
Distributed W-Learning:
Multi-Policy Optimization in Self-Organizing

Systems
Ivana Dusparic and Vinny Cahill

Lero – The Irish Software Engineering Research Centre
Distributed Systems Group

School of Computer Science and Statistics
Trinity College Dublin

{ivana.dusparic, vinny.cahill}@cs.tcd.ie

Abstract—Large-scale agent-based systems are required to
self-optimize towards multiple, potentially conflicting, policies
of varying spatial and temporal scope. As a result, not all
agents may be implementing all policies at all times, resulting in
agent heterogeneity. As agents share their operating environment,
significant dependencies can arise between agents and therefore
between policy implementations. To address self-optimization
in the presence of agent heterogeneity, policy dependency and
the lack of global knowledge that is inherent in large-scale
decentralized environments, we propose Distributed W-Learning
(DWL). DWL is a reinforcement learning (RL)-based algorithm
for collaborative agent-based self-optimization towards multiple
policies, which relies only on local interactions and learning. We
have evaluated the DWL algorithm in a simulation of a self-
organizing urban traffic control (UTC) system and show that
using DWL can improve the performance of multiple policies
deployed simultaneously, even over corresponding single-policy
deployments. For example, in UTC, optimizing simultaneously
for cars and public transport vehicles reduces the waiting times
of cars to 78% of their waiting times in the best-performing
single-policy deployment that optimizes for cars only, while also
outperforming the widely-deployed round-robin and saturation-
balancing traffic controllers that we used as baselines1.

I. INTRODUCTION

As computing systems become increasingly large-scale and
geographically dispersed, traditional centralized and hierarchi-
cal management of such systems becomes intractable. Such
large-scale decentralized systems also need to be able to adapt
to changing operating conditions, not all of which can be
anticipated at design time. It is widely believed that multi-
agent approaches based on self-organizing principles are a
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suitable mechanism for management of such systems [1].
In multi-agent systems, autonomous agents can learn their
behaviour for given environmental conditions and coordinate
their actions with immediate neighbours while the global
system behaviour emerges from local learning, actions and
interactions. A number of agent-based techniques have already
been successfully used to support self-organization and emer-
gence in large-scale decentralized systems. Examples include
ant-colony optimization in load balancing [2], particle swarm
optimization in wireless network routing [3] digital evolution
in autonomous robot navigation [4], and reinforcement learn-
ing (RL) in load balancing [5] and resource allocation [6].

These techniques have mostly been applied to systems
with only a single explicit objective (or multiple objectives
implemented as a single policy); however, many large-scale
systems will need to self-optimize towards multiple, often
conflicting objectives with different temporal and spatial scope
and of different priority. Such policy heterogeneity leads to
agent heterogeneity, making the coordination required for self-
organization particularly challenging.

To address self-optimization in such heterogeneous envi-
ronments, we have developed Distributed W-Learning (DWL),
an RL-based algorithm for multi-policy optimization in large-
scale decentralized agent-based systems, that has been inspired
by W-Learning [7]. DWL, which we briefly introduced in [8],
enables agents to engage in different levels of cooperation
with each other in order to optimize the performance of the
system towards its goals, while respecting the priority of
these goals. Collaboration mechanisms are independent of the
policies that agents are implementing, therefore enabling col-
laboration between heterogeneous agents. All required actions
and interactions are performed on an agent level, removing
the need for central control or global knowledge.

We have evaluated DWL in a simulation of an agent-
based self-organizing UTC system. We use UTC examples
throughout the paper to illustrate issues in multi-policy op-
timization and to explain the details of DWL. The results
of our evaluation show that in UTC, DWL can reduce the
waiting time of vehicles to between 13% and 30% (depending



Figure 1. Policy relationships

on the vehicle type and traffic load) of their waiting time in the
traditional round-robin or saturation-balancing adaptive traffic
controllers that we used as baselines for comparison. DWL can
also improve the performance of multiple policies deployed
simultaneously, even over corresponding single-policy deploy-
ments, reducing the waiting time of vehicles to between 22%
and 88% (depending on the vehicle type and traffic load) of
their waiting time in single-policy scenarios.

The remainder of this paper is organized as follows: Sec-
tion II describes agent-based self-organizing systems and the
implications of the presence of multiple policies. Section III
covers related work, while Section IV describes the details of
DWL. Our simulation environment is presented in Section V
and the results and analysis of our experiments in Section VI.
Section VII concludes the paper.

