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Abstract

A weighted digraph is balanced if, for each node, the sum of the weights of the edges outgoing from that node is equal to
the sum of the weights of the edges incoming to that node. Weight-balanced digraphs play a key role in a number of applications,
including cooperative control, distributed optimization, and distributed averaging. We propose distributed algorithms that operate
over static topologies, for solving the weight balancing problem when the weights are either nonnegative real numbers or when
they are restricted to be nonnegative integers. For the case of real weights, the proposed algorithm is shown to admit geometric
convergence rate. For the case of integer weights, the proposed algorithm is shown to converge after a finite number of iterations
that we explicitly bound. We also provide examples to illustrate the operation, performance, and potential advantages of the

proposed algorithms.
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I. INTRODUCTION

A distributed system or network can be viewed as a set of subsystems (nodes) that can share information via connection
links (edges), which form a generally directed communication topology (digraph). The digraph that describes the underlying
communication topology typically proves to be of vital importance for the effectiveness of distributed strategies in performing
various tasks [3]-[5]. A weighted digraph is a digraph in which each edge is associated with a real or integer value called
the edge weight. A weighted digraph is weight-balanced or balanced if, for each of its nodes, the sum of the weights of the
edges outgoing from the node is equal to the sum of the weights of the edges incoming to the node.

Weight-balanced digraphs find numerous applications in distributed adaptive control or synchronization in complex networks.
Examples of applications where balance plays a key role include network adaptation strategies based on the use of continuous
second order models [6] and distributed adaptive strategies to tune the coupling weights of a network based on local information

of node dynamics [7]. Furthermore, every weight-balanced digraph is also cut-balanced [8] and hence, under the cut-balance
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condition and without any further assumptions, it is proven that the values of nodes v; and v; converge to the same limit if
they belong to the same connected component of the “unbounded interactions graph”. Weight balancing can also be associated
with the Matrix Balancing Problem in network optimization, with numerous applications, such as, predicting the distribution
matrix of telephone traffic [9]. In this case, however, we have a distributed way to balance the matrix. Weight balance is
also closely related to weights that form a doubly stochastic matrix, which find applications in multicomponent systems (such
as sensor networks) where one is interested in distributively averaging measurements at each component. In particular, the
distributed average consensus problem has received significant attention from the computer science community [10] and the
control community [11] due to its applicability to diverse areas, including multi-agent systems, modeling of flocking behavior
[3], cooperative control [12], and estimation and tracking [13]. Averaging in such settings follows a linear iteration, where each
node repeatedly updates its value to be a linear combination of its own value and the values of its neighboring nodes weighted
according to the edge weights. Asymptotic average consensus is guaranteed (i.e., the nodes asymptotically reach consensus to
the average of their initial values) if the weights used in the linear iteration form a doubly stochastic matrix [14].

Balancing a weighted digraph can be accomplished via a variety of centralized algorithms. In this paper, we address the
problem of designing distributed iterative algorithms that operate over static topologies and allow a networked system to
distributively obtain a set of weights that make the underlying digraph weight-balanced. Recently, a few works have appeared
dealing with the problem of balancing a strongly connected digraph, for both real- and integer-weight balancing. This paper
presents two algorithms that can be used in distributed networks with directed interconnection topologies (digraphs); the first
algorithm addresses balancing with nonnegative real weights and the second one addresses weight balancing with nonnegative
integer weights. We discuss both in turn.

Regarding real-weight balancing, the two main works present in the literature are [15] and [16]. In [15] a distributed
algorithm is proposed, but while its convergence is asymptotic, no convergence bounds are provided. On the other hand, in
[16] a distributed algorithm is introduced, in which each agent is assumed to distinguish the information coming from the
other agents according to the identifier of the sender. Also, a global stopping time is set at which the iterations stop to form
the balancing. A fast algorithm that does not require global information and user identification has been missing. This work
aims to fill this gap. Specifically, we propose a linear distributed algorithm that guarantees geometric convergence rate. The
simplicity of the algorithm has allowed its extension to asynchronous operation, which is a valuable contribution given that
in reality there are inevitable delays in the exchange of information) as well as its continuous-time analog, that guarantees
average consensus without the need to obtain a doubly stochastic matrix.

Regarding the integer weight balancing, in [17] the authors introduce a distributed algorithm, where each node increases
only the value of the outgoing edge with the smallest value leaving the other outgoing edges intact, which negatively affects the
convergence speed. In addition, there is no bound on the convergence of this algorithm. Herein, we propose a faster finite-time
distributed algorithm for which we obtain explicit bounds on the number of iterations required for the algorithm to complete
(our bound can also be applied to the imbalance-correcting algorithm in [17], which established convergence in a finite number
of iterations, but did not obtain an explicit bound).

Note that, the nodes can also easily obtain, in a distributed manner, weights that form a doubly stochastic matrix if this



is desirable, either in parallel when the algorithm has asymptotic convergence (e.g., [1], [15]), or after the iterations have
converged in finite-time algorithms (e.g., [2], [17]) or asymptotic algorithms for which a stopping time has been set (e.g.,
[16]).

This paper is organized as follows. In Section II we present some basic notions and notation needed for our development, as
well as the problem formulation. In Section IIl we present the distributed algorithm which achieves balance with real weights
and is shown to admit geometric convergence rate. In Section IV we introduce the distributed algorithm which achieves balance
with integer weights after a finite number of iterations. In Section V we present simulation results and comparisons. Finally,

in Section VI we conclude with a brief summary and remarks about future work.

