
Distributed Vision with Smart Pixels

Sándor P. Fekete
Algorithms Group

Braunschweig Institute of
Technology
Germany

s.fekete@tu-bs.de

Dietmar Fey
Institute for Computer Science

Friedrich-Schiller-University
Jena, Germany

fey@uni-jena.de

Marcus Komann
Institute for Computer Science

Friedrich-Schiller-University
Jena, Germany

marcus.komann@web.de

Alexander Kröller
Algorithms Group

Braunschweig Institute of
Technology
Germany

a.kroeller@tu-bs.de

Marc Reichenbach
Institute for Computer Science

Friedrich-Schiller-University
Jena, Germany

marc.reichenbach
@googlemail.com

Christiane Schmidt
Algorithms Group

Braunschweig Institute of
Technology
Germany

c.schmidt@tu-bs.de

ABSTRACT
We study a problem related to computer vision: How can a
field of sensors compute higher-level properties of observed
objects deterministically in sublinear time, without access-
ing a central authority? This issue is not only important for
real-time processing of images, but lies at the very heart of
understanding how a brain may be able to function.

In particular, we consider a quadratic field of n ”smart
pixels” on a video chip that observe a B/W image. Each
pixel can exchange low-level information with its immedi-
ate neighbors. We show that it is possible to compute the
centers of gravity along with a principal component analysis
of all connected components of the black grid graph in time
O(
√
n), by developing appropriate distributed protocols that

are modeled after sweepline methods.
Our method is not only interesting from a philosophical

and theoretical point of view, it is also useful for actual ap-
plications for controling a robot arm that has to seize objects
on a moving belt. We describe details of an implementation
on an FPGA; the code has also been turned into a hardware
design for an application-specific integrated circuit (ASIC).

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems (E.2-5, G.2,
H.2-3)—Geometrical problems and computations

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’09, June 8–10, 2009, Aarhus, Denmark.
Copyright 2009 ACM 978-1-60558-501-7/09/06 ...$5.00.

Keywords
distributed vision, distributed algorithms, sublinear algo-
rithms, principal component analysis, sweepline algorithms.

1. INTRODUCTION
Fast Geometric Algorithms. A major part of the

research conducted in computational geometry shoots for
much more than just polynomial runtime. Often motivated
by applications from areas such as computer graphics or
computer vision, some of the most impressive work has re-
sulted in linear-time methods, e.g., for triangulating a sim-
ple polygon [6]. However, speed and accuracy of geomet-
ric processing may not just matter in terms of theoretical
CPU time; it can also make the difference between efficient
quality control for ready-made food [20] or letting defective
products leave the factory; between a robot arm accurately
seizing a large variety of machine parts from a conveyor belt
or production coming to a sudden and unplanned, screech-
ing halt [5]; between a baseball player cleanly catching a line
drive or being hit squarely into the face [12].

Vision. Throughout human evolution, quality and speed
of visual processing has not only been a matter of win or loss,
but of life and death. As a result, human vision is not just
based on amazing software for image processing, but also on
extremely powerful hardware. How does the human brain
process visual information and what can we learn from it?
This has been one of the most intriguing scientific questions
ever, not just in computer science, but also neurobiology, art,
and philosophy [16]. Quite clearly, human vision consists
of different mechanisms and filters, combining a variety of
fast heuristics, parallel algorithms, but also sophisticated
algorithms for performing highly specialized analytic tasks.

Processing Visual Information. How do computers
process visual information? Typically, the input from a grid
of pixels is fed into the CPU, where more or less sophisti-
cated operations are performed. Quite clearly, just looking
at the input takes least linear time for whatever problem
is to be solved in a deterministic manner. Can we learn
anything about or from the functioning of our brain? When
discussing human vision, even the innocent expression“look-
ing at the input” alludes to a philosophical issue that goes
much deeper when trying to understand image processing

Local memory

Processor network

Photo sensor grid

Figure 1: Schematic overview of the hardware.

in the human mind: What behind the retina is it that does
the looking? Modeling our mind analogous to a standard
centralized algorithmic model leads to an infinite recourse
(known, e.g., as Ryle’s Regress [18].) As long as we think of
algorithms as sentient individuals (“an algorithm must con-
sider all of the input in order to make a decision”), there is
no way out.

Sublinear Runtime. Getting to sublinear running times
requires dropping most of the input, possibly by resorting
to probabilistic methods [7, 8]. A possible alternative comes
from making use of parallel algorithms [1]; however, simply
slicing up the visual input into a large number of parallel
processors will not do the trick, as long as the geometric
structure of the input and the communication structure of
the processors or input size and processor number are unre-
lated. But how can they be related for fixed hardware and
dynamic inputs—in particular if we are to deal with tasks
that require nontrivial computation?

Motivation and Inspiration for This Paper. The
work on this paper was triggered by a real-life application,
but inspired by the fascination of related algorithmic and
philosophical issues. The application comes up in one of
the above scenarios: An autonomous robot arm is equipped
with a video camera to keep track of large quantities of ma-
chine pieces zipping by on a fast conveyor belt. These pieces
have to be seized, which requires not just identifying their
position, but also their center of gravity along with their ori-
entation in space. Obviously, this is a demanding task that
requires ultra-fast and accurate image processing.

