
Distributed Uniform Sampling in Unstructured

Peer-to-Peer Networks
Asad Awan Ronaldo A. Ferreira Suresh Jagannathan Ananth Grama

Department of Computer Sciences – Purdue University

West Lafayette, IN 47907, USA

E-mail:{awan,rf,suresh,ayg}@cs.purdue.edu

Abstract— Uniform sampling in networks is at the core of a
wide variety of randomized algorithms. Random sampling can be
performed by modeling the system as an undirected graph with
associated transition probabilities and defining a corresponding
Markov chain (MC). A random walk of prescribed minimum length,
performed on this graph, yields a stationary distribution, and the
corresponding random sample. This sample, however, is not uni-
form when network nodes have a non-uniform degree distribution.
This poses a significant practical challenge since typical large scale
real-world unstructured networks tend to have non-uniform degree
distributions, e.g., power-law degree distribution in unstructured
peer-to-peer networks.

In this paper, we present a distributed algorithm that enables
efficient uniform sampling in large unstructured non-uniform net-
works. Specifically, we prescribe necessary conditions for uniform
sampling in such networks and present distributed algorithms
that satisfy these requirements. We empirically evaluate the per-
formance of our algorithm in comparison to known algorithms.
The performance parameters include computational complexity,
length of random walk, and uniformity of the sampling. Simulation
results support our claims of performance improvements due to our
algorithm.

I. INTRODUCTION

Uniform sampling in networks is an important substrate that

provides the basis for a variety of randomized algorithms. The

emergence of peer-to-peer (P2P) networks, where frequent

node arrivals and departures make it difficult to maintain

accurate network state, provides strong motivation for this

class of algorithms. Randomized algorithms tradeoff state

maintenance (with associated guarantees on performance) with

a stateless model (with probabilistic performance guarantees),

achieving lower overheads. Examples of distributed algorithms

that use uniform sampling are:

• Search, replication, and routing in unstructured peer-to-

peer networks [18], [9], [6].

• Resource management such as load balancing [13], [1]

and duplicate elimination and controlled replication [7].

• Distributed data collection, communication quorums, and

decentralized rendezvous services [20], [1].

• Classical problems including leader election [24] and

Byzantine agreement [15].

This work has been supported by NSF grants STI-5011078, CCF-0444285,
DMR-0427540, and CCF-0325227.

This paper addresses the critical problem of efficient dis-

tributed uniform sampling via random walks in large unstruc-

tured networks.

The uniform sampling problem can be formally defined as

follows:

Definition 1.1 (Uniform random sampling): An algorithm

samples uniformly at random from a set of nodes in a

connected network if and only if it selects a node i belonging

to the network with probability 1/n, where n is the number of

nodes in the network.

Notice that this problem is analogous to the problem of select-

ing a number uniformly at random in a given range. A trivial

approach to this problem would be to collect the entire set of

node identifiers at each node and select uniformly at random

from this set. This simple approach, however, does not work

for our target applications because the overhead of frequently

updating system state at each node (if at all possible) would

be extremely high. An alternate approach to this problem

relies on the notion of a random walk on the peer-to-peer

overlay network (which is an undirected graph). Starting from

an initial node, a random walk (of predetermined length)

transitions through a sequence of intermediate nodes with

probabilities defined for each link and ends at a destination

node. The likelihood of terminating a random walk at any node

determines whether the walk is a uniform sampling random

walk or not. Formally, we define a uniform sampling random

walk as follows:

Definition 1.2 (Uniform sampling using random walk): A

random walk of a given length samples uniformly at random

from a set of nodes of a connected network if and only if

the walk terminates at a node i belonging to the network

with probability 1/n, where n is the number of nodes in the

network.

A number of researchers have studied properties of random

walks. Lovasz [17] provides an excellent survey on these

techniques. The simplest random walk algorithm selects an

outgoing edge at every node with equal probability, e.g., if a

node has degree four, each of the edges is traversed with a

probability 0.25. It can be shown that the probability distri-

bution associated with target nodes becomes stationary after a

finite length random walk (also known as the mixing time for

the corresponding Markov chain). This length can be shown to

approach logn/(1−SLEM), for a network of n nodes. Here,

SLEM (second largest eigenvalue modulus) corresponds to a

network topology parameter. These concepts are discussed in

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 9e-05

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o
n

Node (Sorted by degree)

Simple RW, Length=30logn

Fig. 1. Random sampling using a simple random walk on a

power-law graph. The resulting sample is strongly correlated

with the degree distribution.

greater detail in Section II. The main drawback of the simple

random walk is that, while it reaches a stationary distribution,

this distribution is not uniform for typical networks. In fact,

it can be shown that the probability of terminating a random

walk at a node is directly proportional to the degree of the

node. In the context of conventional networks, where node

degrees can vary significantly, this does not correspond to an

acceptable uniform sample. In Figure 1, we plot the probability

of terminating at a node for a power-law graph with 50,000

nodes. Note that the variability in sampling is close to an order

of magnitude!

Many applications of random walks are extremely sensitive

to the quality of uniform sampling. Biases in sampling may

result in poor performance of randomized algorithms, con-

gestion in underlying networks, or sub-optimal utilization of

storage resources. This provides the underlying motivation for

our work. In addition to the quality of uniform sampling, a key

performance parameter is the length of the random walk. Note

that the length of the random walk determines the number of

steps required to select a node uniformly at random. Therefore,

it is highly desirable to minimize the length of the walk.

Consequently, we focus on random walk techniques that allow

uniform sampling while minimizing the length of the walk.

The paper makes the following specific contributions:

• It identifies sufficient and necessary conditions on a

transition matrix for a uniform sampling random walk

over the corresponding network.

