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1. Introduction

1.1. Video compression

Since last decade we are witnessing a transformation in the way we communicate.
Modern communication media allow for intense long-distance exchanges between large
numbers of people. In this environment digital media have become an integral part
of our lifestyle. At the same time, the use of digital media has become mobile, this
follows the general trend of ubiquitous computing, where information processing is
thoroughly integrated into everyday devices and activities. Key to this abundant,
mobile media experience are modern compression algorithms, especially connectivity
and video compression.

It is evident that visual information is of vital importance if people are to perceive,
recognize and understand the surrounding world. However, video involves a huge
amount of data. The purpose of video compression is to create a compact representation
of video data. As compressed video data requires less storage space and smaller
transmission bandwidth, video compression is an integral part of most video capture,
storage, processing, communication, and display systems. Especially bandwidth is often
a limiting factor for many applications. An example that also touches the boundaries
of storage capacity nowadays is uncompressed High Definition Television (HDTV).
To store an uncompressed 2 hours HTDV movie would require 80 Blu-Ray discs. In
practice only one such Blu-Ray disc is needed to store a high quality HDTV movie.
This simple example shows the importance of video compression as enabling technology.

But compression comes at a cost. First, an increase in compression decreases the visual
quality. Second, the complexity of the algorithms increases with better compression.
Furthermore, the best compression is also dependent on device, location and application.
Still, a user should not be required to deal with complex configurations and choices
regarding video and compression format. That is why there are video compression
standards, able to deal with a multitude of different application scenarios. These
standards, also referred to as video coding standards, are widely used and evolving
continuously.
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1.2. State of the art conventional video coding standards

Throughout the development of video coding standards a rule of thumb emerged. It
indicates that a new video coding standard should yield a significant decrease in bit rate
to be worthwhile. For instance, the latest video coding standard H.264 Advanced Video
Codec (AVC) offers a bit rate saving of around 50% with respect to the previous Motion
Picture Experts Group Video Coding 2 (MPEG-2) standard [102, 101]. However, these
lower bit rates required to obtain the same quality are not without cost. The complexity
of both encoder and decoder increase, usually by a factor larger than two. Encoder and
decoder complexity are also not identical. The encoder is generally one to two orders of
magnitude more complex than the decoder. A lightweight decoder is important when
focusing on the main application these video codecs are designed for, the broadcasting
case. In that case the movie is encoded once and then decoded by millions of users.
Naturally, the main focus is on keeping the decoder complexity as low as possible.

While the main focus for the average user was solely video consumption in the past
we observe a shift towards also producing (and sharing) video. That is not done with
high end professional cameras but constrained media devices. For these devices the
complexity is an important limitation. For that reason the codecs also include profiles
to deal with these new requirements. For H.264 the Constrained Baseline Profile
(CBP) has the lowest complexity. CBP is used primarily for low-cost applications. It
is used widely in videoconferencing and mobile applications [107]. Meeting the real
time constraint however is still difficult and requires heavy optimizations on the system,
the algorithm and the instruction level [96]. Various algorithmic and implementation
techniques are necessary to optimize such an H.264 video encoder [78].

The by far most complex part of the H.264 encoder is the Motion Estimation (ME), which
occupies up to 70% of total encoding complexity [55]. To reduce this significant encoding
complexity many techniques for motion estimation have been proposed in literature to
replace the exhaustive full search. More efficient search methods include for instance the
popular Three-Step Search (3SS) and the Diamond Search (DS) [55]. Another option is
to ignore the motion and apply image coding like for instance JPEG [81]. To ignore the
motion however incurrs a major loss in compression performance.

1.3. Low complexity video encoding with distributed video

coding

This thesis deals with an alternative method of ignoring the motion at the encoder -
potentially without losing any compression performance. In Distributed Video Coding
(DVC) the motion estimation and its complexity is shifted from the encoder to the
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decoder. The focus is on a lightweight encoder, suited for a constrained device. In
contrast, the decoder is assumed to be resource abundant. An example would be to
capture video on a constrained device and later decode on the home computer without
any time constraints. Another application example employs a transcoder. Transcoding
is the direct digital-to-digital conversion of one encoding format to another. Such a
transcoder approach would offer both lightweight encoding and lightweight decoding
for the user. The computationally complex operations, i.e. DVC decoding and H.264
encoding, would be tackled by a powerful server in the network.

It is not the purpose of DVC to replace H.264 by providing better compression. In
fact, the best DVC can be expected to do is to perform comparably. In conventional
video coding, both the encoder and the decoder have access to the predicted frame. It
is available at the encoder since both, motion estimation and Motion Compensation
(MC), are executed there. The decoder needs to execute only the compensation step
since it receives motion information from the encoder. Next to this motion information,
the motion vectors, the decoder also receives the residual difference between the original
frame and its prediction. With this information the decoder is able to reconstruct the
original frame.

In DVC the information is distributed and only the decoder has access to the predicted
frame. Consequently, the encoder can only send information about the original frame
itself. Both encoding and decoding have to be redesigned to achieve a comparable
compression efficiency to conventional video coding while maintaining a low encoder
complexity.

1.4. Outline

In this thesis we focus on the inherent performance limitations of DVC and focus on
three challenges. These challenges will be introduced in Chapter 2. They will then be
analyzed separately in Chapter 3 (channel coding), Chapter 4 (motion estimation) and
Chapter 5 (quantization). Since the challenges are not orthogonal it is also necessary
to analyze possible interaction between them. Chapter 6 analyzes possible interactions
between the channel coding and the motion estimation. Chapter 7 then compares
how our latest DVC system compares against conventional video codecs in terms of
compression efficiency and encoder complexity. Finally, Chapter 8 finishes the thesis
with a discussion and an outlook into the future of DVC.

Chapter 2 focuses on the challenges in distributed video coding. First, we in-
troduce the underlying theory. This will help to understand the challenges better.
We then look at practical approaches from literature. After introducing the general
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components of such a DVC system we show challenges compared to state of art
conventional video coding. Finally we give an overview of how the challenges are
addressed in literature.

Chapter 3 focuses on our approach to one of the challenges, the channel coding,
which replaces the source coding from conventional video coding. First we compare the
two most widely used channel coders, turbo and Low Density Parity Check (LDPC)
codes. After motivating our choice we continue with looking at LDPC exclusively. Since
these codes rely heavily on an accurate channel model for the Virtual Dependency
Channel (VDC) we then investigate which model is best suited for video data. The
data itself can be encoded in two ways. First the symbols themselves can be encoded
and secondly it is possible to split the symbol values into bit planes and to encode these.
In the final part of this chapter we compare the two methods. To conclude we ascertain
the channel coding choices we will adhere to for the rest of the thesis.

Chapter 4 focuses on our approach to another challenge, the motion estimation
at the decoder. First we establish the differences between conventional ME at the
encoder and ME at the decoder. These include availability of reference data, motion
vectors processing and cost to send motion vectors. In this context, we also address
the limitations of block-based motion estimation. For motion compensation at the
decoder we look at two approaches, motion compensated inter- and extrapolation. We
present our proposed extrapolation scheme, using three frames. Finally, we evaluate
the prediction quality and the system Rate Distortion (RD) performance of inter- and
extrapolation.

Chapter 5 shifts the focus from Mean Squared Error (MSE)/Peak Signal to
Noise Ratio (PSNR) to the system RD performance. As such it is necessary to take
spatial correlation into account. A spatially decorrelating transform like the Discrete
Cosine Transform (DCT) increases the RD performance significantly. At the same
time there is a new challenge with respect to DVC, namely how to quantize the DCT
coefficients. We investigate three different quantization methods. Further, we propose a
method to improve the motion estimation by using decoded coefficients to improve the
remaining ones. The chapters up to this one focused on a single challenge or component
separately. However, it is beneficial to not look at them as stand alone processes.

Chapter 6 then focuses on how to improve the VDC modeling by using motion
information. The first observation made is that the VDC is non-stationary. We show
that it is highly beneficial to take this non-stationarity into account and use distinct
VDC models. We investigate a classification oracle and its sensitivity towards misclassifi-
cation. We then focus on how to acquire helpful information from the motion estimation
to make a reliable classification. We find it very difficult to achieve reliable classification.
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Chapter 7 focuses on a comparison of the proposed DVC components and a
state of the art video codec. We analyze how the methods derived in Chapter 3, 4 and
5 compare to their counterparts in H.263. We discuss the reason for observed RD per-
formance differences. Finally, we look at the trade-off between low complexity encoding
and RD performance for both conventional video coding and DVC. This benchmark is
not limited to only our DVC codec but includes the DISCOVER codec [1] from literature.

Chapter 8 concludes the thesis with a discussion on the findings made with re-
spect to DVC. We summarize and evaluate these findings. Furthermore we provide final
considerations and an outlook into the near future with respect to DVC.

1.5. Contributions

The work presented in this thesis offers insights into different aspects of DVC.
With regard to channel coding we analyze which state of the art channel codes and
models are most suited to DVC. Furthermore we propose a sophisticated bit plane-based
coding scheme. This scheme is able to achieve a performance similar to the more
complex symbol-based coding. Our contributions have been published in [63, 98, 97]

With regard to the motion estimation we show the utility of true motion estimation in
combination with motion compensated extrapolation. We observe superiority over the
still widely used motion compensated interpolation. For that reason we focus on im-
proving an extrapolative approach. Our contributions have been published in [27, 24, 25]

With regard to the quantization of transform coefficients we show it is a more difficult
problem to solve in DVC than in conventional coding. Furthermore it is a problem that
seems to be under-investigated in the DVC community, even though it has a noticeable
impact on the RD performance. We propose a method to improve the predicted frame
by accessing partially decoded data. Our contributions have been published in [26, 100]

One of the main contributions is an investigation into how to best combine the motion
estimation and the channel decoding. In this context we focus on how to handle the
non-stationarity of the prediction errors. First, we show the performance for manually
assigning classes and a classification oracle. Secondly, we show the performance when
using information from the motion estimation. Finally, we show the improvement when
extracting motion information during decoding. Our contributions have been published
in [63, 24, 80]

We provide a benchmark of DVC against conventional video coding. Next to quantifying
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performance differences we look at ways to bring the performance of DVC closer to the
one of conventional video coding. We focus on the complexity of the proposed solution
and the trade-off between RD performance and encoder complexity. Our contributions
on the performance differences have been published in [28].
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2. Challenges in distributed video coding1

In this chapter, we give an overview of a number of distributed video coding approaches
from academic publications. First, we give a short introduction to the underlying theory
to DVC, the Slepian-Wolf [86] (SW) and the Wyner-Ziv [112] (WZ) theorems. Then,
we move from the theory to the application in video coding. After presenting two
initial DVC approaches from Stanford and Berkeley and focusing on their differences,
we present two state of the art approaches from literature. Finally, we extend the scope
to the challenges and research questions considered in this thesis. These are channel
coding, quantization and motion estimation at the decoder. Of the following three
chapters of this thesis, each one will focus on our approach to a particular challenge.

2.1. Underlying theory: Slepian-Wolf and Wyner-Ziv

The Slepian-Wolf theorem addresses the independent encoding of two statistically depen-
dent discrete random sequences, X and Y , which are each stochastically independently
and identically distributed (i.i.d.). The independent encoding is radically different from
the joint encoding as used in the largely deployed predictive coding solutions. The
Slepian-Wolf theorem states that for joint decoding, the minimum rate to independently
encode the two (correlated) sources is the same as the minimum rate for joint encod-
ing, with an arbitrarily small error probability. The rate bounds for a vanishing error
probability considering two i.i.d. sources are

RX ≥ H(X | Y )

RY ≥ H(Y | X) (2.1)

RX +RY ≥ H(X,Y )

which corresponds to the area identified in Figure 2.1. These bounds imply that the
minimum coding rate is the same as for joint encoding (i.e., the joint entropy), provided
that the individual rates for both sources are higher than the respective conditional
entropies [71]. Since the reconstruction of the two sequences, X and Y , is perfect
(neglecting the arbitrarily small probability of decoding error), Slepian-Wolf coding is
generally referred to as lossless Distributed Source Coding (DSC) [71].

1A substantial part of this chapter is based on a book chapter written by Pereira et al. [71]
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Figure 2.1.: Rate boundaries defined by Slepian-Wolf theorem [86].

The dependency between X and Y , computed at the decoder, is modeled as a virtual
dependency channel. As X and Y are not identical, the VDC can be modeled by
transition probabilities P (X|Y ). Since error-free transmission is desired, the data
(virtually) transmitted over the VDC should be protected by error correcting codes.
Indeed, in all proposals for DSC the information bits sent over the channel at rate
RX ≥ H(X | Y ) are viewed as (the parity bits of) error-correcting codes. For that
reason, DSC relies heavily on efficient channel codes [99]. The rationale is, the more X
and Y are correlated, the less errors need to be corrected, i.e. more compression can be
achieved. Channel capacity-achieving codes have been shown to reach the performance
corresponding to the desired corner points of the Slepian-Wolf region [71] in Figure 2.1.

The work of Slepian and Wolf was later extended to the lossy case by Wyner and
Ziv. The Wyner-Ziv theorem deals with lossy compression of source X associated
with the availability of the Y source at the decoder, but not at the encoder. This is
a particular case of distributed source coding and known as asymmetric coding. The
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asymmetry is between Y , which is independently encoded and decoded, and X, which
is independently encoded, but conditionally decoded. In these conditions, Y is known
as side information [71].

The Wyner-Ziv theorem then states that when performing independent encoding with
side information under certain conditions there is no coding efficiency loss with respect
to the case when joint encoding is performed, even if the coding process is lossy. The
conditions are that X and Y are jointly Gaussian, memoryless sequences and a MSE
distortion measure is considered. Later, it was shown that only the X − Y difference
needs to be Gaussian [72].

Together, the Slepian-Wolf and the Wyner-Ziv theorems suggest that it is possible to
compress two statistically dependent signals in a distributed way (separate encoding,
joint decoding), approaching the coding efficiency of conventional predictive coding
schemes (joint encoding and decoding). Based on these theorems, a new video coding
paradigm, known as distributed video coding, has emerged. DVC does not rely on joint
encoding of source X and side information Y . Thus, when applied to video coding,
the side information needs only be present at the decoder. Not requiring the side
information at the encoder typically results in the absence of the temporal prediction
loop and hence reducing encoder complexity [71].

2.2. Video coding based on the DSC principles

In the context of video coding, the sequence X becomes the reference video frame and
side information Y the motion compensated prediction. The two video frames are tem-
porally correlated. In case of joint encoding, which implies conventional video coding,
the correlation is exploited by the temporal prediction loop, i.e. motion estimation and
compensation, at the encoder. Consequently, both encoder and decoder have access to
the side information Y . Figure 2.2 shows such a predictive video coding system. The
simplified block diagram emphasizes the conceptual differences with distributed video
coding, depicted in Figure 2.3. A DVC coder can be thought to consist of a quantizer
followed by a Slepian-Wolf encoder, as illustrated in Figure 2.3.

The quantization of original frameX yields quantized frame Q. The VDC in DVC is then
modeled by the transition probabilities P (Q|Y ). After successful decoding, the obtained
frame Q̂ should be identical to Q, barring a vanishing error probability. In contrast, the
reconstructed frame X̂ suffers from possible quantization errors and is not identical toX.

In DVC, as opposed to conventional video coding, the temporal prediction loop is
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Predictive Encoder Conventional Decoder

Quantizer
Interframe
Encoder

X Q Interframe
Decoder Reconstr.

Q̂ X̂

YY
ME/MC MC

Figure 2.2.: Conceptual block diagram of the basic conventional video coding system.

Wyner-Ziv Encoder Wyner-Ziv Decoder

Quantizer
Slepian-Wolf

Encoder

X Q Slepian-Wolf
Decoder Reconstr.

Q̂ X̂

YVDC: P (Q|Y )
ME/MC

Figure 2.3.: Conceptual block diagram of the basic DVC system.

only present at the decoder. Hence, the encoder in DVC does not have access to Y .
Without access to Y , the Slepian-Wolf encoder only takes the reference frame X into
account, i.e. it only compresses information that is contained within X. This kind
of video compression is called intra frame coding. In case of separate encoding and
decoding, intra frame coding is inherently less efficient than inter frame coding, as only
the latter exploits temporal correlation. In case of DVC the temporal correlation is to
be exploited by means of the joint decoding of X and Y .

To enable joint decoding, the DVC decoder has to generate the side information Y
without access to the reference frame X. For the purpose of motion estimation and
compensation, the DVC decoder only has access to already decoded frames. In contrast,
in conventional coding the motion estimation has access to the current frame. Since
the derived motion information is sent to the decoder, both encoder and decoder have
access to identical side information Y .
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The inherent characteristics, i.e. intra frame encoding and motion estimation without
access to the reference frame, constitute the main differences to conventional video coding
with inter frame encoding. Replacing source coding in conventional coding with channel
coding in DVC also introduces additional constraints to the encoding. For instance,
LDPC codes being fixed-rate codes and only accepting a fixed-length input limits the
flexibility of mode selection [59]. In conventional video coding, different properties of a
video frame can be taken into account by different modes of operations.

2.3. Overview of early DVC systems

Practical design of DVC video codecs started around 2002, following important advances
in channel coding technology, especially error-correcting codes with a capacity close to
the Shannon limit, like turbo and LDPC codes. The first practical DVC video coding
solutions emerged from Stanford University [10, 13, 12] and the University of California,
Berkeley [75, 74]. The Stanford architecture is characterized by block-based coding with
decoder motion estimation [71]; the Berkeley solution is characterized by frame-based
Slepian-Wolf coding, typically using turbo codes, and a feedback channel to perform
rate control at the decoder.

One approach to solve the rate control problem, adopted in the Stanford
Codec [10, 13, 12], relies entirely on the decoder and feedback information. The
decoder determines the optimal encoding rate and sends this information to the
encoder. The encoder remains unchanged [47]. Another way to perform rate control
is to allow some simple rate estimation at the encoder. For example, in the Berkeley
scheme [75, 74], the encoder can store one previous frame to enable rate estimation.

The feedback channel approach from the Stanford WZ video coding solution has two
significant drawbacks. Firstly, it requires the presence of a feedback channel. Secondly,
it requires real time processing and low latency. To circumvent the need for the
feedback channel the encoder needs to handle the rate control problem. As a result,
the encoder needs to trade-off complexity versus accuracy. For the rate control to be
accurate the encoder should perform motion estimation and compensation to get the
side information. In contrast, a rate estimate, based solely on frame difference, will
over-estimate the rate and decrease the RD performance in the majority of cases. For
instance [29] reports a loss of up to 1.2dB between the pure encoder and decoder rate
control solutions. A more complex approach, using machine learning at the encoder [62],
still faces the problem of artifacts due to misclassification.

Both schemes adopt a spatial transform, which enables the codec to exploit the statistical
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Table 2.1.: Functional differences between Stanford and Berkeley DVC systems

Function Stanford [12, 11, 47] Berkeley [75, 74]

encoding strategy frame-based coding block-based coding
rate control decoder rate control encoder rate control
complexity simple encoder smarter, more complex encoder

channel codes sophisticated channel codes simple channel codes
overhead data no auxiliary data hash codes sent by the encoder
error resilience less intrinsically robust higher resilience

dependencies within a frame, thus achieving better RD performance than a pixel domain
scheme [47]. We highlight the functional differences between the two early DVC systems
(Stanford versus Berkeley) [71] in table 2.1.

2.3.1. Stanford DVC

Figure 2.4.: Block diagram of Stanford transform domain DVC video codec [12].

The Stanford video coding architecture was first proposed for the pixel domain [10] and
later extended to the transform domain [12]. The transform domain Stanford DVC
codec, shown in Figure 2.4, works as follows [71]:
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At the encoder

Frame classification The video sequence is divided into WZ frames, that is frames en-
coded by DVC, and key frames. The key frames are intra coded, using for instance
the H.263+ intra or H.264/AVC intra standards. The key frames are periodically
inserted, determining the Group of Pictures (GOP) size. It should be noted that al-
though conventional video coding standards like for instance MPEG-2 are flexible,
typically at most every 15th frame is made into a key frame [111].

Transform A block-based transform, typically a DCT, is applied to each WZ frame. The
DCT coefficients of the entire WZ frame are then grouped together, forming DCT
coefficient bands.

Quantization Each DCT band is uniformly quantized. For a given band, bits of the
quantized symbols are grouped together, forming bit planes, which are then sepa-
rately turbo encoded.

Turbo Encoding The turbo encoding of each DCT band starts with the Most Significant
Bit Plane (MSB). The parity information generated for each bit plane is then stored
in the buffer and sent in chunks upon decoder requests, via the feedback channel.

At the decoder

Side Information Creation The decoder creates the side information for each WZ frame
by performing a motion compensated frame interpolation (or extrapolation) using
the closest already decoded frames.

Correlation Noise Modeling The residual statistics between corresponding DCT coeffi-
cients in the WZ frame and the side information are assumed to be modeled by
a Laplacian distribution whose parameter was estimated using an off-line training
phase.

Turbo Decoding Once the side information DCT coefficients and the residual statistics
for a given DCT coefficient band are known, each bit plane is turbo decoded. The
turbo decoder receives from the encoder successive chunks of parity bits following
the requests made through the feedback channel, until the decoder uses a request
stopping criterion.

Reconstruction After turbo decoding, all the bit planes associated with each DCT band
are grouped together to form the decoded quantized symbol stream. Once all
decoded quantized symbols are obtained, it is possible to reconstruct all the DCT
coefficients with the help of the corresponding high frequency side information
coefficients. That is, if no WZ bits were transmitted, the corresponding DCT
bands of the side information are used.
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Inverse Transform After all DCT bands are reconstructed, an inverse discrete cosine
transform (IDCT) is performed, yielding the decoded WZ frame.

Frame Reordering Finally, to get the decoded video sequence, decoded key frames and
WZ frames are put in the correct order.

2.3.2. Berkeley DVC codec

The DVC approach from Berkeley is known in literature as PRISM - from Power-efficient,
Robust, High-compression, Syndrome-based Multimedia coding [75, 74]. Contrary to
the Stanford codec, which is frame-based, the Berkeley approach is block-based. Each
block is classified into one of several predefined classes depending on its correlation
with the predictor block. Such a predictor can be either a co-located block, or a motion
compensated block [74]. The classification stage decides the coding mode for each block.
The modes are: no coding, traditional intra frame, or syndrome coding. The coding
modes are then transmitted to the decoder as header information.

Since Puri et.al have small block-lengths at their disposal (64 samples for an 8x8 block),
they use the relatively simple Bose-Chaudhuri-Hocquenghem (BCH) block codes [104]
which work well even at reasonably small block-lengths (unlike more sophisticated
channel codes such as LDPC codes [46], and turbo codes [22]). In the context, the
syndrome is the result of a parity check. If the syndrome is an all-zeros vector, a valid
code word has been received. If there are detectable errors, the syndrome will have
some nonzero value [85].

The assumption for blocks that fall in the syndrome coding class is that the most signifi-
cant bits can be inferred from the side information. Thus, only the least significant bits
of the quantized DCT coefficients are syndrome encoded. Within the least significant
bits, the lower part is source coded. The upper part of the least significant bits is coded
using a BCH channel code. In addition, for each block, the encoder sends a 16-bit cyclic
redundancy check (CRC) checksum as a signature of the quantized DCT coefficients.
The checksum is used at the decoder to select the best candidate block from the side
information.

