
c0 ← Seed of the ring that allows the start of the validation algorithm.
{r1, r2, . . . , rN } ← List of random numbers used in the sign generation phase.
ListK ← The list of all the key images that have already been used in valid signatures.
m ← Signed message.

1: if K in ListK then
2: return False
3: end if
4: Let L′, R′, c′ be empty lists.
5: L′

0 ← r0G + c0P0

6: R′
0 ← r0Hp(P0) + c0K

7: c′
1 ← Hs(m,L′

0, R
′
0)

8: while i < N do
9: L′

i ← riG + c′
iPi

10: R′
i ← riHp(Pi) + c′

iK

11: c′
(i+1) mod N ← Hs(m,L′

i , R
′
i )

12: i ← (i + 1)

13: end while
14: if c′

0 == c0 then
15: return True
16: else
17: return False
18: end if

parties can collaborate to find the original secret s. Even if some parties are corrupt, they
would need to collaborate with at least k parties. The same applies to honest parties, only
k are needed to recover the private key s. Now, we proceed to give an overview of the
aforementioned key generation protocol.

In RSA, modulo n is computed as the product of two large primes p and q. To distribute
the trust, p and q are computed as the sum of different shares chosen by the parties:
n = (p1+p2+· · ·+pi+· · ·+pl)(q1+q2+· · ·+qi+· · ·+ql). To avoid parties maliciously
changing its share, they are required to publish a commitment (Pedersen, 1991) during
the process. The distributed computation of n is carried out using a variant of Shamir’s
secret sharing (Shamir, 1979). This variant (Frankel et al., 1997) also employs random
polynomials in which the independent term is the secret, but it allows the computation of
n to work outside prime fields.

Once the modulus is agreed, parties can jointly derive the public exponent v in a similar
way, a distributed test division is required to test the primality of the candidates. When
computing s, to prevent from revealing the shares of the polynomial, the shares vi are used



Distributed Trust, a Blockchain Election Scheme 331

Fig. 1. Parties collaborate to generate RSA parameters. Generation of n and v is made of parties additive shares
pi and qi . Each party ends with a share of the private key si .

as an exponent to compute: gvi , g being a generator of the group defined by v. This way
each party gets an additive share of the private key si . Then, they proceed to construct a
(k, l)-threshold polynomial of s. Thus, a distributed generation of RSA, in which parties
only have partial information of the private key s is achieved. To decrypt or sign a message,
parties must collaborate to retrieve the shared private key. The collaboration process can
be seen as a graph (see Fig. 1), in which each node represents a party, and each edge
represents the interchange of messages. The retrieving protocol is detailed in the following
sections.

We require all the traffic of messages as well as the commitments related to any vote
to be published as transactions on the blockchain. Hence, the blockchain comprehends all
the information related to the election. RSA parameters n and v are also released to the
blockchain. Apart from the distributed key, each party has its own personal pair of pub-
lic/private keys. They are used to sign all the transactions they make. All this information
is published on the blockchain as the first block.

4.2. Registration

Electors must register before the election starts. For this purpose, a local administration
(e.g. city hall) defines the census of potential electors. It will also store and manage elec-
tor’s keys as well as generate OTPKs for each elector. The administration will declare the
process through which the electors will identify and register their public keys, and the
termination of the registration term.

Any elector willing to participate will generate a two pairs of elliptic curve keys (a,A),
(b, B). Then, the elector will follow the process specified by the administration, and, in
case of correctly identifying, the administration will link their public keys (A,B) to their
identity.

Once the elector registration term ends, the administration computes an OTPK per
elector using their public keys and a different random number r per OTPK. After this, the



332 A. M. Larriba et al.

Fig. 2. Electors register their public keys in a local identification authority. The identification authority computes
the OTPKs. All the public parameters of the election are added as the first blocks of the blockchain.

administration sends the information to the parties. Parties send a transaction through the
blockchain, making public a list with the OTPKs of each public key pair and the associated
R such that R = rG. The owners of a given OTPK either will be able to recover the
corresponding private key computing Hs(aR)+b, or can be notified by the administration
in order to save computation time. Administrations can cooperate to compute and group
OTPKs per districts in structure transactions and to simplify the search for the final elector.

The same transaction also includes basic configuration information for the voting such
as which are the options in the voting, the codification of the vote. This second transaction
contains all the remaining public parameters of the election. Figure 2 illustrates the process
electors carry out in order to register themselves.

4.3. Vote Casting

Once the electors have decided what to vote for, they must follow three steps to cast a valid
vote.

First, they must encrypt it to protect its direction until the election is over. To do so,
they read the public key v and the modulo n forms the blockchain and apply a modular
exponentiation to encrypt it using RSA. Before encrypting the vote, the elector must select
a fixed length random mask of their choice to concatenate to the vote. Otherwise, all the



Distributed Trust, a Blockchain Election Scheme 333

votes in the same direction will result in the same encryption. The elector will obtain an
encrypted value such as evote = (vote‖mask)v mod n.

Next, the elector must sign the vote to prove that it has been casted by an eligible
elector. To perform the ring signature generation procedure described in Algorithm 1,
the electors randomly take N OTPKs (including their own) from the list of public keys.
The elector obtains a ballot confirmed by the encrypted vote and its signature: ballot =
{evote, σ (evote) = (P,K, c0, r)}. Note that the number of public keys in the ring N is
tightly connected with the ambiguity of the signer. N acts as a security parameter, larger
values imply more ambiguity, thus more privacy. However, it makes the signature slower
and more expensive in terms of computation. It might be beneficial to establish a fixed or
a minimum value for this number.

Finally, when the vote has been encrypted and signed, the elector sends the ballot
through a blockchain transaction to a party of her choice or a random one. Figure 3 illus-
trates the casting process.

4.4. Vote Processing

Parties act like miners, listening to the blockchain network and expecting transactions
addressed to them. When a party finds a transaction addressed to himself in the pool of
unprocessed transactions, it proceeds to verify the integrity of the ring signature. Figure 4
shows the processing of a vote. When it has received enough transactions, the party creates
a block that is added to the blockchain and later broadcasted to the rest of parties:

1. It applies Algorithm 2 to the signature to verify its correctness.
2. It creates and signs a block with the following attributes:

• Block ID.
• Vote and transaction IDs.
• Timestamp.
• Result of verifying the ring signature.

3. It adds the block to the blockchain.
4. It broadcasts the new block to the rest of the parties so they can also verify the votes.

For a more detailed and technical explanation about how the blocks are created and
processed within the blockchain, we refer the reader to Appendix A.

