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Abstract— Complex visual processes such as visual attention
are often computationally too expensive to allow real-time im-
plementation on a single computer. To solve this problem we
study distributed computer architectures that enable us to divide
complex tasks into several smaller problems. In this paper we
demonstrate how to implement distributed visual attention system
on a humanoid robot to achieve real-time operation at relatively
high resolutions and frame rates. We start from a popular theory
of bottom-up visual attention that assumes that information
across various modalities is used for the early encoding of visual
information. Our system uses five different modalities including
color, intensity, edges, stereo, and motion. We show how to
distribute the attention processing on a computer cluster and
study the issues arising on such systems. The system was fully
implemented on a workstation cluster comprised of eight PCs. It
was used to drive the gaze of a humanoid head towards potential
regions of interest.

Index Terms— Visual attention, distributed computing, hu-
manoid heads.

I. INTRODUCTION

There are converging lines of evidence for the existence

of separate visual areas in the brain, each specialized for

processing a particular aspect of the visual scene [1]. One

possible explanation for such an architecture was given by

David Marr [2]:

Any large computation should be split up and

implemented as a collection of small sub-parts that

are as nearly independent of one another as the

overall task allows. If a process is not designed in

this way, a small change in one place will have

consequences in many other places. This means that

the process as a whole becomes extremely difficult

to debug or to improve, because a small change to

improve one part has to be accompanied by many

simultaneous compensating changes elsewhere.

We believe that distributed processing of visual information is

the key to the real-time operation of complex visual processes

in technical systems such as humanoids. In this paper we

propose a distributed implementation of a visual attention

system on a humanoid robot. Visual attention is a complex,

but comparatively well understood process in psychology and

computational neuroscience. It is therefore well suited as

an experimental testbed for distributed processing of visual

information.

Fig. 1. Humanoid head used in the experiments. It has a foveated vision
system and 7 degrees of freedom (two DOFs in each eye and three DOFs in
the neck).

Among several biologically plausible models for visual

attention, approaches that build on feature integration theory

[3] and saliency maps [4] resulted in most useful architectures

[5]–[7], including some implementations on humanoid robots

[8]–[11]. We started from the saliency map model proposed in

[6]. This model exhibits a distributed processing architecture

which is quite typical for the processing of information in the

brain. The original visual stream is subdivided into several

processing streams that are in part independent of each other.

The processing time and consequently the latency and frame

rates can vary across the streams. Further down the processing

stream the results must be integrated and synchronized to

produce the global saliency map suitable for the selection of

the focus of attention.

It is evident from various visual disabilities that the ability

of the brain to reassign the processing of visual information to

new areas is rather limited and that it also takes time. Instead

visual information is transferred along a number of pathways

(e. g. magnocellular pathway, parvocellular-blob pathway, and

parvocellular-interblob pathway [12]) and visual processes are

executed in well defined areas of the brain. Visual perception

results from interconnections between these partly separate

and functionally specialized systems. This was the guiding
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Fig. 2. Visual attention architecture. Besides the robot and saccadic
movements, there are two additional streams compared to the architecture
proposed in Ref. [6]: motion and disparity. They are both associated with the
magnocellular processing pathway, whereas color, intensity, and orientation
belong to the parvocellular pathway. In addition, our system applies Gabor
kernels at different scales, not just at different orientations. The distribution
of visual processes across the computer cluster is indicated by red circles.
Each circle encloses the processes executed by one computer.

principle for the design of our attention system. Our goal was

to define a system that will allow us to transfer information

from the source to a number of computers executing special-

ized vision processes, either sequentially or in parallel, and to

provide means to integrate information from various streams

coming at different frame rates and with different latencies.

The transfer of information can be both feed-forward (bottom-

up processing) and feed-backward (top-down effects).

II. BOTTOM-UP ATTENTION SYSTEM

Feature integration theory of attention postulates that

bottom-up preattentive processing is based on exploring the

visual search space for various features and integrating them,

e. g. by way of saliency maps, until the location of the most

salient area in the image emerges, e. g. through the competition

across various feature maps. The generation of a number of

feature maps at full resolution and at high frame rates is

a computationally intensive process. Unless we are ready to

make compromises about the image resolution and/or frame

rate, we need to utilize a distributed computer architecture.