II. NOTATION AND PRELIMINARIES

We adapt some basic notions and notation from [1] and [2] that are needed for our development. The sets of real, integer and
natural numbers are denoted by R, Z and IN, respectively; the positive part of R or Z is denoted by the subscript + (e.g. R4).
The symbol INy denotes the set of nonnegative integers. Vectors are denoted by small letters whereas matrices are denoted
by capital letters; A~! denotes the inverse of matrix A. With I we denote the identity matrix (of appropriate dimensions),
whereas with 1 we denote a column vector (of appropriate dimension) whose elements are all equal to one. A matrix with
nonnegative elements, called nonnegative matrix, is denoted by A > 0, and a matrix with positive elements, called positive
matrix, is denoted by A > 0. Notation o(A) denotes the spectrum of matrix A, \;(A) denotes the i'" eigenvalue of matrix A,
and p(A) denotes its spectral radius. Notation diag(x;) is used to denote the diagonal matrix with elements in the finite set
{z1,72,...,24,...} on the leading diagonal and zeros elsewhere. We also denote by e} = [0,...,0,1;,0,...,0] € RY*™ a
row vector, where the single “1” entry is at the j® position.

A distributed system whose components can exchange information via (possibly directed) interconnection links, can be
captured by a digraph (directed graph). A weighted digraph of order n (n > 2), is defined as G = (V,&, W), where V =
{v1,v2,...,v,} is the set of nodes, £ C V x V — {(v;,v;) | v; € V} is the set of edges, and W = [w;;] € R} " is a
weighted n x n adjacency matrix where w;; are nonnegative values. A directed edge from node v; to node v; is denoted by
mj; = (vj,v;) € €, which denotes that node v; can receive information from node v;. A directed edge m;; € € if and only
if w;; > 0. Note that the definition of G excludes self-edges (though self-weights need to be added if we want to consider
bistochastic digraphs [17]). The graph is undirected if and only if m;; € £ implies m;; € £ and w;; = w;;. Note that a
digraph G(V, £) can be thought of as a weighted digraph G = (V,€, W) by defining the weighted adjacency matrix W with
wj; = 1 if my; € €, and wj; = 0 otherwise.

A digraph is called strongly connected if for each pair of vertices v;,v; € V, v; # v;, there exists a directed path from v; to

v; i.e., we can find a sequence of vertices v; = vy, vy, , ..., v, = vj such that (v, v, ) € € for7 =0,1,...,t—1. All nodes

t
that can transmit information to node v; directly are said to be in-neighbors of node v; and belong to the set J\/f ={v, eV
| mj; € £}. The cardinality of /\/'j*, is called the in-degree of j and is denoted by D; . The nodes that receive information

from node j comprise its out-neighbors and are denoted by /\/j+ = {v; € V| my; € £}. The cardinality of /\/;r is called the

out-degree of v; and is denoted by D .



Definition 1. Given a weighted digraph G(V,E,W) of order n, the total in-weight of node v; is denoted by Sj_ and is defined

as §; = ZvieNJf wj;, whereas the total out-weight of node v; is denoted by SJ‘-" and is defined as S; = Z,Ul Nt Wi

Definition 2. Given a weighted digraph G(V,E, W) of order n, the weight imbalance of node v; is denoted as x; and is
defined by xj; = S; — ij

Definition 3. Given a weighted digraph G(V,E, W) of order n, the total imbalance of digraph G is denoted as € = Z?_l |z ].

Definition 4. A weighted digraph G(V,E, W) is called weight-balanced if its total imbalance is 0, i.e., & 2 > iy lzil =0.

Problem formulation. Given a strongly connected digraph G(V, £), we want to develop distributed algorithms that allow the
nodes to iteratively adjust the weights on their outgoing edges so that they eventually obtain a weight matrix W = [w,;] that
satisfies the following:

1) w;; > 0 for each edge (vj,v;) € &;

2) wy; =0if (vj,v;) ¢ E;

3) SJ‘-F = §; for every v; € V.

The algorithm is iterative, we will use k to denote the iteration. For example, Sf [k] will denote the value of the out-weight

of node v; at time instant &, k € INo.

ITI. DISTRIBUTED REAL BALANCING

In this section we allow weights to take nonnegative real values, and develop a distributed iterative algorithm that asymptoti-
cally reaches weight balancing. The algorithm achieves weight-balance as long as the underlying digraph is strongly connected
(or is a collection of strongly connected digraphs). The main difference of this approach with other approaches, such as
[16], [18]-[20] is that the corresponding matrix, which is neither row nor column stochastic, is still converging to a balanced
situation. The rate of convergence of the algorithm is geometric and depends exclusively on the structure of the given digraph
and some constant parameters chosen by the nodes, in a way that we precisely characterize.

Each node observes (but cannot set) the weights of its incoming edges and determines the weights on its outgoing edges. It is
worth pointing out that each node maintains equal weights on all of its outgoing edges, which makes implementation particularly
easy in settings where broadcasting is possible. Given a strongly connected digraph G(V, £), the distributed algorithm has each
node v; initialize the weights of all of its outgoing edges to unity, i.e., w;;[0] = 1, Vo, € ./\/j*. Then, each node v; enters an
iterative stage where at iteration k it performs the following steps:

1) It computes its weight imbalance defined by

z;[k] £ S5 [k] — S [k]. (1)

J

2) If x;[k] is positive (resp. negative), all the weights of its outgoing edges are increased (resp. decreased) by an equal
amount and proportionally to x;[k].
We discuss why the above distributed algorithm asymptotically leads to weights that balance the digraph (and also characterize

its rate of convergence) after we describe the algorithm in more detail. Note that 2) above implies that w;; for v; € ./V'j+ will



always have the same (nonnegative) value.

Algorithm 1 Balancing with real weights

Input: A strongly connected digraph G(V, £) with n = |V| nodes and m = |€| edges (and no self-loops).
Initialization: Each node v; € V

1) Sets w;;[0] = 1, Yo, € NjF.

2) Chooses a proportionality gain 3; € (0,1).