4.4.1. Consensus
How different nodes reach consensus in a distributed environment? Distributed systems,
blockchains included, fall under the CAP theorem (Gilbert and Lynch, 2002; Brewer,
2012) which states that a distributed system can not provide a strong consensus (C), high
service availability (A) and partition tolerance (P) simultaneously. Since availability and
partition tolerance are binary properties (they are provided or not), consistency is usu-
ally the property degraded and results in different consistency models (Muñoz-Escoí et
al., 2019). To reach consensus and provide consistency in blockchains, Bitcoin (Satoshi,



334 A. M. Larriba et al.

Fig. 3. Electors consult election parameters from the blockchain. To cast a vote, they select a fixed length mask
and concatenate it to the vote. Adjacent boxes represent concatenation, while the dashed box represents encryp-
tion using modular exponentiation. Electors craft a ring signature using the consulted OTPKs. When the ballot
is properly signed and encrypted they can send it as a transaction to any party of their choice.

2008) popularized the Proof of Work algorithm (Jakobsson and Juels, 1999). When some-
one wants to write a new block in the chain, it must provide some proof of the expensive
computational cost (e.g. a hash function with certain characteristics) invested in the block.
If two blocks are validated around the same time and a bifurcation occurs, users must fol-
low the longest chain, this is the chain with more work. If a block is left out of the longest
chain, his proof of work needs to be recomputed in order to be added again.

Here we employ a cheaper consensus algorithm: PoA. The trust is distributed among
a set of reduced parties with adversarial interests, only these parties have write access to
the blockchain. Just like in game theory, a Nash equilibrium is reached where different
entities collaborate because there is no reward in following a different strategy. Indeed,



Distributed Trust, a Blockchain Election Scheme 335

Fig. 4. Process a party needs to perform to process a vote. Each party is responsible of evaluating received ballots
and ensuring they are correctly added to the blockchain. All the posted blocks are signed with party’s personal
private key.

since our approach is fully logged and auditable and the parties are linked with real life
entities, the penalization for indecorous conduct is immense. Parties have write access,
but since transactions are encrypted and anonymously signed, the user’s privacy is not
affected. By using PoA, our approach is faster since it does not require costly computation,
environmentally friendly since it does not consume so much electricity and simpler to
scale. In the improbable case of bifurcation, we follow the same principle as Proof of
work, we follow the longest chain. Each party is responsible of making sure a block is
properly written.

4.5. Tallying

Once the voting phases finish, parties stop accepting transactions from electors. Now they
must proceed to compute the final tally.

First, parties must recover the secret key s to decrypt votes. To do so, a subset � of
at least k honest parties collaborate to compute the original polynomial containing s. To
recover a polynomial from k shares, defined as s0 = (x0, y0), s1 = (x1, y1), . . . , sk =
(xk, yk) we employ Lagrange polynomials:

L(x) =
k∑

j=0

yj lj (x), (1)



336 A. M. Larriba et al.

lj (x) =
∏

0�m�k
m∈�
m �=j

x − xm

xj − xm

. (2)

Once we recover the polynomial L(x), s can be obtained as:

s = L(0)�

�3
(3)

being � a factor used when generating the RSA key.1 When s is recovered, parties can
decrypt the received votes and compute the final tally. Parties must analyse the received
votes directly from electors and those received from another parties. This way, each party
can compute a global and independent tally. If multiple votes contain the same key image,
only the last vote will be considered valid.

When the tally is completed, each party has to publish a new block containing each
received transaction, the result of checking the ring signature and the direction of the vote.
At the end of the block they must add the results of the election and the private key of the
election s. This message has to be signed by the parties. The private key is also published to
allow electors to compute their own tally. If all the parties agree with the tally the election
is finished. Figure 5 represents the tallying stage.

5. Computational Time Analysis

We devote this section to, first, analyse the asymptotic computational time complexity of
our election scheme, both for the elector and the involved parties; and, second, to provide
a comparison with the systems reviewed in Section 2.

Blockchain-based systems measure their throughput as the maximum number of trans-
actions per second (TPS) they can process. TPS are heavily determined by the consensus
algorithm employed: block proposal, block validation, and the mechanism used to solve
forks among others. Here, we note that, by using PoA instead of Proof-of-Work, the lim-
iting factor is no longer the block proposal but the block validation. Because no extensive
hashing is required to propose blocks. Therefore, ring signatures, which are the main fac-
tor in block validation, determine the number of TPS.

Next, we summarize the main stages of a consensus protocol and determine the asso-
ciated computational time complexity. For computing the asymptotic time complexity, we
consider the modular exponentiation, employed in RSA and the crafting/verification of a
ring signature, as basic units. This operation is the most expensive and the basic construc-
tion units of our scheme. Modular exponentiation has a time complexity of O(log3 n) bit
operations (Menezes et al., 1996), being n the input and log n its size in bits.

1We note that � = l!. It is used for computing the random polynomials when using Frankel et al. proposal
(Frankel et al., 1997).



Distributed Trust, a Blockchain Election Scheme 337

Fig. 5. Parties collaborate to recover the private key s. Then, each of them individually computes a personal tally
and adds it to the blockchain. It contains all the information needed by a third party to audit the tally.

• Block proposal: Thanks to PoA, no intensive computation is required to propose a
new block, no resource-consuming hashing is employed with respect to Proof-of-Work.
Every identified party who receives enough transactions to craft a block may propose
a new one. Only a modular exponentation is required to sign the proposed block. Then,
the complexity to propose a block can be expressed as O(log3 n).

• Block validation: The validation of a block requires to check the ring signature of every
transaction contained within it. The computational complexity of this validation varies
depending on the elliptic curve used and the size of the ring signature employed. Also
note that we require all parties to validate all the new blocks, therefore the validation
process is also affected by the number of involved parties. To validate the block, the
signature of the party who created the block must also be checked. This results in one
additional modular exponentiation. The asymptotic complexity of block validation can
be expressed as O(trvp+ log3 n), where t represents the number of transactions, rv the
cost of verifying a ring signature and p the number of parties involved in the consensus.

• Information propagation: Message communication is another crucial factor to de-
termine the throughput of a system. However, since we work with a permissioned
blockchain, the number of nodes that send messages is minimal. A simple broadcast
between parties is enough to communicate new blocks. Therefore, the number of mes-
sages remains linear with respect to the number of blocks b and the number of parties.
Each message must be signed by the sending party, so the complexity can be regarded
as: O(bp log3 n).