II. MULTI-POLICY OPTIMIZATION

The policies that large-scale decentralized systems are
required to implement can have different characteristics. For
example, policies can be deployed on different sets of agents
(i.e., have different spatial scope), can be active at different
times (i.e., have different temporal scope), and can have
different levels of importance to the system (i.e., have different
priorities). In terms of spatial scope, policies can be local
(deployed on a single agent), regional (deployed on only a
subset of the agents in the system) or global (deployed on
all of the agents in the system). In terms of their temporal
scope they can be sporadic or continuous, and their priority
can range from low to high.

Additionally, policies can have different relationships to one
another even if their characteristics are otherwise the same.
For example, consider Fig. 1, in which R1 and R2 are both
regional, continuous policies of the same priority. However,
due to their regional scope, the sets of agents that implement
them can be the same (i.e. all agents that implement R1 also
implement R2 and vice versa), they can overlap (i.e. some,
but not all, agents that implement R1 also implement R2 and
vice versa), or they can be disjoint (i.e. no agent implements
both R1 and R2).

Heterogeneity of policies and their characteristics leads to
heterogeneity of agents while different policy relationships
can lead to different levels of dependency between policies
and between agents. Therefore, multi-policy optimization tech-
niques in multi-agent environments need to not only explicitly
address meeting multiple system goals, but also address the

Figure 2. Agent and policy heterogeneity

implications of the presence of multiple policies, namely agent
dependency and heterogeneity, as well as policy dependency.

A. Agent Dependency

The performance of an agent in a multi-agent system can
be influenced, directly or indirectly, and both positively and
negatively, by other agents’ actions [9].

For example, in a UTC system, the performance of one
junction can be affected by some or all of its upstream and/or
downstream neighbours. Consider Fig. 2 which shows several
linked junctions controlled by agents. If the junction controlled
by agent A2 is oversaturated, traffic can come to a standstill
and queues at that junction can spill over upstream to block
the junction controlled by A3. No traffic will then be able
to go through this junction regardless of the actions of A3,
as there will be no space available on the downstream road.
Likewise, the performance of A1, A3 and any agents at other
junctions that feed traffic to A2 can cause oversaturation at
A2 if they are letting through more traffic than A2 is clearing.
The dependency can also extend to the agents further upstream
from A2, such as A4, as that agent influences the performance
of A3, which in turn influences the performance of A2, causing
a potential dependency between non-neighbouring agents A2
and A4. As a result, there is a potential dependency between all
of the agents in a UTC system. Due to this dependency, agents
that control the junctions should, when selecting an action to
execute, consider not just their own direct benefit, but also
the influence of that action on other agents, particularly their
immediate neighbours.

B. Agent Heterogeneity

It is particularly difficult for agents to take the needs of
other agents into account when agents are heterogeneous and
implement different policies. The first source of heterogeneity
is the difference in the agents’ operating environment and
capabilities. For example, in a UTC scenario, intersections
can have different layouts, i.e., the number of incoming and
outgoing approaches and the allowed traffic manoeuvres can
be different. In RL, this maps to agents having different state
spaces and different action sets, since the combinations of
traffic signal settings (i.e., traffic-light phases) available to
agents controlling junctions of different layout differ. This
results in agents not having a common interpretation of the
meaning of particular states or actions.

Another source of heterogeneity results from different poli-
cies being deployed in the system. For example, agents in a



UTC system might be required to optimize global traffic flow,
but also to prioritize emergency vehicles and public transport,
or deal with pedestrian crossing requests. Due to the different
spatial and temporal scope of these policies, agents in the
system can end up implementing different sets of policies at
a given point in time. For example, consider again Fig. 2.
Agent A2 is required to implement policies p1 and p2, while
one of its neighbours, agent A1, is only implementing p1,
and the other neighbouring, agent A3, only p2. The further
downstream neighbour A4, implements only its own local
policy p3.

C. Policy Dependency

Agent dependency and agent heterogeneity, as discussed in
previous sections, can cause dependencies between policies as
well. For example, we discussed how in Fig. 2 the actions
of A3 can influence the performance of agents A2 and A4.
This implies that the implementation of the policy p2 (imple-
mented by A3) can influence the performance of policies p3
(implemented by A4) and p1 (implemented by A2). Therefore,
when an agent makes an action selection, it should not only
consider actions that are optimal for the implementation of its
own policies, but also the effect of those actions not only on
other agents, but also on other policies, particularly on those
that its immediate neighbours are implementing.

Dependency between policies has been confirmed in our
previous work with non-collaborative agents [10]. We ob-
served that implementing a single policy that only addresses
emergency vehicles creates a backlog of other vehicles in
the system, which in turn prevent emergency vehicles from
proceeding. These observations on policy dependency were
addressed in our design of DWL.