The decoder generates side information candidate blocks, which all correspond to
half-pixel accurate displaced blocks in the reference frame, in a window positioned
around the center of the block to decode. Each of the candidate blocks plays the role
of side information for syndrome decoding. A first step deals with the coset channel
coded bit planes and is performed for each candidate block; the other step deals with
the entropy decoding of the least significant bit planes and is performed only for the
selected block by hash matching. Each candidate block leads to a decoded block, from
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which a hash signature is generated. In order to select the best matching candidate
block, each one is compared with the CRC hash received from the encoder. Candidate
blocks are visited until decoding leads to hash matching.

While mainly the Stanford architecture was later adopted and improved by many re-
search groups, over time some of the differences between the two early WZ video codecs
disappeared.

2.4. Recent approaches in literature

In this section we present two state of the art approaches from literature. The first
approach we consider is the DISCOVER DVC codec [15]. The DISCOVER codec is
probably one of the most RD efficient DVC codecs currently available [71]. The second
approach is based on rateless LDPC codes [50] and incorporates an encoder-based block
classification [59].

2.4.1. DISCOVER Wyner-Ziv video codec

Figure 2.5.: Block diagram of DISCOVER codec [71].

The DISCOVER codec architecture is based on the early Stanford codec, introduced
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in Section 2.3.1. However, there have been many improvements [15]. The DISCOVER
codec as shown in Figure 2.5 provides the following improvements [71]:

1. Optionally, the GOP size can be adapted to the temporal correlation in the se-
quence [17].

2. In addition to the use of Turbo Codes, also LDPC codes are considered.

3. An encoder rate control has been added. In order to limit the use of the feedback
channel, i.e. requests made by the decoder, the encoder estimates an initial number
of bits, sent for each bit plane, before any request is made [15]. The rate should be
underestimated to prevent RD performance losses. The decoder will complement
the rate by making one or more requests over the feedback channel.

4. The side information creation has been improved [17, 31]. The side information is
generated based on block matching using a modified Mean Absolute Difference
(MAD) to regularize the motion vector field. Then, a hierarchical coarse-to-fine
bidirectional motion estimation is performed. Finally, spatial motion smoothing
based on a weighted vector median filter is applied to the obtained motion field to
remove outliers before motion compensation is finally performed [71].

5. The correlation noise modeling is no longer limited to an off-line training phase. The
Laplacian parameter is estimated on-line and at different granularity levels, notably
at band and coefficient level [30].

6. A CRC check has been added. To decide whether or not more bits are needed for
the successful decoding of a certain bit plane, the decoder uses a simple request
stopping criterion. It checks whether all LDPC code parity-check equations are
fulfilled for the decoded (hard decision) codeword. If correct, the decoding of the
next bit plane or band can start, otherwise another request for a chunk of parity
bits has to be made.

The details about the VDC modeling employed in the latest DISCOVER codec can
be found in [30, 71]. After applying the 4x4 DCT transform over the residual frame,
between the two reference frames, each DCT coefficient is classified into one of two
classes [71]. The first class indicates a reliable estimation. The second class corre-
sponds to a block where the residual error is high, which means the side information
generation process failed for that block. This information can help the channel decoder,
since it is possible to give the decoder confidence information about the side information.

The DISCOVER codec is available for download at [1]. Furthermore, [1] also includes a
comprehensive performance evaluation. As indicated in the overview above, the codec
tackles problems like rate control as well as being tuned and optimized. For more details
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regarding the practical issues and the performance we refer the reader to the project
website [1].

2.4.2. Rateless LDPC codec with skip and intra modes

Figure 2.6.: WZ video compression with skip and intra mode selection [59].

DVC using rateless LDPC codes was first introduced in [50] and later extended in [59].
In addition to reducing the storage complexity in comparison to fixed-rate LDPC codes,
rateless LPDC codes allow seamless integration with mode selection. The mode selection
is depicted in Figure 2.6. Next to the three modes for WZ frames, the concept of key
frames is still present. A sequence is coded using the GOP format I-WZ-P-WZ-P...,
where I and P denote H.264 coded intra-predicted and single-list inter-predicted frames
respectively, and WZ denotes a Wyner-Ziv coded frame [50].

As the number of WZ coded blocks becomes arbitrary, depending on how many blocks
are skipped or intra coded, fixed-rate LDPC codes can not be applied to the cumulative
WZ mode. Furthermore, the block length is too small to efficiently LDPC encode
individual WZ blocks.

With the mode selection blocks can be classified according to their properties. Regard-
ing their correlation with the decoder side information DCT blocks can be roughly
classified into three distinct categories. The categories are: nearly identical, correlated
and nearly independent [59]. The former two correspond to skip and WZ mode, the
last one corresponds to the intra mode. As a result the WZ mode is limited to blocks
that are correlated. Therefore, the WZ mode does not need to deal with the sub-
optimal cases for the channel coding, namely near identity [50] or near independence [59].
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As the encoder is complexity constrained, the complexity of mode selection is limited.
The mode selection employs a history, which contains buffered DCT coefficients from
the previous frame. With the history it is easy to determine which DCT blocks should
be skipped [59]. For the iterative algorithm to find the best partition of a video frame
into WZ and intra mode, we refer the reader to [59].

To our best knowledge, this codec [59] is the best performing DVC codec in terms
of RD performance. The necessary components for such a good performance are the
combination of ratelesss LDPC codes with skip and intra blocks. In addition, the
quality of the side information is high as the interpolation is done from the neighboring
key frames. Furthermore, the rate estimation proposed in [59] removes the need for a
feedback channel.

However, all advantages are paid for by increasing the encoder complexity. Classifying
skip, coded and intra blocks the encoder requires frame comparison. Thus both memory
access and energy consumption increase significantly. In addition, half of the frames
are coded as key frames. In this context it should be noted that every second frame is
actually coded in the conventional predictive way, i.e. as H.264 inter-predicted frame.
In summary, the distinction between a predictive conventional video codec and the WZ
scheme with mode decision is not clear-cut anymore. It then becomes questionable what
the benefits are of DVC schemes over an efficient implementation of for instance H.263.

2.5. Challenges in DVC

Recent years have seen a significant number of publications in the field of DVC. Many
of the publications build on and improve the early WZ video codecs introduced in
Section 2.3. Especially the Stanford architecture was later adopted and improved by
many research groups around the world [71].

The focus of this thesis are the inherent performance limitations of DVC with low en-
coder complexity. For that purpose, we focus on the following three differences between
conventional video coding and DVC as outlined in Table 2.2. In this thesis we focus on
very low encoder complexity. Introducing for instance frame differencing requires frame
buffering which significantly increases the complexity. Hence, we only consider intra
coding, without any inter operability.

2.5.1. Channel coding

One enabling factor for DVC were important advances in channel coding technology,
especially error-correcting codes with a capacity close to the Shannon limit. The two
most frequently used codes in DVC are turbo codes [22] and LDPC codes [46]. Both
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Table 2.2.: Functional differences conventional video coding and DVC

Component Conventional video coding DVC

coding source coding channel coding
ME/MC access to reference frame only access to decoded frames

quantization variable-rate inter DCT coefficients fixed-rate intra DCT coefficients

codes have capacity-achieving performance, but literature states LDPC codes can better
approach the capacity of a variety of communication channels than turbo codes [92]. In
addition, capacity can only be obtained for block lengths converging to infinity.

Next to the block length, an accurate channel model is crucial for the performance
of channel codes. In the application field of error protection over a physical channel,
statistical and physical modeling can be combined. For example in wireless commu-
nications the channel is often modeled by a random attenuation (known as fading)
of the transmitted signal, followed by additive noise [106]. For the VDC, there is no
physical channel. What needs to be modeled are prediction errors in the side information.

For the channel coding we are interested in which channel code to use and the
VDC modeling. After using the popular turbo codes for a long time [70], the latest
DISCOVER codec uses an LDPC Accumulate codec [71]. Since the latter is similar
to the channel code we use, we refer the reader to Chapter 3 for a more detailed
evaluation and a comparison of turbo [10, 13, 12, 90, 38, 70] and LDPC codes [92, 71].

Since the actual statistics of the VDC (difference between the original video frame and
the side information) are not known, a parametrized distribution has to be assumed.
Most approaches in literature, including the Stanford, DISCOVER and rateless LDPC
codes introduced previously, model the VDC as a Laplacian distribution. In Chapter
3, we review multiple alternatives and investigate how accurate the VDC needs to be
modeled.

We establish that the VDC is non-stationary. Contrary to the Berkeley and rateless
LDPC codes, which employ mode selection at the encoder, we focus on the decoder. In
Chapter 6 we investigate several decoder-based classification schemes. Recently, the
DISCOVER codec also introduced classification at the decoder [30, 71].
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2.5.2. Motion estimation and compensation

The motion estimation and compensation at the decoder, i.e. the side information
generation, plays a crucial role for the RD performance. Both [58] and [88] addressed the
problem of motion estimation in DVC by using the known methods from conventional
video coding. Hence, the first method [58] uses H.264 motion vectors. The second
paper [88] uses a similar method to get the motion vectors but then applies a spatial
smoothing to the vector field.

We take a different approach and consider known methods not from conventional video
coding, but from frame rate up-conversion [41, 65, 35, 36, 77, 39]. This work reports,
that for the purpose of predicting the side information from neighboring frames, true
motion is beneficial [69, 31, 37].

For the motion compensation step, the main focus is on interpolation for most systems
in literature [14, 17, 37, 31, 87, 15, 113] which in terms of side information outperforms
extrapolation for very small GOP sizes. Only if low delay is required, extrapolation is
considered instead of interpolation [12, 11, 67]. In Chapter 4 we argue, that taking
the key frames into account extrapolation is in fact the better choice for DVC. For
that purpose we will present our extrapolation scheme and compare it with interpolation.

To investigate the relation to conventional video coding, we also consider an extrapola-
tion scheme with access to the reference frame X. This scheme is not practical in DVC
and its results are provided both as an upper bound and as a comparison to motion
compensation in conventional video coding.

2.5.3. Quantization

Quantization has a large impact on the RD performance. The inter coefficients in
conventional video coding contain many zero coefficients. In general a large section of
the tail end of the zig zag scanned coefficients will consist of zeros. By contrast, the
intra frame DCT coefficients in DVC exhibit significantly less zero runs and larger DCT
coefficients [81].

The quantization in DVC is not well represented in literature yet. Most schemes fix
the quantization levels for certain rate distortion points [2, 15]. Also residual DCT
coefficients are considered [66]. Other schemes, like the rateless LDPC scheme in
Section 2.4.2 alleviate the problem of fixed quantization levels by using different modes
for different block properties. The latter approaches require frame buffering at the
encoder, increasing both encoder complexity and RD performance.
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In Chapter 5 we investigate the quantization of intra DCT coefficients. We argue, that
the quantization should not be completely fixed. We consider several levels of adaptivity
and their impact on the RD performance.
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3. Virtual dependency channel: model and
codes

In Chapter 2 we introduced channel coding for compression purposes as one of the
main challenges in DVC. From literature, we highlighted turbo and LDPC codes. In
this chapter, we focus on channel encoding the virtual dependency channel in DVC, i.e.
how to model the VDC.

First, we focus on fundamental aspects, starting from the information theoretic bound.
Then we report on the performance of the considered state of the art channel codes.
Further, we consider models for the VDC. We evaluate their suitability to deal with pre-
diction errors. Finally, we evaluate whether bit plane-based coding, favored in literature,
can approach the performance of the more sophisticated symbol-based coding.

3.1. Background

Instead of quantizing and entropy encoding a motion compensated (transformed) frame
difference, the Slepian-Wolf encoder generates compressed data at rate RX ≥ H(X | Y )
in a quite different fashion. The side-information (motion compensated prediction) Y
available at the decoder is viewed as a by-channel-errors corrupted version of the video
frame X being compressed at the encoder.

DVC literature mainly focuses on two efficient channel codes, namely
turbo [10, 13, 12, 90, 38, 70] and LDPC codes [92, 71]. These state of the art
channel codes are reported to be capacity achieving [22, 40]. They use a soft de-
coding procedure, like (near) optimum belief propagation [33]. The performance of
the soft decoding is highly dependent on the transition probabilities P (X|Y ) of the VDC.

In the scope of this chapter we focus on practical design choices with regard to the
channel codes. That encompasses choice of code, model and whether to code symbols
or bits. We will revisit the VDC in Chapter 6. There we will focus on the problem of
non-stationarity and how to take it into account. Initially, in this chapter we focus on a
stationary VDC model.
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3.1.1. Channel capacity

In his work work, Shannon [84] investigates the capacity of a channel to transmit
information. Shannon proves that for the noiseless channel, the channel capacity is
determined by the entropy. The fundamental theorem is as follows:

Let a source have entropy H (bits per symbol) and a channel have a capacity C (bits
per second). Then it is possible to encode the output of the source in such a way as
to transmit at the average rate C

H
− ǫ symbols per second over the channel where ǫ is

arbitrarily small. It is not possible to transmit at an average rate greater than C
H

.

In general, if the channel is noisy it is not possible to reconstruct the original message
or the transmitted signal with certainty by any operation on the received signal.
Consequently, Shannon investigates ways of transmitting the information which are
optimal in removing noise [84]. For that purpose he introduces a correction channel,
which enables the receiver to correct errors:

If the correction channel has a capacity equal to H(X|Y ) it is possible to so encode the
correction data as to send it over the channel and correct all but an arbitrarily small
fraction of the errors. This is not possible if the channel capacity is less than H(X|Y ).

This theorem relates directly to the Slepian-Wolf theorem with RX ≥ H(X | Y ). How-
ever, both theorems just provide a lower bound for the needed rate. They do not provide
a coding method with the desired properties, but show that such a code must exist in
a certain group of codes. For channel coding there are practical state of the art codes,
reported to be capacity achieving. While DVC employs the same state of the art codes,
it is an open question whether they can achieve capacity for the VDC.

3.1.2. Capacity achieving channel codes

In information theory, turbo codes are a class of high-performance Forward Error
Correction (FEC) codes developed in 1993, which were the first practical codes to
closely approach the channel capacity [22]. Turbo codes are finding use in (deep space)
satellite communications and other applications where designers seek to achieve reliable
information transfer over bandwidth or latency constrained communication links in the
presence of data-corrupting noise. Turbo codes are nowadays competing with LDPC
codes, which provide similar performance [110].

LDPC codes originate from the 1960’s and were proposed by Gallager [46]. Only
recently they were first applied as channel codes, after they were reinvented by MacKay
and Neal [61]. Consequently, implementation of LDPC codes has lagged that of turbo
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codes. Nevertheless, LDPC codes are finding increasing use in applications where
reliable and highly efficient information transfer over bandwidth or return channel
constrained links in the presence of data-corrupting noise is desired [108].

Turbo and LDPC codes use soft-decision decoding. Whereas a hard-decision decoder
operates on data that take on a fixed set of possible values (typically 0 or 1 in a binary
code), the inputs to a soft-decision decoder may take on a whole range of values in
between. The extra information indicates the reliability of each input data point, and is
used to form better estimates of the original data and to modify the input to a further
decoding iteration. Therefore, a soft-decision decoder will typically perform better in
the presence of corrupted data than its hard-decision counterpart [73].

Soft-decision codes are designed in such a way that they exploit the dependency informa-
tion during channel decoding. To do so, an accurate channel model is necessary. Both
turbo and LDPC codes perform well on noisy network communication channels. Such a
channel can be modeled physically by trying to calculate the physical processes which
modify the transmitted signal [106]. Whether turbo and LDPC codes perform well on
the VDC depends on how accurate the virtual channel can be modeled.

3.1.3. Modeling choices for the VDC

In DVC we have to model the virtual dependency channel, which is an effect of motion
compensated prediction. The statistical dependence between X and Y is then modeled
as a virtual dependency channel analogous to Additive White Gaussian Noise (AWGN)
channels or Binary Symmetric Channels (BSC) [16]. Both channel assumptions produce
simple mathematical models, making them easier to analyze [103, 105].

In communications, the additive white Gaussian noise (AWGN) channel model is one
in which the only impairment is a linear addition of wide band or white noise with a
constant spectral density and a Gaussian distribution of amplitude. The model does not
account for the phenomena of fading, frequency selectivity, interference, nonlinearity or
dispersion. However, it produces simple and tractable mathematical models which are
useful for gaining insight into the underlying behavior of a system before these other
phenomena are considered [103].

The BSC is a binary channel; that is, it can transmit only one of two symbols (usually
bit values 0 and 1). The transmission is not perfect, and occasionally the receiver
gets the wrong bit. That such a bit is "flipped" occurs with a small probability (the
"crossover probability"). This channel is often used by theorists because it is one of the
simplest noisy channels to analyze. Many problems in communication theory can be
reduced to a BSC. On the other hand, being able to transmit effectively over the BSC
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can give rise to solutions for more complicated channels [105].

In DVC, the symbols themselves or extracted bit planes can be encoded. The symbol-
based approach is more general, while the bit plane-based approach can reduce the
decoder complexity significantly [97]. The VDC modeling varies, depending on which
implementation is chosen. For the Symbol-based Slepian-Wolf Decoder (S-SWD) we
need a Symbol-based Dependency Model (S-DM), that describes the relation between
the quantized symbols Q and the side information symbols Y with P (Q|Y ). The
necessary information can be extracted directly from the dependency model between X
and Y . The Bit plane-based SW Decoder (B-SWD) needs a Bit plane-based Dependency
Model (B-DM). Such a model describes the relation between the bit planes of Q and
side information Y and can be derived from the dependency between X and Y .

To implement dependency models in a practical LDPC coder, we need estimates of
the probabilities P (Q|Y ), P (Qb|Y b), P (Qb|Y ) and P (Qb|Y,Qb+1, ..., QL−1). Here, b
denotes the current bit plane and L the total number of bit planes. The probabilities
have been derived in [97] and can be found in the Appendix A. P (Qb|Y b), P (Qb|Y ) and
P (Qb|Y,Qb+1, ..., QL−1) each correspond to one B-DM we consider for B-SWD. Each
dependency model, ranging from simple to sophisticated, leads to a different decoding
strategy.

The statistics of P (Q|Y ) are only known after decoding. To model the conditional
probabilities a Probability Density Function (PDF) is used [109]. A PDF is a function
that describes the probability for a certain value for Q to occur given a certain side
information Y . Since the underlying PDF can only be observed after decoding, we have
to provide an estimate. The decoder only has access to Y to estimate the transition
probabilities P (Q|Y ). Further, it has to account for motion compensated prediction
errors. Consequently, inaccuracies in the modeling are inevitable. In this context, we
will focus on the model choice for the PDF and the sensitivity of the estimate.

3.1.4. Differences turbo/LDPC coding

In theory, the two best performing state of the art channel codes are capacity achieving.
Hence, their upper bound for compression is identical. The question then becomes
how their performance differs in practice. The first relevant condition is the robustness
against an inaccurate channel model. Not all regions in a frame can be modeled
correctly. How turbo and LDPC codes compare in presence of inaccurate channel
modeling will be investigated further after introducing the models we consider.

The second relevant condition is the block length on which to apply the channel coding.
The longer the block length, the closer channel codes approach the Shannon bound. In
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DVC, the block length is limited by the number of pixels in a frame, or for the PRISM
approach in Chapter 2 even in a block. Consequently, we observe a practical advantage
for LDPC codes, since, [40] reports that LDPC codes approach the performance of
the best known turbo codes for significantly smaller block lengths. Nevertheless, DVC
literature favors turbo [10, 13, 12, 90, 38, 70] codes over LDPC codes [92, 71].

3.2. Modeling the VDC

Since the actual statistics of the VDC are not known, a distribution has to be estimated.
For such a distribution there are at least two important factors. The first is the
statistical model and the second is the corresponding parameter(s). Since the parameter
has to be estimated in a DVC system, it is not accurate.

We assume the noise in the VDC is zero-mean and i.i.d.. This assumption is justified
because the interleaving in turbo coding [95] and the random construction of the
parity-check matrix in LDPC [108] removes any kind of dependencies between pixels.
It should be noted that LDPC codes are defined by a sparse parity-check matrix.
The sparse matrix is often randomly generated, subject to sparsity constraints [108].
Following literature on modeling of natural images [56, 53, 79, 64, 115, 23], we consider
the following PDF models fN (n) for the VDC.

Laplacian density

fN (n) =
1√
2σ2
n

exp

(

−
√

2|n|
σn

)

, (3.1)

Gaussian density

fN (n) =
1

√

2πσ2
n

exp

(

−n2

2σ2
n

)

, (3.2)

Generalized Gaussian density

fN (n) =
να(ν)

2σxΓ( 1
ν
)
exp

(

−
(

α(ν)
|x|
σx

)ν)

, (3.3)

Two-sided Gamma density

fN (n) =

( √
3

8πσn|n|

)
1

2

exp

(

−
√

3|n|
2σn

)

. (3.4)

Here σn denotes the standard deviation of the noise in the VDC, Γ( · ) the Gamma func-
tion and ν the shape parameter of the Generalized Gaussian density. For the Generalized
Gaussian, we set the second parameter, the shape parameter ν to the manually chosen
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value ν = 0.25, which we experimentally found to best fit the data. It should be noted,
that a lower ν yields a peaked distribution. The Generalized Gaussian contains the Gaus-
sian distribution for ν = 2 and the Laplacian distribution for ν = 1 as special cases [115].

Using a Generalized Gaussian gives more freedom in changing the shape of the distri-
bution. It is then possible to find a better match with the real distribution. However,
to achieve extra flexibility in a practical system, two parameters have to be predicted
at the decoder. Consequently, there is an additional source of errors and the parameter
estimation becomes more difficult.

3.3. Evaluation of best code and VDC model combination

Instead of focusing on the accuracy of the PDF match alone, we consider the end-to-
end performance. In the following, we concentrate on finding a distribution that gives
overall good performance. By overall good performance we mean a channel model that
allows for high compression ratios and minimal sensitivity to deviations in the estimated
parameters. To provide generality, we focus on symbol-based modeling and coding in
this section. Initially, we apply only the Laplacian density, favored in literature, to both
turbo and LDPC codes. Thereafter, we chose the best code and focus on the best PDF
choice.

3.3.1. Practical turbo and LDPC code to evaluate

We use a symbol-based implementation of both turbo and LDPC codes. The sym-
bols of the original frame X are first quantized. The Slepian-Wolf coding is then done
on the quantized symbols Q. The codes are implemented as follows:

Turbo Slepian Wolf Encoder [63] The Slepian-Wolf encoder is implemented as two
identical 16-state convolutional constituent codes with rate 4/5 and with parity
polynomials (23,35,31,37,27). The complete encoder uses two interleavers, i.e.,
both convolutional coders are preceded by an interleaver. Interleaving is done on
symbol level. Only the non-systematic bits of the two convolutional coders are
transmitted to the decoder, since the systematic part is estimated by the decoder-
based on the side information Y . To obtain a specific bit rate RX , the output of
the convolutional coders is (randomly) punctured.

Turbo Slepian Wolf Decoder [63] At the decoder, a prediction of the current video
frame is made available, based on the temporal information in the past. The de-
coder consists of two SISO (Soft-Input Soft-Output) maximum likelihood decoders
for the symbols/pixels Y . In our setup the decoders are serially concatenated
and both are preceded by the corresponding interleaver. Extrinsic information
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is passed between the constituent SISO decoders and the number of bit errors is
decreased after every iteration.