Iteration: For £k = 0,1,2,..., each node v; € V updates the weights of each of its outgoing edges w;;, Yv; € J\/]-Jr, as

S~ [H
wijlk + 1] = wi;[k] + B4 < L — —wyy [H) 2)

J

The intuition behind the proposed algorithm is that we compare S; [k] with Sj+ (k] = Djwlj [k]. If Sf (k] > S; [k] (resp.
+ — . . . . . . .
Sj [k] < Sj [k]), then the algorithm reduces (resp. increases) the weights on the outgoing edges according to a proportionality

gain 3; € (0,1).

Remark 1. If node v; sets 3; = 1, then from Eq. (2), it is clear that the weights on its outgoing links are set to be equal
and their sum at time k 4+ 1 matches the sum of the weights in its incoming links at time k. Note, however, that if 3; = 1,
Vv; € V, then the weighted adjacency matrix P (defined below) is not necessarily primitive and hence the algorithm does not

necessarily converge to weights that form a weight-balanced digraph [21].
Proposition 1. If digraph G(V, E) is strongly connected, Algorithm 1 asymprotically reaches a steady state weight matrix W*
that forms a weight-balanced digraph, with geometric convergence rate equal to Ry (P) = —Ind(P), where

1-8;, ifi=j,
j ’ 3)

Bj/D;'r7 ifvi € Ny,
and §(P) £ max{|\| : A € 0(P)),\ # 1} = p(P — %) where v and u are the unique right and left eigenvectors of P at

eigenvalue 1, respectively.

Proof: First, we observe from equation (2) that all the outgoing edges have the same weight, i.e., wp; = wij, Yvp, v, € J\/'jJr
(because they are equal at initialization and they are updated in the same fashion). Hence, from hereafter, we will denote the
weight on any outgoing edge of node vj, at iteration k, as w;[k]. In order to study the system with update formula (2) for
each node in the digraph, we define w[k] = (w1[k] walk] ... w,[k])T with w;k] = wy;[k] (v, € /\/f) We can write the

evolution of the weights in matrix form as
wlk + 1] = Pw[k], w[0] = wy , 4

where wy = 1. It should be clear from the above update equation that the weights remain nonnegative during the execution
of the algorithm.

Matrix P can be written as P = I — B + BD™'A, where [ is the identity matrix, B = diag(8;), D = diag(D;f)
and A is the adjacency matrix with aj; = 1 if mj; € &, and aj; = 0 otherwise. Since o(D"'A4) = o(AD™'), then

p(D71A) = p(AD~1). In addition, p(AD~!) = 1 because matrix AD~! is column stochastic. As a result, p(D~1A) = 1.



Also, note that P 2 [ — B+ AD™!B is column stochastic and therefore p(P) = 1. Furthermore,

p(P)=p(PB™'DD™'B) = p(D"'BPB™'D)

=p(I — B+ BD 'A) = p(P) = 1.

Since P is a nonnegative matrix, we can ask whether P is p1rimitive,l i.e., whether P" > 0 for some h > 1. Since the digraph
is strongly connected, and for 0 < f8; < 1, Vv; € V, all the main diagonal entries are positive, we easily conclude that
h <n-—11[22, Lemma 8.5.5] and P is primitive. Hence, there is no other eigenvalue with modulus equal to the spectral radius.
A sufficient condition for primitivity is that a nonnegative irreducible matrix A has at least one positive diagonal element [23,
Example 8.3.3], which means that some §; can also be set at unity (as long as at least one is strictly smaller than unity).
Hence, iteration (4) has a geometric convergence rate R..(P) = —In§(P), where §(P) £ max{|\| : A € o(P)),\ # 1};
by the Perron-Frobenius theorem, this is equal to p(P — %), where v and u are the right and left eigenvectors of P at
eigenvalue 1, respectively. [ ]
Example 1. In this illustrative example (borrowed from [24]), we demonstrate the validity of the proposed algorithm in the

network depicted in Figure 1. In our plots we are typically concerned with the total imbalance in Definition 3. If weight

balance is achieved, then €[k] = 0 and x;[k] = 0, Yv; € V.
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®
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Fig. 1. A simple digraph which is weight-balanceable.

Figure 2 plots the total imbalance of Algorithm 1 when 3; = 0.1 or 0.5 or 0.9 for all v; € V, as it evolves during the
execution of the algorithm. These plots agree with the claims in Proposition 1 and validate that the algorithm converges to a
weight-balanced digraph with geometric convergence rate. In this particular example, with the choice of 3; = 0.1 or 0.5 or

Weight-balancing with Algorithm 1 for different values of |3i
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Fig. 2. Total imbalance for weight-balancing algorithm with real weights (Algorithm 1) for the digraph depicted in Figure 1.

0.9, the rate discussed in the proof of Proposition 1 is given by R (P(ﬂ])) = 0.1204, 0.5180 and 0.2524, respectively.

'A nonnegative matrix is said to be primitive if it is irreducible and has only one eigenvalue of maximum modulus [22].



Remark 2. The continuous-time analog of Equation (2) is given by

dwy; (t S(t)
wcll]t( ) _ Bj < ;);r - wlj(t)> » By >0. (5)
which can be written in matrix form as
w(t) = —Quw(t), w(0)=uwy, (6)

where Q = I — P and wo = 1. Since p(P) = 1, rank(Q) = n — 1 and all nontrivial eigenvalues of Q have positive real
parts, since all eigenvalues are located in a Gershgorin disk in the closed right-hand plane that touches the imaginary axis at
zero. As a result, consensus is asymptotically reached for all initial states. Note that, in continuous-time multi-agent systems, a
weight-balanced digraph implies that average-consensus is asymptotically reached [4], [25]. In practice, the weight-balancing
algorithm will be used for a finite time, long enough to establish a small error (and what is of interest in terms of performance

is the associated error or deviation after this finite time).

