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Distributed Web Crawling over DHTs

Boon Thau Loo Owen Cooper Sailesh Krishnamurthy
{boonloo, owenc, sailesh} @cs.berkeley.edu

University of California, Berkeley

Abstract

In this paper, we present the design and implementation of a
distributed web crawler. We begin by motivating the need
for such a crawler, as a basic building block for decen-
tralized web search applications. The distributed crawler
harnesses the excess bandwidth and computing resources of
clients to crawl the web. Nodes participating in the crawl
use a Distributed Hash Table (DHT) to coordinate and dis-
tribute work. We study different crawl distribution strategies
and investigate the trade-offs in communication overheads,
crawl throughput, balancing load on the crawlers as well as
crawl targets, and the ability to exploit network proximity. We
present an implementation of the distributed crawler using
PIER, a relational query processor that runs over the Bam-
boo DHT, and compare different crawl strategies on Planet-
Lab querying live web sources.

1 Introduction

Search engines such as Google [2] have become an integral
part of the Internet. These systems typically expose a limited
search interface to end-users through which users enter search
terms and receive results according to the engine’s ranking
function.

Beneath this interface, search engines are generally com-
prised of three core components. First, the crawl component
trawls the web and downloads web content to be cached lo-
cally. Second, the index component precomputes indexes for
the cached web content for efficient search. Last, the search
component uses the indexes for executing user search queries
returning ranked results.

This interface has served us well when the web consisted
of a relatively small set of fairly static web pages. As the
web has grown and evolved towards dynamic content, how-
ever, search engines face increasing challenges in maintain-
ing a fresh index over the entire web. As a result, search
engines today index only a fraction of the web, and design
their crawlers to prioritize updates of some web sites over
others. It is estimated that Google indexes around 3 billion
web documents, which is a tiny fraction of the 550 billion
documents [9] mostly within the deep web estimated in the
year 2001.

Further, search engines are known to censor and skew re-
sults rankings [7], mostly in response to external pressures.
Examples of Google’s censorships abound in response to
DMCA complaints from KaZaA [4], The Church of Scientol-

ogy’s attempts to silence its critics, and the banning of sedi-
tious web sites by certain countries. If Google is the guardian
of the web, it is reasonable to ask: quis custodiet ipsos cus-
todes ?1.

To address the shortcomings of centralized search engines,
there have been several proposals [16, 25] to build decentral-
ized search engines over peer-to-peer (P2P) networks. In this
paper, we focus on the design issues of distributed crawling,
which is an essential substrate for any of the proposed decen-
tralized search applications. The web content harvested by
a distributed crawler can be indexed by decentralized search
infrastructures, or archived using a persistent storage infras-
tructure such as OceanStore[15]. Here, we focus our discus-
sion on crawling and do not address the orthogonal issues of
persistent storage and indexing.

The distributed crawler harnesses the excess bandwidth
and computing resources of clients to crawl the web. At a
high-level, crawls are expressed as recursive queries and exe-
cuted using PIER [14], a P2P relational query processor over
DHTs. A DHT provides useful properties of load balancing,
reliable content-based routing in the absence of network fail-
ures, and logarithmic (in the number of nodes) lookup costs.
This allows us to easily dispatch crawl requests evenly across
crawler nodes in a decentralized fashion.

The query is executed in a distributed fashion as follows.
Each crawler node runs the PIER query engine and is respon-
sible for crawling a different set of web pages. The query is
first sent to all the crawler nodes, and set to run according to
some exit criterion (crawling time, depth of crawl etc.). A
URL is partitioned amongst the participating crawler nodes
by publishing it in the DHT. The partitioning (discussed in
Section refsec:crawl) scheme) is determined by how URLs
are published into the DHT such as hashing the entire URL
or only its hostname. Each node is responsible for crawling
the URLs published in its partition of the DHT. The crawl is
begun by publishing a set of seed URLs starting a distributed,
recursive computation in which the PIER query continuously
scans the DHT for new URLs to be crawled. A web page is
downloaded for each URL crawled the links it contains are
refined according to user predicates and then republished into
the DHT for further crawling.

Note that the distributed query processor naturally coordi-
nates and partitions the work across the participating nodes.
Using only data partitioning of the intermediate URLs to be

1Who will guard the guards ?
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processed, it parallelizes the crawl without explicit code to
ensure that multiple sites do not crawl the same web pages
redundantly.