• It presents an algorithm, called Random Weight Dis-

tribution (RWD), for achieving these conditions while

reducing the length of the random walk.

• It provides detailed empirical evaluation of the perfor-

mance characteristics of RWD in comparison to ex-

isting methods, namely Metropolis-Hastings (MH) and

Maximum-Degree (MD).

The structure of this paper is as follows – in Section II,

we provide the theoretical foundations of uniform sampling

via random walks. In Section III, we present necessary and

sufficient conditions for uniform sampling. We also present

two known algorithms and our new algorithm, which enables

uniform sampling in irregular networks. In Section IV we

empirically evaluate the performance of our algorithm, and

present a simulation based comparison of the presented algo-

rithms. In Section V, we present related work, followed by

conclusions, in Section VI.

II. BACKGROUND

In this section, we provide necessary background on random

sampling using random walks in unstructured networks. The

abstraction of random walks as Markov chains is used to set

up the notation and concepts that are used in the rest of the

paper. Using a Markov chain model, we show, based on known

results, that a simple random walk cannot achieve uniform

sampling unless each node in the network has an identical

number of connections. We also discuss various parameters

that determine the length of the random walk required to

achieve a stationary sample distribution.

Let G(V,E) be a simple connected undirected graph repre-

senting a distributed system with |V | = n nodes and |E| = m

links. The degree, or number of links, of a node i, 1 ≤ i ≤ n, is

given by di and dmax = max1≤i≤n{di} denotes the maximum

degree. The set of neighbors of a node i is given by Γ(i),
where edge (i, j) ∈ E,∀ j ∈ Γ(i). The n× n adjacency matrix

of G is given by A = {ai j}, where 1 ≤ i, j ≤ n, ai j = 1 if

the edge (i, j) ∈ E, and ai j = 0 otherwise. The corresponding

n×n transition probability matrix is given by P = {pi j}, where

0 ≤ pi j ≤ 1 is the probability of moving from node i to node

j in one message hop (or time step). Furthermore, it is easy

to see that ∑ j pi j should equal 1, which implies that P is a

row-stochastic matrix.

Random walks: A simple random walk on G is a sequence

of nodes visited at each step of the walk. The transition from

node i to its neighbor is governed by the transition probability

matrix P, where ∀ j ∈ Γ(i), pi j = 1/di; pi j = 0, ∀ j /∈ Γ(i). The

sequence of nodes can be denoted as {Xt ,Xt+1, ...}, where Xt =
i implies that at step t the walk is at node i.

If we consider nodes in G as states in a finite state space,

then the random walk represents a discrete-time stochastic

process, {Xt}t≥0. For this stochastic process we have,

Pr(Xt+1 = j|X0 = i0, ...,Xt−1 = it−1,Xt = i)

= Pr(Xt+1 = j|Xt = i) = pi j

(1)

Equation (1) simply implies that during a random walk the

probability of moving to node j from node i in one step only

depends on node i and is independent of t. This is known as

the memoryless or Markov property. A random walk can be

conveniently modeled as a Markov chain, more specifically

a homogeneous Markov chain, since the right hand side of

Equation (1) is independent of t. Such a Markov chain has

the following properties: it is irreducible if the graph G is

connected and is aperiodic if G is aperiodic. A graph G is

aperiodic if the greatest common divisor of the length of all

cycles in the graph is 1. In particular, an undirected aperiodic

graph cannot be bipartite, which is a reasonable assumption

for real networks where connections are established randomly.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

Equation (1) can be written more generally as π(t +1)T =
π(t)T P, where π(t)T is the transpose of the vector of prob-

ability distribution of states at time t. Let, Pt be the t-step

probability transition matrix. Then, we have:

π(t)T = π(0)T Pt . (2)

It is well known that an irreducible and aperiodic Markov

chain has a stationary distribution πT = πT P, and πT = πT Pt

follows. It is easy to show ([22], page 132) that πi, the

component corresponding to node i, 1 ≤ i ≤ n, is πi = di/2m.

Eigenvalues of P: From πT = πT P, we see that π is a

left eigenvector of P with eigenvalue 1. Also, P1 = 1 (P

is row-stochastic, and 1 is a vector with all entries equal

to 1) implies that 1 is a right eigenvector with eigenvalue

1. It follows that P∞ = 1πT . This implies that a very long

walk converges to the stationary distribution π irrespective

of the initial distribution. Since P is a non-negative primitive

n×n matrix (i.e., irreducible and aperiodic), from basic linear

algebra, we also know that P has n distinct eigenvalues 1 =
λ1 > |λ2| ≥ · · · ≥ |λn| [5].

Random sampling: The above results indicate that a long

enough random walk converges to a random sample irrespec-

tive of where the walk started. Thus, random walk is a good

candidate for random sampling in a network. However, we

also know that the resulting sample distribution is dependent

on the degree of the node: πi = di/2m. This last result implies

that the random sample is uniform (πuni f orm = (1/n)1) only if

the graph G is regular (i.e., the degrees of all nodes are equal).

Since typical large scale real-world unstructured networks

tend to have non-uniform degree distributions (e.g., power-

law degree distribution of unstructured P2P networks [28],

and irregular degrees due to irregular placement of sensors in

a sensor network [8]), uniform sampling in practical scenarios

poses a significant challenge.

Length of walk for random sampling: The sample distri-

bution at step t of the walk depends on Pt , which in turn

depends on the eigenstructure of P. From the Perron-Frobenius

theorem, we have

Pt = λt
1v1uT

1 +O(tm2−1|λ2|
t),

where v1 is the right eigenvector corresponding to eigenvalue

λ1 and u1 is the left eigenvector, and m2 is the algebraic

multiplicity of λ2 (see, [5] Chapter 6). Rewriting the above

equation, we have

Pt = P∞ +O(tm2−1|λ2|
t).