D. Algorithm Requirements

In summary and based on the characteristics of the systems
discussed above, we can derive a set of requirements for
a multi-policy multi-agent optimization technique. There is
a potential for agents to benefit from mutual cooperation,
as there is a dependency between them due to their shared
environment. Therefore, an algorithm should enable agents not
just to learn the optimal actions for their own performance, but
also which other agents are influenced by their actions and
how. Algorithms should also allow multiple policies deployed
on the agents to be addressed simultaneously, as there may
be a dependency between policies, again due to the shared
environment in which they are deployed. Finally, the algorithm
should only require local learning and interactions, as no agent
has a global view of the entire system.

III. BACKGROUND

This section introduces the basic elements required to
understand RL-based techniques and reviews closely related
work.

A. Reinforcement Learning

Reinforcement learning is an unsupervised learning tech-
nique in which an agent learns how to meet its goal by
receiving feedback on its actions from the environment in
the form of a reward [11]. Q-learning [12], a model-free
implementation of RL, is considered particularly suitable for
optimization in situations where no pre-specified model of the
environment is available [13], as is likely in complex large-
scale decentralized systems. In Q-learning, an agent learns to
associate an action a with the expected long-term reward of
taking that particular action in a particular state s (i.e., in a
particular set of environment conditions). This is represented
by a Q-value, Q(s, a) [12].

Q-learning is a single-agent, single-policy learning tech-
nique. A number of multi-policy extensions have been im-
plemented, as agents often have to simultaneously meet mul-
tiple policies. We reviewed some of those techniques in our
previous work [10] and evaluated two approaches: combining
policies’ state spaces into a single learning process [14] and
W-Learning [7]. W-learning was shown to yield better results
in the scenarios evaluated, and to be suitable as a multi-policy
optimization technique for UTC [10] when deployed on non-
cooperating agents. Based on these results we hypothesize
that W-Learning performance could be improved by enabling
collaboration between agents.

W-learning is an action-selection technique developed by
Humphrys [7], where each policy is implemented as a separate
Q-Learning process with its own state space. Agents learn Q-
values for state-action pairs for each policy and, at every time
step, each policy nominates an action based on these Q-values.
Using W-Learning, agents also learn, for each of the states
of each of their policies, what happens, in terms of reward
received, if the action nominated by that policy is not obeyed.
This is expressed as a W-value, W (s). W (s) is updated after
each action selection according to Formula (1), where ri is
the immediate reward received, s is the current state of the
policy, s′ is the next state, ai is the current action, and a′i is
the next action for policy i.

Wi(s) := (1− α)Wi(s) +
α(Qi(s, ai)− (ri + γmaxQ(s′, a′i))) (1)

At each learning step, multiple policies on a single agent
nominate their actions, with associated W-values for the states
in which they are, and the agent selects an action to execute
based on those W-values. The winning policy can be selected
in several ways, for example, agents can select the policy with
the highest nominated individual W-value or the one with the
highest cumulative W-value over all policies.

Multi-agent learning and associated issues have been the
subject of extensive research in the area of distributed artificial
intelligence [15], [9]. As much of the work in this area is
application area specific, in the next section we review multi-
agent RL-based techniques used in our initial application area
UTC.



B. Related Work

In urban traffic control implementations, RL has been shown
to improve the performance of a single isolated intersection
[13], as well as of several, non-collaborating intersections [16].
Various implementations of collaborative RL-based agents
have also been used to improve the performance of UTC sys-
tems, such as in [17], [18], [19], [20]. These implementations
focus only on improving general traffic flow without distin-
guishing between multiple policies or different vehicle types.
In [21], bus network performance is simulated but its influence
on the rest of the traffic is not modeled, while in [22] authors
introduce simple rule-based ambulance priority at intersections
on top of optimizing the traffic flow. None of these systems
learn the appropriate behaviours for multiple policies simulta-
neously, e.g., no system learns how to optimize global traffic
flow, while also learning how to prioritize emergency vehicles
and public transport. We hypothesize that being able to address
all vehicle types (i.e., all policies) simultaneously, can result
in further performance improvements for all policies.

IV. DISTRIBUTED W-LEARNING

From our previous experiments [10] we have observed
that policy deployments can benefit from combining policies
using W-learning independently at each agent. We have also
observed a high dependency between policy deployments.
Given that all agents operate in a shared environment, there is
also a potential for high dependency between agents. If this
is the case, agents, and the system as a whole, could benefit
from cooperating to select actions that are not only suitable
for their own policies, but for the other agents’ policies that
they affect as well. However, designing an algorithm for coop-
erative problem solving raises numerous issues, particularly in
heterogeneous environments with no global view. We outline
these challenges in the next section.