The potential of such a distributed crawler is immense. We
envision this distributed crawler to be used in the following
ways:

• Infrastructure for Crawl Personalization: Users can
customize their own crawl queries and execute them us-
ing this service. Special interest groups can also perform
collaborative filtering by executing a query that matches
the group’s interests.

• High-throughput Crawling: By harnessing the power
of a large number of nodes, the crawling service is more
scalable than centralized systems.

• Generalized Crawler for P2P Overlays: Although we
focus our attention on web crawling, our ideas can be
used to build a generalized crawler for querying dis-
tributed graph structures over the Internet [17]. Such
a generalized crawler can be used to run queries over
the link structure or meta-data of P2P networks such as
Gnutella [1] and OceanStore [15].

The rest of this paper is organized as follows. Section 2
provides a high-level overview of the distributed crawler. In
Section 3, we describe a detailed description of the crawl
query execution of our distributed crawler. Next, in Sec-
tion 4 we present a comparison of different query execution
strategies by running our crawling service on nodes of Plan-
etLab [5] crawling live web sources. We survey centralized
and parallel crawlers as well as other distributed web crawl-
ing schemes in Section 5. Finally, we present an agenda for
future research in Section 6 and summarize our conclusions
in Section 7.

2 System Overview
In this section, we present an overview of the distributed
crawler and describe the goals that guide our design.

Figure 1: Distributed Crawler using P2P nodes

The distributed crawler is designed to harness the excess
bandwidth and computation resources of nodes in the net-
work to crawl the web. Figure 1 shows the deployment
model, where crawler nodes on the left collectively pool
their resources together to crawl the crawlees, that are the

web servers on the right. This model is similar to that of
SETI@Home [6] and Grub [3], both of which pool resources
of participating nodes in a network for common computation.
Our system is distinguished by the lack of a central coordina-
tor to distribute work, and the fact that crawl queries can be
issued from any node in the system.

2.1 Design Goals

We used the following goals while designing our distributed
crawler:

• Ease of User Customization: Our crawler is designed
to be easily customizable. Crawls are specified as recur-
sive queries [18] whose results can be defined in terms of
the query itself. Recursive queries are particularly useful
to query recursive relations such as the reachability of a
network graph. In our system, users can specify where
the crawl begins, define predicates that filter the pages
to be crawled, and also control the order in which these
pages are crawled.

• Ease of Composability: We designed the distributed
crawler entirely out of off-the-shelf components from ex-
isting research projects. We use the Telegraph Screen
Scraper (TeSS) [8] to download and parse web pages.
Crawl queries are executed using PIER [14], a P2P re-
lational query processor over DHTs. While PIER can
use different DHTs, we use Bamboo [20] DHT in our
implementation.

• Query Processor Agnostic: Currently, PIER provides
us with an interface to express queries in “boxes-
and-arrows” dataflows. In future, we will provide
an additional declarative interface that will generate
these dataflow diagrams given the declarative recursive
queries. The use of declarative queries to express crawls
will enable us be agnostic to the query-processor, hence
allowing the crawl query to be executed on any central-
ized, parallel or distributed query processor that provides
support for recursive queries. For example, a similar
crawl query executed using PIER can also be executed
as a centralized crawler using Telegraph [11].

• Scalability: As the number of crawler nodes increases,
the throughput (number of bytes downloaded per sec-
ond) of the crawlers should grow. The throughput can
be maximized by two techniques: (1) load on crawler
nodes must be balanced so that they are not idle and (2)
reducing the DHT communication while executing the
crawl.

• Being good netizens: The crawler can be easily abused
to launch distributed denial of service (DDoS) attacks
against web servers. We will provide mechanisms to
limit (throttle) the rate at which web sites are accessed.

There are other practical issues such as fault tolerance that
are important in order for the system to be deployed. These
are beyond the scope of this paper and are outlined as part of
future work in Section 6.
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3 Crawl Query Execution
In this section we describe how crawl queries are executed in
our system. We first describe the crawler using a simple par-
tition by URL scheme to distribute the crawl. Subsequently,
we will discuss other distribution schemes.

Figure 2 shows a simple crawl query execution plan. When
executed, this query plan starts a web crawl from a set of
seed URLs, extracts links from the web pages downloaded,
and publishes the links back to the DHT. Later, we will show
how this simple query can be modified to construct inverted
indexes of the web pages over the DHT. It is also easy to
modify the query to archive the web pages themselves in a
persistent storage infrastructure like OceanStore.