These results simply imply that

Pt = 1πT +O(tm2−1|λ2|
t). (3)

As |λ2| < 1, when t is large, |λ2|
t ≈ 0. Therefore, the smaller

the second largest eigenvalue modulus (SLEM)1, the faster the

convergence to stationary distribution. As a result, a walk of

smaller length is required for random sampling. The number

of steps required to converge to the stationary distribution is

called the mixing time of the Markov chain.

1Intuitively, a small SLEM is an indicator of good global connectivity of
the network.

III. DISTRIBUTED UNIFORM SAMPLING ALGORITHMS

In this section, we describe necessary and sufficient condi-

tions for uniform sampling using random walks. We present

known distributed algorithms, which change transition proba-

bilities between neighboring nodes such that a random walk

of a given minimum length can be used for uniform sam-

pling. One of the shortcomings of these algorithms is that

the minimum length of the random walk required to reach

stationary distribution is significant. We present a new dis-

tributed algorithm, called Random Weight Distribution (RWD)

that allows uniform sampling, while shortening the required

minimum length of the random walk.

A. Uniform Sampling via Random Walks

As mentioned in Section II, a random walk of a given

minimum length converges to a stationary distribution π. If the

stationary distribution πuni f orm is such that πuni f orm = (1/n)1,
the random walk will terminate at any node in the network

with equal probability (c.f. Definition 1.2).

To achieve a uniform stationary distribution in an irregular

graph, we need to modify its probability transition matrix.

Recall that, if the graph is not regular, the probability transition

matrix introduced for simple random walks will not suffice.

As we shall see, it is straightforward to define probability

transition matrices that have a stationary distribution πuni f orm.

Let P be a probability transition matrix of a Markov

chain, then πT
uni f orm = πT

uni f ormP. Rewriting this as (1/n)1T =

(1/n)1T P, shows that 1T = 1T P for such a matrix. This

means that the sum of column vectors of P is equal to 1

(because, ∑i(1.Pi j) = 1) for each column j of the matrix, i.e.,

P is column stochastic. A probability transition matrix that

is column stochastic in addition to being row stochastic is

called doubly stochastic. Therefore, we can state that a doubly

stochastic matrix has a stationary distribution πuni f orm. The

following observation will be used to prove that the algorithms

presented next result in uniform sampling random walks.

Observation 3.1: Symmetric probability transition matrices

(PT = P) are doubly stochastic. P is row stochastic because it

is a probability transition matrix, and P is column stochastic

by virtue of symmetry. Therefore, a Markov chain defined

over a symmetric probability transition matrix has a stationary

distribution πuni f orm.

1) Random Walk Implementation: Random walks are easy

to implement in real-world distributed systems. In its simplest

form, the walk can be implemented as a message that is

forwarded from one node to another node selected based on the

transition probability matrix. Such a message should contain a

time-to-live (TTL) field that is set by the origin node to be the

length of the walk. The TTL is decremented at every transition

(which may include self-transitions, depending on the set up

of the probability transition matrix). A node that receives the

random walk message with T T L = 0 is selected as the random

node.

B. Existing Distributed Random Walk Algorithms

We present two known algorithms that modify the transition

probabilities between nodes to produce a probability transition

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

matrix that has a stationary distribution πuni f orm. A random

walk on a network with node transition probabilities defined

using these algorithms will, therefore, result in a uniform

sample. The algorithms are traditionally presented in the

context of Markov chains, for example in [4], however, their

adaptations to a distributed network are straightforward.

1) Maximum-Degree Algorithm (MD): In the distributed

adaptation of this algorithm, each node can perform a local

computation to set up its transition probabilities. The main

problem with the algorithm is that it requires the knowledge

of the maximum degree, dmax, among all nodes in the network.

The maximum degree is a dynamic and global parameter of

the network, and its dissemination to all nodes at run-time in

a large distributed system is difficult. The algorithm sets up

the transition matrix Pmd as follows:

pmd
i j =



⎨

⎩

1/dmax if i �= j and j ∈ Γ(i)
1−di/dmax if i = j

0 otherwise.

Note that the self-transition probability maintains the doubly-

stochastic property of the matrix. In this algorithm, pmd
i j =

pmd
ji = 1/dmax, therefore, the resulting probability transition

matrix is symmetric and doubly stochastic. It follows from

Observation 3.1 that a random walk using these transition

probabilities will select a node uniformly at random if the

random walk is long enough.

2) Metropolis-Hastings Algorithm (MH): This algorithm is

an adaptation for uniform sampling of the classical Metropolis-

Hastings algorithm [21], [10], [4]. In this distributed algorithm

each node i sends a message, stating its degree, di, to each of

its neighbors j ∈ Γ(i). Once this information is received from

each of the neighbors, the transition probability matrix Pmh is

set up as follows:

pmh
i j =



⎨

⎩

1/max(di,d j) if i �= j and j ∈ Γ(i)
1−∑ j∈Γ(i)(pmh

i j) if i = j

0 otherwise.

As in the previous algorithm, self-transition probability main-

tains the row-stochastic property. Clearly, Pmh is symmetric

and hence will enable uniform sampling via random walks

(Observation 3.1).

3) Performance: Conditioned on the non-uniformity of

the number of links per node (i.e., high variance in degree

distribution), both MD and MH might have high self-transition

probabilities for nodes with low degrees. Comparing MD and

MH algorithms, we can also observe that the self-transition

probability of the MH algorithm is lower bounded by the self-

transition probability of the MD algorithm.