The inspiration comes from special hardware that can be
used for this task, see Figure 1: A camera chip consists of
a rectangular grid of sensor pixels, each one capable of de-
tecting small parts of an image. While a standard pixel is
relatively dumb (all it can do is detect light and forward the
resulting data to a central processor), a smart pixel is able to
communicate with its immediate neighbors, do simple com-
putations, and react depending on events. A smart pixel grid
is not just a concept: This hardware does exist, albeit at lim-
ited grid sizes [11]. All that is missing as an incentive for the
actual production of smart pixel grids of higher resolution

is a demonstration of the practical rewards—together with
algorithmic methods that are capable of exploiting the possi-
bilities: There is a large set of parallel processors, communi-
cation is limited to a small local neighborhood, so significant
speedup is possible; the hardware design implies that the
geometry of input and processor locations is strongly corre-
lated, as are input size and processor number; however, ex-
tracting individual parts, their centers of gravity along with
their orientation appears to require a combination of local
and global computations. Finally, visual processing with a
grid of smart pixels has a striking resemblance to image pro-
cessing in the brain. This means that developing geometric
algorithms for this kind of architecture is not just a matter
of speedup—it is also an indication that it may be possible
to overcome Ryle’s Regress by considering a different kind of
processor architecture, closely intertwined with a different,
distributed algorithmic approach.

Problem Definition and Main Results. Formally, we
define our problem as follows: We are given a W ×H black-
and-white pixel image: black pixels belong to objects, white
corresponds to background. To get rid of special cases in
the notation below, we assume the image to be embedded
in an infinitely-sized grid of white. Other than the different
colors, the pixels are the same. They have no unique identi-
fier, i.e., neither an ID nor coordinates are associated with
the pixels. Each pixel has eight communication lines to the
direct neighbors (w.r.t. L∞). We may utilize moving agents
on the pixel field with only local behavior and knowledge.

The black pixels define a set of objects, each of which is
a maximal connected subset of them, where connectivity is
defined horizontally and vertically only. That is, two black
pixels on diagonally adjacent cells do not neccessarily belong
to the same object.

The task is as follows: When the algorithm finishes, there
is one representative pixel for each object. This pixel pro-
vides access to descriptive information on the object, namely
the size (i.e., number of pixels), the center of gravity, and
the orientation (which we define as the direction of maxi-
mum variance).

The main algorithmic results of this paper is a sweepline
algorithm that correctly extracts the demanded attributes.
This algorithm runs in O(W +H) and is able to distinguish
several objects within a single image. Moreover, an imple-
mentation in actual hardware shows that our algorithm is
applicable for our scenario, featuring low power consump-
tion and high chip frequency.

The rest of the paper is organized as follows. In the fol-
lowing Section 2 we describe related work, a description of
the algorithm is given in Section 3. Section 4 provides proofs
of the running time of the algorithm. The results of an im-
plementation in hardware are presented in Section 5. In the
final Section 6 we discuss possible implications and exten-
sions.

2. RELATED WORK
Object Detection. We aim at detecting and describ-

ing the (potentially unknown) objects in a given B/W image.
While we are interested in using distributed algorithms on
a field of sensors, object detection, pattern recognition and
object recognition (see e.g. [13]) are well-studied, important
problems. All these are in the scope of computer vision
(see [4]), which of course also involves precedent tasks as

describing an image, on this basis recognition—recognizing
local discontinuities in intensity for identifying edges and,
more sophisticated, segments, shape and clusters. Object,
pattern or face recognition concentrates on certifying whether
pre-defined or learned objects (patterns, faces) or object
classes are present in the given image. Object identifica-
tion deals with an even more specified task: within a given
class (e.g., cars) a certain object is to be identified, see [10].
By contrast, we want to detect an unknown object (or ob-
jects) and determine, e.g., its center of gravity. While the
task of distinguishing the object from the background is—as
we face monochrome images—not our focus of interest.

Principal Component Analysis. For the detected
objects we are interested in several attributes, like centroid
position or orientation. These attributes can be described
by moments. For given data sets, attributes like orientation
can be determined with a Principal Component Analysis
(PCA) [14, 19]. This analysis is widely used for statisti-
cal analysis of data, e.g., from neuroscience, gene expression
data (see [21]), as well as in computer vision, for both rep-
resentation (see [13]) and image compression.

Determining the eigenvectors of the covariance matrix and
ordering these by the related eigenvalue (highest to lowest),
gives the components in order of significance. That is, for vi-
sualized data with coordinates the first principal component
gives the orientation.

Distributed Algorithms. Our main contribution in
this paper is a distributed sweep over the objects. A straight-
forward approach would be to run standard distributed algo-
rithm on the graph induced by the object pixels. Any leader
election or spanning tree algorithm could be used instead of
our algorithm, see [2, 3, 9]. A distributed algorithm that
stays within the object pixels can not have a better runtime
than Ω(m2) for objects on an m×m-pixel image, as there are
objects with such a graph diameter. Our algorithm fully ex-
ploits the geometric structure of the underlying network by
also running on non-object pixels, resulting in a distributed
time complexity of O(m).

Own work. We published a predecessor paper [15] to
this one. It contains the same distributed mechanism to
compute the desired values as in this paper, so we keep the
according Section 3.1 informal here. The mentioned paper
does not contain the distributed sweep algorithm, which is
the major contribution here. Instead, we described a heuris-
tic that works reasonably well on convex and well-separated
objects, yet did not allow us to prove any quality measures.