Figure 2: Expressing Crawl as a Query

The query execution plan is expressed as a “boxes-and-
arrows” dataflow, supporting the simultaneous execution of
multiple operators that can be pipelined to form traditional
query plans. The query is recursive, as shown by the pres-
ence of a cycle in the plan. A declarative form of the query
can be expressed in Datalog [18]. The query can be termi-
nated either based on the duration or depth of the crawl or
when there are no more new URLs to be crawled.

This query plan is sent to all the crawler nodes on initial-
ization. The crawl begins by partitioning a set of initial seed
URLs. This is done by publishing WebPage(URL) tuples into
the DHT, where the underlined field is used to hash the tu-
ple into the DHT. Each crawler node continuously scans their
local DHT partition for new WebPage tuples. When a new
tuple arrives, the scan operator passes it up the query plan
through a DupElim operator where duplicates are eliminated.
This avoids redundant work as the same URL may be discov-
ered separately by different crawlers. The WebPage tuple is
then sent to a special CrawlWrapper operator that uses input
and output queues to interface with crawler threads that are
workhorses for screen scraping. The crawler threads use a
generic TeSS wrapper to download and parse web pages.

Each WebPage tuple is added to the input queue of URLs
in one of the crawler threads. A crawler thread dequeues
each URL, downloads and parses web pages, extracts links to
generate Link(sourceURL, destinationURL) tuples that
it enqueues in its output queue. The crawler uses an extractor

module that uses regular expressions to identify link anchors.
Once extracted, these URLs are post processed to resolve
them to an absolute URL. Finally, these URLs are paired with
the page from which they originated to form Link tuples.

The CrawlWrapper dequeues links from the crawler thread
and sends them to another DupElim operator for further du-
plicate elimination. Notice that we need the second DupElim
as the generated links might have already been seen before.
Each new link is then filtered with special user-defined predi-
cates, to decide if it should be followed. The filtered links can
be prioritized with the Reorder operator and are periodically
published back to the DHT at a rate determined by the Rate
Throttle operator. Each Link tuple is published back into the
DHT using its sourceURL. Note that is the same URL that
was used for downloading, and so is a local put in the DHT
incurring no network overheads. The destinationURL field
is then projected to form a new WebPage(URL) tuple, which
is then published back into the DHT, for further crawling on
another crawler node.

3.1 Crawl Enhancements

Currently, apart from setting the seed URLs, crawls can be
customized by specifying user-defined filters and Reorder
operator. We have implemented two simple filters: one
that limits the crawl based on its depth, and another based
on matching a substring of the destinationURL field of
Link tuples. For example, to limit the crawl within the
Google.com domain, we can perform substring matching on
destinationURL field to only follow links containing the
term google.com.

Users can also customize the Reorder operator that decides
the order in which newly discovered links are crawled. One
simple scheme is for the extractor to compute a priority for
each link, based on the relevance of the downloaded content,
and then pass that as an extra field in the Link tuple for the
Reorder operator to make decisions. Apart from reordering,
rate throttling can also customized on a per-server basis.

The simple link extraction query can be easily extended to
support more complicated queries. For example, the extractor
extract keywords from the downloaded web pages, which can
then be used to build inverted indexes in a DHT over the web
pages. This allows for DHT-based keyword searching over
the crawled web pages.

3.2 Crawl Partition Schemes

The query described above uses a partition by URL scheme
to distribute the crawl workload. While this scheme balances
load well amongst the crawler nodes, it will likely incur high
communication overheads in publishing WebPage tuples.

The alternative to this scheme is to partition by URL’s host-
name, effectively dedicating a crawler node for each unique
web server. This has the advantage of not incurring any DHT
communication in publishing WebPage tuples for self-links.
To implement this, we added a partitionURL field to each
WebPage tuple, set it to be the hostname of the URL, and use
it as the hashing key while publishing WebPage tuples in the
DHT.

3



In addition to lowering DHT communication, this scheme
has a single control point for access to each web server, pro-
viding an easy way to perform per-server rate-throttling with-
out having to coordinate a possibly large set of crawler nodes.
Despite its benefits, this may lead to poor balancing of crawl-
ing load as some nodes may be responsible for crawling web
sites that serve a large number of pages. It also introduces
a single point of failure, where a “bad” choice of node may
severely affect per-server crawl throughput. A natural exten-
sion of this scheme is to assign n crawler nodes to each web
server. We call this scheme partition by hostname n. Cur-
rently, n is determined statically, and in future, we will ex-
plore techniques for varying n dynamically.

