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Abstract

In this thesis, methods for optimisation are designed and developed for wireless

body-centric channels in order to best enable intelligent, self-organised, and dis-

tributed human-centered networks. Due to human-body shadowing and mobility,

body-centric channels change dramatically over time — with intermittent periods of

longer stability — often causing unnecessary delay and energy consumption under

significant radio channel attenuation. Hence, robust and efficient communications

across these networks require adaptive, optimised mechanisms. Thus, we propose,

and investigate the performance of various cross-layer and predictive optimisation

techniques for real-life body-centric channels. Our analysis employs real-life exper-

imental datasets collected from different numbers of co-located wireless body area

networks (BANs), over many hours in ‘everyday’ scenarios.

We first investigate cooperative receive diversity for a BAN used to monitor a

sleeping person, and we find that cooperative combining improves packet delivery

ratio (PDR) and latency for these atypical slowly-varying radio channels. Then, we

propose two cross-layer optimised techniques for multiple coexisting BANs, forming

wireless body-to-body networks (BBNs). These techniques are shortest path rout-

ing (SPR) and cooperative multi-path routing (CMR), where CMR incorporates

cooperative selection combining. In CMR and SPR, the best route is periodically

selected at the network layer according to channel state information from the phys-

ical layer. We show that CMR reduces retransmissions and increases PDR due to

an available alternate path, reducing end-to-end delay and energy consumption

with respect to state-of-the-art protocols. We then add MAC layer interference

mitigation using low duty cycle TDMA, for which CMR gains up to 14 dB im-

provement over SPR at 10% outage probability. Moreover, we also apply CMR

incorporating novel MAC layer CSMA/CA with adaptive carrier sensing, giving

improvement over TDMA for both throughput and spectral efficiency.

Next, we explore the feasibility of applying predictive optimisation over wire-

xi
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less body-centric channels (i.e., body-to-body, on-body), by studying wide-sense-

stationarity (WSS) and long-range dependence (LRD) characteristics, which are

crucial to predictive analysis. The results of different stationarity tests show

that unlike on-body channels (which are considered non-stationary), body-to-body

channels possess WSS characteristics for a range of window lengths between 0.5 s

and 15 s (typically 5− 8 s) depending upon on-body sensor locations and shadow-

ing. Moreover, the Hurst exponent of body-centric channels is very high (around

0.9) and temporal auto-correlation decreases very slowly (a power-like decay), in-

dicating LRD (i.e., long-memory) characteristics are maintained.

Then, based on the results for WSS and LRD, we apply multi-objective op-

timisation for adaptive scheduling in BBNs, by using a multi-objective Markov

decision process (MOMDP) to jointly optimise three separate metrics: through-

put, latency, and energy consumption. The adaptive scheduling combines both

TDMA and CSMA/CA schemes. From performance analysis, employing real-life

channel measurements, we find an MOMDP outcome that is Pareto optimal, pro-

viding a desirable trade-off between the three objectives of maximising throughput,

and minimising continuous latency and energy consumption. It is also observed

that WSS characteristics of the body-to-body channels have a significant effect on

the outcome of such analytics.

The outcomes here help the development of pervasive real-world applications

with large-scale and highly-connected systems, comprising many closely-located

BANs.
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Chapter 1

Introduction

1.1 Background, Motivation, and Scope

The advent of wearable technology has led to the communication of data from,

and across sensors, worn by people in independent networks. According to a study

in [4], the number of connected wearable devices worldwide is expected to jump

from an estimate of 526 million in 2016 to 1.1 billion in 2022 (Fig. 1.1). This
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Figure 1.1: The growth of connected wearable devices worldwide

demonstrates the need for ongoing research and development of body-centric com-

munications, in particular the design of body-centric networks that can function

3
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independently. Body-centric wireless communications is now accepted as an im-

portant part of 4G and 5G mobile communications systems as well as a variety

of personal area networks (PANs), which can take the form of human-to-human

networking incorporating wearable sensors [5–7].

Wireless body-centric networks are created from the communications between

different sensors placed on, in, around, and/or near the human body. Based on the

placement of the wearable sensors, body-centric communications can be classified

into the following types:

On-body communications: The communications between sensors that are placed

on the body (on surface of the body) or inside the body (implanted node). The

end-points of these channels are on/inside the body.

Off-body communications: The communications between sensors that are placed

on the body and near the body (not on-body). One of the end point of these chan-

nels is placed on the body.

Body-to-body (B2B) communications: The communications between sen-

sors that are placed on different peoples’ body. The end points of these channels

are located on the body of two different subjects.