338 A. M. Larriba et al.

• Block finalization: For a block to be finally accepted by all parties, it must be added
in the longest chain. If two parties try to add a block at the very same time, a collision
occurs. As we mentioned in the previous section, we follow the longest chain rule and
each party is responsible for checking whether their blocks are correctly added to the
blockchain. As the validation of a block does not depend on the previous block’s hash,
adding an already validated block for a second time does not require further computa-
tion. However, it is safe to assume that probably the block would be outdated and a new
block proposal and its corresponding propagation should be carried out. The complex-
ity can be expressed as O(qbp log3 n), q being the number of collisions requiring a new
block re-added to the blockchain. The number of collisions is difficult to estimate since
it depends on many empirical factors and varies from election to election. The worst
case would be an election on which all the electors vote at the same time and the ballots
sent are equally distributed between all parties. That would result in many concurrent
collisions. Because of the unequal distribution of a real election, we can assume q will
be low when compared with successful finalized blocks. Nonetheless, if the number of
collisions becomes a problem, we could abandon following the longest chain in favour
of a byzantine fault tolerance consensus or a round-based writing (Xiao et al., 2020).

• Reward mechanism: In our adaptation of PoA, the reward and the purpose of the elec-
tion scheme are the same thing. Parties are, allegedly, interested in carrying out the
election process. Parties are motivated in an adequate election since their public rep-
utations are at stake. Since the reward is abstract it does not affect the computational
time complexity.

• Tallying: For computing the final tally, parties must collaborate to recover the secret
key and then proceed to decrypt all the votes. The collaboration requires p signed mes-
sages and the decryption needs one modular exponentiation per transaction (vote). The
complexity of the tally can be expressed as O(pt log3 n).

Therefore, the total time complexity of the system can be expressed as O(log3 n) +
O(trvp) + O(log3 n) + O(bp log3 n) + O(qbp log3 n) + O(pt log3 n). Given that the
number of blocks b depends linearly on the number of transactions t and that t dominates
b, we can substitute b for t . After grouping some terms, the final complexity can be sim-
plified as O(tp(rv + q log3 n)). Thus, the system’s time complexity depends on the cost
of verifying ring signatures and on the cost of running modular exponentiations, which
are both affected by the number of involved parties, the number of collisions and the total
transactions processed by the system.

We did not consider the cost of distributely generating the keys for RSA encryption
because it can be done offline before the election process and it is carried out off the
blockchain. Apart from the initial genesis blocks, which would have only required a pair
of modular exponentiations, this process does not affect the complexity of our scheme.

Besides, one elector willing to craft and cast a vote, only needs to perform the encryp-
tion of the vote and the associated ring signature. The time complexity for the final user
can be expressed as O(log3 n + rc), being rc the cost associated to craft a ring signature.



Distributed Trust, a Blockchain Election Scheme 339

5.1. Ring Signature Performance

Unlike modular exponentiation, ring signatures are not an operator. Ring signatures are
a quite complex cryptographic construct that includes multiple basic operators, so the
comparison is not straightforward and computational time complexity is dominated by
ring signatures. Ring signatures time complexity also depends on some parameters apart
from the input size such as the size of the ring, or the desired level of security. For these rea-
sons, in Section 5, we chose to leave the computational complexity associated to craft/ver-
ify a signature as a variable to provide a clear view of the time complexity. However, now
we also provide an implementation of these signatures to present an empirical result of
what the real TPS of the system would be.

The code developed for this performance analysis was implemented using Python 3
and it is publicly available on GitHub.2 We provide a framework to test how the differ-
ent parameters and different elliptic curves affect the performance of ring signatures. Our
goal with this framework is to provide a tangible implementation and to obtain real per-
formance time measurements. A low-level implementation in a different language such as
C++ would probably benefit the final throughput.

Figures 6a and 6b represent the elapsed time to craft or verify a signature under differ-
ent parameters respectively. We chose 4 different elliptic curves for the comparative. Each
one provides a different level of security: brainpoolP160r1 provides 80 bits of security;
Curve-192 provides 91 bits; Curve-224 provides 112 bits and, Curve-256 provides 128
bits. Brainpool curve provides a security level comparable to use RSA with a 1024 bits
modulo (Gallagher, 2013), which is more than enough to protect the voter’s privacy.3 As
expected, the required time grows linearly when we increase the size of the ring or the
complexity of the curve. We believe that using brainpool and a ring size of 64 public keys
is more than enough to achieve the security needed for our scheme. Specially due to the
short term of security required by our proposal: the votes only need to be secret until the
final tally is computed.

The figures here presented were obtained using a personal computer (AMD Ryzen 7
3700X). Since there are no dependencies between transactions, the verification is a paral-
lelizable task. We use multiple cores to take advantage of this aspect. Using a professional
server’s processor and decentralizing the task among multiple servers would yield a great
performance improvement. Nonetheless, a single personal computer is capable of verify-
ing 3–4 TPS and 200 in a minute, using immoderate high standard security parameters.

Also note that the times for crafting/verification are very similar. This is because the
verification algorithm (see Section 3.3) requires to re-create the signature to check its
validity.

2https://github.com/Fantoni0/RingCTPerformance.
3A 1024-bit key in RSA is considered safe for the next decades. No key bigger than 829 bits has ever been

factored.

https://github.com/Fantoni0/RingCTPerformance


340 A. M. Larriba et al.

Fig. 6. Ring signature performance times for crafting and verifying the same message under different parameters.
Experiments carried out on a AMD Ryzen 7 3700X with 8 cores and 16 threads.

5.2. Comparative Evaluation of Systems

We devote this section to compare the performance of our proposal with those studied in
Section 2. Ring signatures and modular exponentiations determine the time complexity
of our approach. Modular exponentiations are a common operator present in most of the
related works (except if they are completely based on ECC). For this reason, we consider



Distributed Trust, a Blockchain Election Scheme 341

Table 1
Table representing the asymptotic complexity of the work performed by the elector and the system in number
of bit operations. In the table: r refers to the number of rounds in the case of round voting, v represents the
number of votes, c represents the number of candidates, s references the number of possible scores for each

candidate in the case of ranked elections, t represents the number of transactions in a blockchain environment,
and p the number of parties involved.

Elector’s cost System’s cost
Salazar et al. (2010) O(r(log3 n + rc)) O(vr(log3 n + rv))

Chen et al. (2008) O(log3 n + rc) O(vp(log3 n + rv))

Yang et al. (2020) O(cs log3 n) O(cts log3 n)

Our proposal O(log3 n + rc) O(tp(q log3 n + rv))

modular exponentiation, and its associated complexity in bit operations, as the atomic unit
in the analysis of the time complexity.

Comparing different e-voting proposals is not trivial: some systems do no disclose all
the details, not all the systems are directly comparable and not all the works provide a time
complexity analysis. Thus, some of the reviewed works, are left out of the comparison:
because they do not provide a performance analysis nor enough information to obtain an
asymptotic complexity (Noizat, 2015; Lee et al., 2016; Ayed, 2017; Tarasov and Tewari,
2017; Lai and Wu, 2018); because, despite providing a thorough analysis, they are based
on different problems and the analogy would not hold (Gao et al., 2019); or, because they
are implementation approaches and the authors only report user timings (Wu, 2017).