Asynchronous Operation of Algorithm 1

In practice, there will always be a signaling delay associated with transmitting information regarding the weights. Conse-
quently, a realistic analysis of the weight-balancing algorithm must consider heterogeneous time-varying delays. We postulate
an asynchronous operation of Algorithm I, where each agent might update the weights of its outgoing edges based on bounded
heterogeneous time-varying delayed information regarding the weights on its incoming edges.

We use the integer 7j;[k] > 0 to represent the delay of a message sent from node v; to node v; at time instant k. We require
that 0 < 7j[k] < 7;; < 7 for all k& > 0 for some finite 7 = max{7;;}, 7 € Z. We make the reasonable assumption that
Tjj [k] =0, Yv; € V, at all time instances £ (i.e., the own value of a node is always available without delay). With this notation

at hand, equation (2) becomes
iyl + 1) = (1= By K] + 2% Z wsi [k = lk]. Q)
j EN;

Again, we note that all the w;; have the same value, which we will denote by w;. Let z;;[k] = wi;[k]/w}, where w] is the

j-th element of the positive vector w* that satisfies limy_, Pkw[O] = w* for the matrix defined in (3). Hence, equation (7)

can be written as

zijlk + 1) = (1 = Bj)ay[k] + % il Tfi[k]]wi : ©)
J vieN; W,

By letting

S
E

D+w’f ) if 4 #]’
04]1 - J J

1—p3;, otherwise,



equation (8) becomes

vk +1 = Y ek - mlk]], )
mEN{U{vj}
or
wilk+1= Y ajia[k—lk]. (10)
UiG./\/;U{Uj}

Furthermore, notice that oj; > 0 and

Bjw;
Z O[jizl—ﬁj—F Z D];Z};:L

v €N U{v;} v €N J
which stems from the fact that Pw* = w*. As a result, according to [26, Proposition 3.2, pp. 515], and since the iteration (7)

is initialized with positive values, then there exists a positive value ¢ such that limg_,, w[k] = cw* and convergence takes

place at the rate of a geometric progression.

IV. DISTRIBUTED INTEGER BALANCING

In this section we present a distributed algorithm (Algorithm 2) in which the nodes iteratively adjust the positive integer
weights of their outgoing edges, such that the digraph becomes weight-balanced after a finite number of iterations. As in
Section III, we assume that each node observes but cannot set the weights of its incoming edges, and based on these weights
it adjusts the weights on its outgoing edges. It is required that the weights on the outgoing edges of each node can be adjusted
differently if necessary. (Note that this requirement is not present in Section III (nor in [15]) where each node sets equal weights
to all of its outgoing edges; when restricting ourselves to integer weights, however, this requirement becomes necessary for
balancing to be possible, see, for example, [17]).

Given a strongly connected digraph G = (V, &), Algorithm 2 has each node v; € V initialize the weights of all of its
outgoing edges to n (or some constant greater than unity®). Then, it enters an iterative stage where each node v; performs the

following steps (a formal description of Algorithm 2 appears later):

1) The node computes its weight imbalance.

2) If the node has positive imbalance, it increases the integer weights of its outgoing edges so that it becomes weight-
balanced (assuming no further changes by its in-neighbors on its incoming edges). Specifically, the outgoing edges are
assigned, if possible, equal integer weights; otherwise, if this is not possible, they are assigned integer weights such that
the maximum difference among them is equal to unity. This means that some of the outgoing edges of each node might
get larger weights (by unity) than others, and we assume that each node selects a priori a fixed (possibly randomly
selected) ordering of its out-neighbors that determines the precedence with which outgoing edges get higher weight.?

21t will become evident from our analysis that this constant does not have to be the same for all nodes (and its value does not affect the termination of the
algorithm), but for simplicity we take it to be n in this analysis. Note that if edge weights were initialized to 1, the execution of Algorithm 2 is identical to
the execution of the algorithm in [2] because nodes with negative imbalance never take any action.

3The exact ordering is not critical and, in fact, other strategies are possible as long as they keep some balance among weights. For example, the algorithm
proposed in [17], by having each node with positive imbalance increase the weight of the outgoing edge with minimum weight, also imposes some sort of
balance among the weights on its outgoing edges.



3) If the node has negative imbalance, it decreases (if possible) the integer weights of its outgoing edges so that i) they
have value greater or equal to 1, and ii) its weight imbalance becomes equal to —1 (assuming no further changes by
its in-neighbors on its incoming edges). Specifically, the outgoing edges are assigned, if possible, equal integer weights;
otherwise, if this is not possible, they are assigned integer weights (greater or equal to 1) such that the maximum
difference among them is equal to unity (again, we assume each node determines which of its outgoing edges get higher

weight based on some a priori fixed ordering of its out-neighbors).

For simplicity, we assume that during the execution of the distributed algorithm, the nodes update the weights on their
outgoing edges in a synchronous manner, but it should be evident from our proof that the algorithm can also be extended to
asynchronous settings where, during each iteration, a node is selected (randomly or otherwise) to update the weights on its

outgoing edges based on its imbalance at that point.*

Algorithm 2 Balancing with integer weights

Input: A strongly connected digraph G = (V, ) with n = |V| nodes and m = |£| edges.
Initialization: Set £ = 0; each node v; € V sets its outgoing edge weights as

[0, ifuy¢N,
Wi [0] - { n, if y 6./\/]+

Node v; also orders its out-neighbors in the set /\f;r in some random (but fixed) order.
Iteration: For k = 0,1,2,..., each node v; € V does the following:
1) It computes its weight imbalance x;[k] = S; [k] — S} [k].
2) If x;[k] > 0, it sets the values of the weights on its outgoing edges as wy;[k + 1] = {S;;Lk]J , Yy, € ./\/j'". Then, it

J

Sk
chooses the first S i [k] — D;F \‘ ;) J[r }J of its outgoing edges (according to the ordering of its out-neighbors chosen
J

during initialization), and increases their value by 1 so that |w;; — wp;| < 1,V vy, € ./\fjJr.
3) If z;[k] < —1, it does the following:

1 If {%J > 1, then node v; sets the values of the weights on its outgoing edges as wy;[k+1] = {Sé[ﬁJ , Vo, € J\f;r.

Sk
Then, it chooses the first 1+ S [k] — D | -2 il

J

J
; oF of its outgoing edges (according to the ordering of its out-neighbors
J
chosen during initialization), and increases their weight by 1 so that |w;; — wp;| < 1,V vy € /\/j*.
i) If {‘ZPJ = 0, then node v; sets the values of the weights on its outgoing edges as w;;[k + 1] = 1.