The body-centric communications described above, can particularly form two

types of body-centric networks:

1.1.1 Wireless Body Area Networks (BANs)

Wireless Body Area Networks (BANs) are the latest generations of PANs where low

power, short-range micro and nano technology sensors/actuators are placed on, in,

around or/and near the human body, typically to monitor, or enable physiological

functions (Fig. 1.2). The BAN paradigm offers a vast range of applications such as,

ubiquitous healthcare, military, sports, entertainment and many other areas [2], but

advanced healthcare is a unique motivator for such networks, specifically in medical

rehabilitation, diagnosis and monitoring of patients.

Vitally, patients can be continuously, and effectively, monitored at home or

community healthcare, rather than being confined to a hospital or other primary
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Figure 1.2: A BAN demonstrating wireless on-body and in-body links with on-body
and implanted sensors/hub

healthcare facilities. In this context, the sensors incorporated in BANs may monitor

numerous biometric parameters such as: body temperature; heart rate; respiration;

blood pressure; and electrical parameters from the heart, muscles and brain. More-

over, BANs can enable early medical detection and intervention, which can save

lives and improve quality of life. In this context, as BANs provide very long contigu-

ous data from a patient’s everyday environment, doctors can get a clearer picture

of the patient’s condition [8]. Some further examples of very promising applications

of BANs in healthcare are for rehabilitation including stroke rehabilitation, phys-

ical rehabilitation after hip or knee surgeries, myocardial infarction rehabilitation

and traumatic brain injury rehabilitation. Miniature, wireless, wearable technology

offers a tremendous opportunity to enable and assess rehabilitation.

A BAN can also be used to help people with disabilities via actuation. For

example, retina prosthesis chips can be implanted in the human eye to see ad-

equately [9, 10]. Non-medical applications of BANs include data file transfer,

gaming, secure authentication, assessing soldier fatigue and battle readiness, body

gesture recognition/motion capture, personal item tracking, iris/facial recognition,
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on-body communication

body-to-body communication

Figure 1.3: A BBN demonstrating body-to-body communications between on-body
hubs and sensors

emotion detection and social networking applications [2, 11]. However, the un-

derlying technology is still at an early stage of deployment and typically based

on very specific wireless communications technologies. Some well-known interna-

tional standards for BANs are — IEEE 802.15.6 Standard [12]; Bluetooth Low

Energy (BLE) [13]; ETSI SmartBAN [14]; which support low-power, short-range

communications with star or multi-hop topology, to serve a variety of medical and

non-medical applications. BANs may interact with the Internet and other existing

wireless technologies like ZigBee [15], WSNs [16], Bluetooth [17], Wireless Local

Area Networks (WLAN) [18], Wireless Personal Area Networks (WPAN) [19],

video surveillance systems [20] and cellular networks [21].

1.1.2 Wireless Body-to-Body Networks (BBNs)

When multiple closely-located BANs coexist, the potential inter-network communi-

cations and cooperation across BANs leads to a significant extension of the concept

of wireless body area networks (BANs) [22] – known as wireless body-to-body net-

works (BBNs) [23] or, more broadly, the Internet of Humans (IoH) [24] (Fig. 1.3).

The main motivations behind BBNs are:

• to make use of body-to-body (B2B) communications to overcome the prob-

lems of coexistence and general performance degradation for closely located

BANs;
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Figure 1.4: BBN providing outdoor medical service

• to provide connectivity as independent or subsidiary networks when tradi-

tional network connectivity is unavailable or limited, e.g., in emergency situ-

ations and densely populated areas.

Importantly BBNs can provide greater radio coverage and connectivity than BANs

while maintaining all the advantages of BANs. BBNs are more dynamic and po-

tentially larger-scale than individual BANs, such that any BAN member can join

or leave the network seamlessly, without the need for any centralised infrastruc-

ture. The concept of BBNs is to send collected data, i.e., physiological information

across closely located BANs via wearable sensors, to reach the intended destination

in case of unavailable or out-of-range network infrastructure, e.g., in emergency in-

door/outdoor scenarios. For instance, in a disaster where many people are injured

and the cellular and fixed-line networks are damaged, BBNs can help in the triag-

ing and monitoring of patients by relaying information from body to body up to

the access point of the on-site medical service provider (Fig. 1.4), providing timely

intervention and treatment.

BBNs have a wide range of potential applications besides remote population

monitoring, such as group rehabilitation and therapy; avoiding outages (due to

body shadowing) in individual BANs, through cooperative body-to-body commu-
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nications; facilitating rescue/medical teams in a disaster area, and ambient assisted

living (AAL) [25]. Further applications beyond health-care include: battlefield

communications; precision monitoring of athletes; augmented reality [26]; perform-

ing synchronised activities, e.g., interactive dancing [27]; interactive gaming [28],

and better enabling communications in densely populated areas, e.g., city centres,

concerts and sports venues, where the primary network service is not sufficient.

