
The interest to environmental monitoring has grown in

recent decades due to climate change and serious natural

disasters. However, to provide a reliable monitoring a large

amount of data is required for environmental scientist to

be able to provide useful information about the behavior of

physical variables in question, provide forecasting of such

behaviors, and emit or validate recommendations that will

lead to new legislation [1]–[3]. The collection of data is often

performed manually at a local scale, which sometimes is a

difficult task due to extreme environmental events. Also, harsh

whether may affect the sensing stations causing a significant

data loss.

The wireless sensor networks (WNS) are well suited for

environmental data acquisition [4]–[7] and allow the imple-

mentation of distributed methods, which are known to be more

robust than centralized approaches. The robustness can also be

improved using the unbiased finite impulse response (UFIR)

filtering approach, which is effective in harsh environments,

where electromagnetic interference, damaged sensors, or the

landscape itself cause the network to suffer from faulty links

and missing data. In many cases, optimal estimation is required
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along with adequate sensor fusing [8]–[11] to be robust against

missing data, model errors (mismodeling), and incomplete

information about noise statistics.

On the other hand, the restrictions of WSN caused by

limited battery life and processing power put a stress on the

development of the algorithms to ensure that these limited

resources are exploited efficiently. In this sense, distributed

filtering helps to improve battery life by minimizing the com-

putational burden while performing real time estimation [12],

[13]. Under the distributed filtering approach, each node is

tasked to estimate Q and a consensus protocol is implemented

to average the estimates, measurements, or information [14],

so that all nodes agree in a common value called the group

decision value [15].

The low computational burden and optimal estimation make

the Kalman filter (KF) a very popular sensor fusion technique

[16]. Based on the KF approach, many authors have addressed

the consensus problem in WSNs. A KF-based structure pro-

posed in [17] requires each node to locally aggregate data and

the covariance matrices taken from the neighbors and, in a

posterior step, compute estimates using a KF with a consensus

term. In [18], the KF has been developed as a fusion technique

for local estimation and a consensus matrix. In [19], a KF-

based algorithm has been presented to address an issue with

missing data. Let us notice that the KF optimality is guaranteed

only under the complete knowledge of the Gaussian noise

statistics, adequate process modeling, and initial conditions

[20]–[23]. Otherwise, the performance of the KF may drasti-

cally degrade and become unacceptable for real world WSN

applications [24], [25].

It has been proven in [26]–[29] that a better robustness can

be achieved by using filters operating on finite data horizons.

Under such an assumption, a moving average estimator has

been designed in [30] for weak observability. A consensus

finite-horizon H∞ approach was developed in [31] under

missing data. In [32], an unbiased finite impulse response

(UFIR) filter was developed for consensus on measurements.

Although this filter has demonstrated a better robustness than

the KF for WSN, it was designed under the condition that

all of the sensors measure the same state at the same time.

In [24], the UFIR structure has been developed for consensus

on estimates, but the consensus factor was obtained through

a previous analysis and without a mathematical background.

In [33], a distributed UFIR (dUFIR) filter has been developed
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and tested over WSN for a rapid maneuvering object to show

a better performance than the KF and H∞ filter.

Let us notice that in real life the whether monitoring often

suffers from missing or false data and uncertain noise. The

issue is illustrated in Fig 1, where the real temperature data

are taken from a whether station. In the first 300 samples, one
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Fig. 1. Missing data and uncertain (colored) noise in temperature measure-
ment data taken from [34].

watches for noisy measurements with missing data and around

k = 400, the sensor generates incorrect measurement of −1C.

The issue of missing data can be addressed using the KF and

UFIR approaches. In [35], an extended KF was modified with

this aim and in [25] a UFIR filter was developed, proving to be

more robust in uncertain noise environments. For WSN, a KF

was developed in [36] to address intermittent observations and,

in [37], a UFIR filter developed under delayed and missing

data. A version of the dUFIR filter with a prediction option

was developed and tested in [38] to provide a better robustness.

However, the data reconstruction capabilities of the algorithm
were not shown under the missing data.

Consider dynamics of a quantity Q measured over a dis-

tributed WSN and represent it with the following discrete K-

states space equations,

xk = Fkxk−1 +Bkwk , (1)

ȳ
(i)
k = H

(i)
k (Fkxk−1) , (2)

y
(i)
k = γk(H

(i)
k xk + v

(i)
k ) + (1− γk)ȳ

(i)
k , (3)

yk = Hkxx + vk , (4)

where xk ∈ R
K , uk ∈ R

M , Fk ∈ R
K×K , Ek ∈ R

K×M ,

and Bk ∈ R
K×L. The ith, i ∈ [1, n], is a part of the WSN

regarded as an undirected graph G = (V, E), where each vertex

v(i) ∈ V is a node and each link is an edge of a set E , for

i ∈ I = {1, . . . , n} and n = |V| with J inclusive neighbors.