We show below, the impact of self-transition probability on

the second largest eigenvalue. Recall that, given a network of

size n, the larger the 1−SLEM the shorter is the length of the

random walk required to reach stationarity. Also note that as

long as the network is acyclic the second largest eigenvalue

is also the second largest eigenvalue modulus.

Let P be the transition probability matrix and λ2 be the

second largest eigenvalue. Then, we have ([5]):

1−λ2(P) = in f

{

ξP,π(x,x)

Varπ(x)
|Varπ(x) �= 0

}

.

Here, the Dirichlet form ξP,π(x,x) and variance Varπ(x) are

defined as follows, given uniform stationary distribution (i.e.,

πi = n, ∀i):

ξP,π(x,x) =
1

2n
∑
i, j

(xi − x j)
2Pi, j,

Varπ(x) =
1

2n2 ∑
i, j

(xi − x j).

It can be clearly noted that the higher the Pi, j, where i �= j, the

higher will be the value of 1−λ2(P). As the transition proba-

bilities for each node should add up to 1, the above formulation

implies that the higher the self-transition probability the longer

is the length of the walk. In the case of MD and MH algorithms

we note that self-transition probabilities are high. Also note

that if self-transition probabilities are high, the random walk

is biased towards low degree nodes (as they have the highest

Pi,i). This bias is certainly not desired because often times low

degree has a correlation with low importance of the node in

the network (e.g., in P2P systems low degree nodes generally

stay in the network for smaller periods of time and have

fewer resources than higher degree nodes). Based on these

foundations, our approach to realizing an efficient random

walk involves maximizing inter-node transition probability, as

is described in the next section.

C. Random Weight Distribution Algorithm

In this section, we present our distributed algorithm, referred

to as the Random Weight Distribution (RWD) algorithm. RWD

is a completely decentralized algorithm that sets up transition

probabilities in a connected network to enable efficient uni-

form sampling via random walks.

The algorithm proceeds as follows. In the initialization

phase each node locally sets transitions probability as:

prwd
i j =



⎨

⎩

1/ρ if i �= j and j ∈ Γ(i), where ρ ≥ dmax

1−di/ρ if i = j

0 otherwise.

Here, ρ is a static system parameter with the constraint

that it should be greater than dmax. This parameter is static

because we can sufficiently overestimate dmax knowing sys-

tem properties (e.g., popular P2P clients have a maximum

connection limit [16]). Furthermore, as shown subsequently,

overestimating dmax does not affect the performance of our

algorithm. Note that this phase results in high self-transition

probabilities for low-degree node. Also note that the resulting

transition probability matrix is symmetric.

After the initialization is complete, each node attempts to

distribute its self-transition probability randomly and symmet-

rically to its neighbors. The algorithm runs at each node in the

network. In the following sections the terminology weight of a

node refers to the self-transition probability of the node at any

given time during the execution of the algorithm. At a node i,

the algorithm terminates when either the weight of the node

becomes zero or the weight of all nodes j ∈ Γ(i) becomes

zero. The pseudo code for the complete RWD algorithm is

shown in Figure 2. We assume that the interactions between

a given pair of nodes are executed atomically.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

At each node i:

� Initialization

1. N := Γ(i)
2. δ := Quantum

3. pii = 1−di/ρ
4. foreach j ∈ Γ(i) repeat

5. pi j = 1/ρ
6. end foreach

� Random Weight Distribution

1. while pii ≥ δ and N �= {∅}
2. j := random(N)
3. reply := send mesg(j, INCREASE)
4. if reply = ACK then

5. pi j := pi j +δ
6. pii := pii −δ
7. else

8. N := N − j

9. end if

10. end while

� Receive Message Handler

1. mesg := receive()
2. j := get sender(mesg)
3. type := get type(mesg)
2. if pii ≥ δ and type = INCREASE then

3. pi j := pi j +δ
4. pii := pii −δ
5. reply := ACK

6. else

7. reply := NACK

8. end if

Fig. 2. The Random Weight Distribution algorithm.

1) Discussion: A node i keeps a set N of its neighbors that

have non-zero weights (self-transitions). It selects a neighbor j

with equal probability from this set and sends j an INCREASE

message. Node j, on receiving the INCREASE message, checks

to see if its weight is greater than or equal to δ, δ < 1 is a

global quantum parameter. If the weight of j is greater than

or equal to δ, it accepts the INCREASE request, reduces its

self-transition probability by δ, and increases the transition

probability of the (j, i) link by δ. Node i is notified of the

success by an ACK message. On receiving the ACK message,

node i reduces its self-transition probability and increases the

transition probability on the (i, j) link. Observe that after this

operation the sums of transition probabilities at nodes i and

j remain equal to one. Conversely, if the weight of node j is

less than δ, it replies with a NACK message. On receiving the

NACK message, node i removes node j from its set N, and does

not change its weight. Note that both operations preserve the

symmetry of the transition probability on the link between i

and j. The following remark follows:

Remark 3.1: Each step in the RWD algorithm maintains

symmetry in the global transition probability matrix Prwd .

Therefore, the transition probability matrix remains symmetric

when the algorithm terminates. Using Observation 3.1, we

see that a random walk based on Prwd will have stationary

distribution πuni f orm.

The termination condition of our algorithm, restated here,

is important because it implies that the self-transitions are

removed maximally: The algorithm terminates if either the

self-transition probability of the node becomes zero, i.e., it

has no more weight to distribute, or if the set N becomes

empty, i.e., the weight of all of its neighbors is zero.