3.3 Redirection

Redirection provides a simple technique for allowing a
crawler to pass on its assigned work to another crawler. Redi-
rection works with any of the partitioning schemes described
above, and is a second chance mechanism that allows a page
request to be sent to a different crawler node. Redirection is
performed simply by having the crawler thread bounce back
the original WebPage tuple that is sent to the Redirect opera-
tor for publishing in the DHT for further processing.

The redirection scheme can implement a number of opti-
mizations. For instance, a node might choose to redirect a
WebPage tuple to another crawler node if it has high network
latency from the target web site. Redirection is also useful
both for distributing load amongst crawlers and to limit the
rate at which web sites are crawled. To illustrate, in the par-
tition by hostname scheme, a node with responsibility for a
high traffic site may initially decide to crawl all links from the
site. Subsequently, when overloaded, the node can become
a redirector node, and redirect traffic to other nodes. This
achieves better load-balancing, and retains the single control
point property of the redirector node for easy rate throttling.

Apart from simply redirecting by URL, we can also control
the fanout of redirection. For example, to redirect a request
to n different nodes, we can simply create a partitionURL
field in the redirection tuple that consists of the original par-
titionURL appended with a random number in [0, n).

A big drawback of redirection is the extra DHT com-
munication overheads incurred. To alleviate this, we set a
threshold on the number of redirections each WebPage tu-
ple can have. Implementing this threshold requires an extra
redirectCount field to be stored in WebPage.

4 Evaluation
In this section we report the results of an experimental study
of our distributed crawling service. The crawler was deployed
on up to 80 nodes of PlanetLab. We execute the simple link
extraction query described in section 3, and examined four
crawl distribution strategies under three different workloads
on live web sources. The number of crawler threads on each
node was limited to three, both to limit the load on PlanetLab
and also to simulate the resources that a typical crawler node
owned by a home user might have to spare. As a result of
the small number of crawler threads, the throughput of the

crawler tends to be affected by the number of active crawler
threads. For each separate experiment we varied the number
of participating crawlers from 1 through 80. In order to take
into account differing loads on PlanetLab, we averaged our
experiments across as many as five runs.

4.1 Experimental Setup

We now list the three crawl workloads we studied:

• (A) Exhaustive Crawl: In this setup, we started the
crawl with the seed URL http://www.google.com. For
each web page downloaded, every hyperlink in the page
is distributed for further crawling. In all, requests are
made for more than 800000 pages from over 70000 dif-
ferent web servers.

• (B) Crawl of multiple fixed web sites: Here, we crawl a
static fixed set of web servers. Again, we start the crawl
with http://www.google.com, but only distribute URLs
served off the Google domain for further crawling. An
example of such a server is http://www.google.com.au.
In all, requests are made for more than 500000 pages
from 45 web servers. This simulates the workload of
performing focused crawls on a small set of pages.

• (C) Crawl of single web source: In this setup, we con-
strain the crawl within http://groups.google.com, har-
vesting as many newsgroup articles as possible over the
duration of the crawl.

We compared four different partition schemes: (1) partition
by URL, (2) partition by hostname (3) partition by hostname-
8 across eight crawlers and (4) a one-hop redirection scheme
which behaves like partition by hostname switching to parti-
tion by URL when the crawler’s pending input queue size ex-
ceeds 500. In our graphs, and in the rest of this section, they
are referred to as URL, Hostname, Hostname-8 and Redirect
respectively.

4.1.1 Limitations

In our experiments, all crawls lasted for a period of 15 min-
utes. Apart from filtering the URLs based on their domain,
there were no content-based filters to prune exploration of
newly discovered web pages. The crawl generates an ever-
increasing number of new links to be explored. Hence, the
number of page download requests for each crawler node ex-
ceeds the actual number of downloads. For example, in one
exhaustive crawl experiment on 80 crawlers, 873631 page re-
quests were made, but only 43404 were actually downloaded
by the crawlers. In practice, this problem can be alleviated by
limiting the crawls to a finite set of pages. We leave imple-
mentation of content-based filters for future exploration.