An attention system based on saliency maps decomposes the

visual input into several streams, each of them corresponding

to one type of retinal feature maps calculated at different scales

(Section II-A). Within each feature processor, maps at different

scales are combined to generate a global conspicuity map that

emphasizes locations that stand out from their surrounding

(Section II-B). The conspicuity maps are combined into a

global saliency map, which encodes the saliency of image

locations over the entire feature set (Section II-C). The time-

integrated global saliency map is used as an input to a winner-

take-all neural network, which is used to compute the most

salient area in the image stream (Section II-D). This archi-

tecture is presented in Fig. 2. While the described approach

is purely bottom-up, top-down effects can be introduced by

biasing the weights when combining the conspicuity maps or

by introducing lateral inhibition when computing local feature

maps.

A. Generation of early feature maps

The current version of the system includes the processing

of color, intensity, orientation, motion, and disparity (see Fig.

2). It would be impossible to implement all these processes

on one computer and maintain the frame rate and resolution.

Among the implemented feature processors, the generation of

orientation maps is the most computationally intensive one. We

followed the biologically motivated implementation suggested

in [6], where orientation feature maps were computed by

applying Gabor kernels

Φ(x) =
‖kµ,ν‖

2

σ2
· exp

(

−
‖kµ,ν‖

2‖x‖2

2σ2

)

· (1)

(

exp
(

ikT
µ,νx

)

− exp

(

−
σ2

2

))

,

where kµ,ν = kν [cos(φµ), sin(φµ)]T . In Ref. [6] only one

scale kν and 4 orientations φµ = 0, 45, 90, 135 were used.

Gabor kernels were suggested to model the receptive fields

of simple cells in primary visual cortex. It has been shown,

however, that there exist simple cells sensitive not only to

specific positions and orientations, but also to specific scales.

We therefore utilized not only Gabor kernels at 4 different

orientations but also at 4 different scales.

Color and intensity were dealt with in a similar way as in

[6]. For the calculation of motion, we used a variant of Lucas-

Kanade algorithm. A correlation-based technique was used to

generate disparity maps at 30 Hz.

B. Center-surround differences

At full resolution (320× 240), the above feature processors

generate 2 early feature maps for color (based on double color

opponents theory [1]), 1 for intensity, 16 for orientation, 1
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Fig. 3. The captured image and the associated disparity map. This data is sent
from the frame grabber to all feature processors (compare with Fig. 2). The
green and cyan parts of disparity maps show the areas where the disparities
are not available.

for motion and 1 for disparity. Center-surround differences

were suggested as a computational tool to detect local spatial

discontinuities in feature maps which stand out from their

surround [6]. Center-surround differences can be computed

by first creating Gaussian pyramids out of the 21 early fea-

ture maps. From the uppermost scale I f(0), where f is the

corresponding feature, maps at lower scales are calculated by

filtering of the map at the previous scale with a Gaussian filter.

The resolution of the map at lower scale is half the resolution

of the map at the scale above it. The creation of Gaussian

pyramids is straightforward for all of the above features except

for disparities. Disparity maps are never fully populated (see

Fig. 3) and the missing data is labeled as such in the resulting

pyramids.

Center-surround differences are calculated by subtracting

pyramids at coarser scale from the pyramids at finer scale.

These differences can be calculated by up-sampling the pyra-

mids at coarser scales to finer scales. We calculated the center-

surround differences between the pyramids I f(c), c = 2, 3, 4
and I f(s), s = c + δ, δ = 2, 3. This results in 6 maps

per feature. The calculation of disparity feature maps is a bit

more complicated because we need to take make sure that

the missing data is ignored. The center-surround differences

involving missing data are hence set to zero.