Let us note, that despite not providing a time analysis, Wei supplies a complexity anal-
ysis of the ring signatures employed under different ring sizes and the associated gas (unit
for measuring cost of Ethereum transactions) cost of running their voting protocol on the
Ethereum blockchain. Also, Wu provides empirical times and sizes of the ring signatures
used with varying ring sizes. Unfortunately, neither of them detail the level of security
engaged in those tasks.

We compare the asymptotic time complexity of the remaining works to prove the va-
lidity of our approach. When the methods do not specify a part of their protocol or do
not provide enough information, we introduce a variable in the complexity analysis. Table
1 summarizes the associated complexity for the elector and for the protocol to process
the received votes. For more details, we refer the reader to the original works. Protocols
employing different kinds of ring signatures are compared, to provide a fair example we
assume the time to craft rc or to verify rv signature are comparable and can be agglutinated
under the same variable despite their different implementations.

Note that the number of votes v and the number of transactions t are semantically
equivalent, they both represent the number of processed votes. On the other hand, the
number of candidates c and the number of parties p, not always represent the same part-
ners. Not all protocols directly involve the candidates and some systems include extra
authorities to handle credentials or distribute responsibility.

In Table 1, the results obtained by our proposal compete with the reviewed systems.
Indeed, Chen’s system and our proposal require the minimum effort for the final elector.
Regarding system’s complexity; it can be observed that, as for many works, it scales lin-
early with the number of involved parties and total number of votes. Salazar and Yang’s



342 A. M. Larriba et al.

works are also affected by other factors given that they support round and ranking e-voting
respectively. Our proposed e-voting protocol is scalable due to its linear complexity and
introduces the blockchain as a distributed public ledger without losing performance with
respect to analogous works.

6. Properties

A voting scheme can be described by its properties. These properties define what it can
provide and under which circumstances. Usually, the desired properties to be held by any
electronic voting system are: verifiability, accuracy, democracy, privacy and robustness.
We now discuss and prove that our proposal fulfills all of them. Let us note our proposal
is based on well-known cryptographic primitives, therefore most of the proofs rely on the
underlying problems of those primitives.

Verifiability
Verifiability implies the existence of auditing mechanisms for the election, ensuring

that the voting process has been correctly developed. We here distinguish three types of
verifiability:

• Casted-as-intended: the ballot is sent with the desired vote direction.
• Recorded-as-casted: the ballot is recorded in the blockchain as it was sent.
• Tallied-as-recorded: the ballot will be tallied with the same vote direction as recorded.

Theorem 1. Our e-voting protocol is end-to-end verifiable.

Proof. Key images (see Section 3.2) work as a private receipt. Thus, allowing the elector
to read from the blockchain to check whether their ballot was casted, recorded and tal-
lied properly. As mentioned above, key images are anonymous and do not compromise
elector’s privacy.

In regard to universal verifiability, we note that any person, participant or not in the
election process, is able to ensure that every vote has been tallied-as-recorded. This is
achieved thanks to the public nature of the blockchain. Note that this does not ensure that
the vote has neither been casted-as-intended nor recorded-as-casted because that would
violate the privacy property.

In summary, our proposal provides universal verifiability by posting in the blockchain
the key to decrypt the orientation of every vote recorded. Anyone can take the key and the
votes stored in the blockchain to compute a tally by themselves. Thus, allowing to audit
the final result of the election.

Accuracy
Also known as correctness, it demands that the tally correspond with the actual out-

come of the election. To achieve this: no one can change anyone else’s vote; all valid votes
are included in the final tally; and, no invalid vote will be included in the tally.



Distributed Trust, a Blockchain Election Scheme 343

Theorem 2. As RSA encryption system remains secure, the system is auditable by third
parties, and ring signatures are unforgeable, then our voting protocol is accurate.

Proof. We divide the proof in three parts:

(a) No one can change anyone else’s vote: votes are encrypted using RSA: assuming that
no elector shares their secret key; that at last k parties are honest; and, that the Discrete
Logarithm Problem (DLP) has no efficient solution for carefully selected parameters,
the votes remain unaltered until the final tally.

(b) All valid votes are included in the final tally: parties are responsible for processing
and tallying all received valid votes. Given universal verifiability proved in Theorem
1, not including all valid votes would result in an early finalization of the election.

(c) No invalid vote will be included in the tally: for a vote to be included in the final tally,
its ring signature must be valid. Assuming that the Elliptic-Curve-DLP(ECDLP) has
no efficient solution, no signature can be forged.

Democracy
Democracy guarantees that only eligible electors are allowed to cast a vote, and that

they can only do it once.

Theorem 3. If the ECDLP is semantically secure, no one can impersonate a valid elector
or perform double voting.

Proof. The proof can be separated in two parts:

(a) Eligibility: only electors listed in the census are able to register their public keys in
the registration administration. The list of public keys and elector’s identifier will be
stored in the blockchain to prevent the administration from creating fake electors. If
the ECDLP problem is computationally secure, only the registered elector can recover
their personal OTPK from the public list.

(b) Double voting: key images work as a commitment of the private and public key of a
elector. As stated previously, if the ECDLP has no efficient solution, then no modifi-
cation of the key image can be made. Therefore, each elector is authorized, without
revealing their real identity, to vote only once.

Privacy
Privacy refers to the inability of linking an elector’s identity to the direction of her

vote.

Theorem 4. If the ECDLP has no efficient solution, elector’s identity remains private.

Proof. Key images, ring signatures and OTPKs are based on ECDLP. These are the only
cryptographic constructs related to elector’s identity. Assuming that, under the right pa-
rameters, no efficient solution exists for ECDLP, we can conclude there is no method to
expose the elector’s identity. Therefore, the elector is protected by the size of the ring
signature, because any member of the ring is a possible signer with the same probability.



344 A. M. Larriba et al.

We also stress that even if two equal votes were encrypted using the same ring of public
keys, their signature will differ and privacy will be granted.

Robustness
Robustness implies that no reasonably sized coalition of electors nor authorities would

be able to significantly disrupt the election. As mentioned above, in a (k, l)-threshold RSA
key sharing scheme l represents the total number of involved parties, and k represents the
minimum of collaborating parties needed to recover the secret key.

Theorem 5. In a (k, l)-threshold RSA key sharing scheme, if at least l − k + 1 parties
are honest, our voting protocol is robust.