3. THE ALGORITHM
In this section we describe the problem settings as well as

the parts of our algorithm.
Pixel Grid. We assume there is an infinite grid of smart

pixels. All pixels are completely identical, that is, they have
neither a unique ID, nor coordinates available. This assump-
tion is helpful for our application, as it allows us to reset the
grid to a clean initial state between runs, i.e., without having
to run a global initialization algorithm.

Each pixel p can communicate with its 8 direct neighbors,
this set is denoted by Γ(p). We define Γ(p) := Γ(p) ∪ {p}.
The pixels in Γ(p) are identified by direction and denoted
N(p), NW(p), W(p), SW(p), S(p), SE(p), E(p), and NE(p),
with the obvious interpretation.

Distributed Model. We use the synchronized LOCAL
model by Peleg [17]. To be precise, our pixel network runs in

synchronized rounds. In each round, each pixel may perform
any computation on the data it has available, and it may
send any amount of data to its neighbors.

Objects. There is a photo X overlayed on the pixel grid.
Each pixel p either sees part of the objects (if p ∈ X), or
it sees the background. In the first communication round,
the pixels exchange this information with their neighbors.
In the algorithm below, we assume each pixel p to know
the object status of all pixels in Γ(p). X may consist of
multiple objects. We say that two pixels in X belong to
the same object, if they can be connected by a path in X
using only horizontal and vertical steps (that is, an object is
a connected component of X in the canonical 4-regular grid
graph).

3.1 Moments
We already described our scheme for calculating the mo-

ments (without the sweep algorithm) in a previous paper [15].
Here we just summarize it, so that the reader can get a com-
plete picture of the algorithm.

Let X ′ ⊆ X be an object in X . Our aim is to calculate

1. The size |X ′| of the object.

2. The center of gravity (µx, µy) of the object, i.e.,

µx =
1

|X ′|
X

p∈X ′

xp , µy =
1

|X ′|
X

p∈X ′

yp , (1)

where (xp, yp) are the coordinates of pixel p in some
global coordinate system.

3. The second moments in the form of the covariance ma-
trix „

σ2
x σxy

σxy σ2
y

«
, (2)

where we see the object as a point distribution on R2.
The two Principal Component Axes are then defined
by the Eigenvectors of this matrix, see [19]. The appli-
cation uses them to identify the direction of greatest
variance, which is used as the orientation (rotation) of
the object on the belt.

As the pixels do not know the global coordinate system, we
cannot compute these values directly. Instead, we employ a
mechanism of cumulating relative weights. We construct a
scheme by which agents sweep over the object. The agents
“consume” the “weight” of object pixels as they pass, and
they eventually collect these picked up weights in a single
pixel. Each object pixel has a weight of 1, and this weight
can only be consumed once.

Each agent on a pixel (x, y), and possessing the weights
for object pixels X ⊆ X ′ carries the following six-tuple:

(|X|,
X
p∈X

(x− xp),
X
p∈X

(y − yp),
X
p∈X

(x− xp)2,

X
p∈X

(y − yp)2,
X
p∈X

(x− xp)(y − yp)).
(3)

This tuple has a number of nice properties. These are easy to
confirm, a full description with proofs can be found in [15]:

• These values are sufficient to compute the aforemen-
tioned moments, if (x, y) is known. We assume that

after our algorithm finished, a centralized processor
will pick up the tuple from the single pixel per object,
compute the moments, and uses them for whatever ac-
tivity the machine was built.

• When an agent moves from (x, y) to an adjacent pixel,
it is computationally trivial to update the tuple for
the new position. For example, when moving a tuple
(m, sx, sy, sxx, syy, sxy) to the east, (m, sx−m, sy, sxx−
2sx +m, syy, sxy − sy) is the correct tuple for the new
position. Addition and subtraction are sufficient for
all necessary updates.

• If an agent picks up the weight of the pixel it currently
resides on, it simply has to increment the first tuple
entry.

• If an agent receives the cumulative weight of another
agent on the same pixel, it just computes the component-
wise sum of the two tuples.

So all that is left to do is to define a rule set by which agents
can sweep over the objects, pick up the weights, and let the
weights for each object cumulate in a single pixel. This is
what we describe next.

3.2 Agents
Let A denote the set of all agents. An agent a ∈ A has

the following variables in addition to those for calculating
moments:

• Ca ⊆ A, a set of partners. Partners are agents that
belong to the same object, living in an adjacent row.
Once agents decide to partner, they move together and
stay within a horizontal distance of at most 1. Ini-
tially, Ca = ∅. Partnership will be mutual throughout
the algorithm, so one can think of partnership as an
undirected graph on the set of agents. This graph is
denoted by C = (A,C).

• ha, a boolean stating whether the agent has ever left
the object it started in. The variable is initialized as
false (as agents are always created on object pixels).
When the agent moves onto a non-object pixel, it sets
ha ← true.

We denote the set of all agents that are currently on a pixel
p by A(p) ⊆ A. We assume that each agent has access to
the following information:

• Which pixels of Γ(p) are object pixels.

• If it is currently on an object pixel, whether the pixel’s
weight has been consumed already.