2) Bound on the number of setup messages: : At each

step in the algorithm the weight is reduced by δ. This

parameter determines how many INCREASE messages it takes

for the algorithm to reach the final transition probabilities. The

following lemma provides a bound on the number of messages.

Lemma 3.1: The number of INCREASE messages is strictly

less than (1− (di/ρ))/δ+di.

Proof: Note that pii < 1 because for the node to be connected

there must be a non-zero transition probability to a neighboring

node. Therefore, the number of INCREASE messages per node

is strictly less than 1/δ + di. Note that di is added because

INCREASE messages which result in NACK messages also need

to be counted. There can be at most di such messages. Now

using the knowledge that pii = 1 − di/ρ, we can see that

the number of INCREASE messages is strictly less than (1−
(di/ρ))/δ + di. The inequality is strict because the algorithm

stops when either a node reduces its weight to zero, in which

case there will be no NACKs and the di term can be removed, or

the node is not able to reduce its weight to zero and receives

NACKs from all its neighbors. In the second case the number of

messages is exactly (1− (di/ρ)− pii)/δ+di, which is smaller

than the given inequality. Observe that the total number of

reply messages (ACK+NACK) is the same as the number of

INCREASE messages.

Note that setting the value of quantum to be as low as

0.025 results in strictly less than 40+di INCREASE messages

and a corresponding number of ACK+NACK messages per node.

The magnitude of this value depends on the degree of the

node, i.e., the number of nodes it is connected with. Here,

the following optimization can be applied. We know that the

neighboring nodes in real-world distributed systems frequently

exchange messages, e.g., search queries, heartbeats, and ping-

pong messages [16]. All messages from a node are always

routed through its neighbors. By reserving a few bits in each

message, the communication required for our algorithm can

be piggybacked on existing messages. This minimizes the

network overhead of our algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we study the performance of the Random

Weight Distribution (RWD) algorithm in comparison with

the distributed adaptations of the Maximum-Degree (MD)

and Metropolis-Hastings (MH) algorithms. First, using exact

calculation of SLEM (second-largest eigenvalue modulus) and

t-step transition probability matrix evaluation (using matrix

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

multiplication), we quantify that Prwd has a lower SLEM and

hence shorter mixing time compared to Pmh and Pmd . We

also characterize the performance of the RWD algorithm, with

varying values of system parameters δ (increment quantum)

and ρ (inverse of initial edge transition weight). Next, we

perform random walks using transition probability matrices

computed by the three algorithms. In the rest of this section,

we abbreviate the previous statement as random walks using

RWD, MH, or MD algorithm. By varying the length of the

random walks, we show that our algorithm achieves uniform

sampling with low standard deviation, while using walks of

significantly smaller lengths. Finally, we analyze the network

messages (i.e., non-self transition component of the walks)

generated by each of the algorithms when they attain uniform

stationary distributions. These experimental results show that

our algorithm also outperforms MH and MD in terms of the

number of messages sent in the network.

A. Experimental Setup

Our experiments are based on power-law topologies. In a

power-law random graph the node degree distribution follows

a power-law distribution, i.e., if the nodes are sorted in

descending order of degree then the ith node has degree D/iα,

where D is a constant. Such graphs are often used in the

literature to model large non-uniform network topologies. For

example, it is believed that P2P networks conform to such

power-law topologies [29]. The parameter α = 0.8 is used

for our results, unless stated otherwise. This value of α is

popularly used in evaluation studies of P2P networks [18]. The

topology is constructed by first selecting the degree of each

node using the power-law distribution and then connecting

them randomly. Motivated by real-world systems [16], we

limit the maximum degree of any node in the network to 100.

In typical P2P clients, such as Limewire [16], such restrictions

are often applied to restrict the number of connections of a

given node in order to limit the load on the node. For our

simulations, we use 50,000 nodes in the network. To study the

properties of the transition probability matrix, which involves

the exact calculation via matrix multiplication of SLEM (µ)

and number of steps to convergence, we use a topology with

5,000 nodes.

B. Convergence to Stationarity

In this section, we present our study of the characterization

of the transition probability matrices, Prwd , Pmh, and Pmd .

For this experiment, we use a 5,000 node power-law random

graph represented as an adjacency matrix. We generate the

transition probability matrix by running the three algorithms

on the same adjacency matrix. For each of the transition

probability matrices, we evaluate the second largest eigenvalue

using Matlab. The length of a walk t required for P to converge

to the uniform stationary distribution, |Pt − (1/n)1×1T | ≤ ε,

is evaluated using matrix multiplication. We generate mul-

tiple transition probability matrices using our algorithm by:

(1) varying the quantum as 0.001,0.005,0.01,0.05, and 0.1,

while keeping ρ constant at 200; and (2) varying the value of

ρ as 150,170,200,250, and 300, while keeping the quantum

constant at 0.025. Observe that all values of ρ are higher

than the maximum degree of the network. As indicated by

the following results, after a certain threshold, higher values

of ρ do not affect the length of the random walk.

In Figure 3, we show the plots of the resulting eigenvalues

and steps to convergence when using different values of

the quantum. The values observed for the MD and MH

algorithm are also plotted as horizontal lines. We see that our

algorithm performs better, for all but one value of quantum, in

terms of the required number of steps to reach convergence.