Proof. Parties are the only ones with write access, thus, electors cannot directly interfere
in any of the process stages. To recover the private key and compute the final tally at least
k parties must cooperate. If a party (or any subset of them lower than k) misbehaves, their
actions are publicly auditable through the blockchain. Therefore they can be sanctioned
and left out of the process without compromising the running election nor the final tally.
Let us note, that even in the worst case of k malicious parties colliding to recover the
secret key before the election ends, elector’s privacy and the integrity of the vote will
prevail since they depend on the ring signature bounded to each vote. They will be only
capable of knowing the directions of the votes before the tally phase.

Other properties
Uncoercibility refers to the impossibility of an elector of being coerced to change their

vote. It is tightly related with the concept of receipt-freeness: if a voter can not create a
receipt to prove how they voted, the coercers will not get any reassurance. Our system
does not provide receipt-freeness, an elector can use their key image as a receipt of the
direction of their vote. Receipt-freeness can be obtained by letting the authorities generate
or manage some part of the credentials. However, this somehow contradicts some basic
properties of voting-schemes. We have decided to prioritize and emphasize the properties
based on the individual confidence of the system, allowing electors to have a receipt.
Nevertheless, note that our proposal allows for multiple-voting, allowing to consider the
last vote as the valid one. While this does not provide complete uncoercibility, it provides
a bribed or coerced elector with a mechanism to later change their vote.

7. Conclusions

In this paper, we present a new voting protocol. Our proposed scheme is secure and focuses
on providing arguments to promote participation and deal with the trust issues. Without
renouncing to secure and solid cryptographic proofs, we put the traditional parties of the
voting process inside the system. Each political party was given limited capabilities to
reach a shared goal. They are accountable for their actions and every misconduct can be
detected and audited. The trust is therefore distributed and local misbehaviours are logged



Distributed Trust, a Blockchain Election Scheme 345

and do not compromise the robustness of the system. The signer ambiguity provided by
ring signatures and the public and decentralized blockchain, makes a secure, public and
universally verifiable voting system possible. All the process is articulated through the
blockchain, all the related information is contained in it. When the election ends, the pri-
vate key is made public and anyone can review the votes, the parties’ actions and the final
tally.

We adapt PoA to the problem of electronic voting, as a cheaper consensus algorithm
to distribute trust. PoA is intended for situations when, because of the problem definition,
a small group requires a special role. It fits perfectly in the electronic voting paradigm.
PoA allowed us to introduce political parties as active partners in the voting process to
increase confidence in the system as ledger criterium. PoA is also more efficient in terms
of computational work and makes it easily scalable to different types of elections. Apart
from the (k, l)-threshold RSA key sharing scheme, which grows loglinear with the number
of involved parties, the rest of the system is linear, since ring signatures scale linearly with
the size of the ring and all the computational work done by the parties scales linearly
with the number of votes. Note that the threshold RSA sharing is done off-line and its
pre-computation does not affect the election performance.

A. Technical Blockchain Specification

We devote this appendix to provide the technical specification of the blockchain described
in the article. Our purpose is to provide the specifics and the structure needed to implement
the blockchain required to run our voting protocol.

We divide the specification into two sections. First, we detail the data structures that
define the blockchain. Secondly, we determine the methods the nodes (parties) will need to
operate in a functional blockchain. Some implementation details such as node discovery,
size in bytes or network particulars are not considered because they are not in the scope of
this appendix. However, we provide enough information for an interested reader to build
a functional blockchain.

A.1. Blockchain Data Structures

Here we define the structure for transactions and blocks. Our protocol is designed for e-
voting. Therefore, we could get rid of the monetary tokens, however, we decided to provide
the blockchain specification with support for a token. Parties are responsible for supplying
the OTPKs during the registration phase with enough tokens to create transactions. There
must be enough tokens to allow for multiple votes to prevent coercion. If needed, the
change to a version without support for tokens is straightforward.

A.1.1. Transactions
Transactions are the basic unit of information in the blockchain. They are broadcasted into
the public network and defined by the set of referenced inputs and outputs. They are used
to register votes in our e-voting protocol. In our e-voting scheme, the inputs represent the



346 A. M. Larriba et al.

Table 2
Transaction structure.

Field Definition
Version Number version of the protocol
Inputs List of referenced inputs
Outputs List of outputs
Vote Encrypted elector’s vote
Signature Ring signature of the transaction
Transaction ID Hash identifying the transaction

Table 3
Input and output structure.

Field Definition
Amount Amount of tokens in the key
Address Public key identifying the address

Table 4
Block structure.

Field Definition
Version Number version of the protocol
Timestamp Time of the block creation
Previous Hash Hash identifying the previous block
Height Distance to the first block
Signature Digital signature of the block creator
Transactions List of the transactions contained
Merkle Root Merkle’s root hash of the transactions
Block ID Hash identifying the block

elector’s OTPK, while the outputs represent the parties’ addresses. The elector decides
which party they send the vote to by configuring the outputs of the transaction. Table 2
discloses the structure of transactions and Table 3 defines the structure of inputs/outputs.

A.1.2. Blocks
A block is a set of bundled and validated transactions. Blocks constitute the basic building
component of a blockchain, because as its name implies, a blockchain is an ordered set of
blocks. Table 4 shows the structure of an ordinary block in our blockchain.

Besides from general blocks containing votes, our scheme contains three special
blocks. The structure of the first two configuration blocks is detailed in Tables 5 and 6,
respectively. And the last tallying block as described in Table 7. The first two blocks con-
tain all the public information and parameters needed to properly run the election. The last
tallying block contains the secret key needed to decrypt the votes and provides a summary
of the results of the election.

In Fig. 7, we can see the structure of a complete blockchain. We can appreciate how
the different blocks work and how the different data structures are engaged to build the
blockchain.



Distributed Trust, a Blockchain Election Scheme 347

Table 5
First block in the chain describing configuration parameters.

Field Definition
Version Number version of the protocol
Timestamp Time of the block creation
Height Distance to the first block
RSA parameters Public key v and modulus n

Private shares Commitments gsi of the private keys for each party
Public keys Parties’ public keys
Block ID Hash identifying the block

Table 6
Second block in the chain describing configuration parameters.

Field Definition
Version Number version of the protocol
Timestamp Time of the block creation
Previous Hash Hash identifying the previous block
Height Distance to the first block
Start Time Start time of the election
End Time End time of the election
Ring Size Minimun accepted ring size for ring signatures
Options List of options to vote for in the election
OTPKs List of OTPKs and their corresponding random number R

Block ID Hash identifying the block

Table 7
Last block in the chain describing the tally results.

Field Definition
Version Number version of the protocol
Timestamp Time of the block creation
Previous Hash Hash identifying the previous block
Height Distance to the first block
Secret key Recovered secret key to decrypt votes
Results Final election tally
List of results Referenced transactions for each result
Block ID Hash identifying the block

A.2. Methods

In this section, we provide a set of algorithms describing the methods the nodes in the
blockchain must follow to operate. These methods provide a high-level overview of the
different scenarios nodes have to face, such as: process new blocks, handle transactions
or follow the longest chain.