Each node measures xk by y
(i)
k ∈ R

p, p 6 K, with

H
(i)
k ∈ R

p×K . Local data y
(i)
k are united in the observa-

tion vector yk = [ y
(i)
k

T

. . . y
(J)
k

T

]T ∈ R
Jp with Hk =

[H
(i)
k

T

. . . H
(J)
k

T

]T ∈ R
Jp×K . Noise vectors wk ∈ R

L and

vk = [ v
(1)
k

T

. . . v
(n)
k

T

]T ∈ R
Jp are zero mean, not obliga-

torily white Gaussian, uncorrelated, and with the covariances

Qk = E{wkw
T
k } ∈ R

L×L, Rk = diag[R
(1)
k

T

. . . R
(n)
k

T

]T ∈

R
Jp×Jp, and R

(i)
k = E{v

(i)
k v

(i)T

k }. A binary variable γk serves

as an indicator of whether a measurement exist (γk = 1) or

not (γk = 0), in which case the measurement prediction ȳ
(i)
k

(2) is used by substituting xk−1 with the estimate.

To obtain optimum estimates and achieve a consensus on

estimates, we formulate the distributed estimate as

x̂c
k = x̂k + λ

opt
k Σk , (5)

where the centralized and individual estimates, x̂k and x̂
(i)
k

respectively, are obtained through

x̂k = Km,kYm,k , (6)

x̂
(i)
k = K

(i)
m,kY

(i)
m,k (7)

and Σk =
J
∑

j

(x̂
(j)
k − x̂

(i)
k ) is a consensus protocol that

minimizes the disagreement between the first-order neighbors

[17]. A consensus factor λ
opt
k is chosen such that the root

mean squared error (RMSE) is minimized by

λ
opt
k = argmin

λk

{trP (λk)} (8)

with P (λk) = E{(x − x̂ic)(x − x̂ic)T } as the relevant error

covariance.

To determine gains Km,k and K
(i)
m,k, we express the model

equations (1)–(4) in the extended state space form over horizon

N as described in [24], [39],

Xm,k = Am,kxm +Dm,kWm,k , (9)

Ym,k = Cm,kxm +Mm,kWm,k + Vm,k , (10)

Y
(i)
m,k = C

(i)
m,kxm +M

(i)
m,kWm,k + V

(i)
m,k , (11)

where Xm,k =
[

xT
m xT

m+1 . . . xT
k

]T
,

Ym,k =
[

yTm yTm+1 . . . yTk
]T

, Wm,k =
[

wT
m wT

m+1 . . . wT
k

]T
, Vm,k =

[

vTm vTm+1 . . . vTk
]T

,

Y
(i)
m,k =

[

y
(i)T

m y
(i)T

m+1 . . . y
(i)T

k

]T

, V
(i)
m,k =

[

v
(i)T

m v
(i)T

m+1 . . . v
(i)T

k

]T

, and the extended matrices

are

Am,k = [ I FT
m+1 . . . (F

m+1
k )T ]T , (12)

Dm,k =















Bm 0 . . . 0 0
Fm+1Bm Bm+1 . . . 0 0

...
...

. . .
...

...

Fm+1
k−1 Bm Fm+2

k−1 Bm+1 . . . Bk−1 0

Fm+1
k Bm Fm+2

k Bm+1 . . . FkBk−1 Bk















,

(13)

Cm,k = C̄m,kAm,k, Mm,k = C̄m,kDm,k, C
(i)
m,k = C̄

(i)
m,kAm,k,

M
(i)
m,k = C̄

(i)
m,kDm,k, where

C̄m,k = diag(Hm Hm+1 . . . Hk ) , (14)

C̄
(i)
m,k = diag(H(i)

m H
(i)
m+1 . . . H

(i)
k ) , (15)

Fg
r =







FrFr−1 . . . Fg , g < r + 1
I , g = r + 1
0 , g > r + 1

. (16)

2. Dufir Filter for Wsn Under 
Missing Data 

2.1. Predictive Distributed UFIR Filter 

2.2. Batch Distributed UFIR Filter Design 

WSEAS TRANSACTIONS on SIGNAL PROCESSING 

DOI: 10.37394/232014.2020.16.20

Miguel Vazquez-Olguin, Yuriy S. Shmaliy, 

Oscar Ibarra-Manzano, Sandra Marquez-Figueroa

E-ISSN: 2224-3488 186 Volume 16, 2020



Referring to [24], equation (5) can now be rewritten as

x̂c
k = Km,kYm,k+Jλ

opt
k Km,kYm,k−Jλ

opt
k K

(i)
m,kY

(i)
m,k . (17)

Since we are interested in a robust UFIR filter that ignores

the initial values, the unbiasedness condition must hold for the

distributed, centralized and individual estimates,

E{x̂c
k} = E{x̂k} = E{x̂

(i)
k } = E{xk} (18)

where

xk = Fm+1
k xm + D̄m,kWm,k (19)

with D̄m,k = [Fm+1
k Bm Fm+2

k Bm+1 . . . FkBk−1 Bk]. The

corresponding gains are defined by

Km,k = GkC
T
m,k , (20)

K
(i)
m,k = G

(i)
k C

(i)T

m,k , (21)

where Gk = (CT
m,kCm,k)

−1 and G
(i)
k = (C

(i)T

m,kC
(i)
m,k)

−1.