Furthermore, note that the trend for the required length of

walk follows the trend of the SLEM plot. The value of

quantum for which our algorithm is outperformed by the

other two algorithms is 0.1. The reason for this behavior is

that our algorithm is greedy. Thus, a high quantum prevents

the algorithm from optimally minimizing the self-transition

probabilities (as an analogy, recall that greedy approach is

appropriate for fractional-knapsack problem, but fails for 0/1-

knapsack problem). Secondly, because the value of quantum is

fixed at 0.1, self-transition probabilities, which are just slightly

lower than 0.1 remain as such. Note that by choosing quantum

as 0.1 versus, for example, 0.025 saves at most 30 messages

per node irrespective of ρ. This is a small saving, specially if

the messages are piggybacked on existing system messages,

in which case the saving is negligible. Thus, a quantum set to

0.025 represents a good trade-off between number of messages

and efficiency of the algorithm.

In Figure 4, we plot the results for our algorithm using

different values of ρ. The values observed for the MD and MH

algorithms are also plotted as horizontal lines. We see that our

algorithm performs better for all values of ρ. However, ρ = 150

yields poorer performance compared to that with higher values

of ρ. Note that it is required that ρ > dmax. If the value of ρ is

close to dmax the algorithm has less degree of freedom in the

weight distribution phase. Therefore, simply overestimating ρ
is a good heuristic for using our algorithm.

C. Length of Random Walks and Uniform Sampling

In this section, we evaluate the effect of the length of

random walks and the resulting uniformity of the samples.

A practical hindrance for uniform sampling via random walks

is that it is difficult to estimate the minimum required TTL

or the length of the walk. As stated in [17], the random walk

length necessary to achieve stationary distribution has order

O(logn). However, this bound is dependent on the SLEM of

the network. As shown in Section IV-B, our algorithm achieves

a lower SLEM and hence requires a shorter walk. For a 50,000

node network, we evaluate the constant associated with the

required length of the walk for the transition probability matrix

generated using RWD, MH and MD algorithms. In [12],

Horowitz and Malkhi propose an algorithm to estimate the

network size using only local information. This algorithm

provides a good estimation of the logarithm of the size of

the network. Convergence to stationarity can be found using

coupling methods [23]. Once, the length of the random walk

of a given random graph is known, it is not expected to change

drastically for stable network topologies.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

S
L

E
M

Quantum Size

Quantum Size vs SLEM (alpha = 0.8, n = 5000, rho = 200)

RWD
MH
MD

 0

 100

 200

 300

 400

 500

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

L
en

g
th

 o
f

R
W

Quantum Size

Quantum Size vs Length (alpha = 0.8, n = 5000, rho = 200)

RWD
MH
MD

Fig. 3. Characterization of Prwd with varying values of

quantum, while ρ is fixed at 200. The values corresponding to

the MH and MD algorithms are also shown.

We evaluate the uniformity of the samples by running

random walks of increasing length for each algorithm. As a

measure of uniformity, we calculate the standard deviation

from the expected probability (1/n = 1/50000 = 0.00002)

(c.f. Definition 1.2). As a comparison, we also present cor-

responding results for a uniform sample generated using the

C function drand48(). We use random walks of lengths 3×
logn,5× logn,7× logn,10× logn,15× logn, and 20× logn.

The number of different random walks is set to 50n. These

results are shown in Figure 5 as the standard deviation vs. the

length of the walk for each algorithm (note that the y-axis has

a log scale.) The main observation is that the RWD algorithm

has a low standard deviation even with a random walk of

length 3 × logn. On the other hand, MD has a very high

deviation followed by MH. MH takes double the length of the

walk required for RWD to converge to stationarity. Similarly,

MD requires a walk that is four times longer. Note that once

the results converge to a stationary distribution, subsequent

hops do not produce a better result.

We now present, in detail, the random sampling achieved by

each of the walks using plots of selection probability for each

of the nodes in the network. These plots give an important

insight into why a longer walk is required for MH and MD

algorithms. Figure 6 shows the random sampling achieved

by each of RWD, MH, and MD. It is evident by the graphs

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 140 160 180 200 220 240 260 280 300

S
L

E
M

rho

rho vs SLEM (alpha = 0.8, n = 5000, quantum = 0.025)

RWD
MH
MD

 0

 100

 200

 300

 400

 500

 140 160 180 200 220 240 260 280 300

L
en

g
th

 o
f

R
W

rho

rho vs Length (alpha = 0.8, n = 5000, quantum = 0.025)

RWD
MH
MD

Fig. 4. Characterization of Prwd with varying values of ρ,

while quantum is fixed at 0.025. The values corresponding to

the MH and MD algorithms are also shown.

that some nodes have an extremely high probability of being

selected by MH and MD. In fact these nodes are low degree

nodes, and hence have high self-transitions. As stated earlier,

a bias to low degree nodes during random sampling is not

desirable. On the other hand RWD is clearly better, with lower

variability. Note that the scales of the plots are different.

Figure 7 shows results for random walk lengths of 5× logn.

We can see that RWD provides a uniform sample with very

low variability. This variability is very close to the variability

observed for drand48(). We also notice that MH and MD

samples are still biased towards nodes with high weights (self-

transitions).

In Figure 8, we show the uniform sampling with low

variability achieved by MH and MD, which requires 10× logn

and 20× logn steps, respectively.

D. Number of Network Messages

While the minimum length of the walk, i.e., the TTL

necessary for uniform sampling is a good indicator of the

performance of RWD in a distributed setting, it is not obvious

that it directly implies low network message overhead in

comparison with the other two algorithms. Recall that in a

random walk, TTL is decremented even if a self-transition is

made. Thus, we evaluate the network message overhead of the

random walks that achieve uniform sampling for RWD, MH,

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o

n

Node

RWD, Length=3logn

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o

n

Node

MH, Length=3logn

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o

n

Node

MD, Length=3logn

Fig. 6. Random sampling achieved with a walk of length 3× logn for RWD, MH and MD.