The extrinsic information is a posteriori information and represents the reliability
of a decoded bit. Extrinsic information is used for decoding in following itera-
tion [54]. The constituent SISO decoders use a Maximum a posteriori (MAP) al-
gorithm [21] to provide the conditional probabilities P (Q|Y ). The MAP algorithm
assumes that the underlying characteristics of the VDC, modeled as Laplacian, are
given.

LDPC Slepian Wolf Encoder [99] At the encoder side the syndrome Z is determined
by Z = HQ, where H is a regular parity check matrix over GF(q) with a uniform
number of non-zero values in each row J and a uniform number of non-zero values
in each column K. The non-zero entries in H are generated randomly and placed
according to the design rules in [60], such that the short cycles in the bipartite
graph representing H are kept to a minimum. The rate R is defined as

R =
#syndromes

codewordlength
=
J

K
(3.5)

where the symbol node degree (J) in the employed setup is 3 and the check node
degree K ≥ J .

LDPC Slepian Wolf Decoder [99] The decoder uses a computationally efficient soft
decoding procedure, known as (near) optimum belief propagation algorithm [33].
The decoder computes the vector of decoded (quantized) input Q̂ that is the most
likely, under the restriction that HQ̂ = Z over GF(q), with the probability of Q̂
given by the conditional probability P (Q̂|Y ) of the VDC. The latter PDF models
the correlation between source video frames and decoder side-information, i.e. it
models the virtual dependency channel.

Both, SISO decoding performance of turbo codes and belief propagation of LDPC codes,
depend heavily on VDC characteristics, and providing incorrect model information may
drastically degrade the performance. In both cases the performance can be measured as
bit rate where we still have near perfect reconstruction. That is the bit rate for which
Q̂ is equal to Q or almost equal with only a very small number of errors. The number
of errors can be measured as Bit Error Rate (BER).

3.3.2. Turbo vs LDPC coding evaluation

To evaluate the coding performance of turbo and LDPC codes, we conduct a controlled
experiment. We use a synthetic video sequence, shown in Figure 3.1. The sequence



32

contains a picture-in-picture which moves to the left by 5 pixels each frame, while the
background moves in opposite direction by 5 pixels.

Figure 3.1.: First and last (18th) frame of the Picture-in-picture sequence. Foreground and
background move opposed to each other by 5 pixels per frame.

The image content is detailed real image data on CIF (Common Intermediate Format)
resolution (352x288 pixels) with a frame rate of 30 frames per second. We chose the
Picture-in-picture sequences because it combines relevant (image) data with simple and
traceable motion. The latter enables us to locate prediction errors.

The Probability Mass Functions (PMF) P (Q|Y ) are initially measured from the real
quantized input and the estimated side information. It should be noted, that this
oracle PMF is not available in DVC. Consequently we also consider a VDC, that is
not measured from the real data, but modeled as a Laplacian distribution with a fixed
variance. To account for differences in the side information quality, we combine two
variances. First, we manually chose (σ2 = 1) to account for well predicted areas and
second (σ2 = 510) to account for poorly predicted areas.

Figure 3.2 shows the performance of the system for the turbo and LDPC codes, in
terms of the number of remaining errors versus bit rate. If the PMFs are measured
from the real data in Figure 3.2 (a) we observe that the BER converges faster to zero.
If the PMFs are assumed to follow the synthetic Laplacian model in Figure 3.2 (b) the
performance of both codes degrades.

With a synthetic Laplacian model, the LDPC code degrades moderately and needs 0.07
bit/bit more to converge to (close to) zero BER in Figure 3.2 (b). By contrast, the turbo
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(a) measured PMF

(b) modeled PMF

Figure 3.2.: Results for coding subframe with (a) measured PMFs and (b) a synthetic Laplacian
channel model.
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code degrades significantly, resulting in a large rate increase for convergence towards
zero BER. This observation implies that LDPC codes are less sensitive to inaccurately
chosen channel models. In addition to the increased robustness, literature reports a
better performance of LDPC codes for shorter block lengths [40]. Based on these two
advantages, we focus on LDPC codes in the remainder of this thesis.

3.3.3. Evaluation of considered models

In Section 3.2 we introduced the four models we consider. The common parameter in
the Laplacian, Gaussian, Generalized Gaussian and two-sided Gamma density is the
standard deviation σ. To investigate the accuracy of the models for natural video, we
use real video sequences with the symbol-based LDPC code presented in Section 3.3.1.
The sequences are the high motion Foreman and the low motion Hall-monitor sequences
in CIF resolution with a frame rate of 30 frames per second.

The LDPC coder setup is explained in Section 3.3.1. The symbol node degree J is set
to 3 and the check node degree K ≥ J . With this implementation only a discrete set
of bit rates can be achieved (1, 3/4, 3/5, 3/6, ...). Figure 3.3 shows the lowest rate for
which decoding is successful, depending on the standard deviation σ employed by the
PDF models.

First, we are interested the global minimum for each PDF, which indicates the best
compression that can be achieved with that model. Second, we are interested in the
range of σ for which the lowest rate can be achieved, which indicates the robustness of
that model against inaccurate parameter choices. Increasing the rate results in a larger
range of σ for which decoding is possible.

Figure 3.3 shows the results for one frame from each sequence. The overall best
performing distributions are then the two-sided Gamma and Generalized Gaussian
distributions. These models provide the lowest global minimum and at the same time
exhibit the best robustness.

While the Generalized Gaussian distribution shows better performance, it requires the
estimation of two parameters. To make analysis easier, we focus on simple models with
a single parameter and consequently an easier parameter estimation. For that reason,
we use the single parameter two-sided Gamma distribution to evaluate the robustness
of the parameter estimation.
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(a) Foreman

(b) Hall-monitor

Figure 3.3.: Bit rate versus parameter value σ for decoding of (a) the 14th frame of the Foreman
sequence and (b) the 21st frame of the Hall-monitor sequence.
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3.3.4. Robustness of the parameter estimation

As the previous section illustrated, for a particular bit rate a tolerance range of the
PDF parameter value exists, for which decoding is possible. The decoder has to make
sure that the estimated PDF parameter value falls inside the admissible range. This
situation is visualized in Figure 3.4. The minimum σmin and the maximum σmax value
of the PDF parameter for which perfect reconstruction is possible is shown together
with the real (yet unknown) σk. The values σ̂(i)

k indicate the estimated parameter value
for frame k.

Figure 3.4.: Plot of σ parameter per frame. The tube indicates the range in which the parameter
value should be chosen.

If the estimated value σ̂(1)
k falls inside the range (σmin, σmax), perfect reconstruction

is possible. However, if the estimated value is σ̂(2)
k , perfect decoding is not possible.

There are two possible reason for σ̂(2)
k to be outside the range (σmin, σmax). First, the

compression factor is too large, yielding an empty range (σmin, σmax). This situation
can only be remedied at the encoder by applying less compression. Second, the range
(σmin, σmax) is not empty but the soft channel decoder has not used an admissible σ̂(i)

k .
This situation can be remedied at the decoder, either by searching different values for
the PDF parameter or by using better procedures for estimating admissible σ̂(i)

k values.

From Section 3.3.3 we know that the bit rate applied by the encoder determines the size
of the range (σmin, σmax). More compression makes it harder for the decoder to select
an admissible parameter value for the dependency channel. However, the smoother the
temporal behavior of the range (σmin, σmax), the easier a admissible value of σ̂(i)

k can be

estimated from σ̂(1)
k−1,σ̂(1)

k−2,... .
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3.3.5. Evaluation of the parameter robustness

We use real video sequences with the symbol-based LDPC code presented in Section 3.3.1.
The sequences are the high motion Foreman and the low motion Hall-monitor sequence
in CIF resolution. Here, we present the admissible parameter range for which decoding
is possible, given a fixed rate R (3/8 for Foreman and 3/15 for Hall-monitor).

For each video frame the parameter range (σmin, σmax) is determined for different bit
rates. The results for the Foreman sequence and for the Hall-monitor sequence are
shown in Figure 3.5. The connected lines indicate the admissible parameter range for
shown rate. If successive points are not connected, the intermediate video frame could
not be decoded correctly, i.e. the bit rate was too low for that particular frame. In
addition we show the best fit σ, i.e. the σ which provides the best fitting Gamma PDF
measured from the data.

For many frames in Figure 3.5 it holds that the larger the best fit σ, the smaller
the admissible range. But the midpoints of the admissible rate do not fluctuate that
much. This suggests, that estimating the parameter value at the decoder side is not an
unrealistic task. However, for the best compression performance in practice we have
to use the lowest bit rate and the lower the bit rate, the higher the accuracy required of σ.

Especially Figure 3.5 (b) shows that already very small variations in the best fit σ can
make the difference between successful and failed decoding for a low bit rate. There
are instances when a higher best fit σ can be decoded while decoding fails for a lower
one. In addition, under-estimating σ is better than over-estimating it. In some cases
it even has to be under-estimated for successful decoding, i.e. the admissible range is
lower than the best fit σ. These characteristics indicate that one global parameter (and
consequently one global distribution) is not sufficient to model the VDC reliably.

3.4. Bit plane-based LDPC coding

The most complex part in current distributed video coding systems is the LDPC
decoding [71]. Up till now we focused on a symbol-based implementation of LDPC
for generality. As shown in Figure 3.6, the symbols of the original frame X are first
quantized by a 2L-level quantizer and SW coding is done on the symbols of Q and Y .

For the bit plane-based approach shown in Figure 3.6, the Slepian Wolf coding is done
on the L bit planes of Q separately. In terms of complexity, a symbol-based LDPC
coder is roughly L times (L denotes the number of bit planes) more complex than a bit
plane-based one [97]. The bit plane-based approach is well represented in literature, as
it was already used in the initial Stanford architecture [10, 12].
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(a) Foreman

(b) Hall-monitor

Figure 3.5.: Admissible parameter range and best fitting parameter for Gamma PDF for (a)
Foreman sequence R = 3/8 and (b) Hall-monitor sequence R = 3/15
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3.4.1. Bit plane-based dependency models

The first question that needs to be answered is how to choose the dependency models for
S-SWD and B-SWD in order to compare both approaches. In many studies simplified
models are used to describe the bit plane-based dependency [12, 38]. It is either seen
as a BSC dependency [12] or directly calculated from the earlier S-DM [38]. Both
approaches oversimplify the actual dependency.

(a) Symbol-based

(b) Bit plane-based

Figure 3.6.: Conceptual block diagram of (a) symbol-based and (b) bit plane-based DVC.

The minimal achievable rate to have lossless Slepian Wolf coding is expressed in terms
of the conditional entropy between Q and Y . With knowledge of P (Q|Y ) and P (Y )
calculating the conditional entropy is straightforward in the case of S-SWD and given
by H(Q|Y ). In the case of B-SWD the rate is dependent on the type of information that
is taken into account in the conditional entropy measure. We investigate three different
B-SWD models:

1. The dependency model takes the corresponding bit plane of Q and Y into account.
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For the B-DMb dependency model we require P (Qb|Y b).

2. The dependency model takes the bit plane of Q and all bit planes, i.e. the symbol,
Y into account. For the B-DMs dependency model we require P (Qb|Y ).

3. The dependency model takes the bit plane of Q and the symbol Y together with
already decoded bit planes of Q into account. For the B-DMs+b dependency
model we require P (Qb|Y,Qb+1, ..., QL−1).

(a) B-DMb (b) B-DMs

(c) B-DMs+b

Figure 3.7.: Model dependencies between bit planes for (a) B-DMb, (b) B-DMS and (c) B-
DMs+b.

The three dependencies are visualized in Figure 3.7. The order of the list from one to
three indicates the complexity of the dependency incorporated in the model. By using
all available information at the decoder side, that is B-DMs+b, the minimal achievable
rates for S-SWD and B-SWD are identical since:
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H(Q|Y ) = H(Q(0), . . . , Q(L−1)|Y )

= H(Q(0), . . . , Q(L−2)|Y ) +H(QL−1|Y )

=
L−2
∑

b=0

H(Q(b)|Y,Q(b+1), . . . , Q(L−1))

+H(Q(L−1)|Y ), (3.6)

where Q(0)...Q(L−1) are the L bit planes of the quantized symbol Q. After decoding
the first bit plane Q(L−1) based on side information Y , every bit plane Q(b) with
b = (L− 1, L− 2, ..., 0) takes not only Y into account, but also the already decoded bit
planes Q(L−1)...Q(1).

The models B-DMb and B-DMs result in an increase in entropy since:

H(Q|Y ) =
L−2
∑

b=0

H(Q(b)|Y,Q(b+1), . . . , Q(L−1)

+H(Q(L−1)|Y )

≤
L−1
∑

b=0

H(Q(b)|Y )

≤
L−1
∑

b=0

H(Q(b)|Y (b)). (3.7)

where the bit plane Qb only depends either on the side information Y or the correspond-
ing side information bit plane Y b.

Consequently, the B-DMb and B-DMs models will result in a performance loss when
compared to the B-DMs+b and S-DM in Eq. (3.6). If we rank the expected performance
of all models, we expect S-DM and B-DMs+b to perform the best, and B-DMb to have
the worst performance.

3.4.2. Evaluation of bit plane decoding

We incorporate our dependency models into the bit plane-based codec from [91], which
allows source rates from 2/66 to 66/66 [8]. We use real video data to account for
practical DVC coding. We use the first 100 frames of the Foreman sequence in Quarter
Common Intermediate Format (QCIF) with 176x144 pixels and a frame rate of 30
frames per second. The side information Y is an extrapolated prediction of X, on which
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we elaborate in the next chapter.

Due to the implementation from [91] the dependency between X and Y is estimated by a
Laplacian PDF with zero mean. The variance of the PDF is estimated from frame Q and
predicted side information Y and consequently an oracle estimation. For all possible Y
values per frame we calculate P (Q = q|Y = y) for each Q and Y value and then calculate
the entropy H(Q|Y ):

H(Q|Y ) = −
∑

q

∑

y

P (Q = q|Y = y)P (Y = y)logP (Q = q|Y = y) (3.8)

Figure 3.8.: Coded bit rate results using different dependency models for the symbol and bit
plane-based distributed video coders for the Foreman sequence.

Figure 3.8 shows the minimal bit rates needed to decode. First, S-DM and B-DMs+b

perform equally and both outperform the B-DMb by 1 bit/symbol and B-DMs by 0.5
bit/symbol. The differences between S-DM and B-DMs+b are caused by the limited
number of coding rates for the symbol and bit plane-based DVC coder. Hence, S-DM
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and B-DMs+b perform equally.

We further observe the following in Figure 3.8. There is a gap of up to 1 bit/symbol
between the conditional entropy H(Q|Y ) and S-DM and B-DMs+b. The gap indicates,
that despite oracle estimation of the variance, one global PDF is not sufficient to model
the VDC reliably.

3.5. Discussion

In this chapter we investigated three aspects of channel coding in DVC. Our findings
can be summarized as follows:

LDPC codes are superior to turbo codes
We find in Section 3.3.2 that LDPC codes are less sensitive than turbo codes to
inaccurate VDC model parameters. In particular, LDPC codes outperform turbo codes
if the model for the channel is assumed to follow a chosen PDF distribution, in this
case Laplacian. We put forward that LDPC codes are to be preferred over Turbo codes
because of the superior performance for shorter block length, as reported in literature,
and our results on the reduced sensitivity for inaccurate channel models.

Channel models and their parameters
We show the importance of accurate channel modeling. First, an analysis shows that
more complex models, like two-sided Gamma or Generalized Gaussian, outperform
simpler models like Gaussian or Laplacian for symbol- and pixel-based DVC. Second,
the best RD performance can only achieved within a certain parameter range for these
models. The range depends on both, the used model and the amount of compression.
For the best compression, the margin for error in estimating the parameter is very small.

Bit plane-based coding superior to symbol-based coding
We show that a bit plane-based LDPC coder is preferred for the purpose of distributed
video coding when using an appropriate dependency channel model. Both the symbol-
based and the best bit plane-based approach can perform equally.

While the performance of both approaches, a symbol-based and the proposed bit plane-
based one, is approximately similar, the symbol-based LDPC decoding is roughly L
times (L denotes the number of bit planes) more complex. Based on these findings we
use bit plane-based LDPC coding for the remainder of this thesis.



44



4
.

M
E

a
t

d
e
co

d
e
r

45

4. Motion estimation at the decoder

In Chapter 2 we introduced motion estimation at the decoder as one of the main
challenges in DVC. We highlighted the two dominant prediction schemes in literature,
extrapolation and interpolation. In this chapter, we focus on a comparison of the two
schemes.

First, we focus on fundamental aspects, starting from an entropy-based consideration.
Then we present how extrapolation and interpolation compare in terms of information
theory. Further, we present the actual schemes we consider to generate side information.
As these schemes include motion estimation, we discuss our motion estimators and their
application. Finally, we evaluate the options we presented. We do this both from a side
information quality perspective and from the system RD performance perspective.

4.1. Background

As opposed to conventional coding it is not possible in a DVC system to use the
reference frame for motion estimation. Thus, we need at least one key frame, which
can be decoded without side information. It is only possible to use either such an intra
coded key frame or an already decoded Wyner-Ziv frame as input for the ME/MC. The
methods we consider in this chapter are depicted in Figure 4.1. That is, we can either
interpolate between available frames, or extrapolate from past frames. The former can
be compared to B-frames and the latter to P-Frames in conventional video coding.

Clearly, both interpolation and extrapolation have advantages and disadvantages.
Current literature mainly focuses on interpolation [14, 17, 37, 31, 87, 15, 113]. The
main advantage of interpolation is access to information from past and future frames.
However, this information is only useful if the temporal distance is small enough,
i.e. if the GOP-size is small. Such a small GOP-size has the drawback of a large
number of intra coded key frames. The key frames are either expensive in terms of bit
rate or increase the encoder complexity significantly. For instance with a GOP-size
of 2, the lowest encoder complexity is at least 50% of the key frame encoding complexity.

In literature, extrapolation is considered mainly for low latency [12, 11, 67]. In the
comparison of interpolation with a GOP-size of 2 and extrapolation, interpolation was
clearly superior in terms of prediction PSNR quality in [58, 88]. However, this advantage
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(a) Interpolation (b) Extrapolation

Figure 4.1.: Conceptual difference between predicting frame k by interpolation and extrapola-
tion.

only holds for very small GOP-sizes, already at a GOP-size of 4, [17] reports a significant
quality decrease for interpolation. Since already decoded WZ-frames can be used, the
temporal distance in extrapolation is independent from the GOP-size. Therefore,
the main advantage of extrapolation is given by either possible bit rate savings by
sending less intra coded key frames, or for rateless LDCP coding in Section 2.4.2 lower
complexity by sending less inter coded key frames.

4.1.1. Entropy comparison

First, we consider the trade-off between prediction quality and key frame cost from
an information theoretic point of view. Since the reconstruction is perfect for lossless
compression, essentially only the rate is required as performance measure. The floor to
this compression is defined by the entropy. As long as all information in the source is
preserved, the entropy is the fundamental limit [82].

Desired compression rates in practice make the use of lossy compression inevitable.
Next to the rate, we need an additional quality measure. For that purpose the distortion
in the reconstructed data, i.e. the difference between the original frame X and the
reconstructed frame X̂, is used. The two extreme cases of the trade-off between
minimizing the rate and keeping the distortion small is to transmit no information or
to keep all information [82]. Of the two extreme cases only the latter is useful and an-
alyzing the lossless case gives important insights to the expected behavior of lossy coding.
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As an example consider 5 frames. For the lossless transmission of these frames, we
have to send the joint entropy H(X1, X2, X3, X4, X5). According to the chain rule, it is
possible to express the joint entropy with either of the two following equations:

H(X1, X2, X3, X4, X5) = H(X4|X1, X2, X3, X5) +H(X2|X1, X3, X5)

+H(X1, X3, X5)
(4.1)

H(X1, X2, X3, X4, X5) = H(X5|X1, X2, X3, X4) +H(X4|X1, X2, X3)

+H(X3|X1, X2) +H(X2|X1) +H(X1)
(4.2)

Eq. (4.1) reflects the interpolation case with a GOP-size of 2 (I-WZ-I-WZ-I ), i.e. key
and WZ frames alternate, and Eq. (4.2) the extrapolation case with one initial key
frame (I-WZ-WZ-WZ-WZ ). The two entropies are equal. However, in practice key
frames are encoded independently. Consequently dependencies between key frames
are not exploited at all. If we take the independent frame-by-frame encoding of the
key frames into account, we observe a larger loss for the interpolation case since
H(X1, X3, X5) ≤ H(X1) +H(X3) +H(X5) than for the extrapolation case with H(X1).

In practice, not all available frames are used for the motion estimation. Since temporally
close frames have by far the highest influence, the motion estimation schemes in DVC
use mostly 2 frames. For interpolation we have the adjacent past and future frame and
for extrapolation the two closest past frames. Thus simplifying Eqs. (4.1) and (4.2) for
a single WZ encoded frame yields:

H(X2|X1, X3) = H(X1, X2, X3)−H(X1)−H(X3|X1) (4.3)

H(X3|X2, X1) = H(X1, X2, X3)−H(X1)−H(X2|X1) (4.4)

Here, we observe that both terms only differ by the last element, H(X3|X1) for
interpolation in Eq. 4.3 and H(X2|X1) for extrapolation in Eq. (4.4). Since the
temporal correlation between adjacent frames is higher, the interpolated frame
needs H(X3|X1) − H(X2|X1) less bit rate. This counteracts the higher cost for
independent key frame coding. Thus, we observe an advantage for interpolation in
terms of prediction quality and an advantage for extrapolation in terms of key frame cost.

To quantify the trade-off between prediction quality and key frame cost, we consider an
example with 16 frames. For interpolation with a GOP-size of 2 we have 8 key frames
and 8 interpolated WZ frames. A similar extrapolation case can have as little as 1 key
frame and 15 extrapolated WZ frames. We use H.264 to simulate quantitative numbers
for the three frame type entropies.
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Intra coded key frames To quantify H(Xk) we consider H.264 coded I-frames

Interpolated WZ frames To quantify H(Xk|Xk−1, Xk+1) we consider H.264 coded B-
frames

Extrapolated WZ frames To quantify H(Xk|Xk−1, Xk−2) we consider H.264 coded P-
frames with 2 past references

To quantify the entropies with lossy coding, all frame types are set to the highest
possible H.264 quality (QP=0). At this quality, the PSNR of the reconstruction is
above 70 dB, which is nearly lossless. We use the Foreman sequence in CIF resolution
with 352x288 pixels and a frame rate of 30 frames per second.

For the three frame types we then use the average rate over all available frames.
Consequently, the rate for the intra coded key frames is the average rate of 300 H.264
I-frames, the rate for the interpolated WZ frames is the average rate of 150 H.264
B-frames and the rate for the extrapolated WZ frames is the average rate of 299 H.264
P-frames.

For our example with 16 frames the interpolation case then yields:

RI = 8 ·H(Xk) + 8 ·H(Xk|Xk−1, Xk+1)

= 8 · ( H.264 I-frame avg. rate) + 8 · ( H.264 B-frame avg. rate)

= 8 · 82.3kB + 8 · 53.1kB = 1083.2kB.

(4.5)

The extrapolation case produces:

RE = 1 ·H(Xk) + 15 ·H(Xk|Xk−1, Xk−2)

= 1 · ( H.264 I-frame avg. rate) + 15 · ( H.264 P-frame avg. rate)

= 1 · 82.3kB + 15 · 55.7kB = 917.8kB.