4.1.2 Metrics

We study the performance of our crawling service based on
the following experimental metrics:

• Crawling Load: The actual crawling load on each par-
ticipating node is measured in terms of the total num-
ber of bytes downloaded over the crawl period and is
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expressed in kilobytes per second (KBps). To evalu-
ate how well the load is balanced, we examine only the
case where all 80 nodes participate in a crawl. We con-
sider the cumulative distribution function (CDF) of the
crawling load to measure how it is distributed amongst
all nodes.

• DHT Load: The DHT load for each node is the incom-
ing traffic due to the DHT. PIER collects this statistics
as part of its normal operation,, and is expressed in kilo-
bytes per second (KBps). As in the case with crawler
load, we consider the CDF of the DHT load over all
nodes for the case where all 80 nodes participate.

• Throughput: The throughput for a given configuration
is the total crawling load accumulated over all partici-
pating nodes and is measured in kilobytes of web pages
downloaded per second.

• Communication Overheads: The communication
overheads is the total DHT load accumulated over all
participating nodes during query execution. Since dif-
ferent experiments result in a differing number of pages
crawled, we normalize the communication overhead by
considering the ratio of the accumulated DHT load over
the course of the query and the number of distinct page
requests made. The communication overheads do not
include the cost of initial query dissemination, and for
long running queries, is expected to be dominated by the
cost of rehashing WebPage tuples.

Although one might expect that the crawling and DHT
loads at each node are correlated, this may not be true dur-
ing redirection, because the decision to redirect incurs com-
munication overheads even if the actual download occurs on
a different node. The throughput for a given configuration
is mostly a function of the number of active crawler threads
during the course of the experiment, and is directly affected
by how well the load is balanced across the crawling service.

4.2 Exhaustive Crawl

Here we consider workload (A) which performs an exhaustive
crawl starting from http://www.google.com.

4.2.1 Crawling and DHT Load

In Figure 3, we show how the crawling and DHT load is bal-
anced over 80 participating nodes. When the crawling load
is perfectly uniformly partitioned over the DHT, each node is
responsible for an equal portion of the ID space and all nodes
incur the same bandwidth usage. In this case we see a verti-
cal line2 for both the crawling and DHT loads. In our experi-
ments, however, some nodes are responsible for a larger frac-
tion of URLs than others. As a result, even for the URL and
Redirect schemes where we can expect even load distribution,
not all nodes have received the same crawl load. These two
schemes still had a more balanced load distribution across the
80 nodes compared to the Hostname scheme.

2We verified this for the URL scheme in simulation where each node was
assigned an equal portion of the ID space

As the exhaustive crawl covers a large variety of hosts,
even Hostname shows a good distribution of load across
nodes. However, some load imbalance is unavoidable for
Hostname even with a large variety of hosts. The busiest
nodes of the Hostname scheme incurred a crawling load of
roughly 43KBps compared to only 25KBps for those of the
URL scheme. Partitioning each hostname across 8 crawlers
alleviates the load on the busiest node for Hostname, lower-
ing the peak bandwidth from 43KBps to 27KBps.

In terms of DHT load, Hostname is the lowest. The DHT
load is again not balanced perfectly because of non-uniform
partitioning in practice.

4.2.2 Throughput

Figure 3(a) shows that none of the schemes have idle nodes
that are not involved in the crawl process. This implies that
for most of the time, crawler threads are busy. Hence, the
throughput is similar for all the schemes as shown in Figure 4.
The throughput scales linearly as the number of participating
nodes increase.
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4.2.3 Communication Overheads

Figure 5 shows the normalized DHT load varying over partic-
ipating crawler nodes. We make the following observations:

1. The normalized bandwidth starts from 0 (no DHT load)
when there is only 1 node, and increases sharply as the
number of nodes increases. However, it levels off once
there are 16 participating nodes. This is because as the
number of nodes increases, each WebPage tuple that is
published as the control message becomes a remote op-
eration with high probability. So with n nodes, the prob-
ability of a remote operation for the URL scheme is
(n − 1)/n, which quickly converges to unity as n in-
creases.

2. Hostname has the least overheads, followed by
Hostname-8, URL and Redirect. Hostname incurs
the least overhead because self-links result in zero re-
partitioning with only local DHT puts. In Hostname-8,
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Figure 3: Exhaustive Crawl: Crawling and DHT loads balanced over 80 nodes

each self-link has a 7/8 probability of generating non-
local DHT puts, which is less than the probability of
(n − 1)/n for URL when n exceeds 8. So it performs
slightly better than URL in terms of bandwidth usage.