C. Saliency maps

The combination of feature maps into conspicuity maps

for color Ic, intensity Ib, orientation Io, motion Im, and

disparities Id involves normalization to a fixed range and

searching for global and local maxima to promote feature maps

with strong global maxima. For each modality, feature maps

are combined at the coarsest scale. This process is equivalent

to [6] and we omit the details here. The conspicuity maps are

finally combined into a global saliency map

S = wcIc + wbIb + woIo + wmIm + wdId. (2)

The weights wc, wb, wo, wm, and wd can be set based on

top-down information about the importance of each modality.

In the absence of top-down information, they can be set to a

fixed value, e. g. 1
5 .

On a humanoid robot we are interested in processing time-

varying visual information. Since we use standard NTSC

cameras on our humanoid head (see Fig. 1), the saliency

maps can change up to 30 times per second. We therefore

integrate the information in time to provide better input to the

competitive process that selects the focus of attention

Sint(t) = γδSint(t − δ) + Gσ ∗ S(t), 0 < γ < 1, (3)

where δ ≥ 1 is the difference in the frame index from the

previous saliency map and Gσ ∗S(t) is the convolution of the

current saliency map with the Gaussian filter with standard

deviation σ.

D. Winner-take-all network and inhibition of return

The aim of the preattentive mode of visual processing is to

select the focus of attention, which is subsequently processed

more exhaustively to solve higher-level tasks such as object

recognition [4]. Although there exist attempts to construct

a more integrated processing model that encompasses both

preattentive processing and object recognition [13], it is still

not clear that such models will be able to overcome the

combinatorial explosion associated with the analysis of shape

and recognition across the whole visual scene. Two-stage

processing models therefore still seem to be the best choice

for implementation on a technical system.

Winner-take-all network has been suggested as means to

calculate the focus of attention from the saliency map [4]. We

used the leaky integrate-and-fire model to build a three layer

2-D neural network of first order integrators to integrate the

contents of the saliency map and choose a focus of attention

over time. It is based on the integration of the following system

of differential equations:

u1(x, t) =
∑

y

w1(x,y)Sint(y, t), (4)

du2

dt
(x, t) +

1

τ2
u2(x, t) =

∑

y

w2(x,y)u1(y, t) −

∑

y

wco(x,y)u3(y, t), (5)

du3

dt
(x, t) +

1

τ3
u3(x, t) =

∑

y

w3(x,y)u2(y, t), (6)

where ui(x, t) is the membrane potential of the neuron of

the i-th layer located at x = (x, y) at time t, τi is the time

constant of the i-th layer, wi(x,y) is the weighting function of

input synaptic connections of the i-th layer between locations

x and y and wco(x,y) is the weighting function of synaptic

connections of the second layer. Function wi(x,y) models

spatial convergence between successive layers and is given by:

w1(x,y) = w2(x,y) = w3(x,y) =
1

2πσ2
in

exp

(

−
‖x − y‖2

2σ2
in

)

(7)

Functions wco(x,y) model the coupling effects between the

neurons of the network including long-range inhibition and
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Fig. 4. Focus of attention. In each of the three images, the left upper corner shows the last image used in preattentive processing with the three last most
salient locations indicated by red, orange, and yellow circle. The left lower corner shows the view from the peripheral camera after the saccade. The two smaller
images in the upper right corner show the first two layers (u1 and u2) from the system of differential equations (4) - (6). The third layer has already been reset
because the images show the situation after the eyes saccaded towards the position indicated by the winner neuron. Finally, the image in the lower right corner
shows the foveal view of the area of interest which could be used in postattentive processing. Note that the system detected areas that are intuitively salient.

short-range excitation to produce the winning neuron and is

given by:

wco(x,y) =
c2
inh

2πσ2
inh

exp(−
‖x − y‖2

2σ2
inh

) −

c2
exc

2πσ2
exc

exp(−
‖x − y‖2

2σ2
exc

) (8)

We used Euler’s method to integrate equations (5) and (6).

The integration frequency was 100 Hz and is different from

the timing of the vision signal (30 Hz). Hence before updating

the integrated saliency map Sint, equations (5) and (6) are

integrated a few times as temporal smoothing. When the

membrane voltage of one of the neurons of the third layer

u3(x, t) reaches an adaptive firing threshold ufire(t), the robot

moves its eyes so that the most salient location is placed over

the fovea. Vision processing is suppressed during the saccade.