A. Issues in Multi-Policy Collaboration

In large-scale agent-based systems optimal performance of
the system as a whole might not be as simple as optimizing the
performance of all entities individually, as an agent might need
to sacrifice its local performance in order to improve global
behaviour. If this is the case, a way to motivate an agent to
cooperate is needed, as, in terms of local reward received, it
might be better for an agent to act selfishly. This is particularly
challenging if agents implement different policies - we need
to motivate an agent to sacrifice its local reward and sacrifice
performance towards its own policies, to help other agents
meet their policies. It is particularly important for an agent
to be willing to engage in cooperative behaviour when other
agents’ policies have a higher priority for the system than the
policies that a local agent is implementing.

Even when agents are motivated to engage in cooperation
with their neighbours, we need to address the issue of how
they should cooperate, i.e., what information should agents
exchange and how will that information be interpreted. Hetero-
geneity of environments and policies makes this particularly
difficult. For example, if agents only exchange their latest

rewards [23], a receiving agent might not know why a sending
agent received that reward, for which policy was it received,
for which particular state, for which action taken, or which
policy at that agent nominated that action to be taken. Het-
erogeneous agents are not able to exchange learnt experiences
either, as their state spaces and actions differ, so the knowledge
acquired at one agent is not applicable to other agents with
different state-action pairs.

Once an agent is motivated to cooperate, and has a means
to do so, it needs to determine with whom to cooperate. For
example, it might need to cooperate only with other agents
implementing the same policies as its local ones, or with all
agents regardless of their policies. However, if agents only
have local views they might not be aware of which other
agents, if any, are implementing the same policies as they are.
Additionally, agents implementing a low-priority policy might
need to help agents that implement higher priority policies.
Again, due to the lack of a global view, agents might not
know the relative priorities of their local policies and other
agents’ policies. As the levels of dependency between agents
might differ, agents might only need to collaborate with other
agents whose actions it is influenced by, and agents that are
influenced by its local actions.

B. DWL Overview

To address the above issues, our DWL algorithm enables an
agent to not only learn to select actions that are suitable for
its local policies, but also to learn how its actions affect its
immediate neighbours, and give varying levels of weight to its
neighbours’ preferences when making an action selection. To
motivate an agent to take into account its neighbours’ action
preferences (i.e., to collaborate), each agent, as well as its
own policies, implements a “remote” policy “help neighbour
N i to implement its policy P ik” for each of the policies
deployed on each of its immediate neighbours. This policy
receives a reward each time policy P ik receives a reward on
neighbour N i. By using remote policies, DWL also enables
cooperation between heterogeneous agents, i.e., agents that
implement different policies, and have different state space
and action sets. DWL does not require any central component
or global knowledge, and it relies only on local learning, local
actions, local rewards from the environment, and interactions
with immediate neighbours.

C. Definition of DWL

A DWL-based system consists of the following:
• A set of agents A = {A1, ..., An}, where each agent

controls a set of actuators. In our UTC simulation, an
agent controls the traffic lights at a single junction, and
only signal-controlled junctions have agents associated
with them.

• Each agent Ai has a set of neighbours Ni = {Ni1, ...,
Nim} consisting of all agents Aj ∈ A that are one-hop
neighbours of the agent Ai. In our UTC simulation,
if the first downstream/upstream junction on a link



Figure 3. DWL action nomination

is not a signal-controlled junction, the first following
downstream/upstream agent will be considered as a
neighbour of Ai.

• A set of policies LPi = {LPi1, ..., LPip} is deployed at
Ai. We refer to these policies as local policies of Ai.
Local policies can be active or inactive at each time
step.

• Each agent Ai has a set of policies RPi = {RPij1, ...,
RPijr} whose goal is to contribute to the implementation
of each local policy LPjk deployed at each Aj ∈ Ni.
We refer to these policies as remote policies of Ai.

• Each policy on each agent is implemented as a combi-
nation of a Q-learning and a W-learning process. It has
Q-values associated with each of its state-action pairs and
W-values associated with each of its states. An agent’s
current action is denoted as ai and previous action ai−1.
A policy’s current state is denoted as si and previous state
si−1.

The learning process is initialized by an agent receiving from
each of its immediate neighbours state-space representations
for each of the policies that they implement, as described in
Algorithm 1. An agent initiates learning processes for its local
policies with local states and actions, and learning processes
for its remote policies with remote states and local actions.