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o

n

Node

RWD, Length=5logn

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o

n

Node

MH, Length=5logn

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o

n

Node

MD, Length=5logn

Fig. 7. Random sampling with a walk of length 5× logn for RWD, MH and MD. Note that RWD achieves a random sample

with probability close to uniform (πuni f orm = 1/50000).

 1e-06

 1e-05

 0.0001

 0 5 10 15 20

S
ta

n
d
ar

d
 D

ev
ia

ti
o
n

Length of RW

uniform
RWD

MH
MD

Fig. 5. The standard deviation vs length of walk for RWD, MH

and MD over a 50,000 node graph. The standard deviation of

exact uniform sampling is also provided as a reference.

and MD. The results are summarized in Table I. We note that

RWD performs 33% better than MD and 25.5% better than

MH algorithm.

We repeat the above experiments using network topologies

with varying levels of non-uniformity. This is done by chang-

ing the value of α to 0.7, 0.9, 1.1, and 1.2. The results follow

the same trend as discussed above.

As a final remark, the experimental results show the efficacy

of RWD algorithm in terms of its non-biased sampling, shorter

length of the walk, and fewer network messages required for

sampling.

Algorithm Network Msgs

RWD 0.67

MH 0.89

MD 1.00

TABLE I

NETWORK MESSAGES (NORMALIZED WITH RESPECT TO

MD) CORRESPONDING TO RANDOM WALK LENGTHS USED

FOR UNIFORM SAMPLING.

V. RELATED WORK

Structured peer-to-peer (P2P) networks [30], [31], [26],

[25], [19] provide strong guarantees for search by imposing

a well defined topology on the network. Peers and objects

are assigned hash-based identifiers and objects are assigned

to peers based on these identifiers. Objects in the network

are found by performing efficient routing protocols that lead

to the peer responsible for storing pointers to the objects.

Node identifiers, generated via a hash function, are assumed

to be uniformly distributed in the identifier space. A simple

algorithm for choosing a random peer in these networks would

be to select a random number u in the identifier space and route

to the node responsible for u. King and Saia [14] show that

this simple algorithm leads to biased samples. To solve this

problem, they propose a more robust algorithm that always

chooses each peer with probability exactly 1/n and that has

O(logn) expected message complexity.

In [9], Gkantsidis et al. perform an extensive study of

random walks in P2P networks. The authors explore the

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o
n

Node

MH, Length=10logn

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 0 10000 20000 30000 40000 50000

P
ro

b
ab

il
it

y
 o

f
S

el
ec

ti
o
n

Node

MD, Length=20logn

Fig. 8. MH converges to uniform distribution when the length

of the walk is 10× logn and MD converges when the length

is 20× logn. As a comparison, note that RWD converges to

uniform distribution when the length of the random walk is

only 5× logn.

performance of random walks for searching and uniform

sampling. For searching, the authors show that random walks

perform better than flooding when the length of the random

walk is the same as the number of peers covered by flooding

with bounded TTL. Another important result in the paper

is that it is possible to simulate the selection of a uniform

sample of elements by performing a random walk of required

length on a particular class of network topologies. The results

presented, however, are based on regular expander graphs. This

is in contrast with our work, since our focus is on general

(non-uniform) topologies, including power-law graphs.

Boyd et al. [4] formulate the problem of finding the fastest

mixing Markov chain on a graph as a convex optimization. The

problem is expressed as a semidefinite program (SDP), and

the solution of the SDP yields the global optimal probabilities

in the transition matrix. They also show that the Metropolis-

Hasting and the maximum degree algorithms are substantially

slower than the optimum. While this technique is useful for

finding the optimal mixing time, it cannot be directly used in

a distributed setting because of the overheads associated with

solving the SDP.

Uniform sampling has also been investigated in different

large-scale applications. In [11], for example, Henzinger et al.

propose a method for sampling web pages with near uniform

distribution. The algorithm uses a random walk with the edge

weights changed according to the page rank of the pages. Page

rank is a measure of the popularity of a web page and is

used by search engines to rank search results. The sample

produced by the algorithm is not truly uniform and appears

biased toward web pages with high numbers of inbound

links. Sampling from web pages, however, poses additional

challenges when compared with sampling in a network, since

the connections form a directed graph with a nonsymmetric

adjacency matrix. In [2] the authors utilize random walks for

approximating aggregate queries about web pages. Similarly,

in [27] methods for uniformly sampling pages from the web

are presented.

In [3], Bash et al. investigate the problem of approximating

a uniform random sample in sensor networks. Their algorithm

uses geographic routing and Voronoi diagrams. While this

approach is applicable to sensor networks, it does not directly

apply to unstructured peer-to-peer networks, where geographic

routing is not feasible.

VI. CONCLUSION

In this paper, we address key challenges in uniform sam-

pling using random walks. Based on a Markov chain ab-

straction, we describe the necessary conditions for uniform

sampling in non-uniform networks and examine two known

algorithms that result in uniform random sampling via random

walks. We present a new algorithm called Random Weight

Distribution (RWD), which results in uniform sampling while

minimizing the length of the random walk. Using a com-

prehensive simulation study, we support claims of superior

performance of our algorithm compared to existing algorithms,

using parameters most relevant in a distributed setting.

ACKNOWLEDGEMENT

The second author has been partially funded by CNPq and

UFMS, Brazil.

REFERENCES

[1] A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama. Unstructured
Peer-to-Peer Networks for Sharing Processor Cycles. In Parallel

Computing (to apear). 2005.

[2] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz.
Approximating Aggregate Queries about Web Pages via Random Walks.
In VLDB ’00: Proceedings of the 26th International Conference on Very

Large Data Bases, pages 535–544, San Francisco, CA, USA, 2000.