(4.6)

This example, albeit only an approximation, clearly shows an advantage of extrapolation
in the lossless case. The high key frame cost outweighs the relatively small gain from
using B-frames over P-frames. In the entropy consideration we find extrapolation to have
an advantage over interpolation in terms of RD performance. While the entropy only
provides a lower bound, we expect the advantage of extrapolation to hold in practice.

4.1.2. Motion estimation

The block-based motion estimators used in state of the art video coding standard
H.264 [102] are designed to reduce the residue between predicted and original frame in
combination with keeping vector cost minimal. As such these methods are called mini-
mum residue block matching. Their purpose is to reduce the remaining residue X − Y
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as much as possible. For the purpose of predicting Y from neighboring frames, as re-
quired in DVC, it is not clear whether such a minimum residue block matching is optimal.

The minimum residue block matching is block-based and as such implies two as-
sumptions. First, the motion is assumed to be translational. Second, objects are
assumed to be larger than blocks. If the first assumption does not hold, i.e. for
instance global zooming or rotation are present, a block-based approach will suffer
compared to for instance a global motion estimation [27]. But such a global motion
estimation is not able to model independent motion. Hence, we focus on the well estab-
lished block-based motion estimation, also used in state of the art codecs like H.264 [102].

If the second assumption does not hold, i.e. the block size is not suited to the content,
the compression performance suffers. To counter such degradations, it is possible to
work with dynamic block sizes. As such it is possible to combine the strengths of
large and small blocks. Large blocks are beneficial in homogeneous areas for higher
robustness against noise. Small blocks are beneficial in dynamic, detailed areas. So for
dynamic block sizes, the estimation process starts on larger blocks. The block size is
only reduced when the spatial accuracy must be high [51].

Looking at other block-based motion estimators from literature, there is another
field which does not require access to the reference frame. This field is frame rate
up-conversion [41, 65, 35, 36, 77, 39]. This work reports, that for the purpose of
predicting Y from neighboring frames, "true" motion is beneficial [69, 31, 37]. True
motion entails a consistent and smooth motion field without outliers. So, next to the
two block-based assumptions, a new assumption is made. The assumption that objects
have inertia then implies that the movement of objects varies gradually from frame to
frame.

The candidate we propose for motion estimation in DVC is such a true motion estimator,
the well known 3DRS (3-D Recursive Search) algorithm [41]. The 3DRS algorithm is
an iterative process, i.e. the motion vectors from the previous frame are used as an
initialization for the current frame. The 3DRS algorithm works as follows. It constructs
a small set of candidate motion vectors. Next to spatial and temporal candidates, also
update candidates are added to the candidate set. An update candidate is computed
by taking a spatial candidate and adding a small random vector update to it. The
method yields a smooth and consistent vector field. To also tackle dynamic block sizes,
we consider CARS (Content-Adaptive Recursive Search) as an extension of 3DRS [76].
CARS provides content adaptivity by varying the block size.

Related to the question of how to estimate the motion is the problem of evaluating
prediction quality. The prediction in DVC needs to give the LDPC decoder the best
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objective estimate of X, to be able to recover the correct pixel values. For that
reason we consider the PSNR a suitable quality measure in the context of DVC. The
PSNR is a well known objective quality measure, which uses the MSE to compute the
difference between frames. In DVC these frames are the reference frame X and the side
information Y . The main drawback in the DVC context is that the PSNR is computed
globally, whereas local information is beneficial for the decoding.

In the following we move on to the actual side information generation schemes we con-
sider. For these schemes we discuss the algorithms involved. The final selection of
schemes is then evaluated in terms of prediction quality, and finally from the RD per-
spective.

4.2. Generating side information

In Section 4.1 we briefly introduced extrapolation and interpolation. We outlined the
importance of the GOP-size, which for interpolation has a large impact on both the
prediction quality of the side information and the required number of key frames. For
the extrapolation the GOP-size is only important for error recovery and random access.

In Section 4.1 we report that the prediction quality of extrapolation is inferior to
interpolation with a small GOP-size. With a small GOP-size, interpolation has access
to accurate information from both, past and future frames. Section 4.1.1 showed
that in terms of entropy, the interpolated WZ frames outperform their extrapolated
counterparts. In extrapolation, we only have past frames available. Consequently,
events like occlusion are difficult to handle.

For occlusion, i.e. a foreground object moving on top of another object or the
background, there are two specific problems. First, the foreground needs to be correctly
detected. Second, uncovering background areas may reveal previously hidden objects.
To better deal with the two problems we propose an approach, using three instead of only
two frames during the motion estimation [24]. In the following sections, this scheme will
be denoted as MX for Motion(-compensated) Extrapolation. Motion(-compensated)
Interpolation will be denoted as MI.

To investigate the relation to conventional video coding, we also consider an extrapola-
tion scheme with access to the reference frame X. It should be noted, that this scheme
is not practical in DVC and its results are provided both as an upper bound and as a
comparison to motion compensation in conventional predictive coding. To emphasize
the non-practicality, it will be denoted as MO for Motion Oracle.
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Figure 4.2.: Conceptual prediction of frame k by MO.

All three schemes use the same motion estimation, the CARS algorithm. The first main
difference is where the motion estimation is applied, i.e. between which frames the
motion is estimated. For the extrapolation, the motion is estimated between previous
frames as shown in Figure 4.1 (a). For the interpolation, the motion is estimated
between the closest previous and following frame as shown in Figure 4.1 (b). The oracle
estimates the motion between the previous and the current (reference) frame as shown
in Figure 4.2.

The second main difference is the consistency between motion estimation and com-
pensation. For the extrapolation, the motion is estimated for the previous frame, but
needs to be applied to the current one. For the interpolation, motion is applied to both
frames it was estimated from. For the oracle, the motion is estimated for the current
frame and can be applied directly.

Due to the smaller temporal distance, i.e. estimating the motion between directly adja-
cent frames, the motion estimation for extrapolation and oracle are superior in terms of
accuracy. But only the latter can apply that information directly. During the compen-
sation, the interpolation is the only scheme with access to the following frame. Conse-
quently, it is best suited to deal with the occlusion problem. We consider the PSNR of
the non-quantized side information Y , based on the non-quantized reference frame X.
Based on the scheme properties we expect the following PSNR performance.

Sequence with little motion The motion estimation is easy and the temporal distance
only secondary. Here, we expect interpolation to benefit from its compensation
advantage to outperform extrapolation and possibly also the oracle. Further, the
oracle should only marginally outperform extrapolation.
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Sequence with large motion The motion estimation is difficult and changes signifi-
cantly over frames. Here, we expect the oracle to greatly outperform both other
schemes. Extrapolation faces the problem, that the estimated motion for the previ-
ous frame is not a good match for the current frame. Interpolation has to estimate
the motion over at least two frame, but can compensate for some of the resulting
errors by motion compensated frame averaging. Consequently, we expect interpo-
lation to outperform extrapolation.

4.3. Proposed extrapolation algorithm and derivatives

In this Section we elaborate on the algorithms we use for the three side information
schemes. While the motion estimation algorithm is similar for all three schemes, the
compensation differs significantly. Again, the main focus is on the proposed three-frames
extrapolation scheme, which will be introduced in detail.

4.3.1. Three-frames extrapolation

In [24] we investigated some measures to improve the prediction quality of the three-
frames extrapolation. For clarity, we present the final, best performing algorithm.

The primary purpose of using 3 frames is to help handle occlusion. After motion
estimation, the two occlusion problems affect the vectors as follows. First, in front of a
moving object motion vectors will collide, as background and foreground vectors point
to the same area. Second, uncovering areas, which may reveal previously hidden objects,
can not be known beforehand in case of extrapolation. These areas, called holes, are
unreferenced by any motion vectors.

On of the advantages of the three-frames motion estimation is a better initial estimate
for the subsequent two-frames motion estimation. Figure 4.3 illustrates the two ME
steps. In step 1 we estimate the motion between the three previous frames. The result-
ing motion vectors are used as an improved initialization for the two-frames ME in step 2.

The other advantage of the three-frames motion estimation is an improved motion
compensated extrapolation of the motion vector field, further referred to as vector
retiming. The estimated motion vectors of the two-frames ME are only valid between
the two previous frames. To extrapolate the current frame, the vectors should be valid
between the previous and the current frame. Hence, the vectors have to be extrapolated
along the motion trajectory, as indicated in Figure 4.3
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(a) Step 1 (b) Step 2

Figure 4.3.: Extrapolating with 3 frames at the decoder.

Vector collisions have to be handled during the retiming. Very simple approaches, i.e.
the last colliding vector is treated as foreground, suffer from significant degradation
if the last colliding vector belongs to the background. The three-frames vector field
provides a more sophisticated solution. It is based on vector consistency. We assume,
that the foreground vector is the most consistent vector over time, i.e. the one that
changes least over the three previous frames. To find this vector, we perform a retiming
step for the three-frames vector field.

During the retiming of the three-frames vector field from n−2 to n−1, vector collisions
occur. The two-frames vector field is also valid for n−1. We then compare the colliding
vectors from the three-frames vector field with co-located vector from the two-frames
vector field. The best match is labeled as foreground vector. If a subsequent vec-
tor is a better match than previous one(s), the region it points to is labeled as foreground.

As this approach is based on the quality of the vector field, it becomes more reliable the
better the vectors are. One of the problems in this context is the quality of the vector
field at object boundaries and edges. To get a smoother vector field without loosing
information around the edges, we use cross bilateral filtering [89].

The second occlusion problem, uncovering areas, also profits from a higher quality of
the vector field. In [24] we opted for a temporal hole filling procedure, where we assign
co-located motion vectors from the previous frame to unreferenced areas. The temporal
hole filling gives a closer representation of the uncovered background, than spatial hole
filling [24].

The execution of the proposed scheme is shown in Figure 4.4 and performs as follows:
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Figure 4.4.: Conceptual execution of proposed three-frames extrapolation scheme.

1. Generate three-frames motion vector field for position k− 2. This is done by estimat-
ing the motion between frames k − 2 and k − 3, and between frames k − 2 and
k − 1.

2. Generate two frames motion vector field for position n-1. This is done by estimating
the motion between frames k − 2 and k − 1, using the three-frames vector field as
initialization. Further, apply cross bilateral filtering to the vector field.

3. Find areas that are more than once addressed. Check consistency of the vectors by
shifting the field generated in 1. to n-1. Compare shifted vectors and available
ones in 2.. The vector with the lowest difference defines the foreground.

4. Retiming of the vector field, taking 3. into account. Fill unreferenced areas with
temporally previous vectors (temporal hole-filling), i.e. copy the vector at the coin-
ciding position from vector field 2.. Most likely, this vector follows the foreground
motion and hence references the closest uncovered background.
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5. Extrapolate current, motion compensated frame Y at position k.

4.3.2. Interpolation and oracle schemes

The remaining two compensation schemes are interpolation and oracle. They use the
same framework as the extrapolation and their implementation is straightforward. The
interpolation scheme we consider is not optimized for performance like for instance in
the DISCOVER codec, but shares a general structure.

The derived Interpolation scheme performs as follows:

1. Generate two frames motion vector field for position k. This is done by estimating
the motion between frames k−1 and k+1, using the vector field from the previous
frame as initialization. Further, apply cross bilateral filtering to the vector field.

2. Use non-weighted motion compensated averaging between k−1 and k+1, i.e. average
along the motion trajectories.

The interpolation scheme can be extended to larger GOP-sizes. The only change for
using a GOP-size of 4 instead of 2 is to slightly modify step 1. For the larger GOP-size,
the motion is estimated between k − 2 and k + 2.

The derived Oracle scheme performs as follows:

1. Generate three-frames motion vector field for position k− 1. This is done by estimat-
ing the motion between frames k − 1 and k − 2, and between frames k − 1 and
k.

2. Generate two frames motion vector field for position k. This is done by estimating
the motion between frames k − 1 and k, using the three-frames vector field as
initialization. Further, apply cross bilateral filtering to the vector field.

3. Extrapolate current, motion compensated frame Y at position k.

4.4. Evaluation of prediction quality

In this section we compare the side information quality of the three prediction schemes.
For that purpose, we measure the PSNR between the side information Y and the
corresponding reference frame X. To investigate the validity of our proposed prediction
schemes, we compare their performance to approaches in literature. Non-quantized
results in literature are only reported for QCIF resolution. Consequently, we chose this
resolution for comparison purposes.
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4.4.1. Comparison with literature

(a) CIF (b) QCIF

Figure 4.5.: Frame with motion vectors from foreman for (a) CIF and (b) QCIF

However, QCIF is an atypical resolution for many applications. Since interpolation is
less error prone with averaging between past and future frames, this very low resolution
gives an extra penalty to extrapolation. Figure 4.5 shows the difference in scale between
QCIF (176x144) and the higher CIF (352x288) resolution for both, the frame size and
the motion vector size. As we focus on the PSNR of the side information, the results
we provide are generated from original (non-quantized) key frames. Consequently, for
instance varying settings for the key frames have no influence on the results.

From literature we consider the following approaches:

[58] We use the quarter-pixel resolution extrapolation results (MX and MO) and the
bidirectional multiple references ones (MI-2).

[88] We use the results for MO, MI-2 and MX. While the results for MO and MI-2 are
similar to [58], the results for MX differ.

[87] We use the results for MI-2. The main difference to [88] is that [87] uses a spatially
smooth vector field as described in [31], while [88] relies on a minimum residue
approach.

[17] We use the results for MI-4 to show the impact of an increase in GOP-size.

Results of the comparison are summarized in Table 4.1.
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MX On average our extrapolation scheme yields the best extrapolation performance.
The exception of the Silent sequence will be analyzed in detail for MO. On average
our extrapolation scheme comes very close to the performance of the MI-2 schemes.
The decreased quality of the extrapolated Carphone sequence can be explained by
the high amount of jerky global motion. It is very hard to adapt to this motion,
with only past frames available and no camera stabilization.

MI-2 Compared to the status in literature, the proposed interpolation scheme shows
a significantly better PSNR. While the motion estimation is similar to MX, the
compensation provides a higher robustness towards errors. This difference is en-
hanced by the use of QCIF resolution, which is too small for the employed motion
estimation. In some cases MI-2 even outperforms MO.

MI-4 If we look at a GOP size of 4 instead of 2 the quality of the interpolated side infor-
mation decreases significantly. In all cases it is noticeably below the extrapolation
results

MO First, the higher the difference between our proposed MX and the corresponding
MO, the lower the temporal consistency of the motion in the sequence. In this case
the motion from the previous frame is not a good representative for the current
one. Here, interpolation approaches have the biggest advantage. An example for
this is the Carphone sequence. Second, for extrapolation purposes a smooth true
motion vector field, as provided by 3DRS, yields a better performance compared
to a minimum residue one [58] with one exception. The Silent sequence contains a
lot of sudden and fast arm/hand movement. This fast movement is hard to model
with 3DRS, since they violate the assumption of objects moving gradually. For
this case an approach without a smoothness-constraint is better.

Apart from the Silent sequence, which violates the smoothness assumption, schemes
based on true motion estimation [87] (and proposed) outperform schemes based on
minimum residue motion estimation [58, 88].

4.4.2. Choices for further consideration in this thesis

For interpolation we only consider MI-2 in the following, since increasing the GOP-size
impairs the quality of Y significantly. Table 4.2 shows the decrease for a GOP-size
of 4. The quality is already below that of extrapolation, which needs significantly
fewer key frames. As little as only a single key frame (I-WZ-WZ-WZ-...) can be suf-
ficient. Consequently, we only consider a GOP-size of 2 for interpolation in the following.

We consider a subset of the sequences in Table 4.1 and chose the following four test
sequences with varying properties:
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Table 4.2.: Avg. luminance-PSNR of Y [25] from non-quantized QCIF (30Hz) - extracted from
Table 4.1

sequence MI-2 [dB] MX [dB] MI-4 [dB] MO [dB]
Stefan 27.6 26.3 23.2 27.6

Foreman 34.9 32.3 29.2 34.6
Coastguard 37.5 34.1 31.9 34.9

Hall-monitor 40.0 37.4 36.2 37.7

Table 4.3.: Avg. luminance-PSNR of Y from non-quantized CIF (30Hz) - MI-4 no longer con-
sidered

sequence MI-2 [dB] MX [dB] MO [dB]
Stefan 25.5 24.5 28.6

Foreman 32.8 30.2 34.6
Coastguard 33.8 31.3 33.0

Hall-monitor 36.9 34.7 36.0

Stefan Large motion and highly detailed textures present.

Foreman Significant motion and mostly little detailed textures (changes towards end of
the sequence) present.

Coastguard Noticeable motion and highly detailed textures present. The water motion
in the sequence is inherently unpredictable.

Hall-Monitor Little motion present and little detail in textures.

In addition, the following experiments are carried out with CIF resolution sequences. As
indicated before in Figure 4.5, both the resolution and the amount of motion increase
significantly. The motion is no longer restricted to comparably few pixels as in QCIF,
where many zero motion vectors are chosen. For CIF resolution the importance of the
motion estimation increases. Since high resolution also implies more image detail, the
prediction quality decreases for all schemes. For reference, the non-quantized prediction
quality of the three schemes on CIF resolution is given in Table 4.3. The ratio between
the schemes is similar to the QCIF resolution results.

4.5. Evaluation of RD performance

Allowing for a low complexity encoder, we choose H.263 intra coding for the key frames.
It performs efficient intra coding, and spatial correlation in key frames is exploited
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very well. To enable at least limited exploitation of spatial correlation we use a
straightforward DCT scheme for the WZ frames. We will elaborate on the DCT scheme
in Chapter 5. We use the high motion Foreman and the low motion Hall-monitor
sequences in CIF resolution with a frame rate of 30 frames per second.

Figure 4.6 shows the RD performance of MX, MI and MO. Since the oracle has access
to the reference frame it clearly outperforms both other schemes. For the high motion
Foreman sequence we observe a PSNR difference of up to 1.5 dB between the motion
oracle MO and extrapolation MX. For the low motion Hall-monitor sequence, the
PSNR between MX and MO differs at most by 0.2 dB.

As we have shown in Section 4.4, in terms of side information PSNR the interpolation
scheme MI always outperforms extrapolation MX (and in some cases even the motion
oracle MO). In the RD performance of the complete system however, the gain is offset
by the higher key frame cost. For the Foreman sequence, MX outperforms MI by 0.5
dB for low rates and shows similar RD performance for high rates. For the Hall-monitor
sequence, providing more temporal correlation to exploit, MX outperforms MI by up
to 1.5 dB for low rates and 0.7 dB for high rates.

The more temporal correlation and spatial correlation can be exploited in the WZ frames,
the better extrapolation becomes in comparison to interpolation. With the high temporal
correlation of the Hall-monitor sequence, extrapolation clearly outperforms interpolation.
Any further improvements in WZ will benefit extrapolation more, since intra coded key
frames become worse in comparison.

4.6. Discussion

In this chapter we have investigated the motion estimation and compensation aspect of
DVC. Our findings can be summarized as follows:

True motion estimation superior to minimum residue motion estimation in DVC
We find in Section 4.4 that with the exception of the Silent sequence, schemes esti-
mating the true motion consistently outperform minimum residue schemes. Especially
the proposed scheme with CARS and underlying 3DRS, shows an excellent perfor-
mance and outperforms for instance the next best extrapolation scheme by up to 2.8 dB.

Proposed extrapolation scheme superior to interpolation
We show that extrapolation is preferred for the purpose of DVC. The initial side infor-
mation quality experiments show that the PSNR of interpolated side information with
a GOP-size of 2 consistently outperforms the PSNR of extrapolated side information.
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(a) Foreman

(b) Hall-monitor

Figure 4.6.: Rate distortion curves of MX, MI and MO for (a) Foreman and (b) Hall-monitor.
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That statement holds for interpolation schemes from literature and the interpolation
scheme based on our proposed extrapolation.

We make clear that the higher side information PSNR deteriorates quickly with an
increase in the GOP-size. A small GOP-size induces the need for a large number of
expensive key frames. Taking the key frames into account, interpolation falls behind
the system RD performance of extrapolation. To measure the RD performance we
considered an entropy-based information theoretic approach and RD results from a
transform domain DVC system, which will be presented in Chapter 5.

Based on these findings we use the CARS-based extrapolation scheme for the rest of this
thesis. In Chapter 5 we introduce a transform domain system, of which we anticipated
some results for our argumentation in Section 4.5.
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5. Quantization in the transform domain

State of the art video coders exploit temporal correlation in video sequences by motion
compensated prediction, and spatial correlation by adaptively quantizing DCT coeffi-
cients of intra frames or motion compensated frame differences. With the exception of
the RD performance evaluation in Section 4.5 the DVC approach we discussed so far
ignored spatial correlations. In this chapter we follow the work of [12], [74] and [15]
and include the DCT transform in DVC, as shown in Figure 5.1. The resulting DCT
coefficients need to be adaptively quantized - as in state of the art coders - to exploit
the DCT transform. Quantization of DCT coefficients in a DVC setting is, however, a
nontrivial challenge because of the restrictions imposed by the LDPC coding.

WZ-frames DCT Quantizer
LDPC

Encoder

X Q LDPC

Decoder

Inverse

Quantizer

Inverse

DCT

Q̂ X̂

Motion

Estimator
DCTQuantizer

Y

I-frames DCT Quantizer
Inverse

Quantizer

Inverse

DCT

Figure 5.1.: Proposed DVC transform domain scheme [26].

First, we elaborate on these restrictions and their impact on the quantization. Second,
we briefly outline quantization in state of the art predictive video coders. We then focus
on the limitations present in DVC and discuss possible options to tackle the quantization.
We further propose a simple side information update, exploiting the iterative decoding
of DCT coefficients. Finally, we evaluate the presented quantization choices and the
proposed side information update.

5.1. Background

A spatially decorrelating transform removes correlation by packing energy in as few
transform coefficients as possible. We focus on the DCT, which is used in many
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image/video compression standards [83]. It should be noted that the DCT itself is a
lossless process, i.e. the original data can be reconstructed.

The lossy step is then to quantize the coefficients. Various techniques exist for the
quantization of coefficients. The best quantization depends on data properties. Here, we
observe the first big difference between conventional video coders and a low complexity
DVC coder. While the former works on inter frame information, the latter only has
access to intra information.

(a) Lena (b) Lena DPCM

Figure 5.2.: Different properties of (a) full Image (intra information) and (b) prediction differ-
ence (simple inter information) for Lena.

Figure 5.2 depicts an example of the difference between intra and inter data for the
Lena image. The intra data contains the full scope of the original image data. In
contrast, the inter data is highly peaked around zero. Consequently, in the latter many
more coefficients are quantized to zero. Especially such zero coefficients are handled
very efficiently in state of the art predictive video coders.

The second main difference between conventional video coders and a low complexity
DVC coder is the encoding of the quantized values. Conventional coders employ
efficient 2D Variable Length Codes (VLC). The coarseness of the quantization can be
selected adaptively, based solely on the rate control aspect. In DVC we have to rely on
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fixed-length coding. Here, the LDPC encoder limits the adaptivity of the quantization.

In DVC, a fixed number of bit planes per band is addressed since for LDPC coding the
number of bits in a coefficient band needs to be known at the decoder. Each quantized
coefficient inside a band can be represented by a fixed number of bits, independent of
the quantized value [100]. Alternatively, it is possible to use adaptive quantization and
send the number of bits for a coefficient as overhead information to the decoder before
decoding the DCT coefficients.