In real world applications, the nodes of the WSN may be

unable to implement equation (17) due to large-dimension

matrices and operations involved into the limited memory

resources of the smart sensors. Therefore, below we develop

an iterative form of (17) which fits better with the WSNs

resources.

The final expression of (8) is obtained by following [38].

The batch form of λ
opt
k is

λ
opt
k =−

1

J
(Km,kR̄m,kK

T
m,k −GkG

(i)−1

k K
(i)
m,k

× R̄
(i)
m,kK

(i)T

m,k )(Km,kR̄m,kK
T
m,k − 2GkG

(i)−1

k

×K
(i)
m,kR̄

(i)
m,kK

(i)T

m,k +K
(i)
m,kR̄

(i)
m,kK

(i)T

m,k )
−1 . (22)

where

R̄m,k = E{vm,kv
T
m,k} = diag(Rm . . . Rk) ,

R̄
(i)
m,k = E{v

(i)
m,kv

(i)T

m,k } = diag(R(i)
m . . . R

(i)
k ) ,

R̃
(i)
m,k = E{vm,kv

(i)T

m,k } = diag(R̃(i)
m . . . R̃

(i)
k ) .

If, for some particular application, the network and the process

dynamics are both time invariant, λ
opt
k is also time invariant,

to mean that equation (22) can be computed beforehand and

embedded into the nodes.

An iterative algorithm for the centralized estimates x̂k can

be derived following the procedure described in [39], including

a variable l that starts at l = k − N +K + 1 and ending in

l = k. The recursions are given by

Gl = [HT
l Hl + (AlGl−1A

T
l )

−1]−1 , (23)

x̂l = Alx̂l−1 , (24)

x̂l = x̂−

l +GlH
T
l (yl −Hlx̂

−

l ) . (25)

The initial values Gl−1 and x̂l−1 are computed at s = k −
N +K in batch forms as

Gs = (CT
m,sCm,s)

−1 , (26)

x̂c
s = GsC

T
m,sYm,s . (27)

The individual estimates x̂
(i)
k are provided by

G
(i)
l = [H

(i)T

l H
(i)
l + (AlG

(i)
l−1A

T
l )

−1]−1 , (28)

x̂
(i)−

l = Alx̂
(i)
l−1 , (29)

x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l ) (30)

with the initial values

G(i)
s = (C(i)T

m,s C
(i)
m,s)

−1 , (31)

x̂(i)
s = G(i)

s C(i)T

m,s Y
(i)
m,s . (32)

A pseudo code of the designed iterative dUFIR algorithm

with consensus on estimates is listed as Algorithm 1.

Algorithm 1: Iterative dUFIR Filtering Algorithm

Data: yk, R
(i)
k , Rk, λ

opt
k

Result: x̂k

1 begin

2 for k = N − 1 : ∞ do

3 m = k −N + 1, s = m+K − 1;

4 Gs = (HT
m,sHm,s)

−1;

5 G
(i)
s = (H

(i)T

m,sH
(i)
m,s)−1;

6 if γk = 0 then

7 y
(j)
k = H

(j)
k Fkx̂

(j)
k−1;

8 end if

9 x̃s = GsH
T
m,sYm,s;

10 x̃
(i)
s = G

(i)
s H

(i)T

m,s Y
(i)
m,s;

11 for l = s+ 1 : k do

12 x̂−

l = Flx̂l−1;

13 x̂
(i)−

l = Flx̂
(i)
l−1;

14 Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1;

15 G
(i)
l = [H

(i)T

l H
(i)
l + (FlG

(i)
l−1F

T
l )−1]−1;

16 x̂l = x̂−

l +GlH
T
l (yl −Hlx̂

−

l );

17 x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l );
18 end for

19 x̂c
k = (I + Jλ

opt
k )x̃k − Jλ

opt
k x̃

(i)
k ;

20 end for

21 end

22 † First data y0, y1,..., yN−1 must be available.