[3] B. A. Bash, J. W. Byers, and J. Considine. Approximately uniform
random sampling in sensor networks. In Proceedings of the International

Workshop on Data Management for Sensor Networks (DMSN 2004),
Toronto, Canada, August 2004.

[4] S. Boyd, P. Diaconis, and L. Xiao. Fastest Mixing Markov Chain on a
Graph. SIAM Review, problems and techniques section, 46(4):667–689,
December 2004.

[5] P. Brémaud. Markov Chains Gibs Fields, Monte Carlo Simulation, and

Queues. Springer-Verlag, 1999.

[6] R. A. Ferreira, M. K. Ramanathan, A. Awan, A. Grama, and S. Jagan-
nathan. Search with Probabilistic Guarantees in Unstructured Peer-to-
Peer Networks. In Proceedings of Fifth IEEE International Conference

on Peer-to-Peer Computing (P2P 2005), Konstanz, Germany, August
2005.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

9

[7] R. A. Ferreira, M. K. Ramanathan, A. Grama, and S. Jagannathan. Ran-
domized Protocols for Duplicate Elimination in Unstructured Networks.
In Proceedings of Fifth IEEE International Conference on Peer-to-Peer

Computing (P2P 2005), Konstanz, Germany, August 2005.
[8] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin. Coping with

irregular spatio-temporal sampling in sensor networks. In Proceedings

of HotNets-II, Cambridge, MA, USA, November 2003.
[9] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer

networks. In Proceedings of the 23rd IEEE Infocom 2004, Hong Kong,
March 2004.

[10] W. Hastings. Monte carlo sampling methods using Markov chains and
their applications. Biometrika, 57:97–109, 1970.

[11] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On
near-uniform URL sampling. In Proceedings of the 9th international

World Wide Web conference on Computer networks : the international

journal of computer and telecommunications networking, pages 295–
308, Amsterdam, Netherlands, May 2000.

[12] K. Horowitz and D. Malkhi. Estimating network size from local
information. The Information Processing Letters journal, 88(5):237–
243, December 2003.

[13] D. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms
for Peer-to-Peer Systems. In Proceedings of the Fourth International

Workshop on Peer-to-Peer Systems (IPTPS 2004), San Diego, CA, USA,
February 2004.

[14] V. King and J. Saia. Choosing a Random Peer. In Proceedings of the

23rd Annual ACM Symposium on Principles of Distributed Computing

(PODC’04), pages 125 – 130, Newfoundland, Canada, July 2004.
[15] S. Lewis and J. Saia. Scalable Byzantine Agreement. Technical Report

Technical Report, University of New Mexico, 2004.
[16] Limewire. http://www.limewire.com/english/content/glossary.shtml.
[17] L. Lovasz. Random walks on graphs: A survey. Combinatorics, Paul

Erdos is Eighty, 2:1–46, 1993.
[18] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication

in unstructured peer-to-peer networks. In ACM ICS’02 Conference, New
York, NY, USA, June 2002.

[19] D. Malkhi, M. Naor, and et al. Viceroy: A Scalable and Dynamic Emula-
tion of the Butterfly. In Proceedings of the 21st Annual ACM Symposium

on Principles of Distributed Computing (PODC’02), Monterey, CA, July
2002.

[20] D. Malkhi, M. Reiter, and R. Wright. Probabilistic quorum systems.
In Proceedings of the 16th Annual ACM Symposium on Principles of

Distributed Computing (PODC’97), pages 267–273, Santa Barbara, CA,
USA, August 1997.

[21] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equations of state calculations byfast computing machines. J. Chem.

Phys., 21:1087–101, 1953.
[22] R. Motwani and P. Raghavan. Cambridge University Press, 1995.
[23] J. Propp and D. Wilson. Exact sampling with coupled markov chains

and applications to statistical mechanics. In Proceedings of the seventh

international conference on Random structures and algorithms, pages
223–252, Atlanta, GA, USA, 1996. John Wiley & Sons, Inc.

[24] M. K. Ramanathan, R. A. Ferreira, S. Jagannathan, and A. Grama.
Randomized Leader Election. Technical Report CSD-TR-04-028, De-
pratment of Computer Sciences, Purdue University, October 2004.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proceedings of the 2001

ACM SIGCOMM, pages 247–254, San Diego, CA, USA, August 2001.
[26] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object

Location and Routing for Large-Scale Peer-to-Peer Systems. In Pro-

ceedings of the 2001 ACM SIGCOMM, pages 247–254, San Diego, CA,
USA, August 2001.

[27] P. Rusmevichientong, D. M. Pennock, S. Lawrence, and C. L. Giles.
Methods for Sampling Pages Uniformly from the World Wide Web. In
Proceedings of the AAAI Fall Symposium on Using Uncertainty Within

Computation, pages 121–128, Cape Cod, MA, USA, November 2001.
[28] S. Saroiu, K. P. Gummadi, and S. D. Gribble. Measuring and Analyzing

the Characteristics of Napster and Gnutella Hosts. Multimedia Systems,
9(2):170 – 184, 2003.

[29] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. In Proceedings of Multimedia

Computing and Networking 2002 (MMCN ’02), San Jose, CA, USA,
January 2002.

[30] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. In Proceedings of the 2001 ACM SIGCOMM, pages 149–160,
San Diego, CA, USA, August 2001.

[31] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An Infras-
tructure for Fault-Tolerant Wide-Area Location and Routing. Technical
Report UCB/CSD-0101141, UC Berkeley, Computer Science Division,
April 2001.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10