1.2 Problem Statement and Proposed Solution

As BANs are continuing to become more pervasive, their coexistence is a major

concern. And, as a major application of body-centric networks is for healthcare

and emergencies, reliable communications is of utmost importance. The require-

ment for better coexistence and reliable communications leads to the need for body

to body networks (BBNs). BBNs operate in a dynamic environment consisting of

highly mobile individual BANs moving in and out of each others range, such that

global coordination is typically not possible. In BBNs, radio channels experience

significant shadowing due to obstructions and power absorption by nearby human

bodies and body-parts due to frequent, different, movements. A simple postural

change can block communications for a long period of time, resulting in decreased

reliability, increased latency and increased energy consumption. In this context,

body-centric channels have long coherence times, which can cause longer perfor-

mance degradation when there is significant channel attenuation. Moreover, due to

resource constraints of these low-power networks, providing best communications

efficiency is vital in their optimisation.

Hence, in this thesis, we aim to address the following problem:

How to improve communications reliability and optimise connectiv-

ity amongst many co-located BANs or, more broadly, BBNs in order

to facilitate self-organised, efficient, and distributed body-centric net-

works?

To this end, we develop and analyse cross-layer optimised routing techniques to

disseminate information among distributed coexisting BANs (or BBN) by utilising

body-to-body (B2B) channels with cooperative communications. The cross-layer

optimisation is performed between different OSI layers, i.e., physical, MAC, and
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network layers, to improve packet delivery ratio and latency along with acceler-

ated reaction/response time within the network. We implement adaptive mech-

anisms based on time-varying channel condition estimated with longer coherence

time of body-centric channels. We also investigate the predictive characteristics,

i.e., wide sense stationarity and long-range dependence, of body-centric channels

in order to build intelligent network, which can learn and self-organise. Based

on the body-centric channels’ predictive characteristics, we apply multi-objective

decision-making with adaptive scheduling to jointly optimise throughput, latency,

and energy consumption of body-to-body channels. It is demonstrated with exper-

imental analysis that the proposed methods provide the following benefits, in key

performance metrics, for BBNs:

• Increased packet delivery ratio; In distributed BBNs, making use of al-

ternative/cooperative paths available through nearby BANs, enables greater

network reliability. It is shown that negligible (almost 0%) packet error rate

is achieved with the proposed cross-layer optimised routing techniques in a

practical scenario with 10 coexisting BANs.

• Reduced latency; Longer outages can be avoided with alternative paths

through available sensors within the range of the nodes-of-interest. Also,

adaptive techniques applied over such networks enable real-time delivery of

critical/non-critical information. With the cross-layer methods, an acceptable

amount of latency (according to the IEEE 802.15.6 BAN standard guideline

[29]) is achieved for both medical (< 125 ms) and non-medical (< 250 ms)

applications.

• Increased throughput; It is shown that with the increased packet delivery

ratio, throughput in terms of successfully received packets per second, also in-

creases after applying the proposed methods, specifically with adaptive carrier

sensing mechanism with CSMA/CA and multi-objective decision-making.

• Reduced Energy Consumption; The cross-layer optimisation used in this

thesis, avoids the redundant use of resources, which decreases energy con-

sumption. It is observed that with cooperative communications, although
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there is extra energy consumption for the alternative path, the overall en-

ergy consumption is reduced due to decreased packet failure rate. Also, the

applied multi-objective optimisation provides a suitable trade-off between

throughput, latency, and energy consumption of the channels.

In summary, the proposed solution provides improved reliability, together with op-

timised and efficient connectivity, amongst many closely-located BANs (or BBNs)

for large-scale and highly connected distributed real-world applications. Very im-

portantly, this is validated in this thesis using many hours of empirical everyday

on-body, and body-to-body, radio channel data.

1.3 Thesis Overview and Outline

This thesis provides design and analysis for optimisation of narrowband body-

centric communications near the 2.4 GHz ISM band. Cross-layer and predictive

techniques are applied over large-scale real-life experimental channel measurements

collected from groups of mobile subjects wearing sensor radios on their body per-

forming ‘everyday’ mixed activities (e.g., walking, sitting, standing, turning, talk-

ing) in indoor/outdoor environments (e.g., building, office space, street, cafe/pub),

for a significant amount of time — which provides a normalised outcome from

many typical BBN scenarios. Throughout the thesis, we mainly focus on the per-

formance analysis and optimisation of narrowband body-to-body channels between

coexisting BANs, but also provide some accompanying study of the performance of

narrowband on-body and off-body channels. The experimental analysis performed

with extensive real-life body-centric channels in this thesis, answers the following:

• How much improvement does cooperative communications provide for direct

link body-centric communications under significant shadowing?