We assume the existence of some predefined functions, when no algorithm describes
the function, is because we believe the name is self-explanatory (e.g. hash() assumes a
function that generates a hash for a given input, verifySignature() assumes a function that
verifies the RSA signature of the given input). We also assume some predefined variables
such as: time, localBlockchain, and other evident and presumed values.



348 A. M. Larriba et al.

Fig. 7. Holistic view of all the data structures involved in the blockchain. We can appreciate the 4 different block
types and its inner architecture.

Now we describe the different triggers and methods that incur from the casting of a
vote to its final addition in the blockchain.

A.2.1. Casting a Vote
The process for an elector node in the blockchain to create and cast a vote is described in
Algorithm 3. The transaction containing the vote is then added to the pool of unprocessed
transactions, where it will be stored there until it is properly verified.



Distributed Trust, a Blockchain Election Scheme 349

Algorithm 3 Voting process(Craft vote and send transaction)
Require: voteDirection ← Vote direction.

partyPublicKey ← Public key of the authority designated to add the block to the
blockchain.
publicKeyList ← List of public keys to form the Ring Signature.
pivateKey ← Private key of the user.
hiddenIndex ← Index in the list publicKeyList where the public key of the signer is.
rsaPublicKey ← RSA public key to encrypt the vote direction until the tally.
tokens ← Inputs containing he required tokens.

1: mask ← randomMask()
2: maskedVoteDirection ← (voteDirection ‖ mask)
3: encryptedVoteDirection ← (maskedVoteDirection)rsaPublicKey

4: ringSignature ← sign(publicKeyList.length, publicKeyList, hiddenIndex, pri-
vateKey, encryptedVoteDirection) (see Algorithm 1)

5: broadcast(Transaction(
Version: version,
Inputs: tokens,
Outputs: [partyPublicKey],
Signature: ringSignature,
Vote: encryptedVoteDirection,
TransactionID: hash(Version, Inputs, Outputs, Signature, Vote)))

A.2.2. Processing Transactions
Parties must listen for new transactions addressed to them in the pool of unprocessed
transactions. They are responsible for validating new transactions addressed to them, as
described n Algorithm 4. This process includes checking the public keys used in the ring
signature are included in the census of authorized electors, verifying the validity ring
signature and checking if the inputs have enough tokens to operate in the blockchain.

Once they have received and validated enough transactions, nodes can generate and
broadcast new blocks to the rest of parties as described on Algorithm 5.

A.2.3. Handling Blocks
Blockchain nodes have to deal with the received blocks from other parties. They have to
ensure they follow the longest chain as well as validate the received block and the contained
transactions. On the one hand, Algorithm 6 shows the process the nodes follow to validate
received blocks. As it can be seen in Line 9, the verifying node alerts the rest of nodes
when it detects an invalid transaction in the block.

On the other hand, Algorithm 7 describes the process for adding the block to the longest
chain. The algorithm shows a logical simplification of how the nodes should follow the
longest chain. For a real implementation, we refer the reader to Bitcoin’s open source code.
As Lines 10 and 12 exemplify, the node should employ a set of buffers for storing multiple
chains. In Line 14, when the node receives a block ahead of his own chain, the node has
to ask for the missing blocks to other nodes in the network.



350 A. M. Larriba et al.

Algorithm 4 Validate Transaction
Require: transaction ← Transaction to validate.

1: if transaction.ID �= hash(transaction) then
2: return False
3: end if
4: if ∃ pk ∈ transaction.Signature.PublicKeys | pk /∈ census then
5: return False
6: end if
7: if ¬ verifyRingSignature(transaction) then
8: return False
9: end if

10: if
∑

i∈transaction.Inputs < requiredTokens then
11: return False
12: end if
13: validatedTransactions.append(transaction)
14: return True

Algorithm 5 Generating new blocks
Require: listTransactions ← List of validated transactions.
Require: version ← Version of the used protocol.
Require: lastBlock ← Previous last block added to the longest chain.
Require: localBlockChain ← Blockchain in the node’s memory.

1: version ← version
2: timestamp ← time.now()
3: previousHash ← lastBlock.ID
4: height ← lastBlock.height + 1
5: transactions ← listTransactions
6: merkleRoot ← merkleTreeRoot(transactions)
7: ID ← hash(version, timestamp, previousHash, height, transactions, merkleRoot)
8: signature ← (version, timestamp, previousHash, height, transactions, merkleRoot,

ID)sP

9: newBlock ← Block(version, timestamp, previousHash, height, transactions, merkle-
Root, ID, signature)

10: localBlockChain.append(newBlock)
11: ∀p ∈ Parties send(p, newBlock)

Finally, Fig. 8 illustrates the process for casting and processing a vote as an interaction
diagram. The algorithms described above are referenced in the interaction diagram. Some
simplifications were made to address the complex interactions between parties and the
blockchain on a single image. Despite not being perfectly accurate, the figure succeeds in



Distributed Trust, a Blockchain Election Scheme 351

Algorithm 6 Validate block
Require: block ← Block to validate.

1: if ¬ verifySignature(block.signature) then
2: return False
3: end if
4: if merkleRoot(block.transactions) �= block.merkleRoot then
5: return False
6: end if
7: for t ∈ block.Transactions do
8: if t.ID /∈ validatedTransactions ∨

¬ validateTransaction(t) then
9: AlertError(block.ID, t.ID)

10: return False
11: end if
12: end for
13: return True

Algorithm 7 Add Block
Require: block ← Block received through the network.
Require: localBlockChain ← Longest blockchain in the node’s memory.

1: if ¬ validateBlock(block) then
2: return False
3: end if
4: last ← localBlockChain.lastestBlock
5: if last.ID = block.previousHash then
6: localBlockChain.append(block)
7: else
8: if block /∈ localBlockChain then
9: if block.height < last.height then

10: addToSecondaryChain(block)
11: else
12: saveAsSecondaryChain(localBlokchain)
13: localBlockchain.append(block)
14: ∀ b | b.height > last.height ∧

b.height < block.height askForBlock(b)
15: end if
16: end if
17: end if

representing the different election stages, the multiple partners and their interaction during
the whole election.



352 A. M. Larriba et al.

Fig. 8. Timing and partners’ interaction of the proposed voting scheme. The image shows the different election
phases and the processes triggered at different stages. It shows the computations and the interactions needed as
a time-interaction diagram.