Since postattentive processing has not been integrated into the

current version of the system yet, the robot just waits for 500

ms before moving its eyes back to the original position. At

this point the neurons of the third layer are reset to their

ground membrane voltage as global lateral inhibition and a

local inhibitory signal is smoothly propagated from the first to

the second layer at the attended location as inhibition of return.

The strength of this inhibitory effect is gradually reduced as the

time passes to allow for further exploration of the previously

attended regions.

III. TOP-DOWN EFFECTS

As already mentioned in Section II-C, top-down effects can

be introduced into the system by selecting different weights

when combining the conspicuity maps into a single saliency

map by means of Eq. (2). This is, however, still very general

and does not allow for the promotion of specific features

such as for example a red target. Just increasing the weight

of a color-based conspicuity map would promote any color,

not just the red one. One way to accomplish this has been

proposed in FeatureGate model of human visual attention [8].

This model suggests to introduce top-down effects by lateral

inhibition of activation in feature maps. The lateral inhibition is

activated if there exists an area in the neighborhood that differs

from the top-down feature ft less than the current location x.

We note here that it has been suggested already in [4] that

early feature maps are the proper place to implement lateral

inhibitory effects.

Let Nc(x) be the neighborhood of location x at level c in

the pyramid and let Sc(x) be all pixels in the neighborhood

that are closer to the target than x

Sc(x) = {y ∈ Nc(x); ρ(I(y), ft) < ρ(I(x), ft)} (9)

The activation in the early feature map is decreased by the

value proportional to the difference in the distance from the

target feature

I ′

f(c,x) = I f(c,x) − β
∑

y∈Sc(x)

{ρ(I(x), ft) − ρ(I(y), ft)}

(10)

It is task dependent if all or only some of the early feature

maps I f needs to take into account guidance provided by the

top-down feature ft.
Although the integration of top-down effects into the dis-

tributed visual attention system has not been completed yet,

it is clear that the architecture allows for such an addition;

each top-down effect can be implemented on one computer

and the resulting data can be broadcast to the early feature

map generators that need to incorporate top-down cues.

IV. SACCADIC EYE MOVEMENTS

Directing a spotlight of attention towards interesting areas

involves saccadic eye movements. It is sufficient to use only

the eye degrees of freedom to place the most salient area in

the image stream over the fovea. The system is calibrated and

we can easily calculate the pan and tilt angle for each eye that

are necessary to direct the gaze towards the desired location.

Human saccadic eye movements are very fast, thus the current

version of our eye control system simply moves the robot eyes

towards the desired configuration as fast as possible. Three

examples are shown in Fig. 4, where the red circled areas

represent the focus of attention before and after the saccade.

The accuracy of control was increased by processing rectified

images (see Fig. 3), in which distortion effects are corrected.
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TABLE I

FRAME INDEXES OF SIMULTANEOUSLY PROCESSED IMAGES UNDER DIFFERENT SYNCHRONIZATION SCHEMES. IN EACH BOX, ORDERED FROM LEFT TO

RIGHT COLUMN, THE FRAME INDICES BELONG TO THE DISPARITY, COLOR, ORIENTATION, INTENSITY, AND MOTION CONSPICUITY MAP. SEE TEXT IN

SECTION V-A FOR FURTHER EXPLANATION.

70656 70656 70656 70656 70656
70675 70675 70675 70675 70675
70678 70678 70678 70678 70678
70695 70695 70695 70695 70695
70711 70711 70711 70711 70711
70715 70715 70715 70715 70715
70724 70724 70724 70724 70724
70757 70757 70757 70757 70757
70758 70758 70758 70758 70758
70777 70777 70777 70777 70777
70790 70790 70790 70790 70790
70799 70799 70799 70799 70799
70802 70802 70802 70802 70802
70815 70815 70815 70815 70815
70837 70837 70837 70837 70837