• How can the available channels (body-to-body) between coexisting BANs be

efficiently utilised, for improving the reliability of BBNs, with cooperative

multi-path routing?

• How can the slowly-varying, frequency non-selective, radio channels be ex-

ploited with adaptive mechanisms, to improve the performance of BBNs?
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• Does cross-layer optimisation between non-adjacent layers (physical-network

layers), without radio interference mitigation, provide acceptable latency and

packet delivery ratio for closely located BANs?

• Are wireless body-to-body channels wide-sense-stationary (WSS) or second-

order stationary?

• Do wireless body-centric channels have long-range dependence (LRD) or long-

memory?

• What is an appropriate model to characterise the shadow fading of body-to-

body channels for coexisting BANs?

• Do the predictive characteristics , i.e., WSS and LRD, of B2B channels vary

for different sensor radio placements?

• How to utilise the predictive characteristics of B2B channels for multi-objective

optimisation over BBNs?

The technical contributions of this thesis are detailed in four chapters (as demon-

strated in Fig. 1.5), which address the questions outlined above. Chapters 3 and 4

describe cross-layer optimisation for BBNs, and chapters 5 and 6 analyse the pre-

dictive behaviour of body-centric channels and apply multi-objective optimisation

suited to this behaviour over body-centric channels.

The contributions of each chapter of this thesis can be summarised as:

Chapter 2: An up-to-date literature review of existing work relevant to this

thesisis provided, along with key research gaps addressed in this thesis. For body-

centric networks, the general architecture and communications technologies are

described, along with the typical challenges associated with practical deployment

of these networks.

Chapter 3: Cooperative combining mechanisms, and cross-layer optimisation

over real-life body-centric channels, are investigated. First, we investigate the per-

formance of cooperative receive diversity for BANs used for monitoring sleeping

people, where we show that cooperative combining over two-hop channels provides
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Figure 1.5: Thesis Flowchart

very large improvements over the direct link communications of a star topology for

monitoring a sleeping subject. Then we propose two different cross-layer optimised

routing techniques – shortest path routing (SPR) and cooperative multi-path rout-

ing (CMR) — that incorporate 3-branch cooperative selection combining, without

central coordination across multiple coexisting BANs. The best route is selected

at the network layer according to channel state information from the physical layer

The key findings from this chapter are:

• For BANs used to monitor sleeping subjects, cooperative combining tech-

niques (i.e., selection combining and switch-and-examine combining) with

two-hop communications provide up to 7 dB and 20% improvement over di-

rect link communications, with respect to outage probability and continuous
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outage duration, respectively.

• The proposed CMR provides up to 8 dB improvement over state-of-the-art

routing protocols at 10% outage probability.

• CMR outperforms other protocols in case of throughput (packets/second) by

providing 95% successful packet delivery.

• CMR produces the lowest amount of average end-to-end delay with respect

to other protocols, when estimated with lower receive sensitivity, i.e., −90
dBm and −86 dBm.

• With less receive sensitivity, i.e., −90 dBm and −86 dBm, the energy con-

sumption of CMR remains relatively constant, while the energy consumption

of other protocols increases significantly due to an increase in packet failure

rate and retransmissions.

Chapter 4 This chapter analyses the performance of the SPR and CMR tech-

niques (proposed in Chapter 3) across distributed BBNs with interference mit-

igation schemes, by associating the PHY-Network cross-layer optimisation with

different MAC layer schemes, i.e., time division multiple access (TDMA) and novel

carrier sense multiple access with collision avoidance (CSMA/CA). The key out-

comes of this analysis with experimental measurements are as follows:

• CMR provides up to 14 dB improvement with 8.3% TDMA duty cycle over

SPR at 10% outage probability, and up to 9 dB improvement over SPR, at

90% packet delivery ratio.

• The proposed adaptive carrier sensing mechanism provides 20% and 6%

improvement, over a coordinated TDMA approach with higher duty cycle,

for throughput and spectral efficiency, respectively, and provides acceptable

packet delivery ratio and outage probability with respect to SINR.

Chapter 5 In order to apply predictive optimisation over body-centric channels,

it is important to investigate the feasibility of applying predictive schemes over
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body-centric channels. Hence, in this chapter, we investigate the predictive char-

acteristics, i.e., wide-sense-stationarity (WSS) and long-range dependence (LRD,

long-memory), of on-body and body-to-body channels. We employ different hy-

pothesis tests for evaluating mean and variance stationarity, along with evaluating

distribution consistency of several body-centric channels. We also examine the pat-

tern of the decaying auto-correlation function and estimate the Hurst exponent for

investigating the LRD characteristics. We show that

• Unlike on-body channels, which are non-stationary, body-to-body channels

can possess WSS characteristics for a range of window lengths between 0.5 s

to 15 s (typically 5–8 s), depending on on-body sensor locations and the

amount of shadowing in the corresponding channel.