J

Example 2. Consider the digraph G = (V, ) in Figure 3, where V = {vy,va,...,v7}, € = {e1,e2,...,e13}, E TV x V.
The weight on each edge is initialized to w;;[0] = 7 for (v;,v,) € € (otherwise w;;[0] = 0).

As a first step, each node computes its weight imbalance z;[0] = S;[0] — S;“ [0] (the corresponding imbalances are shown
in Figure 3). Algorithm 2 requires each node with positive imbalance to increase the value of the weights on its outgoing edges
by equal integer amounts (or with maximum difference between them equal to unity), so that the total increase makes the
node balanced. This ensures that weights remain strictly positive and Sj+ [k +1] = S; [k]. In particular, the balance of node v;
will become zero, unless the weights of its incoming edges are changed by its in-neighbors. In this case, the nodes that have

positive imbalance (equal to 14 and 7, respectively) are nodes 5 and 6, which distribute their imbalance to their outgoing edges

4A key requirement in that case is that, as long as the graph is not balanced, no node is completely excluded from selection.



T6 = xr = -7

Fig. 3. Weighted digraph with initial weights and initial imbalance for each node.

as shown in Figure 4. For example, node 5 has imbalance z5[0] = 14 and sets wgs[1] =7+ 7 = 14 and wr5[1] = 7+ 7 = 14.
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Fig. 4. Distribution of weights to outgoing edges by nodes with positive imbalance.

The distributed algorithm also requires each node with negative imbalance to decrease the value of the weights on its
outgoing edges by equal integer amounts (or with maximum difference between them equal to unity), so that i) the weights are
at least 1 and ii) the total decrease makes the nodes imbalance equal to —1. This ensures that weights remain strictly positive
and S [k + 1] = S; [k] + 1. The balance of node v; remains negative at —1, unless the weights of its incoming edges are
changed by its in-neighbors. In this case, the nodes that have negative imbalance (all equal to —7) are nodes 3, 4 and 7, which
distribute their imbalance to their outgoing edges as shown in Figure 4. For example, node 7 has imbalance x7[0] = —7 and
sets wgr[1] =7 —3 =4 and wy7[1] =7—-3=4.

In the next iteration, after the integer weight update on the outgoing edges of each node with positive (or negative) imbalance
at k = 0, the nodes recalculate their imbalance as z;[1] = S;[1] — Sj*[l], and the process is repeated. After a finite number

of iterations, which we explicitly bound in the next section, we reach the weighted digraph with the integer weights shown in

Figure 5. In this example, this occurs after 17 iterations. O
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Fig. 5. Weight-balanced digraph after 17 iterations.

Remark 3. Note that Algorithm 2 resembles Algorithm 1 in many ways: when a node has positive imbalance, it increases the

weights on its outgoing edges, whereas when it has negative imbalance, it decreases the weights on its outgoing edges. The



restriction to integers, however, creates some “anomalies” that need to be addressed. In particular, one has to worry about
the following cases:

(i) When the imbalance is positive but not divisible by the out-degree of the node, it is not possible to increase the weights
of the outgoing edges by equal integer amounts. In order to keep the weights on its outgoing edges integer-valued, the node
makes the needed adjustments while allowing the weights to differ by at most 1.

(ii) The same applies when the imbalance is negative (in which case the weights have to decrease). An obvious additional
constraint in this case is the fact that the weights have to be kept strictly positive.

(iii) An interesting feature of Algorithm 2 is that when the imbalance of a node is negative, the node adjusts the weights on its
outgoing edges so that it achieves an imbalance of —1 (not zero) assuming no changes in their incoming weights. The reasons
for this choice become clear in the proof of termination later on, but effectively this choice resembles the requirement we have

in Section III for at least one of the [3;’s to be smaller than unity (see Remark 1).

Remark 4. It is worth pointing out that Algorithm 2 is similar to the weight balancing algorithm presented in [2], but allows
nodes to adjust the weights of their outgoing edges regardless of whether they have positive or negative imbalance, this means
that Algorithm 2 will typically converge faster than the algorithm presented in [2] (though in the worst case they will take a

similar number of iterations to converge).

Analysis of Execution Time of Algorithm 2
Herein, we calculate an explicit bound on the number of iterations required, in the worst-case, for the given digraph to

3

become balanced. Our bound is O(n3m?) iterations and, since m < n?

, we can also bound the number of iterations as
O(n"). Note that the bound we obtain also applies for the imbalance-correcting algorithm in [17] (note that [17] established
convergence in finite time for the imbalance-correcting algorithm, but did not provide a bound on the number of iterations).
Thus, the importance of the result in this section is that the number of iterations (for both our proposed algorithm and for the
imbalance-correcting algorithm in [17]) is polynomial in the size of the digraph and not exponential.

Let the total imbalance of the digraph at iteration k£ be

elk] = 3 lay k)]

where z;[k] = S;[k] — S;r (k] with S;[k] = Zvie./\/; wj;[k] and S;r [k] = Zme/\/j wy;[k]. Clearly, the total imbalance is
a nonnegative quantity that is zero if and only if the digraph is balanced. Also, since we have ) T [k] = 0 (because each
weight w,;[k| appears twice, once with a positive sign and once with a negative sign), we see that: (i) the total imbalance of
the digraph at any given k is an even number, and (ii) if there is a node with positive imbalance, then there is also (at least
one) node with negative imbalance. For convenience, in the remainder of this section, we will sometimes refer to nodes with

positive (negative) imbalance as positive (negative) nodes, and to nodes with zero imbalance as balanced nodes.