In the scope of this chapter, we focus on the different possibilities to perform the quanti-
zation in DVC, ranging from fully adaptive but not realizable to simple with significant
performance degradations.

5.1.1. State of the art inter frame coders

If the amount of information conveyed by each DCT coefficient is different, it makes
sense to assign a varying numbers of bits to DCT coefficients, i.e. an adaptive bit
allocation. There are two approaches to allocating bits. One approach relies on the
average properties of the transform coefficients, while the other approach assigns bits
as needed by individual transform coefficients. In both approaches, coefficients with
higher variance are assigned more bits than coefficients with smaller variance [81].

In addition, quantized DCT coefficients are dependent. Variable length coding in
conventional predictive video coding is designed to exploit the dependency. Per block,
pairs of non-zero values and zero runs are taken and more common (length of zero
run, value) pairs are assigned small codewords. Less frequent pairs are assigned longer
codewords [100].

If we scan an 8x8 block of quantized transform coefficients in a zig zag fashion [34],
we will find that in general a large section of the tail end of the scan will consist of
zeros, especially for quantized inter data. In combination with mid tread quantizers
and higher step sizes for the higher-order coefficients generally chosen to be quite large,
many of the inter frame DCT coefficients will be quantized to zero. Therefore, there is
a high probability that after a few coefficients along the zig zag scan, all coefficients will
be zero. In this situation, Chen and Prat [34] established the transmission of a special
End-Of-Block (EOB) symbol [81].

For instance in H.263, after quantization and zig zag scanning, 2D-Huffman coding
is applied to send combinations of length of zero-runs and non-zero DCT amplitude.
Consequently, in the bit stream we find the following: (length of zero run, value), (length
of zero run, value), . . . (length of zero run, value), EOB. This representation provides
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a very efficient compression of the long zero runs in inter frame coders.

5.1.2. DVC coders

In DVC coding the dependencies between DCT coefficients inside a block are not
exploited. Grouping coefficients into bands and coding bands separately eliminates the
dependency structure between the DCT coefficients. In addition, the intra frame DCT
coefficients exhibit significantly fewer zero runs and a higher number of bits per DCT
coefficient. When the DCT coefficients are grouped together in bands, the number of
bits per DCT coefficient varies. Moreover, the number of bits varies temporally.

Fixing the number of bits can have adverse effects. If the number of bits is insufficient
the quantized value it will be clipped. The quality of the reconstructed data will suffer
accordingly. If more bits than required are assigned, the LDPC decoder will have to
deal with the noise introduced by the additional bit planes. The LDPC decoder then
has to match zero bit planes in the original quantized frame with possibly non-zero bit
planes in the side information.

It should be noted that the VDC channel model properties of bit planes of DCT
coefficients are different from pixel-based symbols, for which we identified the two-sided
Gamma distribution as best pixel-based distribution in Chapter 3. For DCT coeffi-
cients, the zero-mean Laplacian distribution is the most widely accepted model in the
literature for the temporal correlation channel [42]. The results in [79] show that the
DCT coefficients tend to be more Laplacian than Gamma distributed. In traditional
video coding, the Laplacian distribution is typically used to model the distribution of
the motion compensated residual DCT coefficients [20].

More accurate models can be found in literature, such as the generalized Gaussian
distribution; however, the Laplacian distribution constitutes a good trade-off between
model accuracy and complexity and, therefore, it is often chosen, e.g., [56]. For
the same reason, the Laplacian distribution is widely used to model the transform
domain VDC in the DVC literature, e.g., [47], [12], and [18], and, therefore, follow-
ing the argumentation in [30], our transform domain codec uses a Laplacian distribution.

Most approaches in literature fix the number of bits per DCT coefficient at the en-
coder [15]. An alternative to fixing the number of bits at the encoder would be to adapt
the number of bits per coefficient to the content and send this information as overhead
next to the DCT coefficients. Consequently, there would be neither clipping nor noise
only coefficients. At the same time, this method incurs an overhead for the number of
bits per coefficient. In the following we will investigate some practical methods ranging
from simple fixed quantization to VLC-like adaptive quantization.
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5.2. Considered quantization schemes for DVC

In this thesis we use a block size of 8x8, opposed to the often used 4x4 in literature [15].
As we focus on CIF resolution, less energy is left in the higher coefficients of an 8x8
transform, so that overall fewer information needs to be coded. Consequently, in [100]
the observation is made that an 8x8 transform is better suited for CIF resolution than
a 4x4 DCT transform.

For the quantization of the DCT coefficients we consider four schemes. The schemes
exhibit an increasing level of adaptivity at the cost of transmitting additional overhead,
i.e. information about the number of bits per DCT coefficient. We are then interested in
the trade-off between the cost for sending the quantized DCT coefficient and overhead
information. For comparison purposes we also include an oracle quantization, which
exhibits full adaptivity without any overhead. The schemes we consider are:

set globally In this scheme, the quantization is completely fixed. For each chosen qual-
ity level, the number of bits per coefficient is set globally, regardless of sequence
properties. If a DCT coefficient requires more bits than set, it will be clipped. It
should be noted that this scheme was used for the RD performance experiment in
Section 4.5.

fixed frame This scheme fixes the bits per coefficients for each video frame. The highest
bit value for each of the 64 coefficients across all blocks in the video frame is
calculated and sent as small overhead to the decoder. Consequently, unlike the set
globally scheme, the quantization is able to adapt to changes between frames and
sequences. Changes within a frame are not taken into account.

adaptive This scheme allows an arbitrary number of bits per coefficient. As such, the
scheme is able to adapt to changes between and within frames. A consequence
of the adaptive quantization is that zero bit planes are deterministically fixed at
the decoder, i.e. do not need to be decoded and incur no rate. Thus, the scheme
relies on the decoder already knowing how many bits belong to each coefficient. It
should be noted that this scheme corresponds to the fully adaptive quantization
in conventional predictive coders. Consequently, its purpose here is as a reference
only as it can not be implemented in DVC.

adaptive+overhead This scheme is similar to adaptive. But to make the adaptive
scheme practical, overhead information needs to provide the number of bits per
coefficient separately. For that purpose we use VLC coding for the overhead infor-
mation. For each coefficient band we take the residue DCT coefficients between
every two spatially neighboring DCT blocks. The residue DCT coefficients are
then arranged in (length of zero run, value) pairs. It should be noted, that we
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employ a very simple scheme and store the length of zero runs and the values in
separate arrays. For each of the arrays we calculate the best Huffman dictionary.
We then apply the corresponding dictionary to each of the arrays. The overhead
rate is then the sum of the two array costs.

The actual quantization implementation we use varies slightly over the schemes. The
adaptive and set globally schemes are based on MPEG-2 intra quantization. The
DCT coefficients are quantized using the MPEG-2 intra quantization matrix with vari-
ous scaling factors (2,1,0.5 and 0.25). For the last scheme (set globally), introduced
in [26], clipping of coefficients is possible. We use experimentally chosen allocation
tables. The allocation for the lowest quality setting Q1 and the highest one Q4 can be
seen in Table 5.1 and Table 5.2.

Table 5.1.: Bits spent for each coefficient at the lowest quality setting

7 7 5 4 4 3 0 0
7 5 4 3 0 0 0 0
5 4 3 3 0 0 0 0
4 3 3 0 0 0 0 0
4 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 5.2.: Bits spent for each coefficient at the highest quality setting

10 10 8 7 7 6 5 5
10 8 7 6 5 4 3 0
8 7 6 6 5 4 3 0
7 6 6 5 5 4 3 0
7 5 5 5 5 4 3 0
6 4 4 4 4 3 3 0
5 3 3 3 3 3 0 0
5 0 0 0 0 0 0 0

The quantization for the fixed frame scheme is slightly different as it is derived from
H.263. It yields almost similar results to MPEG-2 quantization. The H.263 intra
quantization does not rely on a quantization matrix. The first coefficient band is
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uniformly quantized with a step size of 8. Each of the other bands uses quantizers with
equally spaced reconstruction levels with a central dead-zone around zero. Their step
size is 2 times the Quantization Parameter (QP), where QP is the quality factor [100].

To avoid over- or underestimation of the number of bits, the maximum quantization index
is estimated per coefficient band. The maximum number of bits per coefficient band is
calculated from the maximum quantization index and transmitted to the decoder [100].
There are 64 coefficients bands due to the block size of 8x8. Consequently, the overhead
is limited to 64 values for each frame.

5.3. Motion estimation on quantized data

The investigation of the prediction quality in Chapter 4 was based on non-quantized
video content. Here, the motion estimation has to deal with a noisy version of X since
both, WZ- and I-frames are quantized. The quantization errors in X̂ also affect the
quality of Y .

5.3.1. Clipping as effect of fixed number of bits

One of the considered quantization schemes also includes clipping of quantized DCT
coefficients (set globally). As the clipping is done during quantization, the decoded
quality of reconstructed frame X̂ suffers. Content is irrevocably lost. For the lowest qual-
ity setting, we observe the difference between a non-clipped and a clipped reconstruction
in Figure 5.3. The most notable difference is the ’Siemens’ logo, which is compara-
bly well preserved without clipping. The same holds true for the sharp background edges.

The coarser the quantization, the less edges are preserved. In addition quantization in-
troduces noise. The quantization noise may induce additional motion artifacts between
consecutive frames as the motion estimation is prone to quantization errors. We focus
on both the impact of quantization on the ME (for fixed frame and adaptive) and
the additional impact of possible clipping (for set globally).

Table 5.3 shows the respective PSNRs for set globally with clipping and adaptive
without clipping for each quality level. Both schemes are quantized using the MPEG-2
intra quantization matrix with the four quality levels Q1-Q4, introduced in Section 5.1.2.
The fixed frame scheme is not listed as it employs H.263 quantization with different
quality levels. With H.263 quantization the three RD points we consider are the H.263
quantization parameters QP = 16, QP = 8 and QP = 4. The respective reconstructed
qualities are 31.5dB, 35.2dB and 39.5dB. However, the prediction quality of fixed
frame is similar to adaptive.
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(a) Low Quality clipping (b) Low Quality no clipping

Figure 5.3.: Reconstructed quality of frame 100 of the Foreman sequence for (a) clipping and
(b) no clipping. Main difference visible in Siemens logo.

The impact of the quantization noise can clearly be seen at the lower qualities in
Table 5.3. The motion oracle loses more than 3dB in prediction quality at the lowest
quality. The degradations in the motion oracle depend solely on the quality of the
motion estimation. For extrapolation, a large part of the loss is incurred by the motion
not being estimated for the current frame and consequently the quantization errors
have less impact on the prediction quality.

Table 5.3.: Avg. luminance-PSNR of Y in [dB] (against X̂) at respective quantization levels
(Q1-Q4) for Foreman CIF at 30Hz.

scheme Q1 Q2 Q3 Q4 non-quantized
Reconstruction quality set globally 31.0 34.1 37.1 40.9 ∞

Reconstruction quality adaptive 32.0 35.3 39.1 43.5 ∞
MX adaptive 28.9 29.5 30.0 30.2 30.2

MX set globally 28.1 29.0 29.6 30.0 30.2
MO adaptive 31.9 32.8 33.6 34.2 34.3

MO set globally 31.0 32.1 33.1 34.0 34.3

The prediction qualities in Table 5.3 are based on the difference between X̂ and Y , i.e.
the errors relevant for the LDPC decoder. X̂ for set globally is practically a low pass
filtered version of X̂ for adaptive, as especially high frequency DCT coefficients are
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clipped in Table 5.1 and Table 5.2. Especially for highly textured background or sharp
edges such low pass behavior can increase the PSNR of the side information.

The quality of the reconstruction itself however suffers, as shown in Figure 5.3. The
PSNR difference between MX with set globally and MX with adaptive is caused by
sharp edges, i.e. high frequency components. As the LDPC decoder corrects the errors
between quantized prediction Ŷ and quantized reference frame X̂, we expect the PSNR
difference between clipping in MX set globally and no clipping in MX adaptive not
to translate to the decoding performance.

5.3.2. Side information update after partial decoding

Following the work in [93], we consider how to make use of partial reference frame
information at the decoder. Since the DCT coefficients are decoded in a zig zag fashion,
more and more reference information becomes available the further the decoding
proceeds. It is then possible to use such a partially decoded frame to generate a better
side information by estimating the motion based on the low frequency coefficients, i.e.
a low pass filtered version of the reference frame.

An important design choice in this context is the amount of coefficients we decode
before re-estimating the motion and generating new side information. Decoding more
coefficients before updating the side information increases the quality of the side
information update. Yet at the same time, there are less coefficients that can benefit
from the improved side information quality. For this reason, we only consider a single
update. In addition, to keep the horizontal and vertical frequency components balanced,
we consider only complete zig zag lines for the side information update.

In Table 5.3 we observed how quantization itself affects the prediction quality. The
coarser the quantization, the less reliable the motion oracle became. Consequently,
motion estimation fails when applying it to the reconstruction of only very few low
frequency coefficients. For the fixed frame H.263 quantization, Table 5.4 shows how
the number of decoded DCT coefficients, i.e. zig zag lines, affects the quality of the side
information update MXupdate.

Further Table 5.4 investigates the trade-off between decoding fewer or more DCT
coefficients before updating the side information. The number of decoded zig zag lines
affects both the PSNR of MXupdate and the RD performance of the system. While
additional zig zag lines increase quality of the side information update, at a certain
point the RD performance starts decreasing.

For each QP we highlight the number of zig zag lines we use. It should be noted that
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Table 5.4.: Trade-off between side information quality and number of decoded coefficients for
MXupdate for Foreman CIF resolution at 30Hz

QP # zig zag lines PSNR MX PSNR MXupdate X̂ [dB] Rate [Mbit/s]

16 2 28.71 29.32 31.45 0.95
16 3 28.71 30.67 31.45 0.92

16 4 28.71 31.23 31.45 0.92
16 5 28.71 31.46 31.45 0.93

8 2 29.48 29.63 35.24 1.93
8 3 29.48 31.52 35.24 1.83
8 4 29.48 32.32 35.24 1.81

8 5 29.48 32.63 35.24 1.83

4 3 30.0 32.17 39.48 3.43
4 4 30.0 33.15 39.48 3.38
4 5 30.0 33.56 39.48 3.4

4 6 30.0 33.74 39.48 3.44

(a) Low Quality (b) High Quality

Figure 5.4.: Coefficients used for side information update for (a) QP=16 and (b) QP=4.

while for QP=16 and QP=8 our choice is optimal, for QP=4 we use an additional
zig zag line from the optimum. The optimum varies over sequences, depending on for
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instance the amount of detailed texture. Here, we prefer to accept a minimal rate loss
(compared to the optimal number of zig zag lines) in some sequences rather than risk-
ing a significant rate loss because of an insufficient quality of the side information update.

For the lowest quality we update the side information after the first three zig zag lines.
Hence, 6 coefficients are available from the reference frame. For each higher quality we
add one more zig zag line before we update the side information. An example for low
and high quality is shown in Figure 5.4. In this configuration we try to preclude the
possibility of the side information update decreasing the side information quality.

5.4. Evaluation of the quantization schemes

5.4.1. Quantization without side information update

For the quantization experiments we use the CIF resolution Foreman sequence. The RD
curves include all frames for a frame rate of 30 frames per second. The side information
is generated using the extrapolation scheme proposed in Chapter 4 (MX).

The first observation in Figure 5.5 is the performance of the fully adaptive scheme.
Since only non-zero bit planes incur transmission rate, this oracle scheme outperforms
all fixed schemes by up to 9 dB. However, the adaptive scheme relies on the decoder
knowing how many bits belong to each coefficient. In practice, the encoder would have
to transmit this information as overhead. Overhead information incurs an additional
rate cost. The additional rate decreases the performance of adaptive by 6 to 9 dB.
Hence, the VLC coded overhead information (adaptive+overhead), increases the rate
by almost 200% in Figure 5.5.

Moving to the less adaptivity, the second observation in Figure 5.5 is the performance
difference between limited adaptivity with small overhead (fixed frame) and no
adaptivity without any overhead (set globally). In the former, the number of bits per
coefficient is set to predefined values for each quality. The latter fixes the number of
bits per coefficient for each frame and sends a relatively small overhead of 64 values per
frame, each requiring at most 8 bits. At higher qualities the overhead of 15 kbit/s is
negligible.

There are two reasons for the difference between fixed frame and set globally.
First, the reconstruction quality increases since there is no clipping of higher frequency
coefficients. Second, the adaptivity on frame level yields fewer coefficients that get
too many bits assigned, which incurs a rate penalty for decoding noise. As expected,
the PSNR difference in side information between clipping with set globally and no
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Figure 5.5.: Comparison of proposed DCT quantization schemes for the Foreman sequence.

clipping with fixed frame does not translate to the system RD performance.

We conclude that among the alternatives presented in Section 5.2 limited adaptivity with
small overhead fixed frame is the best performing practically applicable quantization
scheme.

5.4.2. Evaluation of side information update

For the investigation in this section we use the best performing quantization scheme
from Section 5.4: fixed frame.

We use the Foreman sequence up to Frame 160, to include the largest hand motion
present in the sequence. Such large motion, as well as a change in motion direction, are
difficult to predict for extrapolation. We compare the prediction quality of the normal
extrapolation MX, the side information update MXupdate and the motion oracle
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(a) QP = 4

(b) QP = 16

Figure 5.6.: Prediction quality comparison for MX, MXupdate and MO at (a) QP = 4 and (b)
QP = 16.
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MO in Figure 5.6.

Especially for hard to predict frames, we see a large increase in PSNR performance from
extrapolation to the motion oracle. The side information update is quite close to the
performance of the motion oracle MO for high qualities. With an increase in quality,
the side information for the update converges to the motion oracle one. But even at
the lowest quality, using only very few decoded coefficients, the side information update
MXupdate yields a side information quality up to 6 dB higher than for extrapolation
MX.

Although the side information update quality is far superior, the results in Figure 5.7
show a limited impact on the RD performance. The side information update MXup-
date can only be applied after partial decoding, but most of the bits are spent on
the low frequency DCT coefficients. Hence, their influence on the RD performance is
significant. In comparison, the higher frequency coefficients left to benefit from a side
information update do not contribute much to the RD performance.

We conclude that while a side information update can improve the RD performance,
especially for difficult frames with a high bit rate, in total the update only covers a small
part of the gap between extrapolation and motion oracle.

5.5. Discussion

In this chapter we investigated our transform domain implementation of DVC. The main
focus in this context was on the quantization. Our findings can be summarized as follows:

Quantization needs a trade-off between adaptivity and overhead
We show that the bit rate for each coefficient should be defined as adaptive as possible.
The adaptivity is limited by the requirements of the LDPC decoder. For successful de-
coding, the decoder needs to know the number of bits per coefficient. The decoder needs
to know this information in advance. So there is a compromise between the overhead for
this information and the RD gain during decoding. We find the best compromise in the
fixed frame scheme, which is adaptive up to the frame level, with only a small overhead.

ME suffers from quantization noise
The best performing quantization scheme does not suffer from reconstruction artifacts
from clipping. The reconstructed quality is PSNR wise similar to that of H.263
or MPEG-2 intra coding. The motion estimation is applied to such reconstructed
frames and the associated quantization noise. The extrapolation suffers less from the
quantization noise than the motion oracle which is closer to minimum residue ME. The
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(a) Foreman

(b) Hall-monitor

Figure 5.7.: Performance gain given by MXupdate.
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errors in the extrapolation are larger to begin with, i.e. there is not as much to lose by
adding quantization noise.

Propose a simple yet efficient side information update
We propose a simple scheme, which uses partially decoded data to update the side
information. It is important to decode a sufficient number of coefficients first. Otherwise,
the updated prediction might be of lower quality than the original one. If too many
coefficients are decoded, the updated prediction will have a quality similar to the motion
oracle. However, most of the coefficients have already been decoded and the impact
of the improved prediction on the RD performance is negligible. With our proposed
compromise we achieve a noticeable RD performance increase for higher qualities.

Based on these findings we use the fixed frame quantization scheme for the rest of
this thesis. With regard to the side information update scheme MXupdate, the gain is
limited to hard to predict frames/sequences. As such we only refer to it for comparison
purposes. It should be noted however, that the scheme is easy to implement and does
not increase the encoder complexity.
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6. Non-stationary VDC modeling

State of the art video coders take the varying statistical image properties over blocks
into account. As a consequence, each block type is coded differently, taking the
non-stationarity of prediction errors into account. Blocks are classified as either intra,
inter or skip blocks. The DVC approach we discussed so far ignored the non-stationarity
of the VDC. Modeling the non-stationary VDC accurately is a significant challenge in
DVC, as neither the encoder nor the decoder have access to the reference frame X and
side information Y simultaneously.

First, we elaborate on how conventional coders deal with the issue of non-stationarity.
Second, for low complexity DVC, we focus on decoder-based solutions. In this context,
the main question is how to classify the VDC. After giving a short summary of possible
improvements with manual classification, we consider such an oracle classification for
transform domain DVC. We then focus on mask-based approaches for region classifica-
tion. We discuss how to acquire helpful information from the motion estimation and the
Motion Learning (ML) scheme introduced by Varodayan et al. in [93].

6.1. Background

When operating an H.264 encoder, a key step is selecting the most suitable prediction
mode. A wrong selection means the encoder can not achieve maximum compression.
Representative H.264 encoders select the mode that minimizes the rate-distortion cost
function based on Lagrange’s method of undetermined multipliers [19].

When using the intra mode, each block is predicted from spatially neighboring
samples only. In addition to the intra macroblock coding types, various predictive
or motion-compensated coding types can be specified as inter macroblock types. An
inter macroblock can also be coded in the so-called skip mode. The skip mode is very
efficiently coded since no quantized prediction error signal is transmitted [102]. Only
the macroblock header and possibly the motion vectors need to be coded.

Which mode is used depends on the RD cost, calculated at the encoder itself. In low
complexity DVC, we do not have access to the side information Y at the encoder. As
outlined in previous chapters, the DVC encoder only performs intra coding. Without
access to inter information the DVC encoder can provide no information about the VDC.
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Consequently, we have to estimate the non-stationarity at the decoder. In Chapter 3 we
focused on the best global channel model, ignoring the non-stationarity. Since state of
the art channel codes require an accurate channel model for high coding efficiency, in
the following we consider two (or more) distinct channel models for different regions.

6.1.1. Virtual dependency channel revisited

In DVC, the side information Y at the decoder is computed as the prediction of the
video frame X. The prediction errors in Y are modeled as noise N :

X = Y +N. (6.1)

In the earliest work on DVC and in the Source Encoding with side-information under
Ambiguous State of Nature (SEASON) framework [52], the deviation of the side
information Y from the video frame X is modeled as an additive stationary white
noise signal N . Prakash et al.[52] state that the residual frame N will truly appear as
white noise if the motion estimation is reliable. More sophisticated motion estimation
algorithms can be used. Nevertheless, the above model for the dependency channel
between X and Y is fundamentally flawed because of events like occlusion.

Occlusion occurs when video contains moving objects. These objects occlude other
objects (or the background) and at the same time uncover previously concealed regions.
In these regions, motion can not be estimated properly and consequently the motion
compensated prediction will fail. This failure creates a noise contribution N that has
statistical properties substantially different from the regions in which motion estimation
and compensation can be carried out reliably.

Occlusion noise always occurs at the edge of moving objects or the edge of a video
frame in case of camera panning. In addition, occlusion noise is hard to characterize.
The dependencies P (X|Y ) in the unreliable regions are difficult to estimate since the
revealed area is not known. Here, we have to rely on hole filling, for example by
background extrapolation. Since the noise in the unreliable and reliable areas are
both modeled by N , we have to conclude the noise process in Eq. (6.1) is inherently
non-stationary.