• The Hurst exponent is very high (around 0.9) for body-centric channels and

the auto-correlation between data points of the channels decreases very slowly

(power-like decay), which both indicate retaining LRD or long-memory char-

acteristics.

Chapter 6 Influenced by the existence of WSS and LRD characteristics (pre-

sented in Chapter 5) of body-to-body channels, we apply multi-objective optimi-

sation with adaptive scheduling over BBNs, by following a discrete time Markov

decision process (MDP) that utilises the predictive characteristics (i.e., WSS and

LRD) of B2B channels. For adaptive scheduling, time division multiple access

(TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA)

— are combined, to utilise the advantages of both TDMA and CSMA/CA. The

outcome is Pareto optimal that provides a desired trade-off between three objec-

tives — maximising throughput, and minimising continuous latency and energy

consumption of the B2B communications, between any two BANs (direct link) in

the presence of other coexisting (interfering) BANs. We compare the Pareto opti-

mum (obtained from adaptive scheduling with MDP), with the results of TDMA

and CSMA/CA applied separately. From the experimental results, we find that

• The Pareto optimum outcome (f ∗) can provide up to 3.4 times better through-

put than TDMA (with a 10% duty cycle), but also can consume up to 3.2

times more energy (because of the increased active period) than TDMA (as
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TDMA schemes have fixed duty cycles). Then again, f ∗ produces a slightly

(around 5%) higher amount of continuous latency than TDMA schemes for

smaller intervals, and similar amount of continuous latency as TDMA for

longer intervals (≥ 4 s).

• CSMA/CA with −70 dBm carrier sense threshold (csth) consumes around 2.3

times more energy, and has much higher continuous latency, than the Pareto

optimum f ∗, although it provides almost twice as much throughput than the

Pareto optimum (f ∗). For instance, CSMA/CA with csth = −70 dBm has

a continuous latency of greater than or equal to 250 ms for around 46% of

the total time, whereas f ∗ produces the same amount of latency for less than

30% of the total time.

• The Pareto optimum has the highest packet delivery ratio (PDR > 80%),

than all other individual actions.

Chapter 7 Finally, this chapter provides a summary of the results drawn from

this thesis including possible directions for future research.





Chapter 2

Literature Review

In wireless body-to-body networks (BBNs), communication takes place among sen-

sors and hubs worn by multiple human subjects, where each subject can have an

operating wireless body area network (BAN). Hence, the general architecture and

technology of BANs can also be applied within BBNs. In this chapter, first we

provide a description of the communication architecture and technology for body-

centric networks, along with associated challenges. Then we discuss the current

state-of-art for optimising body-centric communications in detail. Following these

discussions we highlight research gaps. Although the main focus of our research

is BBNs, which have not been investigated to nearly as a large extent as BANs,

here we discuss both BAN and BBN communications research, as BAN operations

provide context to BBNs.

2.1 Communications Architecture and Technol-

ogy of Body-centric Networks

2.1.1 Communications Architecture

Communications architecture in body-centric networks generally follows a multi-

tier architecture, where the communications occurs in multiple hierarchical tiers:

• Tier-1 (intra-BAN communications) Intra-body communications [30–

32] in tier-1 includes in-body, on-body, and off-body communications that

17



18 Literature Review

Figure 2.1: Multi-tier architecture for body-centric communications.

occurs in/on or around an individual BAN. In this tier, the wearable sensors

send physiological information to the hub or personal device of a BAN and

actuators can receive control information from the hub.

• Tier-2 (inter-BAN communications) In this tier, communications occurs

between personal devices or hubs of different BANs (i.e., body-to-body com-

munications or inter-BAN communications [23, 33, 34]) and possible access

points (e.g., routers) [35, 36] or gateways (e.g., smartphones) [37, 38]. The

hub or personal devices in tier-2 can relay the information between hubs to

the nearby access point to send to tier-3 entities (e.g., servers).

• Tier-3 (beyond-BAN communications) Tier-3 communications is be-

yond BANs/BBNs, which helps to enhance the coverage area for applications

of body-centric networks, e.g, remote patient monitoring [39, 40], e-health

care [41], emergency medical services [42, 43], enabling authorised health

care personnel (doctor/nurse) through the Internet or a cellular network.

The communications strategy in different tiers can be further divided in to the
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following categories:

Centralised:

The use of a centralised architecture [44–47] is the most common communications

strategy in a BAN where a central hub/gateway device (placed on/in/around the

body) coordinates the sensor/actuator nodes placed on different parts of the body

— collects data/information from the sensor nodes and sends control information

to actuators. This type of communications particularly occurs in tier-1 at small-

scale (typically within a single BAN). A number of BANs in tier-1 can also be

coordinated with a coordinator BAN (e.g., cluster-head) or a central access point

in tier-2.