61250 61249 61250 61250 61250
61251 61251 61250 61251 61251
61252 61251 61250 61251 61252
61253 61253 61250 61253 61253
61253 61253 61254 61254 61254
61255 61253 61254 61254 61255
61256 61256 61254 61256 61256
61257 61256 61257 61257 61257
61258 61258 61257 61257 61258
61259 61258 61257 61259 61259
61260 61260 61260 61260 61260
61260 61260 61260 61261 61261
61262 61262 61260 61261 61262
61263 61262 61260 61263 61263
61264 61264 61264 61264 61264

65911 65910 65907 65911 65912
65912 65910 65910 65911 65913
65912 65912 65910 65912 65914
65913 65912 65910 65913 65915
65914 65912 65910 65913 65916
65915 65914 65913 65915 65917
65917 65914 65913 65916 65918
65918 65916 65913 65916 65919
65918 65916 65916 65918 65920
65919 65918 65916 65919 65921
65920 65918 65916 65921 65922
65921 65921 65919 65922 65923
65923 65921 65919 65922 65924
65924 65923 65919 65923 65925
65925 65923 65922 65923 65926

V. DISTRIBUTED PROCESSING OF VISUAL STREAMS

The distributed architecture presented in Fig. 2 is essential

to achieve real-time operation of the complete visual attention

system. In the current implementation, all of the computers

are connected to a single switch via a gigabit Ethernet. We

use UDP protocol for data transfer. Data that needs to be

transferred from the image capture PC includes the rectified

color images captured by the left camera, which are broadcast

from the frame grabber to all other computers on the network,

and the disparity maps, which are sent directly to the PC that

takes care of the disparity map processing. Full resolution

(320×240 to avoid interlacing effects) was used when transfer-

ring and processing these images. The five feature processors

send the resulting conspicuity maps to the PC that deals with

the calculation of the saliency maps and with the integration of

the winner-take-all network. Finally, the position of the most

salient area in the image stream is sent to the PC taking care

of motor control. The current setup with all the computers

connected to a single gigabit switch proved to be sufficient to

transfer the data at full resolutions and frame rates. However,

our implementation of the data transfer routines allows us to

split the network into a number of separate networks should the

data load become too large. This is essential to make it possible

to scale the system to a more advanced vision processing such

as shape analysis and object recognition.

Of the 8 workstations on the network, 4 run Windows 2000,

3 Windows XP and 1 Linux. Five of the PCs are equipped with

2×2.2 GHz Intel Xeon processors, two with 2×2.8 GHz Intel

Xeon processors, and one with 2 Opteron 250 processors. Such

a heterogeneous computer cluster in which every computer

needs to solve a different problem will necessarily result

in visual streams coming at different frame rates and with

different latencies. In the following we describe how to ensure

smooth operation under such conditions.

A. Synchronization

The processor that needs to solve the most difficult synchro-

nization task is the one that integrates the conspicuity maps

into a single saliency map. It receives input from five different

feature processors. The slowest among them is the orientation

processor that can take care of only every third frame. On

the other hand, the disparity processor works at full frame

rate and with lower latency because the data it needs is sent

directly to this processor instead of being broadcast across

the network. While it would be possible to further distribute

the processing load of the orientation processor, we did not

follow this approach because our computational resources are

not unlimited. We were much more interested in designing a

general synchronization scheme that would allow us to realize

real-time processing under such conditions.

The simplest approach to synchronization is to ignore the

different frame rates and latencies and to simply process the

data that was last received from each of the feature processors.

Some of the resulting frame indices for conspicuity maps that

are in this case combined into a single saliency map are shown

in the rightmost box of Tab. I. Note that the time difference

(frame index) between simultaneously processed conspicuity

maps is quite large, up to 6 frames (or 200 milliseconds). It

does not happen at all that conspicuity maps with the same

frame index would be processed simultaneously.

Ideally, we would always process only data captured at the

same moment in time. This, however, proves to be impractical

when integrating the five conspicuity maps. To achieve full

synchronization, we associated a buffer with each of the

incoming data streams. The integrating process received the

requested conspicuity maps only if data from all five streams

was simultaneously available. The results are shown in the

leftmost box of Tab. I. Note that lots of data is lost when

using this synchronization scheme because images from all

five processing streams are only rarely available.