• The state of variables Ca′ and ha′ of each agent a′ ∈
∪p′∈Γ(p)A(p′). We will discuss how to make this infor-
mation available in Section 3.3 below.

Initially, there is an agent a on every object pixel that has
no object pixel to its left, with ha = false and Ca = ∅.

Our algorithms runs in iterations. In each iteration, each
agent performs the following steps in sync with the other
agents, here written from the perspective of an agent a on
pixel p:

1. Consume weight: If ha = false and the weight on
the pixel has not been consumed yet, consume it (see
Section 3.1).

2. Find partners: If ha = false, see if there are any
agents a′ ∈ ∪p′∈Γ(p):yp′ 6=ypA(p′) (i.e., on neighbor pix-

els in adjacent rows), which also have ha′ = false. Add
those to Ca.

3. Pass on cumulative weights: If there is an agent
a′ ∈ Ca in the row below p, pass all collected moment
weight to a′. Ties are broken arbitrarily.

4. Merge agents: If there is another agent a′ ∈ A(p)
(i.e., on the same pixel as a), and a and a′ have a com-
mon partner, they conclude they belong to the same
object. Then, they merge into a new agent a′′ with
ha′′ = ha ∧ ha′ and Pa′′ = Pa ∪ Pa′ . This is done
as a shrinking of {a, a′} in C, with the obvious conse-
quences for the partner edges incident to them. They
also merge the accumulated weights (see Section 3.1).

5. Decide whether to stay or go: The agent decides
to move forward, unless any of these conditions hold:

(a) Ca ∩A(NW(p)) 6= ∅ or Ca ∩A(SW(p)) 6= ∅ (i.e.,
it has a partner in the column to the left),

(b) N(p) ∈ X , but Ca ∩ A(N(p)) = ∅ (i.e., there is
an object pixel in the north, but no partner has
been found on it yet), or

(c) S(p) ∈ X , but Ca ∩A(S(p)) = ∅ (the same as the
previous, just for the south).

(d) E(p) /∈ X and Ca ∩A(NE(p)) = Ca ∩A(SE(p)) =
∅, i.e., it will not move onto non-object pixels
unless it is “dragged” by a partner further to the
right.

6. Stay or go: If a decided to move in step 5 above,
it now transfers itself to E(p). If E(p) /∈ X , it sets
ha ← true.

The algorithm ends in the first iteration in which

• No agent could pass cumulative weights in step 3, and

• No agent decided to move in step 5.

The agents are not aware whether they have finished, so
this stopping criterion is not reflected in the algorithm. In
the application, there is an external controller that will wait
2W + 2H rounds, after which the algorithm is guaranteed
to be finished, see Section 4.

An example of this algorithm is shown in Figure 2. In iter-
ation #1, the agents are residing on left-most object pixels.
They move fast while they are on object pixels. Once they
leave it, they have to be “dragged” according to rule 5d by
partner agents that are still inside (#26). As agents only
merge when they have proof that they belong to the same
object (step 4), the sweeps for the letters can cross without
affecting each other (#47 and #90). In the end, there is
one vertical line for each object, with the cumulated weight
waiting for pickup at the bottom-most agent (#259).

3.3 Implementation on Active Pixels
Implementing the algorithm on a grid of smart pixels is

straightforward: Each pixel maintains a list of the agents
that currently reside on it and evaluates the agent’s deci-
sions. Note that an actual synchronization with neighbors
is only necessary after steps 4 and 6, all other steps can be
performed with already available information.

(#1) (#12) (#26)

(#47) (#90) (#259)

Figure 2: Algorithm running on the SoCG Alphabet Soup.

4. ANALYSIS OF THE ALGORITHM

4.1 Correctness

Theorem 1 (Correctness). If the algorithm stops, the
weight of all pixels belonging to the same object is accumu-
lated in a single agent. The agents for this object form a
vertical line.

Proof. First, note how partnership is established: Ini-
tially, no agent has any partners. An agent a will only add
another agent a′ as a partner in step 2 if neither of them has
ever left the object they were created in. Merging (step 4)
only happens among agents that are transitive partners. Fi-
nally, an agent will never move until it has found partners
in both adjacent rows (step 5, conditions (b) and (c)), un-
less there are none needed (because the adjacent pixels are
non-object). So agents stemming from different object never
interfere with each other.

Now consider the situation where the agents belonging to
an object are not in a vertical line. All agents in the left-
most column have found their partners now. Now either
one agent has an object pixel in E(p), in which case he will
move. Otherwise there must be an agent with a partner to
the right (in NE(p) or SE(p)), in which case this agent will
move.

So in the end, all the agents form a vertical line. Assuming
they did not do that already, they will now establish part-
nership to become a single connected (w.r.t. partnership)
line, and they will pass all the weight of the object pixels
down to the bottom-most agent.

4.2 The Algorithm’s Runtime Complexity
Given that agents belonging to different objects do not

influence each other, we restrict the following analysis to
the case of a single object X . We will look at objects with
increasing complexity. We start our proof with paths, i.e.,
objects where each occupied pixel has at most two neigh-
boring object pixels. On a pixel field we may describe these

paths by alternating vertical and horizontal lines. We de-
note the length of the vertical and horizontal parts by Hi +1
(height) and Wi + 1 (width), and associate a positive sign
with a downwards vertical and a rightwards horizontal line,
the path is (H1,W1, H2,W2, . . . , HV ,WV). To be precise,
we start with a single pixel. To it, we attach |H1| pixels
downwards (if H1 > 0) or upwards (H1 < 0). Then we at-
tach |W1| pixels to the path’s end, horizontally to the right
(W1 > 0) or left (W1 < 0). We repeat this process for H2,
W2, . . . , HV , WV .