Cluster-based:

In a cluster-based architecture [48, 49], multiple clusters or groups are formed

between coexisting BANs, where in each cluster there are multiple BANs (tier-1

communications). Each cluster has a cluster head or coordinator/gateway, e.g., a

BAN node/hub, which further communicates with other cluster heads for inter-

cluster communications and data transfer (tier-2 communications). The cluster

head controls the cluster, and the coverage of the cluster is usually one or two hops

from the cluster head. This type of architecture is useful for dense networks, and

when separate groups of BANs are performing different tasks [50–53].

Distributed:

In a distributed architecture [54,55], information is disseminated from one node to

another adjacent node, until it reaches the intended destination (i.e., coordinator,

hub, personal device, access point). A distributed architecture provides scalability

and resilience to the network where the nodes can enter or leave the network at

any time, without interrupting the communications as all the nodes are connected

through various alternate paths. The distributed architecture can be applied in

both tiers (tiers 1 and 2) for body-centric communications, such as, intra-BAN
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(a) (b)

Figure 2.2: (a) Cluster-based and (b) Distributed architecture of coexisting BANs.

communications to reach the coordinator/hub in tier-1, and inter-BAN commu-

nications to reach the intended access point in tier-2. Also the communications

between a BAN sensor (in tier-1) and the intended access point (in tier-2) can also

be performed in a distributed manner by combining tier-1 and tier-2 communica-

tions. A distributed architecture helps to establish communications in the case of

multiple BANs coexistence without external coordination.

2.1.2 Radio Technology

Body-centric networks are radio-frequency (RF) based wireless networks that re-

quire low-power, low-complexity radio technology for practical deployment at a

large-scale. Most of the literature in BANs is focused on RF techniques classified

according to the frequency bands in which they operate [30, 56–60]. The IEEE

802.15 Task Group 6 provided an overview of the frequency band regulation for

BANs in [61] (shown in Fig. 2.3). Some of the popular radio technology standards

used in BAN communications are – IEEE 802.15.4/ZigBee [15], IEEE 802.15.6

[12], and Bluetooth Low Energy [13]. Other technologies that can also be used

in body-centric communications, such as BANs/BBNs, include WLAN [18, 62],

Bluetooth [17], ultra-wideband (UWB) [63], cellular [21], and 3G/4G/5G [64].
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Figure 2.3: Some of the available bands for BAN based on RF technology [1].

Unlike the BAN standard (IEEE 802.15.6), there is no specific standard de-

signed for BBNs. More recently, an European standard (ETSI TC SmartBAN)

[14] has been developed, which can support coexistence of BANs in an IoT en-

vironment to bridge between devices operating in different radio standards. The

choice of a suitable technology for BBNs depends on their particular applications,

as no single industrial standard has all the required specifications for large-scale

BBN (due to different data rates, power consumption, coverage, and topology).

Some proprietary wireless technologies have been developed for low power WSNs

and healthcare applications, e.g., ANT/ANT+ [65], Sensium [66], Zarlink (now

acquired by Microsemi) [67], Insteon [68], Z-Wave [69]. However, the radio tech-

nologies used in BANs can be applied for BBNs as the nodes/sensors in BBN are

placed on different bodies in a close proximity. The specifications of different tech-

nologies used in body-centric networks are provided in Table 2.1 and the description

of some technologies from literature [1–3,70] is as follows:

IEEE 802.15.4 Standard

IEEE 802.15.4 technology (ZigBee) [15] is a widely used radio standard in BANs

[71,72], which was typically intended for wireless personal area networks (WPANs)

and wireless sensor networks (WSNs) applications [73,74]. The key features of this

technology are: low power, short-range (up to 100 m), low bit rate, low cost and low

complexity. The IEEE 802.15.4 specifies the two bottom layers of the ISO/OSI pro-

tocol stack – physical and MAC layers for low rate WPANs (LowPAN). For a defi-

nition of upper layers, there are two options – ZigBee protocols (specified by the in-

dustrial consortia ZigBee Alliance) and 6LowPAN [75]. IEEE 802.15.4/ZigBee can

operate in three ISM (Industrial, Scientific, and Medical) bands (i.e., 868/915/2400

MHz) with a data rate of 20− 250 kbps [76]. It supports star, cluster, and mesh



22 Literature Review

topology and provides the advantage of network coverage by providing multi-hop

routing in both cluster and mesh topology [77].