3. Redirect incurs the highest overheads despite using
Hostname, as redirected requests use the URL method
when crawler queue sizes exceeds 500. Redirection re-
quires extra fields that inflates the size of each WebPage
tuple by 50%. With this scheme suffering from larger
WebPage tuple sizes, Redirect requires the most DHT
bandwidth.
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4.3 Crawl of Multiple Fixed Web Sites

We next consider workload (B) which starts with the http:

//www.google.com seed URL but restricts the crawl to 45 web
servers in the Google domain.

4.3.1 Crawling and DHT Load

Since Hostname uses at most 45 crawlers, Figure 6(a) shows
that 70% of the crawlers are idle for Hostname. Even with
the use of Hostname-8 there are still 20% of idle nodes. On
the other hand, both URL and Redirect are load-balanced, the
latter scheme switching quickly from Hostname to URL when
the queue sizes are exceeded. Redirect has 1% idle nodes
while there are none for URL.

Figure 6(b) also shows that Redirect leads to DHT load im-
balance. 60% of the nodes incur the same overheads as URL,
but the remaining 40% incur much higher DHT load as a re-
sult of being redirection nodes. This imbalance is caused by
redirection, where nodes that have to redirect requests incur
higher DHT load compared to those that do not. Hostname
and Hostname-8 show even worse imbalance, with a large
fraction of nodes incurring less than 1KBps DHT load.

4.3.2 Throughput

Figure 7 shows that the crawler throughput is greatly affected
by the partition scheme used since the fraction of idle nodes
differ greatly across the different schemes. Hostname has the
worse throughput as it has the largest number of idle threads.
But Redirect and URL display good throughput due to the
low fraction of idle nodes. Redirect shows a 20% throughput
improvements over URL, hence showing evidence that a load-
based redirection scheme can lead to improved throughput in
this workload.

4.3.3 Communication Overheads

Despite the benefits of Redirect, figure 8 shows that Redi-
rect can incur up to 3 times as much DHT load compared to
URL. Under this workload, 90% of page requests are redi-
rected, hence leading to the high overheads. In fact, in the
steady state, the queue sizes in the redirector nodes are ex-
ceeded quickly, and each page request requires two rehashes,
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Figure 6: Multiple fixed web sites: Crawling and DHT loads balanced over 80 nodes
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Figure 7: Throughput (Multiple Fixed Sites)

one from the crawler node to the redirector node, and from
the redirector node back to another crawler node. Coupled
with the larger WebPage tuple used, the overheads are signif-
icant. In contrast, Hostname incurs low DHT load due to the
high probability of self-links since we are constrained only to
45 web servers.

4.4 Crawl of Single Site

Finally, we study workload (C) which constrains a crawl to a
single site, http://groups.google.com.

4.4.1 Crawling and DHT Load

Since only a single site is being crawled, figure 9(a) shows ex-
treme imbalance for Hostname, where only one crawler node
is being utilized. Even with Hostname-8, 80% of the crawler
nodes are idle. Figure 9(b) shows that only URL results a
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Figure 8: Normalized DHT Load (Multiple Fixed Sites)

balanced DHT load across all the nodes.

4.4.2 Throughput

Figure 10 shows that Hostname has the lowest throughput,
followed by Hostname-8. In both instances, the throughputs
are poor due to the large number of idle crawler nodes. As the
number of nodes increases, only URL scales linearly since
there are no idle crawlers using this scheme. Surprisingly,
even Redirect has poor throughput despite having a URL redi-
rection mechanism that results in few idle crawlers. Since
there is only one redirection node that is responsible for redi-
recting requests for http://groups.google.com, this quickly
leads to bandwidth saturation of that node, which is made
worse when the number of crawler nodes increases. In fact,
figure 9 shows that the single redirector node incurs a DHT
load of around 60KBps. Another reason for the saturation in
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Figure 9: Single web site: Crawling and DHT loads balanced over 80 nodes
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Redirect is due to the fact that new links from the redirection
node are periodically flushed every second.

4.4.3 Communication Overheads

Figure 11 shows that Hostname incurs no DHT load since
only one node is involved in the actual download, and only
self-links are crawled. Similar to the earlier experiment, Redi-
rect incurred up to 3 times as much bandwidth as URL.