Theorem 2 (L-shaped paths). Let X be an L-shaped
path (H1,W1), see Figure 3. The agent on the horizontal
line moves with speed 1/2, it takes additional time of H to
gain a vertical line at the rightmost end.

Proof. We have H1 + 1 = H,W1 + 1 = W . Let ab be
the agent initially located at the bend of the L, see Figure 3.
Let the others be a1, . . . , ak (named starting from the agent
initially located above ab). All agents create partnership
edges, i.e., ab ∈ Ca1 , a1 ∈ Ca2 , . . . , ak−1 ∈ Cak . In the
first iteration ab has no partner to the left, a partner above
and no object below and in moving to the right ab will not
be away from its home object. Thus, ab moves in the first
iteration. The others do not move, as they would be leaving
their home object and have no partners in NE(p) or SE(p)
(see rule 5d). In the second iteration ab has to wait as its
partner a1 is to the left (NW(p)). With ab being in SE(p)
for a1, a1 is allowed to go now. The other ai’s still wait. So,
in the third iteration ab is again allowed to move, as is a2

(with a1 in SE(p)), all other agents wait.
This process goes on, ab moves in every second iteration,

i.e., with speed 1/2, and the other pixels form a rearwards
line with slope 2 (at any point in time two agents occupy
pixels in the same column). Thus, ab reaches the right end
after 2W − 1 time units. As all the other agents are also
moving with speed 1/2 it takes additional H − 1 time units
until the vertical line at the right end is reached.

(#1) (#9) (#10) (#11) (#27)

Figure 3: An L-shaped path and the algorithm sweeping over it.

Corollary 1. Theorem 2 holds for an L-shaped path re-
flected along the x-axis.

Theorem 3 (Windy paths of uniform height). Let
X be an x-monotone path with Wi > 0, ∀i, |Hi|+ 1 = H, ∀i
and alternating signs of the Hi’s, see Figure 4. It takes at
most 2W +H iterations to build up the right vertical line.

Figure 4: Windy path of uniform height.

Proof. By induction on the number of V vertical lines.
The case V = 1 is covered by Theorem 2. Assuming the
theorem is correct for V , we now show that it also holds for
V + 1:
X can be covered by overlapping L-shaped paths, (H1,W1),

(H2,W2), . . . , (HV ,WV). Agents located in a pixel above or
below such an overlap have to wait for an agent to arrive
from the left before they can move, due to rules 5b and 5c. If
the waiting time is long enough (2H−2) this results in agents
standing in a line with slope 1 (see Figure 5). Whenever the
agents from the left arrive these lines of merged agents are
allowed to move and do so with speed 1/2 (as there is al-
ways one agent located on a horizontal line, allowed to go
whenever its partner caught up, thereby dragging the rest).

Now let us the consider the situation in the first piece
(H1,W1). No agent initially located on the vertical line
added at the left has to wait for some agents approaching
from the left. Thus, the agent initially located at the bend
of the L, see Theorem 2, walks with speed 1/2 towards the
next vertical line (arriving at iteration 2W1−1). The agents
from the first vertical line approach the second in a line of
slope 2, after iteration 2W1−1, as seen by the following two
cases:

1. W1 < H/2: Some agents are still located on the first
vertical line. When the first agent reaches the second
vertical line the agent with which will merge is not yet
allowed to move, see the #5 in Figure 6. The slants
move (horizontally) through the L-shaped parts, as seen
in #6 and #7 of Figure 6.
At some point the merged agents are allowed to move.
This happens after W1 + H/2 iterations. Thus, now

all agents of the first vertical line keep on moving until
they reach the final position. This happens in iteration
(2W1 +H)+W1 +H/2 < 2WV +1 +H+2W1 = 2W +H.

2. W1 ≥ H/2: It may take additional time of H− ≤ H
until the merged agents are allowed to move, with the
H1 agents from the first vertical line standing in a ver-
tical line again (analog to WL < H/2). The agents
keep on moving, collecting (by merging) all the others
(time 2WV +1) and finally a time of max(H−, H −H−)
is needed to gain the vertical line. Thus, we have 2W1 +
2WV +1 +H− + max(H−, H −H−) ≤ 2(W1 +WV +1) +
H = 2W +H.

Together, the two cases prove the claim.

Theorem 4 (Windy paths of arbitrary heights).
Let X be an x-monotone path with Wi > 0∀i and alternating
signs of the Hi’s, see Figure 7. It takes at most 2W + H
iterations to build up the right vertical line.

Proof. To prove the runtime we modify the X , and show
that our algorithm is not faster on the modified object X ′,
yet still runs in at most 2W +H on X ′.

The object X ′ consists of all vertical lines of X extended
to the length of H and the horizontal lines shifted to the
lowest resp. highest position in the bounding box, see Fig-
ure 7. We claim that our algorithm is not faster on X ′ than
on X . Then, the claimed runtime of 2W + H results from
Theorem 3. We prove the claim in three steps:

Claim 1: The time the agents need to reach the second
vertical line from the first does only depend on W1. The
agents starting from the first vertical line need not wait for
agents approaching from the left. Theorem 2 shows that
the first agent reaches the next vertical line after 2W1 − 1,
independent on the height H1.