We consider temperature measurements provided in 2007

at the Grand-St-Bernard pass at 2400 m between Switzerland

and Italy as part of the Sensorscope project, which aims to

develop a large-scale distributed environmental measurement

system centered on a wireless sensor network. Measurements

were recorded individually by low-cost sensing stations and

2.3. Optimum λk

2.4. Iterative Distributed UFIR filter 

3. Applications to Environment Monitoring 
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are available from [34]. In this work, we consider only the

stations shown in Fig. 4 and Fig. 7, depicted as red dots.

Measurements were performed each two seconds during two

months. For each sensor, the average of the measurements was

computed each hour along with the error variance. In Fig 2, we

show the resulting standard deviations for each sensor, where

stations 2 and 9 demonstrate large temperature deviations for

unknown reasons.
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Fig. 2. Temperature standard deviations observed in the stations.

The individual one-hour average temperature measurements

are sketched in Fig. 3. Here, we observe similar behaviors

in all stations. However, some stations present large gaps of

information and a very unstable performance. It is important

to notice that stations 2, 20 and 9 also conduct incorrect

measurements of −1◦C that cannot be regarded as missing

data.
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Fig. 3. Temperature measurements conducted by 11 stations.

To apply the dUFIR algorithm, we use model (1)–(4) with

the following matrices [25],

A =

[

1 τ

0 1

]

, H(i) =
[

1 0
]

,

where τ = 1 and B = I . As stated by (22), to compute

λ
opt
k we need individual variances of the sensors, but this

information is not available in the data set. Furthermore, it is

unclear if all sensors are of the same manufacturer. In Fig 2, we

observe that the standard deviation behave similarly for eleven

sensors and we take the average and determine an estimated

variance for each sensor. The results are shown in table I and

the optimum horizon was measured to be Nopt = 37 [27].

To test the algorithm, we simulate a WSN for a maximum

link distance of 350 m. The resulting topology is sketched

in Fig. 4. The estimation results by Algorithm 1 are shown
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Fig. 4. Simulated WSN connections between sensing stations for a link
distance of 350m.

in Fig. 5 for three sensing stations. Here, noise reduction is

observed in all stations and yet large gaps are bridged over in

the 2nd station (Fig. 5 b) and 9th station (Fig. 5 c).

A key difference between the 9th and 2nd stations is

observed in the range of 540 < k < 780. While measurements

are completely lost in the 2nd station, a false measurement of

−1◦C is recorded in the 9th station. The algorithm employs

the prediction option only when missing data are detected and

it considers a wrong measurements of −1◦C as true. However,

due to the distributive nature of the dUFIR filter, the estimates

of the 9th station do not get away from the remaining stations.

This can be seen in Fig. 6a, where we show estimates of all of

the stations. In Fig. 6b, the estimate variances are considered

as an indicator of disagreements between the nodes. It can

also be seen that much less disagreements are observed when

the measurements are correct.

Performance of the dUFIR Algorithm 1 depends on the

amount of redundant available information. When the number

of the links decreases, the disagreements and the estimation

errors increase. In Fig. 7, we consider the same base stations

but with a restriction link range of 200 m. In this case, a

smaller number of the links are available and the 9th station

3.1. Tuning dUFIR Algorithm 

3.2. Network with 350 m Link Range 

3.3. Network with 200 m Link Range 
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TABLE I
INDIVIDUAL VARIANCES FOR EACH STATION.

Station 10 11 12 13 14 15 2 20 3 8 9

Variance 0.13 0.17 0.18 0.2 0.13 0.17 0.15 0.15 0.16 0.11 0.19

a)

b)

c)
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Fig. 5. Temperature measurements and estimates: a) 10th station, b) 9th
station, and c) 2nd station.
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Fig. 6. Temperature measurements and estimates: a) all stations and b)
disagreement between estimates.
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Fig. 8. Temperature measurements and estimates: a) all stations and b)
disagreement between the estimates.

has a single link rather than three links in the previous case

(Fig 4). Due to a lack of the redundant information and an

inability to process wrong data as missing, estimates by the 9th

station deviate from those by other stations (Fig 8a). Here, one

can also see the effect of the 9th station on the performance

of the 13th station. Under such circumstances, the consensus

and prediction capabilities of the Algorithm 1 are not able

to compensate incorrect data in the 9th station that results in

growing disagreement between the estimates (Fig. 8b).
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In this paper, we have applied the developed dUFIR filtering

algorithm to real temperature measurements with missing

and incorrect data. We have discussed the dUFIR filter per-

formance in two feasible scenarios of different numbers of

the links and confirmed that under the allowed minimum

three links the dUFIR filter produces acceptable estimates and

provides a good data reconstruction. Given that the dUFIR

filter does not require any information about the process

statistics, it thus better suites the real life WSN architectures,

where the noise statistics are either unavailable or known very

approximately. This can be stated as a great advantage against

the KF-based algorithms.
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