4.5 Network Locality

In this section we study the effects of network locality on our
partitioning schemes. We sampled a set of hosts that were
crawled in exhaustive crawl workload (A) and measured the
round trip time (RTT) between each host and each PlanetLab
node. This measurement was done offline using the ping util-
ity. We averaged our results over two separate runs executed
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at different times on different days. In practice, ping only
worked for 70 nodes out of all 80 nodes forcing us to restrict
our sample only to those hosts assigned to these 70 nodes.

From this data, we considered a number of possible assign-
ments of each host to crawling nodes:

1. Optimal: pick the best of all 70 crawlers
2. Best 3(5) random: pick the best of 3(5) random crawlers
3. Random: pick a crawler at random out of all 70 crawlers
4. Worst: pick the worst of all 70 crawlers
5. Hostname: pick the actual crawler chosen in executing

workload (A)

In Figure 4.5(a) we show a CDF of the RTT for each host
distributed over all 70 crawlers for each of the six schemes
listed above. As expected the optimal assignment does much
better than the worst assignment, and the actual hostname as-
signment shadows the random assignment very closely. For
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Figure 12: Round-trip times between Crawlees and Crawlers

the median number of hosts the RTT of optimal and host-
name is 12.19 msec and 79.1 msec respectively. In contrast,
for the median number of hosts, the best of 5 and 3 random
picks result in RTT of 39.18 msec and 49.13 msec respec-
tively. This suggests that even a simple heuristic like best
of 3 random picks can be a significant improvement over the
random/hostname assignment.

As a sanity check we also considered the effect of running
a centralized crawler on any one of the 70 crawlers. In terms
of the average RTT for all hosts for each single crawler we
determine the best, median and worst such crawler. In Fig-
ure 4.5(b) we show a CDF of the RTT for each host over the
best, median and worst single crawler. The CDF of the worst
single crawler is particularly instructive as it has a knee rep-
resenting 60% of the hosts are very far away.

4.6 Summary

Scheme Crawl
Load

DHT
Load

Crawlee
Load

Network
Locality

Comm.
Overheads

URL + + − − −
Hostname − − + ? +
Redirect + ? + + −−

Table 1: Summary of Partitioning Schemes

We summarize the different schemes in table 1. The row
labels show the different schemes while the column labels
show different desired features. An extra column is added for
network proximity even though we did not explicitly compare
the different schemes in our experiments. “+” is given when
a feature is supported, and “-” otherwise. Values of “?” are
assigned when it is unclear whether a feature is supported.

None of the schemes is a clear winner. URL achieves good
load balancing at the expense of the other features. Host-

name has low communication overheads, but as our experi-
ments have shown, display poor load balancing in two out of
three workloads, leading to poor throughput. It also does not
provide support for network locality, and depending on luck,
may end up on a crawler node that is close or far away from
the crawlee.

Only Redirect provides support for both rate throttling and
network proximity. However, it comes at a price of increased
DHT communication overheads. As our experiments have
shown, DHT load may also not be balanced if Hostname is
used to determine the redirection nodes. However, if redi-
rection is used together with URL, the DHT load can still be
balanced.

5 Related Work

In this section we provide a quick survey of current high
throughput web crawlers. Most of these crawlers are cluster-
based solutions. These parallel crawlers deploy either a cen-
tral coordinator [10] that dispatches URLs to be parallelized
across a set of nodes, or uses hash-based schemes [12, 22].
In such environments, the focus is solely on high through-
put crawling. These parallel crawlers are highly specialized
and tuned to run essentially one crawl query. Since they
are deployed “in-house”, their bottleneck is usually the or-
ganization’s incoming and outgoing bandwidth to the outside
world. As their nodes are centralized, they cannot leverage
geographic locality of crawlers to crawlees.

To the best of our knowledge, the only P2P crawler that has
been deployed to date is Grub [3]. They use a SETI@home
deployment model where there is a central URL dispatcher
within Grub itself. Currently, they have a base of approxi-
mately 23993 users. As they require a central coordinator,
they are not truly P2P, and the crawl process is entirely under
the control of Grub.
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Of most relevance to our work are DHT-based web
crawlers built using Chord [24]. These crawlers propose a
single partition scheme, and do not examine the tradeoffs be-
tween different schemes, nor do they investigate rate throt-
tling of sites. Since they experiment with only a few lo-
cal machines, it is unclear how well their system performs
in practice when deployed over a distributed set of nodes.
Lastly, their optimizations are derived from tight coupling
with Chord, which would not be possible in a DHT agnos-
tic design. Further, our query-centric approach ensures that
our web crawler can run over any query processor, and is also
easy for user customization.