Algorithm 1 DWL Initialization
For each agent Ai in A

//Init local policies
For each LPil in LPi

InitQLearning(LPil states, Ai actions)
InitWLearning(LPil states)

End for
//Create remote policies
For each Aj in Ni

For each LPjk in LPj

Add corresponding RPijk to RPi

End for
End for
//Init remote policies
For each RPijk in RPi

InitQLearning (RPijk states, Ai actions)
InitWLearning (RPijk states)

End for
End for

Algorithm 2 DWL at each learning step
For each simulation step
For each Ai in A

//Get nominations by local policies
For each LPil in LPi

Determine LPil’s state sil

Get reward from Ai’s environment
Update Q(sil−1, ail−1) for LPil,
Update W(sil−1)
Nominate action ail with max Q for sil

Get W(sil)
End for
//Get nominations by remote policies
For each RPijk in RPi

Get RPijk’s state sijk from Aj

Get reward for sijk from Aj

Update Q(sijk−1, aijk−1)
Update W(sijk−1)
Nominate action aijk with max Q for sijk

Get W(sijk)
End for
//Select and execute action
Pick winning action ai (see Formula 2)

End for
End for

During the learning process an agent learns Q-values for
remote-state/local-action pairs and W-values for remote states,
i.e., it learns the effect of its local actions on its neighbours
states. In order for an agent to learn this, it needs, at each
time step, to receive information about its neighbours’ current
states and the rewards that they have received. At each time
step, both local and remote policies nominate an action with
an associated W-value. W-values of inactive policies are set
to 0. Algorithm 2 outlines the details of the process and the
communication between agents. Fig. 3 presents an example
of one step of the DWL nomination process for an agent
A2 from Fig. 2. Local policy action nominations are taken
into account with their full W-values, while remote policy
nominations are multiplied by a cooperation coefficient C,
where 0 ≤ C ≤ 1, to enable an agent to give varying
weight to its neighbours’ action preferences. C = 0 means
that the local agent is non-cooperative, i.e., it does not consider
its neighbours’ performance when selecting an action, while
C = 1 means that a local agent is fully cooperative, i.e., it
cares about its neighbours performance as much as it cares
about its own. The action that is executed at that time step, i.e.,
the one that wins the competition between policies at that time-
step is the one with the highest W-value (Wwin), after remote
W-values have been scaled by the cooperation coefficient:

Wwin = max(Wil, C ×Wijk) (2)

where Wil are W-values nominated by local policies of Ai

and Wijk are W-values nominated by remote policies of Ai.

D. DWL Summary

Designed in the way discussed above, DWL meets the
requirements we specified in Section II-D: the action selection
of each agent is based on learning the optimal action for
itself, as well as for its immediate neighbours, communication
is enabled between heterogeneous agents (i.e., it does not



Figure 4. Simulation map

depend on the agent’s environment and capabilities or on
the policies deployed), and all learning and communication
is local. It also addresses all the issues discussed in the
introduction of this section: agents are motivated to cooperate
by introducing remote policies for which they receive rewards,
agents learn the agents with which they have the highest
dependencies by learning the Q-values and W-values for the
pairs of remote agent’s states and their local actions, the
relative priority of policies is determined by different rewards
received for different policies (which is reflecting in the Q-
values and W-values), and agents are able to exchange all the
information required to be fully informed about the states of
their neighbouring agents’ policies, and the rewards associated
with those states.

V. EXPERIMENT SETUP

To evaluate the performance of our proposed algorithm in
a UTC scenario, we use an urban traffic simulator developed
in Trinity College Dublin [24]. The map we used is shown in
Fig. 4 and corresponds to Dublin’s inner city. The map covers
270 junctions, 62 of which are signal-controlled and can be
controlled by our agents. We believe that using a road network
based on a real city provides a more realistic simulation; the
majority of the UTC simulations presented in Section III-B
use a grid of junctions with roads connecting them having a
similar layout, while our map includes junctions with different
numbers of approaches, roads with different numbers of lanes,
as well as one-way and two-way streets.

Cars enter the simulation at one of the 17 points marked
on the map, travel along one of 260 different routes, and
exit the simulation through one of the marked points. Public
transport vehicles make up 5% of the overall traffic, travel
along 20 bus routes, and stop at 20 bus stops along those
routes, with at least one stop on each route. 46 of the total of
62 signal-controlled junctions are positioned on bus routes. We
performed experiments described here with two traffic loads:
• low load - approximately 35,000 vehicles are inserted into

the simulation over a 12-hour period.
• high load - approximately 60,000 vehicles are inserted

into the simulation over a 12-hour period.

Each experiment is performed five times and the average
results are presented. Traffic light phases are generated for
each set of traffic lights based on the road layout and traffic
rules. The default duration of each phase is 20 seconds.

A. Baselines

As baselines against which to compare the performance of
our DWL-based agents we implemented two traffic control
techniques, Round Robin (RR), and a simple adaptive tech-
nique referred to as SAT.