Proposition 2. During the execution of Algorithm 2, we have

ek +1] <e[k] < [0 < n*(n—2).



Proof: Since the digraph is assumed to be strongly connected, each node has at least one incoming edge and at least one
outgoing edge. Also, each node has at most n — 1 incoming edges and at most n — 1 outgoing edges. Since at initialization
all edges have weight n, we have |z;[0]| < n(n — 2), which means that £[0] < n?(n — 2).

To gain some insight, assume (for now) that at iteration £, only node v; changes the weights on its outgoing edges (with
the other nodes not making any changes regardless of their imbalance). We have the following three cases to consider:
(i) Case I1: Node v; has positive imbalance x;[k]. In such case, node v; uniformly® increases the weights on its outgoing edges
in such a way so that x;[k + 1] = 0 (because S;r [k +1] = S; [k] and S; [k + 1] = S} [k] —since no other node updates the
weights on its outgoing edges). In order to see how the total imbalance changes, we look at

elk +1] —elk] = 202y [k + 1| — |z [K]|

@ ]+ Sy enrt honslh + 1] = k] + 2 [k]] — | K]

(b)
< k] 4 X eny [wiglk + 1] — wi ]|

(a) follows because [k + 1] = 0, x;[k| is positive, and only nodes in ./\fjJr see changes in their weights from incoming edges;
in particular, node v; sees its incoming weight from node v; increase by wy;[k + 1] — wy;[k]. (b) stems from the triangle
inequality, and (c) from Step 2 of Algorithm 2 and the fact that w;[k + 1] > wy;[k] for v; € N +. Note that equality holds in
Case 1 if all nodes in ./\/'jJr have positive or zero balance.

(ii) Case 2: Node v; with negative imbalance x;[k] < —2. In this case, node v; decreases the weights on its outgoing edges
so that z;[k + 1] = —a; for some integer a; > 1. The aim is for a; to be unity (in Step 3.1 of Algorithm 2) but this may not
be possible as the weights on the outgoing edges of v; are constrained to remain above unity (in Step 3.2 of Algorithm 2).
Using similar arguments as in the previous case (but keeping in mind the difference in the signs of the various quantities), we

have
elk +1] —elk] = aj — la; [kl + 304, [ [k + 1] =[]
= aj +ajlk] + 3, en [wiglk + 1] — wig k] + 2y [k]| — |2 [K]]
< aj +ajlk] + 32, eny lwislk + 1] = wyj k]|
D 4+ 5k — 5y ens (sl + 1] — wigK]) =0,

where (d) follows from the fact that the total decrease in the weights satisfies

Yoent(wiylk+1] —wilk]) = Sk +1] - Sf[K]
S [k +a; — S;[K]

= a; + ;K] .

In Case 2, equality holds if all nodes in /\/']-Jr have negative or zero balance.
(iii) Case 3: Node vj with x;[k] = —1 or xj[k] = 0. In this case, node v; does not do anything so we easily conclude that
elk+1] —elk] =0.

51t is possible that some weights are not increased, but, due to the fixed ordering of the out-neighbors of node v; (with which weights are increased by
one over the value of other weights), we have wy;[k + 1] > wy;[k] for all v; € /\/j+.



Clearly, the arguments in the above three cases establish that [k + 1] < ¢[k] in an asynchronous setting where, at each
iteration £, a single node v; is selected (randomly or otherwise) to update the weights on its outgoing edges based on its
imbalance z;[k| at that point. In fact, with a little bit of book-keeping, we can extend the above argument in the synchronous
setting of Algorithm 2, where nodes adjust the weights on their outgoing edges simultaneously. The key difference is that now
the weights on the incoming edges of each node v; may change: S;° [k + 1] is no longer identical to S [k] and has to be

explicitly accounted for. Letting Aw;; = wj;[k + 1] — wj; k], we have

elk + 1] — elk] = 325y |aj [k + 1] = |5 (k]|
=3 0,ev [8; [k + 1] = S [k + 1| — | k]|
=2u,ev | Zvens AWji = 2oy, enr Awy + (k]| = fa;[K]].
Consider now the following partition of V: set A = {v; | ;[k] > 0}, set B = {v; | z;[k] < —2}, and set C = {v; | z;[k] =
—1 or z;[k] = 0}. Using these partitions,

(e)
elk +1] —elk] = 20 cal X en Awiil — ;K]

()
+ ZUJ'EB | Zvie./\/f Aw]l - a]| + Iﬂ[k]

(9)
+ Zv]EC | ZWEN; Aw]’b + Lj [kH + ZLj [k] )

where (e) follows from Case 1, (f) follows from Case 2, and (g) from the fact that x;[k] < 0 for v; € C. Using the triangle

inequality on each line we have
elk + 1] — e[k]

S 2vea Len |Awsil — (K]

T ZU:‘EB ZvieNj‘ |Awjs| + a; + ;K]

+ 2 0,ec Zviej\/j’ |Awj;|

= e Duens 1Awi| — [k

+ 20 e8 Luen; [Awy| + aj + ;K]

+ 2 ec Lneny [Awi| =0,
where the key was to re-arrange the summation of the |Aw;;| and to take advantage of the inequalities we proved earlier, in
Cases 1, 2 and 3. |

Note that Proposition 2 essentially gives us a way to analyze the execution time of the proposed algorithm (and also the

algorithm in [17]). The basic idea is to bound the number of steps K it takes for e[k + K] to become strictly smaller than
e[k]. As argued in Proposition 3 below, we have K < m?, where m is the number of edges of the digraph; this implies that

the execution time of the algorithm can be bounded by

0 *(n—2
Execution Time < m2¥ < [n(n— 1)]2% <n”.