The 802.15.4 MAC layer supports two operational modes: beacon enabled and

non-beacon enabled mode. In beacon enabled mode, the coordinator initiates the

channel access with a beacon packet and a superframe structure is used that is

divided into an active and an inactive period. The active period consists of a con-

tention access period (CAP) and a contention free period (CFP). During the CAP,

the channels follow a slotted CSMA/CA mechanism, whereas the CFP contains

guaranteed time slots (without contention), supporting TDMA. The inactive pe-

riod allows nodes to go into sleep mode or low power mode according to the specific

application. In the non-beacon enabled mode, the channels only use an unslotted

CSMA/CA mechanism [15].

ZigBee suffers from interference from WLAN transmissions [78] and low data

rate (only up to 250 kbps) that is not adequate for large-scale deployment of con-

nected BANs [70], rather ZigBee is more suitable for home automation [79] and

industrial automation and control [80].

IEEE 802.15.6 Standard

The IEEE 802.15 Task Group 6 developed a standard specifically designed for

BANs – namely IEEE 802.15.6 [12], which is one of the latest and well-known

international standard for BANs. The aim of the IEEE 8012.5.6 standard was to

describe the PHY and MAC layers so as to provide a certain quality level for low

power devices in communications surrounding the human body [81]. The PHY

layer defines three different communications bands:

• Narrowband (NB) PHY: The frequency bands supported in NB PHY

are as follows: 402 − 405 MHz, 420 − 450 MHz, 863 − 870 MHz, 902 − 928

MHz, 950 − 958 MHz, 2360 − 2400 MHz and 2400 − 2483.5 MHz. Among

the three communication bands, NB PHY is best suited to a greater number

of healthcare applications [82], due to its lower carrier frequency (results in

less attenuation) and smaller bandwidth (1 MHz or less), hence reducing

multi-path propagation and inter-symbol interference [83].

• Ultra-wideband (UWB) PHY: The frequency bands supported in UWB
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are divided in to a low (3.25− 4.75 GHz) and a high (6.6− 10.25 GHz) band

for supporting high quality, low complexity and ultra low power operations

[1]. Also, UWB PHY considers two types of UWB technology: frequency-

modulated FM-UWB and impulse-radio IR-UWB. As stated in [82], IR-UWB

is best suited for BANs due to lower power consumption and efficient imple-

mentation of non-coherent receivers [84]. Also UWB offers higher throughput

with a large bandwidth – each UWB channel has a bandwidth of 499 MHz

in IEEE 802.15.6 [12].

• Human-body communications (HBC) PHY: This band supports the

frequency band from 5 − 50 MHz and uses the human body as a commu-

nication medium. HBC is the first technology to use electric field coupling

(EFC) – capacitive and galvanic coupling where the transmission is over the

medium of human skin by an electrode, rather than by an antenna [82].

The 802.15.6 MAC layer divides the channel into beacon periods or superframes of

equal length, and provides three access modes coordinated by the hub:

• Beacon mode with superframe boundaries: In this mode, the coordi-

nator sets the time for superframes by sending a beacon packet to indicate

the beginning of an active superframe period. The superframe is again di-

vided into different access phases: exclusive access phase (EAP), random

Access phase (RAP), contention access period (CAP), and managed access

phase (MAP). The EAP is used for transmission of emergency data, both the

RAP and CAP use CSMA/CA or slotted ALOHA methods. In MAP, the

coordinator may schedule intervals, or poll nodes [12].

• Non-beacon mode with superframe boundaries: In this mode, bea-

cons are not sent at the beginning of the transmission, but the superframe

period and phases (possibly in MAP) are defined and unscheduled frames are

transmitted by the coordinator.

• Non-beacon mode without superframe boundaries: This mode also

does not need a beacon to be sent, and the superframe period and slot allo-

cation are also not defined. The coordinator supplies unscheduled frames of
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type 2 and as a portion of EAP or RAP to employ CSMA/CA based random

access schemes.

Bluetooth Low Energy

Bluetooth wireless technology [17] is a short-range, low-power, and low-cost stan-

dard designed for replacing the cables connecting portable or fixed electronic de-

vices in a WPAN or piconets [85, 86]. Bluetooth devices operate in the 2.4 GHz

ISM band with coverage ranging from 1−100 meter, and supports only star topol-

ogy and a maximum data rate of 3 Mbps (with Enhanced Data Rate or EDR).

Bluetooth low energy (BLE) [13] is a configuration of Bluetooth technology that

includes lower power consumption and complexity with lower cost than EDR with

a data rate of up to 1 Mbps, and operates with a simpler protocol stack than other

Bluetooth technology and star-configured networks, which makes it suitable for

some BAN applications, e.g., consumer applications [87] and regular (less critical)

health parameters monitoring [88]. However, it is not suitable for critical and high

data rate healthcare applications due to the low data rate short-range communica-

tion that requires line-of-sight connection for reliable operation [89]. Also, BLE is

not appropriate for BBNs as it does not support multi-hop communications (only

supports on-body communications with star topology), and has limited scalability,

QoS, and interoperability [56].