A more accurate model for describing the VDC between X and Y is based on the
observation that the noise N is a spatial mixture of two or more different noise processes.
To distinguish between a reliable and an unreliable class we propose to model the two
classes with different Laplacian PDF models. For instance we model the reliable class
with a small variance and the unreliable class with a large variance.
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6.1.2. Experimental validation with manual segmentation in pixel domain

To analyze the potential of using two classes to model the VDC, we consider the coding
performance. We do not yet take into account the problem of region classification.
Hence, we manually assign a binary mask to separate the reliable from the unreliable
regions.

(a) X (b) Binary classification mask

(c) Histogram unreliable regions (d) Histogram reliable regions

Figure 6.1.: (a) Original frame X,(b) categorization into reliable (black) and unreliable (white)
regions, (c) histogram (zoomed) of unreliable regions and (d) histogram (zoomed)
of reliable regions.

We carry out an experiment similar to the one in Chapter 3.3.1, which only considered a
stationary VDC model. Figure 6.1 shows an example frame of the synthetic Picture-in-
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picture sequence with its corresponding categorization into a reliable and an unreliable
class. Further, we show the histograms of the two classes. The difference between
the histograms illustrates, that one channel model is not able to model both regions
accurately. We then look at two different assumptions for the channel model:

2 class model. The purpose of this model is to identify the performance gain when
taking non-stationarity into account. This model models both regions separately.
The channel is assumed to be non-stationary. A different PMF is used for the
reliable and unreliable regions.

1 class model. The purpose of this model is to provide the reference with one
class for the VDC. The channel is assumed to be stationary and the PMFs of the
reliable and unreliable regions are combined into a single channel. The combined
PMF is the average of the two PMFs, weighted by the number of reliable/unreliable
pixels.

(a) Picture-in-picture data (b) Picture-in-picture synthetic

Figure 6.2.: Results encoding/decoding subframe, with and without informing the decoder
about occluded regions with (a) P (Q|Y ) measured from the data and (b) P (Q|Y )
from a synthetic channel model (σ2 = 1 and σ2 = 510).

Figure 6.2 shows the performance for the two channel models in terms of their BER for
a number of bit rates. First, the PMF is measured from the data, constituting an oracle
estimation. Following the argumentation in Section 3.3.2, the channel is modeled based
on two Laplacian distributions (σ2 = 1) and (σ2 = 510).

It should be noted that the manual segmentation into reliable and unreliable pixels is
not free of misclassification. In combination with fixing the reliable pixels to (σ2 = 1)
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and the unreliable pixels to (σ2 = 255) the decoding might converge to an incorrect
result as is the case in Figure 6.2 (b).

The results in Figure 6.2 show that the performance of decoding improves if the mixed
noise model is assumed. First, with accurate channel parameters, the bit rate can be
reduced by 30% in Figure 6.2 (a). Second, with fixed channel parameters (σ2 = 1 and
σ2 = 510), the bit rate can still be reduced by 20% in Figure 6.2 (b). With these results
we put forward that future practical distributed video coders should incorporate more
than one class for the VDC.

6.2. Classification oracle in transform domain

In the previous section we observe performance gains when applying classification to
model the non-stationary VDC. The performance gains are observed for a pixel-based
DVC system. The classification is based on manual segmentation. To investigate
this issue further in the transform domain, we consider a controlled experimental
setup with an oracle classification. Here, we do not segment the classes manually, but
employ a threshold for the difference between reconstructed reference frame X̂ and side
information Y . Such oracle classification is closer to the ground truth than our coarse
manual segmentation.

6.2.1. Model for transform domain classification

For each band, we have a classification into reliable and unreliable coefficients. We
base the classification, henceforth referred to as oracle classification, on the difference
between the to be decoded reference frame X̂ and side information Y . It should be
noted that in practice the decoder does not have access to X̂ and therefore any practical
classification will perform worse than the oracle classification.

The oracle classification has an important tuning parameter, namely the threshold
between the classes. As will be shown in the experiments, the most RD efficient
threshold is at a difference equal to zero between X̂ and Y . The classification in
reliable and unreliable coefficients then complies with the distinction between skip and
inter mode in conventional video coding. To put a high certainty on the reliability of
the reliable class, while being able to deal with errors from misclassification, we use a
Laplacian distribution with σ = 0.1 to model the reliable class in the experiments.

For higher frequency coefficients, which are heavily quantized, the errors are usually
very close to zero. At such high frequencies, the quantization is coarse for all qualities.
Consequently, quantizing Y +N for very high quantization parameters becomes similar
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(a) QP = 16 (b) QP = 4

Figure 6.3.: Relative amount and standard deviation of perfectly predicted coefficients, assigned
to the reliable class, for the lowest and the highest quality of the Foreman sequence
at CIF resolution.

to quantizing only Y . For lower frequency such high quantization parameters are only
present at lower reconstruction qualities.

The higher the reconstructed quality of X̂, the finer the quantization. Figure 6.3
shows that ratio of the reliable class for two quantization levels. The high frequency
coefficients are well predicted at both qualities. However, at the lowest quality
(X̂ = 31.5dB) also a large fraction of the low frequency DCT coefficients is predicted
correctly. At the highest quality (X̂ = 39.5dB) the number of correct low frequency co-
efficients is much smaller. Furthermore, the ratio deviates far more over different frames.

6.2.2. Model to introduce misclassification

To analyze the robustness of the classification we have to consider the effect of classifi-
cation errors. For the oracle classification the reliable class only contains reliable DCT
coefficients and the unreliable class only unreliable DCT coefficients. We introduce
classification errors by manually misclassifying a certain number of DCT coefficients.
Here, the fraction of misclassified coefficients refers to the percentage of reliable
coefficients that are moved from the reliable to the unreliable class. A similar fraction
is moved from the unreliable to the reliable class.

In practice misclassification does not occur randomly but is more likely to occur for
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coefficients, that are closer to the threshold and consequently the wrong class. For the
coefficients in the unreliable class, we misclassify the coefficients with the smallest error
X̂-Y first. The reliable coefficients, all with the same distance from the zero threshold,
are misclassified randomly. We label the misclassification scheme misclass.

6.3. Evaluation of oracle classification and sensitivity towards
misclassification

In this section we investigate the oracles influence on the RD performance in a trans-
form domain DVC scheme [28]. We use the CIF resolution Foreman and Hall-monitor
sequences. The RD curves include all (300) frames for a frame rate of 30 frames per
second. Only the first three frames are intra coded. The remaining frames are all
extrapolated WZ frames [26].

6.3.1. Oracle classification without errors

Figure 6.4 shows the RD performance of three classification approaches. For comparison
we included reference results with H.263 intra and inter and a stationary DVC one class
model with 1 class [28]. For the proposed two class model we show 2 class.1 and
2 class.0, which are similar, except for the threshold indicated by the extension. A
threshold of zero effectively implements a decoder-based skip mode.

The most important observation for both sequences in Figure 6.4 is the large difference
between a threshold of 1 or 0. While the former 2 class.1 only gives a moderate
improvement over 1 class, the latter 2 class.0 decreases the bit rate by about 40%.
Since with a threshold of zero, all coefficients in the reliable class are correctly predicted,
in theory no bits at all are needed for these coefficients.

In our setup however, the model is peaked around zero with σ = 0.1. With such a high
certainty, the decoder requires only very few bits. By contrast, the unreliable DCT
coefficients are decoded using a less peaked distribution compared to the one class case.
Such a broader distribution is beneficial for the RD performance as the decoder relies
more on the error correcting syndromes than on the unreliable side information for
these coefficients.

The oracle classification is outperformed by H.263 inter. The performance difference
between DVC and H.263 inter is partially caused by the higher side information quality
for H.263. But for the low motion Hall-monitor sequence the side information quality in
DVC is almost as good as the quality of a motion oracle in H.263. Here, the performance
difference between DVC and H.263 is mainly due to the high efficiency of the skip mode
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(a) Foreman

(b) Hall-monitor

Figure 6.4.: RD performance of oracle classification for (a) Foreman and (b) Hall-monitor se-
quence.
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in H.263.

Rather than just skipping coefficients, H.263 can completely skip many macro blocks
in the Hall-monitor sequence. In conclusion, our decoder-based oracle classification
can only compete up to a certain point with the encoder-based skip mode of H.263.
While H.263 can efficiently implement a skip mode for coefficients, blocks and complete
frames, our oracle classification is limited to efficiently encode reliable coefficients. The
coding efficiency is further limited by the performance loss of LDPC codes for very low
conditional entropies [50].

6.3.2. Oracle classification with misclassification

The RD performance gain of 3dB by oracle classification highlights the importance of
accurate VDC modeling. In the following, we investigate the sensitivity to classification
errors. For this purpose we analyze misclassification and its impact on the RD
performance. It must be pointed out that the variance of the Laplacian model for each
class is calculated after introducing misclassifications. As a result decoding is always
possible.

Figure 6.5 then shows the RD performance for misclass. We chose to limit the fraction
of misclassified coefficients to 10% and 30%. We expect the former to be very difficult
to achieve in practice and hence consider the latter to be more relevant for a practical
system. We then observe a high sensitivity to misclassification.

The RD performance in Figure 6.5 degrades rapidly with an increase in the fraction of
misclassified coefficients. Even for a very small misclassification of 10% the benefit from
using two classes over one class is cut in half. At 30% a one class model outperforms the
two classes approach by up to 1.5 dB at low qualities. At higher qualities, the one class
model performs either equally for the Hall sequence or 0.5 dB worse for the Foreman
sequence. Here, the reliable and unreliable class are more balanced.

In conclusion, since only the zero threshold shows a significant performance gain, to
avoid misclassification it is necessary to identify perfectly predicted areas. It is ques-
tionable whether even sophisticated classification schemes can reduce misclassification
below 10%. We already consider 30% misclassification a challenge without access to the
reference frame X at the decoder.
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(a) Foreman

(b) Hall-monitor

Figure 6.5.: RD performance of oracle classification with misclassification for (a) Foreman and
(b) Hall-monitor sequence.
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6.4. Classification based on motion estimation and motion
learning

To incorporate multiple classes at the decoder, an automatic classification into reliable
and unreliable regions is needed. In this section we investigate such automatic classifica-
tion methods to distinguish between reliable and unreliable regions. For that purpose we
consider classification based on motion information, which is available before and during
LDPC decoding. The motion information is used to generate binary masks, indicating
unreliable regions.

6.4.1. Classification based on motion estimation

Classification based on block-based motion estimation

First, we consider information from the block based CARS motion estimation, we use
to generate the side information. With the extrapolation scheme presented in Chapter
4, we can use the position of vector collisions and holes to identify unreliable regions.
However, to accurately classify reliable and unreliable regions is difficult due to halo
effects.

Halo effects occur around a foreground object in a video sequence when the object is
moving relative to a background. The background could be stationary and the object
moving or vice versa. For example, the face of a person walking in a scene could seem
to be surrounded by a halo, as if a portion of the background was moving along with
the face [7]. The origin of the halo effect is erroneous motion estimation in occlusion
areas.

While the errors in the side information are located on the edges themselves, the vector
collisions and holes form a halo around the edges. Furthermore, homogeneous areas
like for instance the white helmet in the Foreman sequence can induce vector collisions,
which are then classified as unreliable. The extrapolated prediction for these regions
however does not suffer from these vector collisions. Hence, the vector collisions lead to
misclassification.

For a closer estimate of the edges, we consider a global motion-based approach to identify
foreground edges. The approach works as follows.

Global motion estimation

We consider a three parameter global motion estimation. We restrict the number of pa-
rameters to two translational and a single scaling parameter. As such the global motion
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estimation is suited for estimating translational motion and zooming. The three param-
eters are estimated using the gradient-based search method of Hager and Belhumeur [49].

We find values for the translation and scaling such, that the difference between the
predicted video frame and the original frame is minimal. This scheme was introduced
in [27]. To prevent independent motion from influencing the global motion parameters,
a dynamic threshold to exclude the pixels with the highest error is used. After initial
convergence to the global parameters, further iterations only include the 80% least error
pixels.

Classification based on global motion estimation

We consider the remaining 20% of pixels with the highest error to classify unreliable
regions. Since we use discrete histogram binning during the global motion estimation
until at least 80% of the pixels are included, the amount of pixels classified as unreliable
can vary from 0 to 20%. The unreliable pixels belong to distinct edges, especially edges
of independently moving foreground objects.

Block-based versus global motion estimation

Figure 6.6 shows an example classification for a single frame in the Foreman sequence.
The unreliable class is indicated by a mask of white pixels overlaying the frame.
Figure 6.6 (a) shows the block-based and Figure 6.6 (b) the global motion-based
classification. Figure 6.6 (c) illustrates the differences between X and Y . To convert the
differences into a binary mask which can be applied to our classification problem, we
introduce an oracle mask in 6.6 (d). For the threshold between reliable and unreliable pix-
els we manually found |X−Y | > 6 to provide a good distinction between the two classes.

We observe, regions classified as unreliable for the block-based approach are on a halo
around the object boundaries. By contrast, the unreliable pixels in the global motion
approach are concentrated on the edges themselves and especially the foreground edges,
which do not follow the global motion. As such the binary mask generated by means of
global motion estimation is better suited to classification.

Nevertheless, the quality of the classification based on motion estimation suffers from
large and unpredictable motion. Since the global motion estimation is performed between
the two previous frames, it is not necessarily accurate for the current frame. Hence,
Section 6.4.2 will introduce a motion learning scheme, where the classification takes the
motion in the reference frame itself into account.



6
.

N
o
n

-s
ta

ti
o
n

ar
y

V
D

C

91

(a) (b)

(c) (d)

Figure 6.6.: Classification masks for (a) global, (b) block-based, (c) the differences X − Y and
(d) the oracle mask for |X − Y | > 6.

6.4.2. Classification based on motion learning

The binary masks generated for the purpose of classification for both motion estimation
schemes do not have access to the reference frame X. Consequently, they are not
necessarily accurate for the reference frame. In this section we consider a motion
learning-based approach with access to partial reference frame information.

In [93], Varodayan et al. propose to replace the motion estimation at the decoder
side with an unsupervised motion learning scheme, blending motion estimation and
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channel decoding into a single procedure. However, the improvement of motion
learning over motion estimation turned out to be very small. Using the same con-
cept, we propose to employ the motion learning in addition to the motion estimation,
rather than replacing it. The motion learning implementation from [93] is available at [9].

We investigate the applicability of motion learning to our classification problem. With
motion learning is possible to use partial reference information from the already received
channel coding syndromes. We propose to use the partial reference information to locate
prediction errors in Y . If the motion learning is able to find motion between the side
information and the (partial) reference frame, there are still errors in the side information.
The corresponding regions should then be classified as unreliable.

Motion learning

The motion learning is an iterative Expectation-Maximization (EM) algorithm. During
the E-step, the decoder updates the motion field distribution. Once the distribution of
the motion field has been updated, in the M-step, the decoder proceeds to maximize
the likelihood of Y and the syndrome S. The algorithm iterates between the E-step and
the M-step, learning the motion vectors and improving the quality of the soft estimate
of the WZ frame.

The unsupervised motion learning, introduced in [93], uses the syndrome bit stream of
a WZ frame to learn the motion vectors. Figure 6.7 shows the flow diagram for the
decoding process. The algorithm iteratively updates the probability distribution of the
motion. At first the motion distribution is initialized with a default setting. Together
with the previous decoded frame and its VDC information, the algorithm is able to
generate soft side information.

Figure 6.7.: Conceptual flow diagram for unsupervised motion learning [93].
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The LDPC decoder then generates an improved soft estimate of the WZ frame based
on the soft side information and already received error correcting syndromes. Since the
new soft estimate is a better estimation of the WZ frame, the algorithm can update
the probability distribution of the motion. For that purpose it performs a soft motion
search between the previous decoded frame and the current soft estimate. The algorithm
iteratively repeats itself until decoding is successful.

Classification based on motion learning

To classify unreliable regions we analyze whether motion learning is able to find motion
between the side information and the (partial) reference frame by means of the motion
field distribution. An example of how the motion field distribution behaves are given in
Figure 6.8 (a). The initialization of the probabilities highly favors zero motion.

If the side information is reliable for a motion block, the final motion distribution will
be peaked at zero motion, e.g. Figure 6.8 (b). If the side information is unreliable,
the distribution will show peaks at different positions, e.g. Figure 6.8 (c). However
a similarly peaked distribution might occur in homogeneous areas. This problem is
similar to vector collisions in block-based ME for homogeneous areas.

Figure 6.8.: Example of first motion field distribution update (From left to right: PMF initial-
ization, well predicted block, block with errors.

The binary mask indicating unreliable regions is generated as follows:

1. Use previously decoded frames X̂k−1 and X̂k−2 for motion compensated extrapola-
tion.

2. Use resulting side information as input for the motion learning.

3. Check the probability distribution of the motion field.
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4. Perform a predefined number of motion learning iterations. We experimentally found
10 iterations to provide sufficient convergence towards the final motion distribution.

5. Generate motion learning mask based on final motion distribution. For that purpose
we use a threshold on the motion vector probability. If a non-zero motion vector
has a higher probability than zero motion, the block is classified as unreliable.
We use an additional Sum of Absolute Differences (SAD) threshold to exclude
homogeneous areas, which can yield false motion probabilities.

6. Commence regular LDPC decoding, employing the binary mask of reliable and unre-
liable blocks.

It should be noted that the motion learning between the side information Y and the
reference frame can improve the RD performance. To take the performance increase
into account, we also investigate the performance gain of LDPC decoding with motion
learning over regular LDPC decoding.

Three classes mask

To get a finer distinction between prediction errors, we propose to combine the binary
mask of unreliable regions found with motion learning, with the binary mask found
with global motion estimation. The benefits of the two binary masks are combined in
the three classes mask. Each class can be modeled separately, allowing more accurate
channel modeling.

Previously, we introduced the global motion mask, with a threshold for unreliable pixels.
To combine the pixel-based global mask with the block-based motion learning mask, we
modify the global mask. In the block-based global mask each 8x8 block with at least
two unreliable pixels from the pixel-based global mask is labeled unreliable. With such
a low threshold, any blocks classified as reliable are most likely very well predicted.

Consequently, the global motion mask provides a good indication of well predicted areas.
Furthermore, the motion learning mask gives a good indication of areas with high errors.
With the complementary behavior the two masks can be used to derive a novel three
classes mask with three reliability classes.

Very unreliable blocks Motion learning AND global motion mask indicate an unreliable
block.

Relatively unreliable blocks Global motion mask indicates an unreliable block and mo-
tion learning mask indicates a reliable block.

Reliable blocks Motion learning AND global motion mask indicate a reliable block.
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(a)

(b)

Figure 6.9.: From left to right: global motion mask, motion learning mask, 3 classes mask
(white - very unreliable, black - relatively unreliable) for (a) Foreman and (b)
Hall-monitor.

Example masks for the Foreman and the Hall-monitor sequence is given in Figure 6.9.
The leftmost global mask indicates mostly blocks on edges as unreliable. The motion
learning mask shows unreliable blocks mostly in the boundaries of the moving objects.
For the rightmost three classes mask, white blocks are very unreliable, black blocks are
relatively unreliable and the remaining blocks are reliable.

6.5. Evaluation of proposed classification schemes

In this section we compare and evaluate the classification schemes introduced in Sec-
tion 6.4. First, we compare the two motion estimation schemes. Then, we focus on the
motion learning and 3 classes masks.

6.5.1. Classification based on motion estimation

For this experiment we use real video sequences in CIF resolution with a frame rate
of 30 frames per second. The sequences range from the low motion Hall-monitor
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sequence to the very large motion Stefan one. The varying sequence properties provide
a representative subset of real video content. The side information Y is extrapolated
and uses the block-based CARS approach.

Block-based versus global motion estimation

We consider two evaluation criteria to compare the classification quality. First, the
difference in side information quality between reliable and unreliable regions in terms
of PSNR. Second, the amount of pixels labeled as unreliable. The second evaluation
criteria requires a ground truth to compare with. For that purpose we employ the
oracle mask for |X − Y | > 6 introduced in Section 6.4.1.

For each video sequence in Table 6.1 we consider the side information Y with its respec-
tive PSNR. We then show how the PSNR differs between reliable and unreliable regions
for each of the three classification schemes. In addition we provide the percentage of
regions classified as unreliable.

Table 6.1.: Comparison of the region classification schemes [27].

sequence area label global motion block-based |X − Y | > 6

Stefan PSNR unreliable [dB] (A) 20.5 20.8 19.6
(PSNR Y PSNR reliable [dB] 26.1 25.4 40.1
=24.6 dB) percentage of A 15.4% 14.6% 33.0%

Foreman PSNR unreliable [dB] (A) 25.8 27.7 22.7
(PSNR Y PSNR reliable [dB] 31.7 30.8 40.3
=30.2 dB) percentage of A 13.0% 14.5% 17.5%

Coastguard PSNR unreliable [dB] (A) 26.1 26.7 24.6
(PSNR Y PSNR reliable [dB] 33.4 31.7 38.9
=31.3 dB) percentage of A 13.6% 3.8% 19.8%

Hall-monitor PSNR unreliable [dB] (A) 27.5 30.0 23.8
(PSNR Y PSNR reliable [dB] 37.3 35.0 40.5
=34.7 dB) percentage of A 9.5% 2.3% 6.0%

In Table 6.1, we compare the classification schemes. With regards to both criteria, the
block-based approach performs quite poorly because of halo effect and poor motion
estimation in homogeneous regions. The global motion approach shows better results,
especially in terms of the PSNR differences. However, the percentage of unreliable
regions indicates that the global motion approach suffers from its fixed threshold. As
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introduced in Section 6.4.1 the number of pixels classified as unreliable can vary from 0
to 20%. Consequently, it is hard to correctly classify unreliable regions if more than 20%
pixels of a frame are unreliable as seen for the Stefan sequence with 33% unreliable pixels.

In conclusion, we prefer global motion estimation over block-based motion estimation
for the purpose of classification. However, there is a large performance gap to oracle
classification, indicating a large percentage of misclassified pixels.

Classification based on global motion estimation

To investigate the impact of the misclassified pixels we investigate the RD performance
of the complete system. We focus on the preferred global motion classification 2 class
global and the oracle classification 2 class oracle. Furthermore, we provide the one
class case 1 class for comparison. The parameters for all dependency models are
estimated from the previously decoded frame.

Figure 6.10 shows pixel domain results for the Foreman and Hall-monitor sequences.
For the coarsely quantized Hall-monitor sequence we observe a performance degradation
of the global classification 2 class global. For that RD point the performance of the
global classification is below the 1 class case. The reason for this exception is a poor fit
on coarsely quantized data due to a limited amount of pixels in small unreliable regions.

In Figure 6.10 (a), the oracle classification 2 class oracle outperforms the one class
model by 4 to 6 dB. For the global motion classification the performance gain to the
one class model is reduced to less than 1 dB. The low-motion Hall-monitor sequence
in Figure 6.10 (b) has only a small percentage of unreliable pixels, which reduces the
performance gain of the oracle classification over the 1 class model to 2 to 3 dB. Excect
for the lowest quality, the global motion classification still maintains a performance that
is up to 2 dB higher than the one class model.