[Note that the number of edges m in a digraph satisfies m < n(n — 1), the initial total imbalance satisfies £[0] < n?(n — 2),

and each decrease that takes place is by at least two (since £[k] is always an even number).]



Proposition 3. During the execution of Algorithm 2, we have

elk + K] < e[k],

k=0,1,2,..

when elk] > 0 and K > m? (m = |E| is the number of edges in the given digraph G).

Before providing the proof of Proposition 3, we discuss an example of a “difficult” digraph in order to provide intuition

about the problem.

Example 3. Consider the digraph G = (V, ) in Figure 6, where V = {vq,v2,...,v8}, € = {e1,ea,...,e15} E TV X V.

Edges {e1,€e2,...,€e15} are not denoted in the figure to avoid cluttering the diagram. The weight on each edge is w;;[0] = 1

for (v;,v;) € € (otherwise, w;;[0] = 0). G involves of 4 cycles C1, Cy, Cs, C4, which comprise of the following edges:

Cl : < (Uvil)v (U3702)a (1)1,113) >,

Cy: <

Fig. 6. Weighted digraph with initial weights and initial imbalances.

Initially, each node computes its weight imbalance x;[0] =

S

[0] — S;" [0] (this initial imbalance is indicated in Figure 6).

The only node that will take action is node v;, which has positive imbalance equal to 1 (all other nodes have imbalance

zero or —1). Note that node v; will increase the weight on edge (ve,v1), causing an imbalance to node v, who will then be

forced to take action. Depending on whether vo increases the weight on edge (vs,vs) or (v4,vs), node vs or node vy will

be forced to take action. Thus, there are different possibilities (executions of the algorithm) that depend on the fixed ordering

of out-neighbors, and below we consider a particular such execution. [Note that at each iteration, only one node takes action

because all other nodes have imbalance zero or —1: initially node v, then node wvs, etc.; thus, we use the term “transferring

of the imbalance” to indicate the fact that the imbalanced node forces an out-neighbor to be imbalanced.]

o In the first 3 iterations, the imbalance gets transferred to nodes vy, v3 and then back to node v;. Note that the choices

we made here were for node vs to transfer the imbalance to node vs3, and for node vs to transfer the imbalance back to

node v;.

o In the next 7 iterations, the imbalance gets transferred to nodes ve, v4, vs, vs, V2, v3 and back to v;. Again, at each

iteration, only one node has positive imbalance: first node vy, then node vo, then vy, then vs, then vs, then vo, then vs,

and finally v;. Note that, given the previous choices, the only choice we had here was whether at node v, we increase



the weight at edge (vs,v4) or edge (vs,v4); we assumed the latter.
o In the next 11 iterations, the imbalance gets transferred to nodes vs, v4, vg, V7, Vs, V4, Us, Vs, V2, U3, and back to vy,
respectively.
o In the last 4 iterations, the imbalance gets transferred to nodes v, v4, vg, and vg respectively.
o The resulting balanced digraph is shown in Figure 7 and is reached after 25 iterations.
Summarizing, we have that cycle C; was crossed four times, cycle Cy was crossed three times, cycle Cs was crossed two
times, and cycle Cy was crossed one time. As a result, the number of iterations required, in order for digraph G to reach

weight balance, is 4|C4| + 3|Ca| + 2|C3| + |Ca

, where |C;] is the length of cycle C;.

zo =0 x4 =0 x6 =0

Fig. 7. Weight-balanced digraph after 25 iterations.

We are now ready to proceed with the proof of Proposition 3.
Proof: Since e[k] > 0, we have at least one node with positive imbalance, say node vy, and at least one node with negative
imbalance, say node v,,.

Note that, at each iteration of Algorithm 2, node v, (in fact, any node with negative imbalance) will retain its negative
imbalance unless at least one of its in-neighbors vy, (v,,vy,,) € &, has positive imbalance and increases the weight on the edge
(Un, p,; ). The reason is that the changes that v,, initiates on the weights on its outgoing edges can only make its imbalance
—1; thus, for the imbalance to become zero or positive, it has to be that one or more of its incoming weights are increased.
This can only happen if one or more of its in-neighbors have positive imbalance, at which point it follows from the proof of
Proposition 2 (strict inequality for Case 1) that the total imbalance will decrease (by at least two).

In order to determine a bound on the number of steps K required for the total imbalance to decrease, we can assume
without loss of generality that negative nodes remain negative (because at the moment any negative node becomes balanced
or positive, we also have a decrease in the total imbalance). Consider the (worst®) case where v; has imbalance b for some
positive integer b, v,, has imbalance —b, and the remaining nodes vs, vs, ..., v,—1 are all balanced (refer to Figure 8, where v;
is the node on the far left and v,, is the node on the far right). At the first iteration, node v; sends its imbalance at least one of
its out-neighbors (by increasing the weight on at least one of its outgoing edges). This out-neighbor (resp. these out-neighbors)
of node v; does (resp. do) the same at the next iteration, and this process is repeated. If, at any point, node v,, is reached, the
overall imbalance will decrease by at least two (i.e., [k + 1] < ¢[k] — 2).

Let us now analyze the number of iterations it takes for node v,, to be reached (i.e., for one of its in-neighbors to become

61t will become evident that this is the worst case scenario at the completion of the argument.
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Fig. 8. Transfer of positive imbalance from node v; on the left to node vy, on the right.

positive). Observe the following:

(i) At each iteration, the imbalance gets transferred from a node to one or more of that nodes’s out-neighbors. If more than one
out-neighbors are involved, then the decrease will occur faster; thus, we consider the case when the imbalance gets transferred
to only one out-neighbor.