Round Robin: A Round Robin (RR) junction controller
at a junction continuously loops through all available phases
at that junction, with each phase lasting 20 seconds. Note that
the layout of junctions is different, so the number and type of
phases through which an RR controller cycles will vary from
junction to junction.

SAT: SAT is a SCATS-like [25] saturation-balancing
algorithm for controlling phase duration. Our implementation
is based on the SAT implementation in [26]. SAT cycles
through all available phases, adjusting the duration of each
phase at the start of each cycle, based on the degree of
saturation during the previous cycle. The degree of saturation
is defined as a ratio of the effectively used green time to the
total available green time. At each junction, SAT, similarly
to SCATS, aims to keep the junction saturation as close
to 90% as possible, by shortening or lengthening the phase
duration. A SAT implementation depends on three parameters:
the minimum duration of each phase, the phase increment (the
length by which a phase duration can increase or decrease
in a single step), and a maximum cycle length factor (the
maximum duration of a cycle is determined by multiplying
the number of phases by the minimum phase duration and
a cycle length factor). We simulated SAT performance with
different combinations of these parameters and selected the
best performing combination for the experiments presented in
this paper. The experiments presented here have a minimum
phase length of 20 seconds, a phase increment of 10 seconds,
and a maximum cycle length factor of 1.2.

B. Agent Implementations

As policy heterogeneity is one of the central issues that
DWL addresses, for the evaluation we implemented two poli-
cies with different characteristics - one is a standard-priority,
global, continuous policy that addresses global waiting times
for all vehicles in the system (GWO) and the other is a
high-priority, regional, sporadic policy that optimizes public
transport vehicles (PTO).

GWO - Optimizing global waiting time: This policy does
not distinguish between vehicle types and aims to minimize
the waiting time of all the vehicles in the system. To do this,
each traffic light aims to minimize the time vehicles have to
wait at its approaches. We assume each agent is able to get the
information (from sensors such as traffic cameras, inductive
loops and in-car GPS devices) on how many vehicles are
waiting at each of its approaches. This is then mapped to
a state space that represents the order of congestion of the



Figure 5. Average waiting times per vehicle type

junctions approaches. Additionally, the state space encodes
information on whether the current congestion level is better
or worse than the congestion level at the previous step. Note
that we do not set any explicit thresholds to denote levels of
congestion, we only measure whether it is better or worse
than in the previous state. This design decision was made
to facilitate rewarding an agent for clearing more traffic than
arrives in the meantime, i.e., to learn to release the approaches
with the highest arrival rates. Agents obtain a 100-point reward
in each step that they are in one of the states in which
congestion is better than before. GWO is implemented on all
62 agents for the whole duration of the experiment.

PTO - Prioritizing public transport vehicles: This policy
addresses only the waiting time of the public transport vehicles
(buses), aiming to give them priority over other vehicle types.
We assume an agent is capable of sensing the presence of
buses on its approaches, and maps that information to the state
representation. An agent receives a reward for being in a state
with no buses present, motivating it to release the approach
with the bus waiting as soon as possible. The reward received
for being in this state is 120; it is higher than the reward GWO

agents receive, to motivate agents to give higher priority to
clearing buses. PTO is implemented on 46 agents situated on
bus routes and is triggered only when public transport vehicles
are detected on the approach.

Experiment parameters: We ran three sets of experi-
ments: GWO by itself, PTO by itself, and GWO and PTO
simultaneously (GW-PT). In each set of experiments DWL is
used for action selection. Each experiment has three phases. In
the first phase agents learn Q-values, in the second phase they
continue learning Q-values but also learn W-values, and in
the third phase agents exploit the learnt Q-values and W-
values learnt. Each phase of the experiment runs for 750
minutes, giving agents 1500 minutes to converge on optimal
Q-values, 750 minutes to converge on optimal W-values, and
750 minutes to exploit the values learnt. The results presented
are from the exploitation phase. Experiments were repeated for
different values of cooperation coefficient C, to evaluate how
different levels of cooperation influence performance, ranging
from non-cooperative (C = 0), to fully cooperative (C = 1).



C. Metrics

We compared the performances of our UTC agents using
two metrics: average vehicle waiting time and traffic density.

Average waiting time is measured per vehicle type, as our
two policies are addressing the performance of different sets
of vehicles. We compare average waiting time for cars and
average waiting time for public transport vehicles, to observe
the influence policies have on one another, and the influence
of cooperation on the performance of particular policies.

We also measured traffic density, the ratio of occupied road
space to available road space [27]. As the numbers of vehicles
inserted into the simulation are the same for all policies and
levels of cooperation, measuring density reflects levels of
congestion in the system, i.e., how quickly and effectively a
system is able to clear out the incoming traffic. The lower the
density, the better the performance of the system.