Claim 2: For agents initially located on vertical lines other
than the first an increased Hi may cause some agents to be
able to move further to the right. Nevertheless, at least one
agent stays on the line and is not picked up earlier. The first
part follows from the fact that a bigger Hi, determining the
“leash length” of the agent moving on the horizontal line
(with the waiting pixel located above or below an overlap of
L-shaped parts holding the leash), gives this moving agent
more freedom. The other agent has to wait (see Figure 5).

As the agents of the first vertical line keep on moving with
speed 1/2 it is picked up “in time” (and when moving to the
right a line with slope at least 2 is reestablished).

Claim 3: For a smaller height, Hi, the merging point en-
abling the agents initially located on the next vertical line to
move, is not reached later. That is, with a bigger Hi the
waiting rule 5d is not resolved earlier. We need to distin-
guish two cases:

(#6) (#8) (#10) (#12)

Figure 5: Agents initially located on an L-shaped path with a waiting agent form a line of slope at least 1.

(#5) (#6) (#7)

Figure 6: Case WL < H/2 in the proof of Theorem 3.

1. In case the first vertical line is longer than (or equal to)
the second (|Hi| ≥ |Hi+1|), the time until merged agents
are allowed to move depends on the height: the slant
moves (horizontally) through the L-shaped parts—this
takes longer for a bigger height.

2. In case the first vertical line is shorter than the sec-
ond (|Hi| < |Hi+1|), the “new” agents added parallel
to agents from the (i + 1)th vertical line may overstep
the second vertical line before some agents initially lo-
cated in the second vertical line are enabled to move.
Nevertheless, the pulling agent is still one of the second
vertical line and consequently not to the left of the“new”
ones. The slant keeps on moving horizontally through
the L-shaped path, enabling the agents of the two ver-
tical lines to move at the same time as in X .

The claim now follows from Theorem 3.

Theorem 5 (X-monotone paths). Let X be an X-mo-
notone path with Wi > 0,∀i, see Figure 8. It takes at most
time 2W +H to build up the right vertical line.

Proof. Again, we construct an object X ′ and show that
the algorithm is not faster on X ′ than on X . Consider the
sign of the vertical lines (i.e., whether the next horizontal
line is situated below or above the last one). Swing out all
stairs with a row of vertical lines of the same sign, see Figure
8. Hence, X ′ is an object from Theorem 4, and the running
time is at most 2W +H.

We claim that merged agents are not allowed to move
earlier on X ′. Let the vertical lines of the first staircase
be `1, . . . , `r, from left to right. We compare it to the cor-
responding L-shaped path (with height (

Pr
i=1 Hi) + 1 and

width (
Pr

i=1 Wi) + 1).
When the agents of X ′ gain a line of slope 2 for the first

time, the agents from `1, . . . , `r are at most in lines with
slope 2 (as they are shorter), some agents may have gone
further to the right, resulting in lines with slopes not less
than 1.

The agents of `1 reach the merge point after 2W`1 −1. At
this time we have a parallel line in X ′ with all agents to the
left of the ones from `1, . . . , `r.

Theorem 6 (Arbitrary paths). Let X be any path,
see Figure 9. It takes at most 2W +H iterations to build up
the right vertical line.

Proof. We construct a set X ′1, . . . ,X ′z of objects (paths)
by splitting the vertical lines of X at the rightmost posi-
tion of the bounding box, if these exist, and projecting the
maximal height H to the left of each part. Note that this
may result in circles. Then, we take the longest of the paths
X ′1, . . . ,X ′z (in terms of time), let this path with the projec-
tion on the left be X ′. We claim that X ′ is not processed
faster than X . We prove the claim in two steps:

Claim 1: The height stays the same. Is obvious.
Claim 1: The new created agents will not pick up agents

to the right earlier than these will be enabled to move in X .
We add a vertical line, i.e., the agents have to be pulled by
an agent (or more) on an existing horizontal line. This agent
keeps its speed and is never to the left of the added agents
before they potentially merge with “old” agents: When they
merge with “old” agents the merged agents inherit the con-
ditions for both.

Hence, if they had to wait they still do, but as waiting for
agents from the left they will be enabled to move.

Thus, the new added agents on the first (leftmost) vertical
line will not influence on the time “old” agents from the left-
most end need to reach the right most end (2W +H∗, H∗ ≤
H). They are at least pulled and may then build a vertical
line (time H − H∗), resulting in running time of at most
2W +H.

Theorem 7 (General case). Let X be the given ob-
ject. The running time of the algorithm is at most 2W +H.

Proof. We may consider X as a graph GX : X occupies
pixels, the nodes, and neighboring (4-neighborhood) pixels

(X) (X ′)

Figure 7: Windy path X and reduction X ′ to the previous case.

(X) (X ′)

Figure 8: X-monotone path X and its reduction X ′.

are adjacent, see Figure 10. We prove the running time in
four steps:

Claim 1: Walking inside an object is faster than walking
outside of an object. Is obvious.