We have therefore implemented a scheme that represents a

compromise between the two approaches. Instead of requesting

that the data is fully synchronized, we monitor the buffer and

simultaneously process the data that is as close together in

time as possible. This can be accomplished by waiting that

for each data stream, there is data available with the time
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request for data with frame index n:

get access to buffers and lock writing

r = 0
for i = 1, . . . ,m

find the smallest bi,j so that n < bi,j

if such bi,j does not exist

reply images with frame index n not yet available

unlock buffers and exit

if bi,(j−1)%M ≤ n

ji = bi,(j−1)%M

else

r = max(r, bi.j)
if r > 0

reply r is the smallest currently available frame index

unlock buffers and exit

return {I1,j1 , . . . , Im,jm
}

unlock buffers and exit

Fig. 5. Pseudo-code for the delayed synchronization algorithm. m denotes
the number of incoming data streams, or – in other words – the number of
preceding nodes in the network of visual processes. To enable synchronization
of data streams coming with variable latencies and frame rates, each data
packet (image, disparity map, conspicuity map, join angle configuration, etc.)
is written in the buffer associated with the data stream, which has space for
M latest packets. bi,j denotes the frame index of the j-th data packet in the
buffer of the i-th processing stream. Ii,j are the data packets in the buffers
and m is the number of data streams coming from previous processes.

stamp before (or at) the requested time as well as data with

the time stamp after the requested time. This allows us to

optimally match the available data. The algorithm is given in

Fig. 5. For this delayed synchronization scheme, the frame

indices of simultaneously processed data are shown in the

middle box of Tab. I. It is evident that all of the available

data is processed and that frames would be skipped only if the

integrating process is slower than the incoming data streams.

The time difference between the simultaneously processed data

is cut to half (3 frames or 100 milliseconds). However, the

delayed synchronization scheme does not come for free; since

we need to wait that at least two frames from each of the data

streams are available, the latency of the system is increased

by the latency of the slowest stream. Nevertheless, we chose

the delayed synchronization scheme as the method of choice

for the integration of conspicuity maps.

We note here that one should be careful when selecting

the proper synchronization scheme. For example, nothing less

than full synchronization is acceptable if the task is to generate

disparity maps from a stereo image pair. On the other hand,

buffering is not desirable when the processor receives only

one stream as input; it would have no effect if the processor is

fast enough to process the data at full frame rate, but it would

introduce an unnecessary latency in the system if the processor

is too slow to interpret the data at full frame rate. The proper

synchronization scheme should thus be carefully selected by

the designer of the system.

VI. SUMMARY AND CONCLUSION

Starting from the visual attention architecture proposed in

[4] and [6], we designed a distributed visual attention system

for a humanoid robot. We introduced several improvements

to the original architecture, including the processing of ori-

entation at different scales and the introduction of additional

feature maps (motion and disparity). A system of differential

equations that implements the winner-take-all network and the

inhibition of return was also proposed. Finally, we suggested

how to model top-down effects in early feature maps by lateral

inhibition. The system was implemented on a cluster of eight

workstations and used to direct the gaze of a humanoid head

towards potential areas of interest. Our experimental results

show that the system can select areas of interest using various

features and that the selected areas are quite plausible and most

of the time contain potential objects of interest (see Fig. 4).

However, the main point we wish to make in this paper

is that distributed processing is necessary to achieve real-

time operation of a complex vision process such as visual

attention. Although some of the previous works mention that

parallel implementations would be useful and indeed parallel

processing was used in at least one of them [9], this is the first

study that focuses on issues arising from such a distributed

implementation. We developed a computer cluster architecture

that allows for proper distribution of visual processes in-

volved in visual attention. We studied various synchronization

schemes that enable the integration of different processes in

order to compute the final result. The designed architecture can

easily scale to accommodate more complex visual processes

and we intend to use it to implement further visual processes

and integrate them together, thus taking a step to a more brain-

like processing of visual information on humanoid robots.
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