In conclusion, the global motion classification can provide a significant RD performance
increase in pixel-based DVC. How the increase translates to the transform domain will
be investigated by means of the block-based global motion classification adopted for the
3 classes mask.

6.5.2. Motion learning-based masks

For this experiment we use the transform domain code provided by Varodayan et.al.
from [8]. Hence, the testing conditions have to be adapted. Due to the high decoding
complexity we use QCIF resolution sequences Foreman and Hall-monitor at a frame
rate of 30 frames per second. For Foreman we use frames 48 to 96 and for Hall monitor



98

(a)

(b)

Figure 6.10.: Coding rates by applying different classification masks: 1 class, 2 class oracle and
2 class global for Foreman (a) and Hall-monitor (b).
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the first 50 frames. Initially, we perform an oracle estimation of the VDC. Later, we also
show how the results change if we estimate the VDC parameters from the previous frame.

The schemes we compare are the following:

LDPC No mask is used and regular LDPC decoding performed.

Motion learning No mask is used, but motion learning is applied.

ML mask Motion learning mask with regular LDPC decoding.

GM mask Block-based global motion mask with regular LDPC decoding.

3 classes mask Combines the three classes mask with regular LDPC decoding.

Figure 6.11 compares the five schemes. For the Foreman sequence, motion learning
provides a 0.4 dB gain over LDPC. For the Foreman sequence and the Hall-monitor
sequence, we observe a 0.45 dB gain for the GM mask and ML mask over LDPC.
The 3 classes mask provides an additional 0.2 dB gain over the GM and ML mask.

The benefit from using motion learning itself is sequence dependent. For the Foreman
sequence motion learning outperforms LDPC by 0.4 dB. For the low motion
Hall-monitor sequence, the side information is well predicted. For this sequence there
is no performance gain of motion learning over regular LDPC coding.

Finally, if we do not use an oracle estimated VDC parameter but estimate it from the
previous frame, all masking approaches lose in performance. As shown in Figure 6.12,
the 3 classes mask does not provide a noticeable improvement anymore. With its
higher precision it is also most sensitive towards inaccurate modeling. As such it is not
feasible to go beyond two models in a practical situation.

6.6. Discussion

Multiple channel models can help the VDC modeling
Since the VDC is non-stationary in nature due to events like occlusion, it is not possible
to get the highest compression performance with a stationary VDC model. With
manual classification we observe up to 30% bit rate reduction if we model two classes
separately.

Classification oracle - large potential gain but sensitive to misclassification
We analyze the potential performance gain of accurate channel modeling in DVC by
means of an oracle classification. A two class model distinguishes between reliable
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(a) Foreman

(b) Hall

Figure 6.11.: Coding rates by applying different (classification) schemes: LDPC, motion learn-
ing, ML mask, GM mask and 3 classes mask with oracle estimation of VDC
parameters for Foreman (a) and Hall-monitor (b).
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(a) Foreman

(b) Hall

Figure 6.12.: Coding rates by applying different (classification) schemes: LDPC, motion learn-
ing, ML mask, GM mask and 3 classes mask with VDC parameters estimated
from previous frame for Foreman (a) and Hall-monitor (b).
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and unreliable coefficients. The model reduces the bit rate by 40%, i.e. increases the
RD performance by 3 dB. We then introduce misclassification. Already with 10%
misclassified coefficients, we observe a RD performance decrease of 1.5 dB.

Since only the zero threshold shows a significant performance gain, it is necessary to
identify perfectly predicted areas. It is questionable whether even sophisticated classifi-
cation schemes can reduce misclassification below 10%. Already 30% misclassification
is a challenge without access to the reference frame.

In addition we observe limits to the oracle classification itself. Since we only operate
at the decoder side, it is not possible to skip blocks or complete frames. This limited
adaptivity to non-stationarity in low complexity DVC is incurs a non-recoverable
performance loss.

Classification based on motion estimation lacks reference information
For an automatic classification, we consider two motion estimation-based schemes, a
block-based and a global motion-based approach. We find the global motion-based
approach to provide a better class separation. The class separation increases the
RD performance of a pixel-based DVC codec by up to 2 dB for the low motion Hall
sequence. For the Foreman sequence the RD performance gain declines to 1dB. With
larger motion, the classification accuracy suffers from a lack of access to reference
information.

Motion learning provides partial reference information for the classification
To allow partial access to reference frame data, we employ a motion learning approach
from literature [93]. The classification based on the motion learning shows a similar
quality to the global motion-based classification. The motion learning is well suited for
finding badly predicted areas. The global motion is well suited for finding well predicted
areas. We then propose to combine the two approaches and get a novel three levels
classification.

The three levels classification improves RD performance by 0.2 dB with accurate
channel parameters. In practice, the channel model parameters need to be estimated
from the previous frame. Then, the three levels classification only yields a negligible
gain. We assert two classes are sufficient for further investigation.

Based on our findings regarding the high sensitivity to misclassification, we omit the
classification approach from the benchmark in Chapter 7.
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7. Performance benchmark of proposed
DVC components

In the previous chapters we evaluated a realization for each of three studied components
in a DVC system, namely channel coding, ME/MC and DCT quantization. The main fo-
cus of this chapter is then to provide a performance benchmark of the three components.

First, we report the latest performance of DISCOVER as state of the art in DVC. Fur-
ther, we analyze the RD gap between DVC and conventional video coding. Finally, we
discuss the trade-off between RD performance and encoder complexity, and conduct a
benchmark of several state of the art schemes.

7.1. Background

The DISCOVER project [1] concludes that DVC-based architectures may present the
following functional benefit [6]:
Flexible allocation of the overall video codec complexity – Since the DVC
approach allows moving part of the encoder complexity to the decoder, it clearly provides
the benefit of a flexible allocation of the video codec complexity between the encoder and
decoder. A particular case of the flexible allocation is the important case (for some
applications) of low encoder complexity which may also imply lower encoder battery
consumption, as well as cheaper and lighter encoders.

Next to the processing during encoding, the transmission subsystem also incurs signifi-
cant energy costs. Consequently, an increase in transmission bandwidth due to a decrease
in processing complexity can incur higher cumulative energy costs. For instance Nim-
magadda et al. present an adaptive image compression algorithm to save transmission
energy through wireless networks in [68]. This method achieves 20% energy reduction on
average by 35% reduction in transmission energy with 15% additional processing energy.

7.1.1. DISCOVER video codec as state of the art DVC

The state-of-the-art on DVC, by example of the DISCOVER video codec, is reviewed
in [71]:
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In terms of RD performance, the DISCOVER video codec already wins against the
H.264/AVC intra codec for most test sequences, and for GOP=2. For more quiet
sequences, the DISCOVER codec may even win against the H.264/AVC no motion
codec. For longer GOP sizes, winning against H.264/AVC intra is more difficult,
highlighting the importance and difficulty of getting good side information, notably when
key frames are farther apart.

The DISCOVER encoding complexity is always much lower than the H.264/AVC
intra encoding complexity, even for GOP=2 where it performs better in terms of RD
performance. Since the DISCOVER codec performs better than H.264/AVC intra for
GOP=2, for most sequences, this highlights that Wyner-Ziv coding is already a credible
solution when encoding complexity is a very critical requirement (even if at the cost
of some additional decoding complexity). Good examples for these applications may be
deep space video transmission, video surveillance, and video sensor networks.

7.1.2. Encoder complexity and transmission bandwidth

The importance of power consumption in the case of wireless devices is well under-
stood [45, 114, 48, 68]. Power is consumed by different tasks, namely, acquisition,
processing, transmission and display. Consequently, less power consumption can
increase battery lifetime of a constrained device [6].

The RD performance of a DVC system affects the amount of transmission bandwidth.
The required bandwidth determines the energy cost for transmission. The processing
cost incurred by processing during encoding has a measurable effect on the energy
consumption [48].

First, we investigate the RD performance of the proposed DVC components. We compare
each component with its conventional counterpart. Subsequently we focus on the encoder
complexity and provide a benchmark that takes RD performance and encoder complexity
into account.

7.2. RD performance comparison by component

The main contribution of this section is to analyze the performance gap by evaluating
the three components investigated in this thesis. Contrary to previous chapters, the eval-
uation focuses not on the best RD performance in DVC, but on the RD performance gap
between DVC and conventional video coding. For that purpose, we compare the RD per-
formance of each DVC components with its counterparts in a state of the art video codec.
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We chose H.263 as our reference scheme, more precisely the tmn 3.2 implementation [3].
Because of its modular behavior H.263 is more suited for analyzing separate components
than its successor H.264. The components are listed in Table 7.1.

Table 7.1.: Respective H.263 and DVC components

Component H.263 DVC Remark

Transform 8x8 DCT 8x8 DCT identical
Quantization adaptive fixed per frame see Chapter 5

inter DCT coefficients intra DCT coefficients
Encoding source coding channel coding see Chapter 3

VLC LDPC
ME minimum residue true motion see Chapter 4

with reference frame only previous frames
MC P-frame WZ-frame see Chapter 4

MO MX

We investigate each component’s influence on the RD performance. We use the CIF
resolution Foreman and Hall-monitor sequences for a frame rate of 30 frames per second.
Results for the Hall-monitor sequence are only listed when they present additional
insights. As the results in this section are based on the "best" configurations from
Chapter 3, 4 and 5, there is some overlap in the results.

7.2.1. Quantization

We include three DVC quantization schemes from Section 5.2 to the RD comparison.
The first scheme is the fixed frame quantization we found to best compromise between
adaptivity of quantization and overhead information required. The second scheme
is the adaptive oracle quantization as an upper bound. Here, we omit the overhead
information required to make this scheme practical.

To exclude the influence of the differences in ME/MC, we employ the motion oracle
MO for the DVC quantization schemes. For conventional coding we provide RD results
H.263 intra coding as a reference point and H.263 inter coding as the practical adaptive
quantization scheme.

The first observation in Figure 7.1 is the performance of the adaptive DVC scheme. It
is an oracle quantization and indicates the performance loss incurred by the reduced
adaptivity in the fixed frame scheme. One question that might arise is how the
adaptive scheme can outperform H.263 inter coding for the Foreman sequence. The
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(a) Foreman

(b) Hall-monitor

Figure 7.1.: RD performance difference between quantization schemes for Foreman (a) and
Hall-monitor (b) sequence.
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reason is, that whereas H.263 has to encode zero runs, the adaptive DVC scheme does
not. Especially at higher qualities with shorter zero runs this has a noticeable impact
on the RD performance.

For the Hall-monitor sequence in Figure 7.1 (b) H.263 still outperforms the adaptive
scheme by 3 dB. The reason for the better H.263 inter performance was introduced in
Section 6.3.1, namely that H.263 can efficiently implement a skip mode for coefficients,
blocks and complete frames. In addition, the inter DCT coefficients in H.263 inter have
more zero coefficients than the intra DCT coefficients in the adaptive DVC quantization.

The H.263 inter coding outperforms the practical DVC fixed frame quantization by 3
dB. Since quantization and encoding are difficult to separate, the 3 dB loss for the Fore-
man sequence is caused by the combination quantization+LDPC for DVC and quantiza-
tion+VLC for H.263 inter. For the Hall-monitor sequence the performance gap between
H.263 inter coding and the DVC fixed frame quantization is larger with 6 dB.

7.2.2. Encoding

For the second comparison we restrict VLC and LDPC to the fixed quantization
from [26], that is the set globally scheme from Section 5.2. As a consequence, the
reconstructed frame suffers from clipping artifacts and the VLC itself suffers from a
higher variance in the residue. Hence the performance of VLC with fixed quantization
drops by 3dB compared to using adaptive quantization.

Figure 7.2 shows the respective RD performances. For the Foreman sequence LDPC
loses almost 2 dB in PSNR. In comparison the quality loss for the Hall-monitor sequence
is approximately 3 dB. This observation holds for both ME/MC schemes, MX and MO.
The main difference between the sequences is a better prediction for the Hall-monitor
sequence. A better prediction results in a lower conditional entropy. With a lower
entropy the LDPC performance worsens [50].

In conclusion, the RD performance loss from fixed frame quantization and LDPC coding
is significant. Compared to H.263 inter, the RD performance loss can add up to 3 dB for
the Foreman sequence, of which quantization contributes 1 dB and LDPC contributes
2 dB to the performance loss. The RD performance loss is 6 dB for the Hall-monitor
sequence, of which quantization and LDPC both contribute 3 dB to the performance
loss.
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Figure 7.2.: RD performance difference between VLC and LDPC with fixed quantization for
Foreman and Hall-monitor sequence.

7.2.3. Motion estimation and compensation

Finally we compare the side information quality. At first we investigate the trade-
off between the prediction quality loss in DVC and the motion vector rate in
H.263. For that purpose we focus on the difference between the motion oracle MO
and extrapolation MX. From Section 5.3.1 we know that for the Foreman sequence
the PSNR of the MO side information is 3 to 4 dB higher than the MX side information.

Figure 7.3 shows that the vector cost is small and does not increase for higher qualities.
The motion vector overhead is negligible compared to the RD performance loss from
the motion oracle to extrapolation. The RD gap between MO and MX also worsens
for higher qualities.
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Figure 7.3.: RD performance difference between sending motion vectors and loss from MO to
MX for Foreman sequence.

To analyze how the difference in side information PSNR propagates to the RD
performance of the complete system we compare the RD performance of MX and
MO in Figure 7.4. For H.263 the motion oracle outperforms extrapolation by almost
4 dB. There is a small additional loss in RD performance since the Huffman tables are
optimized for the motion oracle and not extrapolation.

The difference in side information PSNR propagates fully to the RD performance
difference between MX and MO for H.263. By contrast, the RD performance MX and
MO only differs by 1 to 1.5 dB in DVC, i.e. the side information PSNR difference does
only propagate partially.

For the low motion Hall-monitor sequence, the prediction quality is almost similar for
motion oracle MO and extrapolation MX. This propagates to the RD performance
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(a) Foreman

(b) Hall-monitor

Figure 7.4.: Performance difference between the two predictions MX and MO.
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of H.263 and DVC. In both coding schemes, the RD performance of extrapolation and
motion oracle differ by less than 1 dB.

In conclusion, the RD performance loss from motion oracle to extrapolation is significant
for the Foreman sequence. Compared to H.263 inter, the RD performance loss can add
up to 6 dB for the Foreman sequence, of which the extrapolation contributes 3 dB.

7.2.4. Discussion of observed RD performance losses

We analyzed the RD performance losses incurred by the 3 investigated DVC components.
We observe that the losses incurred are not orthogonal, i.e. the components are not
independent. We observe the dependency between components for instance in Figure 7.4.

For the Foreman sequence the ME/MC in DVC causes more than half the total RD
performance loss of 6 dB to H.263 inter. Although the RD performance loss is also 6 dB
for the Hall-monitor sequence, the ME/MC contributes less than 0.4 dB. Consequently,
for the low motion Hall-monitor sequence fixed frame quantization and LDPC contribute
almost 6 dB to the RD performance loss while contributing less than 3 dB to the RD
performance loss for the Foreman sequence.

In conclusion, the RD performance loss per component varies with the video sequence
properties. Nevertheless, the cumulative RD performance loss compared to conventional
inter coding is in general large.

7.3. Trade-off between RD performance and encoding
complexity

DVC coders were initially motivated by the low encoder complexity. Most state of the
art encoder have added quite some complexity to the encoder compared to the initial
Stanford DVC codec. As a consequence, the PSNR performance has gone up. There
has been little study of the trade-off between DVC encoder complexity and performance.
For that purpose we consider a benchmark, to review the matured DVC solutions and
their status compared to state of the art conventional codecs.

The intention of such a benchmark is to provide a representative comparison of the
participating systems. For conventional codecs, we consider H.263 and H.264/AVC. For
DVC, we consider the latest DISCOVER codec, available at [1], and a system build
from the components proposed in this thesis. The comparison then focuses on both RD
performance and encoder complexity.
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7.3.1. Considered complexity measure

While measuring the RD performance is simple, finding an objective complexity
measure is not. Physical measures like run-time and memory requirements change
with advances in computer technology. The encoding time is highly dependent on the
used hardware and software platforms. The encoding time depends on the instruction
set, microarchitecture details such as techniques to exploit instruction-level parallelism,
pipeline depth, memory structure and bandwidth and the compiler optimization such
as software pipelining and loopunrolling etc. [57].

A more standardized measure is the number of elementary computer operations it takes
to solve the problem in the worst case [5]. In view of this particular benchmark however,
it is difficult to obtain the number of operations. For some codecs only an executable is
available, making it difficult to measure the number of operations reliably.

The considered DVC schemes rely on a feedback channel. Thus, there are at least two
main problems for applying these codecs in practice. First, the decoder complexity in
DVC is significant and real time decoding beyond todays technology. Second, even if
the decoder complexity could be reduced, there is still the round trip delay to consider.
While waiting for the feedback, the encoder would have to continuously buffer video
data. Adding an encoder-based rate control, as considered in [29], can circumvent the
problem. Yet, at the same time it increases encoder complexity and/or decreases the
RD performance.

In view of these practical issues we follow the benchmark from [1]: we measure the com-
plexity by means of the encoding time for the full sequence, in seconds, under controlled
conditions. Even though simple, it is the first time such a comparison is done for a wide
range of schemes.

7.3.2. Considered conventional video coding and DVC schemes

The schemes we compare are the following:

H.263 intra I-I-I-I Low complexity, straightforward intra coding. Expected to have
both the lowest RD performance and one of the lowest complexities.

H.263 inter I-P-P-P Mid complexity, straightforward inter coding. Expected to have
second highest RD performance and reasonable encoding complexity.

H.264 intra I-I-I-I Mid complexity, sophisticated intra coding. Expected to have robust
RD performance and reasonable encoding complexity. Main difference towards
H.263 intra coding is an improved VLC design with context adaptive VLC tables
and variable macroblock sizes [102].
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H.264 inter I-P-P-P High complexity, sophisticated inter coding. Expected to have
best RD performance and highest encoding complexity. Main difference towards
H.263 intra coding is an improved VLC design, variable macroblock sizes, higher
accuracy during motion estimation and multi-frame motion compensation [102].
We use the Enhanced Predictive Zonal Search (EPZS) instead of full search for the
motion estimation. While decreasing the RD performance slightly, the encoding
complexity is reduced significantly.

DISCOVER codec I-WZ-I-WZ Low-Mid complexity, combining sophisticated H.264 in-
tra coding and WZ coding. Expected to have best RD performance of DVC
schemes and encoding complexity somewhat higher than half that of H.264 intra
(due to GOP size of 2). It should be noted that we use a modified codec version
which reduces the encoding time to less than 25 % of the original codec from [1].
The H.264 intra coding is similar to the H.264 intra scheme in this benchmark.
Compared to the DISCOVER codec it uses a more recent intra codec and low com-
plexity oriented configuration parameters, for instance baseline instead of main
profile.

proposed DVC components oracle I-WZ-WZ-WZ Low complexity, combining straight-
forward H.263 intra and WZ coding. Expected to have reasonable RD performance
and one of the lowest encoding complexities. We assume an oracle rate control at
the encoder, i.e. it is not practical but provides a lower bound for encoding com-
plexity. It only does the LDPC encoding once for the correct rate. RD performance
will be denoted TU Delft jointly with proposed DVC components feedback as it is
identical.

proposed DVC components feedback I-WZ-WZ-WZ Low complexity, straightforward
H.263 intra and coding. Expected to have reasonable RD performance and low
encoding complexity. The codec does not assume encoder rate control and encodes
all possible codes in sequence (65) [8], then relying on a feedback channel to choose
the right code. RD performance will be denoted TU Delft jointly with proposed
DVC components oracle as it is identical.

7.3.3. Considered settings

The settings for the conventional codecs were chosen with emphasis on low encoding
complexity. The detailed configuration settings can be found in the Appendix B.
The specific algorithms in use are the following. For H.263 we use the tmn 3.2
implementation [3] on which also the proposed DVC components is based. For H.264 we
use reference software JM 16.1 [4]. The DISCOVER codec originally employs reference
software JM 9.5 in its framework but in our modification we use JM 16.1 instead. It
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should be noted, that all WZ codecs only encode the luminance.

We kept the hard- and software conditions constant over all schemes. For all results,
presented in the following, we used a Linux 64 bit compute server with a quad core Intel
Xeon 5160 at 3.0 GHz and 32GB of RAM. It should be noted that none of the codecs
exploited multicore features. Still, a constrained device on which these codecs have
to work in practice poses very different limitations than a compute server. Especially
memory and buffer size can become a limiting factor. Consequently, the benchmark only
provides a general feeling of encoder complexity. It does not address practical issues like
for instance the question of how to simultaneously watch while recording on a hand held
device.
The code was compiled with gcc-3.4.6-9-x86_64. Next to each sequential benchmark,
no other processes were running on the compute server, giving the results comparative
value. Nevertheless, some conditions like the amount of optimized code could not be
taken into account. Optimized code can have a large impact on the encoding complexity.
For instance Denolf et al. show optimized code that results in a speed up factor of 6.0
to 19.5 for a video decoder [43].

7.4. RD performance versus encoding complexity

7.4.1. RD performance comparison

Figure 7.5 gives an overview of the RD performance for Foreman and Hall-monitor
sequence. For both sequences, we find there is significant spatial correlation to be
exploited. Consequently, the sophisticated intra coding in H.264 outperforms its H.263
counterpart by 3 to 4dB. For H.264 inter coding, the performance gain is 2dB over
H.263 inter coding for the Foreman sequence. This gain is reduced to 1dB for the
Hall-monitor sequence, where the motion is comparably small.

For the DVC codecs, also shown in Figure 7.5, the DISCOVER codec consistently
outperforms the proposed DVC components by at least 1dB. The DISCOVER codec
combines the higher side information quality of interpolation with a GOP size of two
with a comparably low key frame cost due to efficient H.264 intra coding. For the
Foreman sequence, H.264 intra alone also outperforms the proposed DVC components.
Nevertheless, both conventional inter prediction schemes outperform the DISCOVER
codec by 2 to 7 dB.

Figure 7.6 provides a similar overview of the RD performance for Coastguard and
Stefan sequence. For these sequences, we find that exploiting the spatial correlation
is far less efficient. Consequently, the gap of 2 dB between the two conventional intra
coding schemes is not as pronounced as in Figure 7.5. In terms of temporal correlation,
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(a) Foreman

(b) Hall

Figure 7.5.: RD performance comparison of conventional and DVC coders for (a) Foreman
and (b) Hall-monitor (fix legend H.).
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(a) Coastguard

(b) Stefan

Figure 7.6.: RD performance comparison of conventional and DVC coders for (a) Coastguard
and (b) Stefan.



7
.

B
e
n

ch
m

ar
k

117

we observe a gain of 5 dB when going from H.263 inter to H.264 inter for the large
motion Stefan sequence. This gain is reduced to 1 to 2 dB for Coastguard.

For the WZ codecs, also shown in Figure 7.6, the DISCOVER codec still outperforms
the proposed DVC components. However, the gap between the two DVC approaches is
limited to about 1 dB in PSNR. The only exception is the Foreman sequence, where the
gap between the proposed components and the DISCOVER codec accounts for 2 dB.
Both DVC schemes are consistently outperformed by the conventional inter prediction
schemes.

7.4.2. Encoding complexity comparison

The encoding complexity has been measured in seconds to encode the full CIF reso-
lutions sequences, i.e. including all frames. Each sequence contains 300 frames. The
investigated qualities correspond to the RD points in Section 7.4.1 from lowest PSNR
at Quality 1 to highest PSNR at Quality 3. As the encoding times do not fluctuate
significantly over the four sequences, Figure 7.7 provides the average encoding time over
all 4 sequences. For the complexity per sequence we refer the reader to the Appendix C.