Claim 2: Reducing GX to its leftmost edges whenever ver-
tical edges are parallel (and deleting the horizontal edges in
these areas, preserving connecting edges) we gain a tree, TX .
Is obvious.

Claim 3: The algorithm does not run faster on TX than
on GX . Results from (1) and (2).

Claim 4: The running time on TX is at most 2W + H.
In TX we consider all paths that end on the right. Then,
we take the longest (in terms of time) of these, let it be P
(decide on P from left to right at branching points).

Analog to the proceeding in the proof of Theorem 6 we
project the maximal height H to the left of P .

We do not shorten the running time of “old” agents on P
from the left to the right. Arguments like in the proof of
Theorem 6 yield the 2W +H.

4.3 A Worst-Case Example
In the previous analysis, we used the LOCAL model [17],

in which a communication round is sufficient for a pixel to
perform the computations and communication for all agents
currently stored on it.

Figure 11 shows a worst-case example for the algorithm.
It can be generalized to larger sizes, in which some pixels
have Ω(W) agents residing simultaneously on them. As we
have never seen more than three agents on a pixel for any
realistic input, we consider this issue irrelevant for practical
applications.

Note that there is a trivial upper bound of dW/2e on the
maximal number of agents on a pixel, as agents move only
horizontally and cannot be generated next to each other. So,
in the more restricted CONGEST model [17], where a com-
munication round only admits messages of sizeO(log(WH)),
our algorithm has a runtime complexity of O(W (W +H)).

Figure 11: Worst-case on agents per pixel.

However, we believe that this model does not reflect the plat-
form for which the algorithm was developed, as it was specifi-
cally designed so that every cell’s memory can be transferred
to a neighbor in a single round.

5. IMPLEMENTATION
In the previous section, we have proven that our algo-

rithm is highly efficient—in theory. To see how applicable
our approach is, we implemented it for actual hardware in
VHDL.

A substantial part of this implementation deals with turn-
ing the system model (active pixels with local memory, or-
ganized in a grid) into hardware. Each pixel becomes a pro-
cessing element (PE) on the final chip. Each of these PEs
consists of a control unit (to steer the propagation), local
memory, arithmetic units, and connectivity to its neighbors.
We implemented the algorithm with a four-pixel neighbor-
hood (as opposed to eight in the previous descriptions) in
order to reuse a design of a former algorithm [15]. To mimic
the functionality of an eight-pixel neighborhood, we imple-
mented some additional flags to store information about di-
agonal neighbors. The advantage of using a four-pixel neigh-
borhood network is that we can stint some connection lines.

(X) (X ′1) (X ′2)

Figure 9: Arbitrary path X being transformed into simpler pieces X ′1 and X ′2.

(X) (GX) (TX)

Figure 10: Reducing the general case to analyzing the most complex subpath.

State Description
S0 Initial State
S1 Edge detected

Waiting to find neigh-
bours for first time

S2 Walking
S3 Waiting for neighbors
S4 Agent moves from West

Updating registers

Table 1: Description of states

Each PE’s control unit is implemented as a finite state
machine (see Figure 12 and Table 1). State S0 is the initial
state for each pixel. If a pixel is at the left edge of an ob-
ject, a new agent is born and the state is changed to S1. In
state S1, the agent waits for the first arrival of a neighbor.
After finding its neighbors, the agent’s state switches to S2,
allowing the agent to walk. When the agent moves, it leaves
the pixel position, which is thus returned to state S0. If a
pixel p observes an agent with state S2 in W(p), it moves
that agent onto itself and sets its state to S4. This initiates
the phase after walking, where register updates are done.
Afterwards, the agent has two options. If all previous part-
ners are still visible, it moves again (i.e., switches to state
S2). If some partner has not moved, and is thus not in the
four-pixel neighborhood, it waits (by switching to state S3).

An important issue of the algorithm is that several agents
can occupy the same pixel. The maximal number is in
Θ(W), which cannot be implemented as is. For practical
purposes, we found that a small constant number of agent
memory slots in each pixel are fully sufficient. In this sample
implementation, we decided to host at most three agents at
a time. We simulated the algorithm in ModelSim and tested
it successfully. After testing, we synthesized the design for

Figure 12: State machine for the control unit

Picture Slice Re- Slice Lut FF fmax

Size gister (%) Lut (%) Pairs (%) [MHz]
4x4 1098 (0) 5527 (4) 747 (12) 159
8x8 4442 (3) 24593 (20) 3032 (11) 183
16x16 17554 (14) 95054 (77) 12162 (12) 113

Table 2: Results of Virtex5-FPGA synthesis.

two technologies: an FPGA and an ASIC. For the FPGA,
we decided to model the memory of the pixel positions in
BRAMS in order to reduce the slice requirements. The re-
sults of FPGA synthesis can be seen in Table 2. It shows
that a size of 16 × 16 is easily achievable in reconfigurable
hardware together with reasonable clock rates.

ASIC synthesis was executed for a 180nm UMC CMOS
process. Because of the large processor and memory usage,
we only synthesized a resolution of 8 × 8. For this size,
the complete vision chip required 1.84mm2 and consumed
51.5mW . Due to the linear scalability of this architecture, it
is possible to calculate values for higher resolutions, too. For

example, an industrial resolution of 128x128 pixels results in
a chip with an area of 2.1cm×2.1cm and 14.5W power con-
sumption. A more modern 90nm process technology would
only require an area of 130mm2 for the same resolution.