User customizable centralized focused crawlers have
been proposed previously. One notable example is the
BINGO! [23] system. These systems tend to be too heavy-
weight to be deployed by the average home user. However, by
harnessing the resources of nodes in the network, these sys-
tems would have the potential to scale and gain widespread
adoption. In future, we will consider customized centralized
focused crawlers into our system, by treating them as “black
boxes” within our user customized operators.

6 Future Work
In this section we outline some of the interesting research
problems we intend to explore in future:

• Fault Tolerance. While Bamboo is a churn-resilient
DHT, we have not provided any mechanisms to ensure
that the crawl is robust in the presence of node failures.
There are a few possible solutions to increase fault tol-
erance. First, we can run redundant queries at a high
cost. Second, we can store the intermediate state of
query execution in a highly available infrastructure like
OceanStore that transparently handles replication. Last,
we can implement and utilize fault tolerant operators
such as FluX [21].

• Single Node Throughput. In this implementation, we
have not made any efforts to improve the throughput of a
crawl on a single node. This has an impact on the abso-
lute throughput achievable by the crawler. For example,
our TeSS implementation is CPU intensive and does not
perform well under heavy load on PlanetLab. Most high-
performance parallel crawlers [22, 12] provide mecha-
nisms to increase crawler throughput even on a single
node. Such techniques are orthogonal to the crawl dis-
tribution techniques that we have studied, and we will
explore applying some of their optimizations into our
system.

• Mid-query Relevance Feedback. There has been work
done by the database community on providing mid-
query relevance feedback [13]. This is essential for long-
running focused crawlers where users may wish to al-
ter the crawl ordering on-the-fly based on intermediate
results. Ideally, we would like to provide this support
generically within PIER itself using techniques from the
CONTROL [13] project.

• Continuous Aggregation Query. The partition by URL
scheme suffers from the lack of a central control point
for per-server rate throttling. It is interesting to see
if we can execute a continuous in-network aggregation
query using PIER to approximate the aggregate per-
server download rates at runtime. While the cost of such
a continuous query may be expensive, we do not require
exact answers and even a coarse estimate may be suffi-
cient and cheaper than using redirection.

• Load Balancing. Thus far, we have only considered
load balancing mechanisms using either the DHT or via
redirection at a higher level. There have been several
proposals for load-balancing DHTs [19] with the use of
virtual servers and other techniques. Since PIER is DHT
agnostic, in principle, we should be able to experiment
with our crawler on top of DHTs with such advanced
load-balancing capabilities.

• Declarative Load-Balancing and Network Proximity.
An interesting question is if we can get load-balancing
and network proximity to work ”auto-magically” as part
of a PIER optimization process. For example, rate lim-
iting can be expressed as a query rewrite, by turning the
”DHT communication overheads” into an explicit part
of the query. If this is possible, our crawler would be
totally declarative, including declaring the performance
constraints3.

• Complex Queries. We will explore supporting more
complex crawl queries besides the link extraction query
described in Section 3. Examples of such queries in-
clude distributed page rank computation, computing
web site summaries and constructing inverted indexes
over the web pages.

• Web Crawler Service. Our eventual goal is to de-
ploy the distributed crawler as a long running service
on PlanetLab and integrating it with existing focused
crawlers [23]. In actual deployment, we will have to
tackle the issues of sharing work between crawl queries
issued by different users. It is conceivable that this shar-
ing can be provided by generic sharing techniques used
in continuous queries systems [11].

7 Conclusion
This paper presents an initial exploration of the design space
of building a distributed web crawler over DHTs. We have
provided the motivations of a distributed web crawler that
can serve as a basic building block for more advanced decen-
tralized search applications. Our crawler is designed to run
over any DHT, and by expressing crawl as a query, we permit
user-customizable refinements of the crawl easily, as well as
enabling the use of other query processors such Telegraph, as
long as they support recursion.

In designing the crawler, we have identified important
tradeoffs in different crawl execution strategies, and validated

3This idea has been put across to us by Joseph Hellerstein.
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these tradeoffs via experiments using PlanetLab and query-
ing live web sources using different workloads. We have also
quantified the benefits of network proximity improvements
that can be gained by exploiting the location of the distributed
set of nodes on PlanetLab.
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