References

Al-Riyami, S.S., Paterson, K.G. (2003). Certificateless Public Key Cryptography. In: Laih, C. (Ed.), Advances in
Cryptology – ASIACRYPT 2003, 9th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, November 30–December 4, 2003, Proceedings, Lecture Notes in
Computer Science, Vol. 2894. Springer, pp. 452–473. https://doi.org/10.1007/978-3-540-40061-5_29.

Ayed, A.B. (2017). A conceptual secure blockchain-based electronic voting system. International Journal of
Network Security & Its Applications, 9(3), 01–09.

Back, A. (2015). Ring signature efficiency. Available at: https://bitcointalk.org/index.php?topic=972541.msg
10619684#msg10619684.

Barinov, I., Baranov, V., Khahulin, P. (2018). POA network white paper. https://github.com/poanetwork/wiki/
wiki/POA-Network-Whitepaper.

https://doi.org/10.1007/978-3-540-40061-5_29
https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper


Distributed Trust, a Blockchain Election Scheme 353

Baudron, O., Fouque, P., Pointcheval, D., Stern, J., Poupard, G. (2001). Practical multi-candidate election system.
In: Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing, PODC
2001, Newport, Rhode Island, USA, August 26–29, 2001, pp. 274–283.

Belotti, M., Bozic, N., Pujolle, G., Secci, S. (2019). A vademecum on blockchain technologies: when, which,
and how. IEEE Communications Surveys and Tutorials, 21(4), 3796–3838. https://doi.org/10.1109/COMST.
2019.2928178.

Bowe, S., Gabizon, A., Green, M.D. (2018). A multi-party protocol for constructing the public parameters of
the Pinocchio zk-SNARK. In: Proceedings of the International Conference on Financial Cryptography and
Data Security, LNCS, Vol. 10958, pp. 64–77.

Brewer, E. (2012). CAP twelve years later: how the “rules” have changed. Computer, 45(2), 23–29.
Camenisch, J., Piveteau, J., Stadler, M. (1994). Blind signatures based on the discrete logarithm problem. In:

Advances in Cryptology – EUROCRYPT ’94, Workshop on the Theory and Application of Cryptographic
Techniques, Perugia, Italy, May 9–12, 1994, Proceedings, pp. 428–432.

Chaum, D. (1981). Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of
the ACM, 24(2), 84–88.

Chaum, D. (1982). Blind signatures for untraceable payments. In: Advances in Cryptology: Proceedings of
CRYPTO ’82, Santa Barbara, California, USA, August 23–25, 1982, pp. 199–203.

Chaum, D., van Heyst, E. (1991). Group Signatures. In: Davies, D.W. (Ed.), Advances in Cryptology – EURO-
CRYPT ’91, Workshop on the Theory and Application of of Cryptographic Techniques, Brighton, UK, April
8–11, 1991, Proceedings, Lecture Notes in Computer Science, Vol. 547. Springer, pp. 257–265.

Chaum, D., Ryan, P.Y.A., Schneider, S.A. (2005). A practical voter-verifiable election scheme. In: Computer Se-
curity – ESORICS 2005, 10th European Symposium on Research in Computer Security, Milan, Italy, Septem-
ber 12–14, 2005, Proceedings, pp. 118–139.

Chen, G., Wu, C., Han, W., Chen, X., Lee, H., Kim, K. (2008). A new receipt-free voting scheme based on
linkable ring signature for designated verifiers. In: 2008 International Conference on Embedded Software
and Systems Symposia. IEEE, pp. 18–23.

Cramer, R., Gennaro, R., Schoenmakers, B. (1997). A secure and optimally efficient multi-authority election
scheme. European Transactions on Telecommunications, 8(5), 481–490.

Damgård, I., Koprowski, M. (2001). Practical threshold RSA signatures without a trusted dealer. In: Advances in
Cryptology – EUROCRYPT 2001, International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6–10, 2001, Proceeding, pp. 152–165.

Diffie, W., Hellman, M.E. (1976). New directions in cryptography. IEEE Transactions on Information Theory,
22(6), 644–654.

ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4), 469–472. https://doi.org/10.1109/TIT.1985.1057074.

Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M. (1997). Optimal resilience proactive public-key cryptosys-
tems. In: 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19–22, 1997, pp. 384–393.

Frankel, Y., MacKenzie, P.D., Yung, M. (1998). Robust efficient distributed RSA-key generation. In: Proceedings
of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23–26, 1998,
pp. 663–672.

Gallagher, P. (2013). Digital signature standard (DSS). Federal Information Processing Standards Publications,
volume FIPS, 186.

Gao, S., Zheng, D., Guo, R., Jing, C., Hu, C. (2019). An anti-quantum E-voting protocol in blockchain with
audit function. IEEE Access, 7, 115304–115316. https://doi.org/10.1109/ACCESS.2019.2935895.

Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T. (2007). Secure distributed key generation for discrete-log based
cryptosystems. Journal of Cryptology, 20(1), 51–83.

Gilbert, S., Lynch, N.A. (2002). Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2), 51–59.

Hua-jie, Y., Xiang-hua, M., Hai-tao, Z., Yi-ran, L. (2014). Efficient certificateless ring signature scheme with
identity tracing. Information Security and Technology, (7)9.

Jakobsson, M., Juels, A. (1999). Proofs of work and bread pudding protocols. In: Secure Information Networks:
Communications and Multimedia Security, IFIP TC6/TC11 Joint Working Conference on Communications
and Multimedia Security (CMS ’99), September 20–21, 1999, Leuven, Belgium, pp. 258–272.

Koe, Alonso, K.M., Noether, S. (2020). Zero to Monero: Second Edition. Available at: https://web.getmonero.
org/library/Zero-to-Monero-2-0-0.pdf.

https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/ACCESS.2019.2935895
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf


354 A. M. Larriba et al.

Lai, W.-J., Wu, J.-L. (2018). An efficient and effective Decentralized Anonymous Voting System. Available at:
https://arxiv.org/abs/1804.06674.

Lee, K., James, J.I., Ejeta, T.G., Kim, H.J. (2016). Electronic voting service using block-chain. Journal of Digital
Forensics, Security and Law, 11(2), 8.

Menezes, A., van Oorschot, P.C., Vanstone, S.A. (1996). Handbook of Applied Cryptography. CRC Press.
Merkle, R.C. (1980). Protocols for public key cryptosystems. In: Proceedings of the 1980 IEEE Symposium on

Security and Privacy, Oakland, California, USA, April 14–16, 1980, pp. 122–134.
Muñoz-Escoí, F.D., de Juan-Marín, R., García-Escrivá, J., de Mendívil, J.R.G., Bernabéu-Aubán, J.M. (2019).