Ranging from lowest to highest complexity we observe the following in Figure 7.7:

proposed DVC components oracle This scheme needs least time of all schemes with an
encoding time average of 3 seconds per sequence. All three blocks at the encoder are
simple, which while reducing the RD performance increases the speed. Compared
to H.263 intra, for which DCT transform and quantization are identical, the LDPC
encoding for the correct rate is less complex than VLC coding. Due to the oracle
rate control not a practically feasible scheme.

H.263 intra This conventional intra scheme needs an encoding time average of 5 seconds
per sequence. Slightly more complex compared to the proposed DVC components
oracle due to the VLC coding including rate control as opposed to LDPC with
oracle rate.

proposed DVC components feedback This feedback-based DVC scheme needs an en-
coding time average of 14 seconds. The complexity from the components oracle is
increased since LDPC coding is performed for all possible rates. Instead of only
LDPC coding the correct rate, the LDPC coding is done for 65 possible rates.

H.263 inter This conventional inter scheme needs an encoding time average of 15 sec-
onds per sequence. More complex than H.263 intra since ME/MC is performed at
the encoder.
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Figure 7.7.: Encoder complexity comparison of conventional and DVC coders, averaged over
all 4 sequences.

DISCOVER WZ codec This feedback-based DVC scheme needs an encoding time aver-
age of 18 seconds. The coding of the WZ frames is faster than for the proposed
DVC components. We expect code optimization to be responsible for the speed
improvement. Most of the encoding time is spent on encoding the 50% intra coded
key frames.

H.264 intra The conventional intra scheme needs an encoding time average of 28 sec-
onds. Considerably more complex than H.263 intra due to the RD performance
improvements introduced in Section 7.3.

H.264 inter The conventional inter scheme needs an encoding time average of 79 sec-
onds. Considerably more complex than H.263 inter due to the RD performance
improvements introduced in Section 7.3.

The proposed DVC components oracle scheme shows that the low complexity concept of
DVC has merit by combining a better RD performance with lower complexity than intra
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coding. But in conclusion, the complexity increase from feedback-based DVC coding to
H.263 inter coding is too small to outweigh the corresponding loss in RD performance
of up to 7 dB.

7.5. Discussion

Non orthogonal performance losses observed
We have investigated the performance gap between DVC and conventional coding by
analyzing three components, namely quantization, encoding and ME/MC. All three
components incur losses dependent on the video content.

The three components respective contributions to the total performance loss varies with
the video properties. For low motion sequences the first two components, quantization
and LDPC coding dominate. For difficult sequences the motion estimation alone is
responsible for more than half the loss.

DVC has a better RD performance vs encoding complexity trade-off than conventional
intra coding
We provide a benchmark on RD performance and encoding complexity of conventional
and DVC coders. The latter are able to outperform intra coding for most sequences,
depending on the temporal correlation even by a large margin. At the same time, it is
possible to keep the encoder complexity low.

To further improve the RD performance of DVC is most effectively tackled by increasing
the encoding complexity. But considering the encoding complexity of benchmarked
conventional coders there is not much room to increase the encoder complexity of DVC
coders without getting in the complexity range of for instance H.263 inter.

Based on these findings, we conclude that DVC is only feasible where the encoding
complexity is severely restricted and a feedback channel present.
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8. Discussion

8.1. Summary of results

Distributed video coding is an approach to low complexity video encoding. For
capturing video on constrained media devices the complexity is a strong limitation. The
DVC components presented in this thesis have in common that they focus on a very
low encoder complexity. The presented solutions keep the encoder complexity minimal
and focus on improving the RD performance of DVC at the decoder side. The focus
of this thesis is not on tuning and optimizing the proposed DVC components, but we
are interested in their inherent performance limitations compared to conventional video
coding.

The underlying theory of DVC states that there is no coding efficiency loss when
performing independent encoding with side information under certain conditions. These
conditions were later narrowed down to one condition, namely that the difference
between reference frame X and side information Y is assumed to be of Gaussian
distribution. However, this Gaussian assumption does not hold for video prediction
errors.

In Chapter 3 we show, that the Gaussian distribution is not well suited to modeling
the X − Y difference. Consequently, we employ different distributions to model this
difference, i.e. the virtual dependency channel. First, for symbol-based LDPC coding
in the pixel domain we find the two-sided Gamma distribution to have the best general
performance. Second, for bit plane-based LDPC coding in the transform domain we
follow literature and use the Laplacian distribution. The latter approach provides a
similar RD performance, but greatly decreases the decoder complexity and is thus our
preferred choice.

The properties of the VDC depend on how the side information Y is generated and
on how X is quantized. The side information Y is generated by combining motion
estimation and compensation. In Chapter 4 we find, that the combination of true motion
estimation and motion compensated extrapolation outperforms minimum residue ME
and motion compensated interpolation in terms of RD performance. However, without
access to the reference frame X during motion estimation, our proposed DVC solution
loses RD performance compared to conventional video coding.
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The quantization in DVC is similarly impaired without access to side information Y
at the encoder. In addition, the fixed-rate LDPC encoder limits the adaptivity of
quantization. In Chapter 5 we propose a DVC quantization scheme that combines
limited adaptivity with a small overhead. Further, we propose a side information
update scheme based on the iterative decoding of DCT coefficients. With partial access
to reference frame X at the decoder, a more reliable side information can be generated.
However, the impact on the RD performance is small and highly sequence dependent.

In Chapter 6 we revisit the VDC modeling. Here, we aim to improve the LDPC decod-
ing by taking reliability information of the side information Y into account. The video
prediction errors in Y and hence the VDC properties are non-stationary. By means
of a classification into a reliable and an unreliable class we take the non-stationarity
into account. With an oracle classification we verify the non-stationarity and observe a
significant RD performance increase compared to a stationary VDC model. But given
misclassification, the RD performance degrades rapidly. The proposed practical classifi-
cation schemes are not able to solve the classification problem accurately enough.

8.2. DVC versus conventional video coding

The two primary options for capturing video on constrained media devices are to either
make DVC schemes competitive in terms of RD performance or to reduce the encoding
complexity of conventional video coding. Conventional video codecs are well established
in practice and have mature solutions for each component. By contrast, DVC is still
in the research phase and induces drawbacks to practical deployment, e.g. the often
assumed availability of a feedback channel.

From Chapters 3, 4 and 5 we may generalize, that each investigated DVC component
incurs a RD performance loss when compared to conventional video coding. For
the proposed low complexity DVC components we analyze this RD performance gap
between DVC and conventional video coding in Chapter 7. From literature it is known
that the RD performance losses in DVC can most effectively be tackled at the encoder
side. The trade-off between RD performance and encoder complexity is then discussed
as final question in Chapter 7.

When referring to the RD performance of conventional video coding, we refer to inter
coding. With intra coding there is a very low complexity alternative. At the cost
of RD performance, the encoder complexity is significantly reduced. We show that
with a similar encoding complexity DVC can provide a better RD performance than
conventional intra coding schemes. However, the best overall trade-off between encoding
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complexity and RD performance is provided by the well established conventional H.263
inter codec.

Considering the encoding complexity of benchmarked conventional coders in Chapter 7,
there is not much room for increasing the encoder complexity of DVC coders without
getting in the complexity range of for instance H.263 inter.

8.3. Outlook

Low complexity encoding of video will still be relevant in the future. Although the
definition of what is low complexity might change with advances in processing power,
i.e. hardware design, the advances in battery capacity are slow. Hence, there is still
a need for efficient algorithms to increase battery lifetime. We expect the solution for
consumer video encoding to be found in optimized conventional video coders or their
hardware implementations rather than in DVC.

In the upcoming years, we then expect DVC research to move to more specialized
application fields focusing on extremely low complexity. Special attention might be
paid to inherently distributed systems like wireless sensor networks. Here, DVC may
provide a successful best effort scheme. In addition DVC might provide further insights
into related fields by means of its components. In this thesis we provided insights into
channel coding, ME/MC and quantization, all of which are relevant in many application
fields.

To make DVC competitive to conventional video coders there are still unsolved problems.
Below we list a few of these.

1. While the presence of a feedback channel is implicitly assumed in this thesis, for
practical deployment such a feedback channel is not feasible. Consequently, a low
complexity encoder based rate control is necessary. We do not see a solution to
this problem without either decreasing the RD performance as reported in [29] or
increasing the encoder complexity to at least enable frame differencing [29, 59].

2. A further increase in the adaptivity of the DCT quantization while keeping the over-
head low would be beneficial. A solution to this problem may be found by con-
sidering existing literature. Rateless LDPC codes [50, 59] remove the need for
fixed length input to the LDPC decoder. Consequently, adaptive run length and
amplitude pairs similar to conventional video coding may be used.

3. Especially the quality of the initial side information is crucial to the RD performance.
Hence more sophisticated motion estimation schemes, for instance optical flow-
based, may be applied. Optical flow can be thought of as close to true motion [94].
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In addition more research on extrapolation is required, especially occlusion han-
dling. In the context of DVC a soft probability based hole filling may be beneficial.

4. To better take non-stationarity into account, we see two possible directions for further
research. The first direction is towards better classification at the decoder by for
instance pattern recognition [44]. The second direction is towards a more robust
alternative to LDPC coding. Such an alternative would have an impact far wider
than just on DVC. In this context, compressive sensing [32] may turn out to be a
promising research field.
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A. Derived probabilities for bit plane-based
dependency models

To implement dependency models in a practical LDPC coder, we need estimates of the
probabilities P (Q|Y ), P (Qb|Y b), P (Qb|Y ) and P (Qb|Y,Qb+1, ..., QL−1). Here, b denotes
the current bit plane and L the total number of bit planes. The probabilities have been
derived in [97] and are listed below:

P [Q(b) = bq|Y (b) = bq] =
∑

∀Y

P [Q(b) = bq|Y = y, Y (b)] ·P [Y = y|Y (b) = bq], (A.1)

where P [Y = y|Y (b) = bq] is 0 or 1 depending on whether the bit plane of Y equals bq.

P [Q(b) = bq|Y = y, Y (0) = bq] =
q+
∑

m=−q−

rmax
∑

n=0

P (m · d+ (n− r(y, 2b))), (A.2)

with q− = q(y, 2(b+1)), q+ = q((2L − 1) − y, 2(b+1)), rmax = 2b − 1, d = 2b+1 and where
the functions r(a, b) and q(a, b) are the remainder and quotient of the division between
two integer values a and b.

P (Q(b) = 0|Y = y,Q(b+1), ..., Q(L−1)) =
2b−1
∑

i=0

PN (q(xp, 2
b+1) · 2b+1 + i− y), (A.3)

with xp =
∑L−1
i=b+1Q

(i) · 2i.
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B. Configuration settings for benchmark

B.1. H.263 tmn

We ran the tmn encoder with the following settings/command line options:

H.263 intra: tmn -i foreman_cif.yuv -x 3 -b 299 -k 0 -c 0 -q 16 -A 16 -f 1 -w -o
foreman_QP16.yuv
Quality 1: q=A=16
Quality 2: q=A=8
Quality 3: q=A=4

H.263 inter: tmn -i foreman_cif.yuv -x 3 -b 299 -k 0 -c 0 -q 16 -A 16 -f 0 -w
-o foreman_QP15.yuv
Quality 1: q=A=16
Quality 2: q=A=8
Quality 3: q=A=4

B.2. H.264 JM 16.1

To consider a low complexity encoder profile we changed the following parameters from
the default encoder.cfg:

################################################################

# Files

################################################################

InputFile1 = "foreman_cif.yuv" # Input sequence

SourceWidth = 352 # Source frame width

SourceHeight = 288 # Source frame height

OutputWidth = 352 # Output frame width
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OutputHeight = 288 # Output frame height

################################################################

# Encoder Control

################################################################

ProfileIDC = 66 # Profile IDC (66=baseline; FREXT: 100=High)

QPISlice = 26 # Quant. param for I Slices (0-51)

QPPSlice = 26 # Quant. param for P Slices (0-51)

QPISlice = 26 # Quant. param for I Slices (0-51)

QPPSlice = 26 # Quant. param for P Slices (0-51)

SearchRange = 16 # Max search range

NumberReferenceFrames = 2 # Number of previous frames

used for inter motion search (0-16)

################################################################

# Output Control, NALs

################################################################

SymbolMode = 0 # Symbol mode (Entropy coding method: 0=UVLC, 1=CABAC)

################################################################

#Fast Motion Estimation Control Parameters

################################################################

SearchMode = 3 # Motion estimation mode

# -1 = Full Search

# 0 = Fast Full Search (default)

# 1 = UMHexagon Search

# 2 = Simplified UMHexagon Search

# 3 = Enhanced Predictive Zonal Search (EPZS)

We then considered the following quality settings:
H.264 intra:

IntraPeriod = 1 # Period of I-pictures (0=only first)
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Quality 1:

QPISlice = 38 # Quant. param for I Slices (0-51)

Quality 2:

QPISlice = 33 # Quant. param for I Slices (0-51)

Quality 3:

QPISlice = 28 # Quant. param for I Slices (0-51)

H.264 inter:

IntraPeriod = 0 # Period of I-pictures (0=only first)

Quality 1:

QPISlice = 36 # Quant. param for I Slices (0-51)

QPPSlice = 36 # Quant. param for P Slices (0-51)

Quality 2:

QPISlice = 31 # Quant. param for I Slices (0-51)

QPPSlice = 31 # Quant. param for P Slices (0-51)

Quality 3:

QPISlice = 26 # Quant. param for I Slices (0-51)

QPPSlice = 26 # Quant. param for P Slices (0-51)

B.3. DISCOVER codec

The H.264 codec used in our modified version uses configuration identical to the H.264
encoder profile described in Section B.2.
The DISCOVER encoder configuration was the following:

# DISCOVER-encoder configuration

# <ParameterName> = <ParameterValue>

# All non integer values must be contained within quotation

##############################################################################

# Files

##############################################################################

InputFile = "foreman_cif.yuv" # Input sequence, YUV 4:2:0
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FramesToBeEncoded = 299 # Number of frames (WZ and Intra) to be encoded

SequenceSize = "CIF" # QCIF: 176x144; CIF: 352x288

KeyFrameInfo = "foreman_keyframe.cfg" # Key frame (intra) configuration file

WZBitstreamFile = "bitstreamQ6.wz" # Bitstream file

##############################################################################

# Encoder Control

##############################################################################

IntraPeriod = 2 # Period of I-frames (it must be > 1)

QIndex = 6 # Quantisation index (Range between 1 and 8)

AdaptiveGOP = 0 # 0 - off, 1 - on

We then considered the following quality settings:
DISCOVER codec:
Quality 1: QIndex = 3
Quality 2: QIndex = 6
Quality 3: QIndex = 8

The DISCOVER decoder configuration was the following:

# DISCOVER-encoder configuration

# <ParameterName> = <ParameterValue>

# All non integer values must be contained within quotation

###############################################################################

# Files

###############################################################################

OriginalSequence = "foreman_cif.yuv" # Original sequence (used for PSNR calculation)

WZBitstream = "bitstreamQ8.wz" # Bitstream file

OutputSequences = "foreman_decodedQ8" # Decoded file (without extension)

PSNRFile = "foreman_psnr_data_Q8a.txt" # PSNR trace file

KeyFrameInfo = "foreman_keyframe.cfg" # Key frame (intra) configuration file

FrameRate = 30 # Frame rate (used for rate calculation)

To run the DISCOVER codec with JM 16.1, it is necessary to generate the PSNR trace
file foreman_psnr_data_Q8a.txt, i.e. we modified the JM 16.1 code to do so.
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C. Encoding time benchmark results per
sequence

As the encoding times do not fluctuate significantly over the four sequences, Section 7.4.2
provides the average encoding time over all 4 video sequences (Foreman, Hall-monitor,
Coastguard, Stefan). The complexity per sequence is presented in the following.
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(a) Foreman

(b) Hall-monitor

Figure C.1.: Encoder complexity comparison of conventional and DVC coders for (a) Foreman
and (b) Hall monitor.
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(a) Coastguard

(b) Stefan

Figure C.2.: Encoder complexity comparison of conventional and DVC coders for (a) Coast-
guard and (b) Stefan.
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Summary

The main focus of video encoding in the past twenty years has been on video broad-
casting. A video is captured and encoded by professional equipment and then watched
on varying consumer devices. Consequently, the main objective was to increase the
compression efficiency and to decrease the decoder complexity. More recently, we
observe a shift in user behavior, from solely consuming video to also producing and
sharing video. For video encoding with constrained media devices instead of professional
cameras, the encoder complexity becomes an important limitation.

To greatly reduce the encoder complexity it is possible to employ intra coding, that is
to ignore the motion and encode images independently. Since temporal information is
no longer taken into account, the problem with intra coding is the limited compression
efficiency. This thesis addresses Distributed Video Coding (DVC) as a possible solution
for very low complexity video encoding. Straightforward intra coding at the encoder is
combined with including motion information at the decoder. In particular, the thesis
focuses on the problems that typically emerge when exploiting temporal correlation
solely at the decoder.

The focus of this thesis are the inherent performance limitations of DVC with low
encoder complexity. Here, we only consider intra coding without any inter operability at
the encoder. The thesis covers performance limitations of different DVC aspects, namely
channel coding, motion estimation at the decoder and quantization. All proposed
schemes focus on allowing real-time encoding. In channel coding, we investigate
decoder-based modeling. In motion estimation at the decoder, we focus on true
motion-based extrapolation. In quantization, we propose a trade-off between adaptivity
and overhead.

The first discussed DVC aspect is the channel coding. To use state of the art LDPC
codes efficiently, the behavior of the Virtual Dependency Channel (VDC) needs to be
modeled accurately. The VDC is a virtual channel and comprises the prediction errors
in the motion compensated prediction. We investigate the applicability of different
channel models. The accuracy of these models is important to ensure efficient LDPC
coding. We observe non-stationary behavior and show possibilities and limitations of to
take it into account by means of decoder based classification.



The second discussed DVC aspect is the motion estimation at the decoder. In this
context we find true motion estimation more suited to DVC than minimum residue
motion estimation from conventional video coding. After the motion estimation, motion
compensation is used to generate the side information. Literature mainly focuses on
the side information quality and hence favors motion compensated interpolation. By
contrast, we investigate the trade-off between side information quality and key frame
cost. We find motion compensated extrapolation to be more suited to low complexity
DVC.

The third discussed DVC aspect is the DCT quantization. The difference between
different quantization methods is their adaptivity. Hence, we focus on the trade-off
between adaptivity and required overhead to achieve the adaptivity in practice. We
propose to use a scheme with both limited adaptivity and overhead.

Finally, we compare the derived solutions for each DVC aspect with its counterpart in
conventional video coding. We find that DVC can outperform intra coding with a similar
encoder complexity. However, for a less constrained encoder complexity conventional
inter coding outperforms DVC by a large margin.
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Sammenvatting

In de afgelopen twintig jaar heeft op het gebied van video codering de nadruk
gelegen op het uitzenden van video. Videobeelden worden opgenomen en gecodeerd
door professionele apparatuur en daarna bekeken op een verscheidenheid aan con-
sumentenelektronica. Daarom was het doel de inpakefficiëntie te verhogen en de
complexiteit van de decoder te verlagen. In de huidige tijd zien we een verschuiving
in het gedrag van de gebruiker die naast het bekijken zich ook bezighoudt met het
maken en delen van videobeelden. Voor het coderen van video op apparaten met
beperkte mogelijkheden in plaats van professionele camera’s wordt de complexiteit van
de codering een belangrijke limitering.

Om de codeercomplexiteit de verlagen kan intra coding gebruikt worden, wat inhoudt
dat de beweging in de beelden wordt genegeerd en de beelden onafhankelijk van elkaar
worden gecodeerd. Het probleem van intra coding is de beperkte inpakefficiëntie
doordat van tijdsafhankelijke informatie geen gebruik wordt gemaakt. Dit proefschrift
stelt Distributed Video Coding (DVC) als een mogelijke oplossing om lage complexiteit
videocodering te bewerkstelligen. Standaard intra coding bij de encoder wordt gecombi-
neerd met het toevoegen van bewegingsinformatie bij de decoder. In het bijzonder legt
dit proefschrift de nadruk op de problemen die ontstaan wanneer tijdscorrelatie alleen
aan de decodeerkant wordt toegepast.

De nadruk van dit proefschrift ligt op de inherente prestatiebeperkingen van DVC
met lage codeercomplexiteit. Hierin beperken we ons tot intra coding zonder enige
interoperabiliteit aan de codeerkant. Het proefschrift bespreekt de prestatiebeperkingen
van verschillende aspecten van DVC, namelijk kanaalcodering, bewegingsschatting
aan de decodeerkant en kwantisatie. Al de voorgestelde schema’s laten codering in
realtime nadrukkelijk toe. Voor kanaalcodering onderzoeken we het modeleren aan
de decodeerkant. Bij de bewegingsschatting aan de decodeerkant benadrukken we de
extrapolatietechniek gebaseerd op true motion. Bij de kwantisatie ten slotte stellen we
een afweging voor tussen adaptiviteit en overhead.

Het eerste aspect van DVC dat besproken wordt is kanaalcodering. Om state of the art
LDPC codes efficiënt te kunnen gebruiken moet het gedrag van de Virtual Dependency
Channel (VDC) nauwkeurig gemodelleerd worden. Het VDC is een virtueel kanaal
en omvat de voorspellingsfouten in de bewegingsgecompenseerde voorspelling. We



onderzoeken de toepasbaarheid van verschillende kanaalmodellen. De nauwkeurigheid
van deze modellen is belangrijk om zeker te zijn van een efficiënte LDPC codering. We
nemen niet-stationair gedrag waar en laten hiervan de mogelijkheden en beperkingen
zien, zodat er rekening mee gehouden kan worden door middel van decoder gebaseerde
classificatie.

Het tweede aspect van DVC dat besproken wordt is de bewegingsschatting aan de
decodeerkant. In deze context constateren wij dat de true motion schatting meer
geschikt is voor DVC dan de minimumresidu bewegingsschatting van conventionele
videocodering. Na bewegingsschatting wordt bewegingscompensatie toegepast om bij-
informatie te genereren. In de literatuur ligt de nadruk voornamelijk op de kwaliteit van
de bij-informatie en bestaat er een voorkeur voor bewegingsgecompenseerde interpolatie.
Wij onderzoeken daarentegen de afweging tussen de kwaliteit van de bij-informatie
en de keyframe kosten. Volgens ons is bewegingsgecompenseerde extrapolatie meer
geschikt voor DVC met een lage complexiteit.

Het derde besproken aspect van DVC is de DCT kwantisatie. Het verschil tussen de
verschillende kwantisatiemodellen zit in de adaptiviteit. We leggen de nadruk op de
afweging tussen adaptiviteit en de benodigde overhead om de adaptiviteit in de praktijk
te behalen. We stellen dat een schema gebruikt moet worden met zowel beperkte
adaptiviteit als beperkte overhead.

Als laatste vergelijken we de bepaalde oplossingen voor elk aspect van DVC met zijn
tegenhanger in conventionele videocodering. We vinden dat DVC beter kan presteren
dan intra coding met een vergelijkbare codeercomplexiteit. Voor een minder beperkte
codeercomplexiteit presteert conventionele inter coding echter een ruime marge beter
dan DVC.
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