VI. RESULTS AND ANALYSIS

We have evaluated the performance of our DWL deploy-
ments against the baselines and compared the performance
of single-policy and multi-policy scenarios. We have also
compared the performance of independent versus collaborating
agents and investigated the impact of different levels of col-
laboration in DWL on system performance. Fig. 5 summarizes
the results of our experiments. Parts (a) and (b) show average
waiting times for cars and buses during low traffic load, for
both single-policy (GWO and PTO) and multi-policy (GW-PT)
scenarios, for different levels of cooperation (0 ≤ C ≤ 1), as
well as the performance of the SAT and RR baselines. Parts
(c) and (d) show the corresponding set of results measured
during high traffic load.

A. DWL vs. Baselines

Single-policy GWO outperforms both baselines regardless
of the level of cooperation (see Fig. 5 (a) and (c)). It lowers
the average waiting time for cars to 30% (at low load) and
28% (at high load) of their average waiting time in SAT and
to 40 % (at low load) and 30% (at high load) of their average
waiting time in RR.

However, single policy PTO performs badly in terms of
average waiting time for the vehicles that it addresses (i.e.,
buses) for both loads (see Fig. 5 (b) and (d)). We believe that
the reason for this is that public transport vehicles represent
only 5% of total traffic, so attempting to optimize only their
performance negatively affects the performance of the other
95% of vehicles. Other vehicles then create a backlog in the
system, in turn affecting the performance of public transport
vehicles themselves, as, given the shared infrastructure, there is
no available road space for them to proceed. This is illustrated
in Fig. 6 that compares average traffic density of PTO and
GW-PT. While GW-PT maintains steady density, i.e. it clears
all the incoming traffic, PTO is not able to deal with arriving
traffic and the density keeps rising. While this may be seen
as an obvious consequence of the shared infrastructure, it
nevertheless shows the importance of optimizing for multiple
policies simultaneously.

Figure 6. PTO density

Multi-policy GW-PT outperforms both baselines with re-
spect to both car and bus waiting times and regardless of the
level of cooperation. Average waiting time for cars is lowered
to 17 % (at low load) and to 22% (at high load) of their average
waiting time in SAT and to 24% (at low load) and to 23 %
(at high load) of their average waiting time in RR. Average
waiting time for buses is lowered to 13% (at low load) and to
24% (at high load) of their average waiting time in SAT and
to 18% (at low load) and 30% (at high load) of their average
waiting time in RR.

From the above results, we observe that DWL is at least a
viable algorithm for multi-policy self-optimization in UTC, as,
in these experiments, all deployments of GW-PT (and GWO)
outperform techniques commonly deployed in UTC systems.
These results also highlight policy dependency, as shown by
the inferior performance of single-policy PTO.

B. Single-Policy vs. Multi-Policy Scenarios

The best performing deployment of DWL for both cars and
buses is multi-policy GW-PT. It lowers the average waiting
time of cars to 88% of their average waiting time in the best
performing single-policy scenario at low load and to 78%
at high load. For buses, it lowers the average waiting time
to 22% of their average waiting time in the best performing
single-policy scenario at low load and to 40% at high load.
From this we observe that DWL’s capability of addressing
multiple policies simultaneously can improve the performance
for both policies over their single-policy deployments. The
improvement comes from the fact that when the next action
matters more to one policy than to another, DWL enables the
selection of the action nominated by the policy with higher
action weight. In that way, policies can take turns in selecting
actions as and when it matters to them most, enabling good
performance of all policies. Therefore, when policies have
mutual interest in each other’s optimal performance DWL
enables that optimal performance.

There is a one case of GWO outperforming GW-PT, at low
load for non-cooperative C = 0 scenario (see Fig. 5 (a)). This
is not surprising, as once we start giving priority to public
transport in a multi-policy scenario, car waiting time increases.
However, when cooperation is introduced, and when loads in
the system are higher, cars benefit from good performance of
public transport as well, due to the shared infrastructure.



Figure 7. Cars vs. buses: average waiting time

We also observe that, for all GW-PT scenarios at both loads,
average waiting time for buses is lower than that of cars (see
Fig. 7) from which we conclude that DWL is able to respect
the relative priorities of the policies.

C. Independent vs. Cooperating Agents

We performed all the experiments with a range of coopera-
tion coefficients. The C = 0 case is the equivalent of standard
W-learning (see Section III-A) being deployed on each agent
individually.