To summarize these results, we are convinced that our al-
gorithm can be turned into ASICs even for image sizes that
are typical for industrial applications. The low power con-
sumption and high chip frequency indicate that industrially
manufactured chip would indeed outperform the current so-
lutions with a classic, centralized design.

6. CONCLUSION
We have presented a novel sweepline algorithm for the

computation of a Principal Component Analysis on a smart
pixel grid. Our algorithm is localized and achieves a dis-
tributed time complexity of O(W +H) for objects on a grid
of W ×H pixels. This is particularly striking as there may
be Ω(WH) object pixels that need to be processed. Be-
sides possessing an unsurpassed speed, our algorithm is sim-
ple enough to be turned into a hardware design for smart
pixel chips. We reported on synthesis results for FPGAs
and ASICs, showing how our algorithmic contribution makes
smart pixels a strong competitor for current high-end indus-
trial image processing applications.

In our opinion, the biggest issue with our algorithm is that
several agents can accumulate in a single pixel. This rarely
happens with real-world data, and it can be easily resolved
by retrying the analysis a few milliseconds later, when the
belt has moved slightly. Our future goal is to improve the
theoretical aspects of this issue.

Interesting future directions lie in extending the algorithm
to detect high-level properties of the objects, such as shape,
topological type, thickness, and more. Even topics like dis-
tributed optical character recognition (OCR) are now within
reach. Quite clearly, this offers a vast spectrum of exciting
possibilities—both from a practical point of view, as well as
from the theoretical challenge of understanding the funda-
mental philosophical issue how local computation based on
very limited information can lead to methods for computing
higher-level concepts.

Acknowledgements
Christiane Schmidt was supported by DFG grant Fe407/14-
1, project “RoboRithmics”. Marcus Komann was supported
by DFG project “Marching Pixels”.

7. REFERENCES
[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A view
from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[2] B. Awerbuch. Optimal distributed algorithms for
minimum weight spanning tree, counting, leader
election, and related problems. In STOC ’87:
Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, pages 230–240,
New York, NY, USA, 1987. ACM.

[3] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast
distributed network decompositions and covers.

Journal of Parallel and Distributed Computing,
39:105–114, 1996.

[4] D. H. Ballard and C. M. Brown. Computer Vision.
Prentice Hall, 1982.

[5] C. Chaplin. Modern times, 1936.

[6] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete & Computational Geometry, 6:485–524,
1991.

[7] B. Chazelle. Who says you have to look at the input?
the brave new world of sublinear computing. In SODA
’04: Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, page 141,
Philadelphia, PA, USA, 2004. Society for Industrial
and Applied Mathematics.

[8] B. Chazelle, D. Liu, and A. Magen. Sublinear
geometric algorithms. SIAM J. Comput.,
35(3):627–646, 2005.

[9] M. Elkin. A faster distributed protocol for
constructing a minimum spanning tree. J. of Computer
and System Sciences, 72(8):1282 – 1308, 2006.

[10] A. Ferencz, E. G. Learned-Miller, and J. Malik.
Learning hyper-features for visual identification. In
Neural Information Processing Systems, 2004.

[11] D. Fey, L. Hoppe, A. Loos, M. Förtsch, and
H. Zimmermann. Parallel optical interconnects with
mixed-signal OEIC and fibre arrays for high-speed
communication. In Proceedings of SPIE, volume 5453
of Micro-Optics, VCSELs and Photonic Interconnects,
Strasbourg, France, 2004. Photonics Europe.

[12] R. Goldstein. Herb score, pitcher derailed by line
drive, dies at 75. International Herald Tribune, Nov
12, 2008.

[13] R. C. Gonzalez and R. E. Woods. Digital image
processing. Prentice-Hall, third edition, 2008.

[14] I. T. Jolliffe. Principal Component Analysis. Springer,
second edition, 2002.

[15] M. Komann, A. Kröller, C. Schmidt, D. Fey, and S. P.
Fekete. Emergent algorithms for centroid and
orientation detection in high-performance embedded
cameras. In CF ’08: Proceedings of the 2008
conference on Computing frontiers, pages 221–230,
New York, NY, USA, 2008. ACM.

[16] D. Marr. Vision: A computational investigation into
the human representation and processing of visual
information. Freeman, 14th edition, 2000.

[17] D. Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[18] G. Ryle. The concept of mind. University of Chicago
Press, 1949.

[19] J. Shlens. A tutorial on principal component analysis,
2005. http://www.snl.salk.edu/s̃hlens/pub/
notes/pca.pdf.

[20] B. Steckemetz. Quality control of ready-made food. In
DAGM-Symposium, pages 153–159, 1995.

[21] M. E. Wall, A. Rechtsteiner, and L. M. Rocha.
Singular value decomposition and principal component
analysis. In Daniel P. Berrar, Werner Dubitzky, and
Martin Granzow, editors, A Practical Approach to
Microarray Data Analysis, pages 91–109. Springer,
2003.

	Introduction
	Related Work
	The Algorithm
	Moments
	Agents
	Implementation on Active Pixels

	Analysis of the Algorithm
	Correctness
	The Algorithm's Runtime Complexity
	A Worst-Case Example

	Implementation
	Conclusion
	References