(ii) As the iterations proceed, mark the first time an edge is traversed for the second time, and call the cyclic sequence of
edges visited up to this point C'; (refer to Figure 8). Note that C'; is a cyclic sequence of edges (not nodes, i.e., a certain node
may be visited more than once while traversing cycle C7). Also note that C; has at most n(n — 1) edges because that is the
total number of edges of the digraph.

(iii) While traversing Cy for the second time, we will be forced at some point to traverse a new edge (that has not been
traversed before (otherwise, the digraph is not strongly connected). The reason is the fact that the weights on the out-going
edges from each node cannot differ by more than unity (this is where the notion of approximate balance among the weights
on the out-going edges plays are role). Let C5 denote the set of edges traversed until the time we stop traversing new edges
(i.e., we are forced to traverse an edge that we have already visited). Let Cy be the set of edges that are not in C; and have
been visited so far.

(iv) We can continue in this fashion (defining C; as shown in Figure 8) until we reach node v,,. Note that the number of cycles
N satisfies N < m (where m = |£| is the number of edges of the given digraph G) because each cycle has at least one edge
and the digraph has a total of n(n — 1) cycles.

From the above discussion (see also Example 3), we have

N
#(iterations to reach v,,) < Z(N —i+1)|C;| < Nm,
i=1

since Zf\;l |C;| < m. Finally, each cycle C; has at least one edge, which means we can have at most m cycles. This allows

us to conclude that #(iterations to reach v,,) < m? , which completes the proof of the proposition. [ ]

Remark 5. The bound we obtain is actually m

2@ and can easily be improved (if one looks at the last equation in Section

IV and realizes that it is in our best interest to have cycle 1 have size |C1| = m — (N — 1) and all other cycles have size

2#. In terms of the example we provide, this bound suggests m? /2 iterations which is 113. Nevertheless,

equal to 1) to m
the main motivation in obtaining our bound was to establish that the number of iterations is bounded by a number that is

polynomial (and not exponential) in the size of the graph.



V. SIMULATIONS AND COMPARISONS

We compare the proposed algorithms with the current state-of-the-art. Specifically, we run Algorithm 1 and Algorithm 2 in
large digraphs (of size n = 50 and 200) and compare their performance against four other algorithms: (a) the weight balancing
algorithm in [2] in which each node v; with positive imbalance x; > 0, increases the weights of its outgoing edges by equal
integer amounts (if possible) so that it becomes weight-balanced, (b) the imbalance-correcting algorithm in [21] in which every
node v; with positive imbalance x; > 0 adds all of its weight imbalance x; to the outgoing node with the lowest weight
w, (c) the weight-balancing algorithm presented in [16] which relies on the decentralized estimation of the left eigenvector
associated to the zero structural eigenvalue of the Laplacian matrix and (d) the weight balancing algorithm in [15] in which
each node v; with positive imbalance z; > 0, increases the weights of its outgoing edges by an equal amount so that it
becomes weight-balanced.

Figure 9 shows the cases of: (i) 1000 averaged digraphs of 50 nodes each, where every edge is initialized to 1, (ii) 1000
averaged digraphs of 50 nodes each, where every edge is initialized to 1, and (iii) 1000 averaged digraphs of 50 nodes each,
where every edge is initialized to 50, respectively. The first figure shows that Algorithm 1 outperforms the algorithms presented
in [15] and [16]. The second figure shows that Algorithm 2 converges as fast as the one in [2] (as expected due to the particular
initialization used). The last figure shows that when the edge’s initialization is greater than 1 then Algorithm 2 is the fastest
among algorithms [2] and [21].
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Fig. 9. Comparison between Algorithm 1, Algorithm 2, the weight-balancing algorithm proposed in [2], the imbalance-correcting algorithm [21], the weight-
balancing algorithm presented in [16], and the weight-balancing algorithm proposed in [15]. Top figure: Average total imbalance plotted against the number
of iterations for 1000 random digraphs of 50 nodes. Middle figure: Average total imbalance plotted against the number of iterations for 1000 random digraphs
of 50 nodes. Bottom figure: Average total imbalance plotted against the number of iterations for 1000 random digraphs of 50 nodes.

Figure 10 shows the same cases as Figure 9, with the difference that the network consists of 200 nodes. The performances

do not change due to the network size and the conclusions are the same as in Figure 9.
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Fig. 10. Comparison between Algorithm 1, Algorithm 2, the weight-balancing algorithm proposed in [2], the imbalance-correcting algorithm [21], the
weight-balancing algorithm presented in [16], and the weight-balancing algorithm proposed in [15]. Top figure: Average total imbalance plotted against the
number of iterations for 1000 random digraphs of 200 nodes. Middle figure: Average total imbalance plotted against the number of iterations for 1000 random
digraphs of 200 nodes. Bottom figure: Average total imbalance plotted against the number of iterations for 1000 random digraphs of 200 nodes.

VI. CONCLUSIONS

In this work, we have considered the weight balancing problem for a distributed system that forms a digraph where its
nodes can exchange information iteratively in a distributed fashion. Weight-balanced digraphs play a key role in a number
of applications, such as cooperative control, distributed optimization and distributed averaging. We proposed two distributed
algorithms for solving the weight balancing problem when the weights are either (i) nonnegative real numbers or (ii) nonnegative
integers. For the case of real weights, the proposed algorithm is shown to admit geometric convergence rate. For the case
of integer weights, the proposed algorithm is shown to converge after a finite number of iterations that we explicitly bound.
[lustrative examples show the operation, performance, and advantages of the proposed algorithms with respect to the current
state-of-the-art.

In the future, we plan to apply these techniques to quantized average consensus and balancing problems, including possible
applications to distributed power control in wireless transmitters with quantized power levels (e.g., [27]). We also plan to
consider applications to flow problems in internet-like networks with constraints in capacity or usage of different flows (see,

for example, [28] and references therein).
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