For single-policy GWO, cooperation can lower car waiting
time to 93% of the waiting time in a non-collaborative deploy-
ment at low load and to 71% at high load (see Fig. 5(a) and
(c)). For PTO, both independent and collaborative scenarios
performed badly, due to the reasons already discussed when
comparing PTO to baselines.

The benefit of cooperation is particularly observed in the
multi-policy scenario, GW-PT. The waiting time of cars is
lowered to 38% of their waiting time in the non-collaborative
deployment at low load and to 72% at high load. For public
transport vehicles, the waiting time is lowered to 32% of
their waiting time in the non-collaborative deployment at
low load and to 74% at high load. These results emphasize
DWL’s capability to allow heterogeneous agents to engage in
performance improving cooperation. The improvement comes
for the fact that DWL enables agents to take into account the
influence of their actions on their neighbours when making
action selections. Agents execute actions that are good not just
for them locally, but also good for their neighbours, leading
to better overall performance of the system. Additional benefit
is observed when cooperation is combined with multi-policy
optimization. DWL enables not just local policies, but any of
the neighbour’s policies as well, to influence the selection of
the next local action, even if a local agent is not implementing
that policy itself. In effect, a higher number of agents is
contributing to the implementation of each policy (i.e., all
agents that directly contribute to it plus all of their neighbours
that do not implement the policy directly) leading to better
policy performance.

D. Cooperation Coefficient Impact

From the experiments we observe that the optimal level of
collaboration differs with traffic load.

At low load, small C is the most suitable and the best results
are achieved with C = 0.2. This indicates that an agent’s
neighbour’s W-value has to be at least five times larger than
any of the W-values nominated by local policies in order to
influence an agent’s actions. We believe that the most common
situation when this is possible is when local W-values are close
to 0. W ∼= 0 indicates that the next action is irrelevant to local
policies, so the agents can defer to their neighbours on the
action to be executed.

At high load, it appears that agents are not often in the
situation when they do not have a strong preference about
what their next action is; there is a drop in waiting time when
C is changed from 0 to 0.2, but not as large as during low
load. The biggest improvement in performance is achieved
when C = 0.5. This indicates that the biggest benefit of
cooperation during high traffic loads is to be able to execute
actions nominated by neighbours only when it really matters
to them what action is executed.

We have also observed, that for both levels, full cooperation
(C = 1) is the worst performing collaboration level apart
from the fully non-cooperative (C = 0) scenario. This em-
phasizes the importance of DWL’s capability to enable agents
to engage in different levels of cooperation controlled by the
cooperation coefficient, as neither fully cooperative nor fully
non-cooperative scenarios produce the best results, and finer
control over levels of cooperation is needed.

E. Summary

Our experiments indicate that DWL is a promising tech-
nique for multi-policy multi-agent optimization in self-
organizing systems. In the case of UTC, DWL outperforms
both SAT and RR. By allowing simultaneous deployment of
multiple policies, it enables agents to exploit the benefits
of multi-policy optimization over single-policy optimization.
It also enables performance-improving cooperation between
heterogeneous agents, and allows flexibility in terms of the
level of cooperation in which agents engage. This is an
important characteristic as we have observed that different
levels of cooperation are suitable for different traffic loads. Our
experiments also highlight the dependency between agents, as
cooperative scenarios outperform non-cooperative scenarios,
as well as the dependency between policies, as multi-policy
scenarios outperform single-policy scenarios.

VII. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of multi-policy opti-
mization in agent-based self-organizing systems. We have
discussed the need for cooperation and the challenges posed
by the heterogeneity of agents and policies in these systems.
We have presented Distributed W-Learning (DWL), an al-
gorithm that enables optimization towards multiple policies
on multiple agents simultaneously, enabling agents to engage
in different levels of cooperation. Our experiments show
that, in a UTC scenario, DWL consistently outperforms our
baselines SAT and RR. Performance is improved by DWL’s



capability to deploy multiple policies simultaneously (as multi-
policy scenarios outperform single-policy scenarios), as well
as by its capability to enable cooperation between agents
implementing different policies (as cooperative scenarios can
outperform non-cooperative scenarios). We have also observed
that different levels of cooperation are suitable for different
system loads. Currently, all agents in the system engage in the
same level of cooperation. In future work, we will investigate
the possibility of agents learning how much cooperation to
engage in, based on their relative importance in the system.
We also plan to evaluate DWL in other application areas, to
confirm its wider suitability for agent-based self-organizing
systems. Additionally, we will evaluate DWL for other com-
binations of policies with different characteristics and different
relationships, to observe any potential links between various
degrees of heterogeneity and DWL’s performance. Finally, a
known drawback of RL is its inconsistent performance during
exploration, which we have also observed in our simulation
and will need to address before DWL can be deployed in
practice.
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