CAP theorem: revision of its related consistency models. The Computer Journal, 62(6), 943–960.
Niederreiter, H. (1985). A public-key cryptosystem based on shift register sequences. In: Workshop on the Theory

and Application of of Cryptographic Techniques. Springer, pp. 35–39.
Noether, S. (2015). Ring SIgnature Confidential Transactions for Monero. IACR Cryptol. ePrint Arch. Available

at: https://eprint.iacr.org/2015/1098.
Noizat, P. (2015). Blockchain electronic vote. In: Handbook of Digital Currency. Elsevier, pp. 453–461.
Paulavicius, R., Grigaitis, S., Igumenov, A., Filatovas, E. (2019). A decade of blockchain: review of the current

status, challenges, and future directions. Informatica, 30(4), 729–748. https://content.iospress.com/articles/
informatica/inf1245.

Pedersen, T.P. (1991). Non-interactive and information-theoretic secure verifiable secret sharing. In: Advances
in Cryptology – CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11–15, 1991, Proceedings, pp. 129–140.

Rivest, R.L. (2006). The Threeballot Voting System. Massachusetts Institute of Technology. Available at: http:
//theory.csail.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf.

Rivest, R.L., Smith, W.D. (2007). Three voting protocols: ThreeBallot, VAV, and Twin. USENIX/ACCURATE
Electronic Voting Technology (EVT 2007).

Rivest, R.L., Shamir, A., Tauman, Y. (2001). How to leak a secret. In: Proceedings Of The 7th International Con-
ference On The Theory And Application Of Cryptology And Information Security: Advances In Cryptology.
Springer-Verlag, pp. 554–567.

Rockwell, M. (2017). BitCongress Process For Blockchain Voting & Law. https://cryptochainuni.com/wp-
content/uploads/BitCongress-Whitepaper.pdf.

Ruffing, T., Moreno-Sanchez, P. (2017). Valueshuffle: mixing confidential transactions for comprehensive trans-
action privacy in bitcoin. In: Proceedings of the International Conference on Financial Cryptography and
Data Security, LNCS, Vol. 10323, 133–154.

Salazar, J.L., Piles, J.J., Ruíz-Mas, J., Moreno-Jiménez, J.M. (2010). Security approaches in e-cognocracy. Com-
puter Standards & Interfaces, 32(5–6), 256–265.

Satoshi, N. (2008). Bitcoin: a peer-to-peer electronic cash system. Available at: https://bitcoin.org/bitcoin.pdf.
Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612–613.
Tarasov, P., Tewari, H. (2017). Internet Voting Using Zcash. Available at: https://dblp.org/rec/bib/journals/iacr/

TarasovT17.
Tornos, J.L., Salazar, J.L., Piles, J.J., Saldana, J., Casadesus, L., Ruíz-Mas, J., Fernández-Navajas, J. (2014). An

eVoting system based on ring signatures. Network Protocols & Algorithms, 6(2), 38–54.
Tsang, P.P., Wei, V.K. (2004). Short linkable ring signatures for E-voting, E-cash and attestation. IACR Cryptol-

ogy ePrint Archive, 2004, 281. Available at: http://eprint.iacr.org/2004/281.
Van Saberhagen, N. (2013). CryptoNote. Available at: https://cryptonote.org/whitepaper.pdf.
Wu, Y. (2017). An e-voting system based on blockchain and ring signature. Master’s thesis, University of Birm-

ingham.
Xiao, Y., Zhang, N., Lou, W., Hou, Y.T. (2020). A survey of distributed consensus protocols for blockchain

networks. IEEE Communications Surveys and Tutorials, 22(2), 1432–1465. https://doi.org/10.1109/
COMST.2020.2969706.

Yang, X., Yi, X., Nepal, S., Kelarev, A., Han, F. (2020). Blockchain voting: publicly verifiable online vot-
ing protocol without trusted tallying authorities. Future Generation Computing Systems, 112, 859–874.
https://doi.org/10.1016/j.future.2020.06.051.

(2018). Follow my vote. https://followmyvote.com/.

https://arxiv.org/abs/1804.06674
https://eprint.iacr.org/2015/1098
https://content.iospress.com/articles/informatica/inf1245
https://content.iospress.com/articles/informatica/inf1245
http://theory.csail.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf
http://theory.csail.mit.edu/~rivest/Rivest-TheThreeBallotVotingSystem.pdf
https://cryptochainuni.com/wp-content/uploads/BitCongress-Whitepaper.pdf
https://cryptochainuni.com/wp-content/uploads/BitCongress-Whitepaper.pdf
https://bitcoin.org/bitcoin.pdf
https://dblp.org/rec/bib/journals/iacr/TarasovT17
https://dblp.org/rec/bib/journals/iacr/TarasovT17
http://eprint.iacr.org/2004/281
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1016/j.future.2020.06.051
https://followmyvote.com/


Distributed Trust, a Blockchain Election Scheme 355

A.M. Larriba is a pre-doctoral researcher at the Universitat Politècnica de València
(Spain), where he obtained his degree in computer science, in 2016, and a master’s de-
gree in artificial intelligence, in 2017. Currently, he is working on obtaining his PhD in
computer science. He was awarded a governmental grant for this purpose. His topics of
interest include cryptography, artificial intelligence, and blockchain.

A. Cerdà i Cucó obtained his BSc in computer science at the Universitat Politècnica
de València (Spain), in 2020. He is currently working on the field of machine translation.
His topics of interest include artificial intelligence, cryptocurrencies, and software-quality
analysis.

J.M. Sempere is an associate professor at the Universitat Politècnica de València (Spain),
where he obtained a PhD in computer science, in 2002. He is a member of the International
Society for Membrane Computing (IMCS) and the European Association for Theoretical
Computer Science (EATCS). He has published several scientific papers in international
journals and he has coordinated several research projects. His scientific interests include
cryptography, computer models, and the theory of computational complexity.

D. López is an associate professor at the Universitat Politècnica de València (Spain),
where he obtained his PhD in computer science, in 2003. Currently, he is the academic
coordinator of the Computation Section at the Departamento de Sistemas Informáticos y
Computación, and a member of the Valencian Research Institute for Artificial Intelligence
(VRAIN). His research interests include cryptography, formal languages, and grammati-
cal inference.


	Introduction
	Related Work
	Ring Signature Based Voting Systems
	Blockchain Based Voting Systems
	Ring Signatures & Blockchain Based Voting Systems

	Background
	Notation
	One Time Public Keys
	Ring Signatures

	Our Proposal
	Election Setup
	Registration
	Vote Casting
	Vote Processing
	Consensus

	Tallying

	Computational Time Analysis
	Ring Signature Performance
	Comparative Evaluation of Systems

	Properties
	Conclusions
	Technical Blockchain Specification
	Blockchain Data Structures
	Transactions
	Blocks

	Methods
	Casting a Vote
	Processing Transactions
	Handling Blocks