SmartBAN

A new standard has been developed for BANs recently by the ETSI TC (European

Telecommunication Standards Institute Technical Committee) – namely Smart-

BAN [14], which specifies low-power, low-complexity PHY and MAC layers with

lighter data presentation formats compared to IEEE 802.15.6. SmartBAN seeks

to provide a robust strategy for coexistence of an individual BAN co-located with

devices/entities operating according to different radio standards. It supports a star

topology with variable data rates and can be interfaced with Bluetooth, BLE, and

other existing radio standards. The SmartBAN PHY utilises two different chan-

nels: a control channel where control beacons are broadcast by hubs; and a data

channel where data and control transmissions take place. This two channel concept
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provides fast channel acquisition and easy hub-to-hub communication. In Smart-

BAN MAC, the data channel is divided into inter-beacon intervals that consist

of three parts: contention free scheduled access period (uses TDMA), control and

management (C/M) period (uses slotted-Aloha), and an inactive period. Addi-

tionally, a multi-use channel access (MCA) mode is defined that utilises scheduled,

but unused, time slots for increasing channel utilisation.

Other Technology

Some other technologies used in body-centric networks are: ultra-wideband (UWB)

[63], Bluetooth High Speed (HS) [90], WLAN [18,62]. Bluetooth HS supports data

rate from 3 − 24 Mbps and includes 802.11 protocol adaptation layer (PAL) into

the protocol stack [3]. Also, some commercial and proprietary technologies are

used in body-centric networks, e.g., ANT/ANT+ [65], RuBee [91], Sensium [66],

Zarlink (now acquired by Microsemi) [67], Insteon [68], Z-Wave [69], RFID [92],

BodyLAN [93]. ANT features simpler protocol stack and lower power consumption,

which has been embedded in Nike shoes and can be interfaced with iPod products

[3]. Insteon and Z-Wave are used for home automation with mesh networking

technologies [94,95]. RuBee and RFID are complimentary to each other in terms of

frequency bands, and both are used for asset management and tracking [3]. Sensium

features ultra-low power transceiver platform that is custom designed for healthcare

and lifestyle management applications [56]. The communications architecture is

centralised with single-hop connection. Zarlink developed an ultra-low power RF

transceiver that is configured as an implantable medical device (IMD), and supports

extremely low power consumption [56].

2.2 Challenges of Wireless Body-centric Commu-

nications

Even though body-centric networks can provide major enhancements in human

life style through the use of ubiquitous networking, several challenges remain that

hinder practical deployment of these networks.
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Table 2.1: Specifications of different wireless technologies used in body-centric
networks [2, 3].

Technology Frequency Data Rate Coverage Topology

Bluetooth 2.4 GHz ISM 780 Kbps
10− 150 m

(on-body)
star

Bluetooth

(EDR)
2.4 GHz ISM 3 Mbps

10− 100 m

(on-body)
star

Bluetooth

(HS)

2.4 GHz ISM

5 GHz
3− 24 Mbps

10 m

(on-body)
star

Bluetooth

(LE)
2.4 GHz ISM 1 Mbps

10 m

(on-body)
star

IEEE 802.15.4

(ZigBee)

2.4 GHz ISM

868 MHz

915 MHz

20− 250 Kbps
10− 100 m

(on-body)

star, multi-hop

mesh, cluster

IEEE 802.15.6

2.4 GHz ISM

401− 406 MHz

902− 928 MHz

1 Kbps to

10 Mbps

2− 5 m

up to 10 m
star, two-hop

Ultra-wideband

(UWB)
3.1− 10.6 GHz 110− 480 Mbps

5− 10 m

(on-body)
star

RFID

(ISO/IEC

18000− 6)

860− 960 MHz 10− 100 Kbps 1− 100 m peer-to-peer

SmartBAN 2.4 GHz ISM

(variable)

75 Kbps to

15 Mbps

< 2 m
star

hub-to-hub

ANT 2.4 GHz ISM 1 Mbps
30 m

on-body

star, mesh

peer-to-peer

IEEE 1902.1

(RuBee)
131 KHz 9.6 Kbps 30 m peer-to-peer

Zarlink

(ZL70101)

402− 405 MHz

433− 434 MHz

200 to

800 Kbps
2 m (in-body) peer-to-peer

Insteon
131.65 KHz

902− 924 MHz
13 Kbps Home area mesh

Z-Wave 900 MHz ISM 9.6 Kbps 30 m mesh

Sensium
868 KHz

915 MHz
50 Kbps

1− 5 m

(on-body)
star
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2.2.1 Mobility

Since the human body is constantly moving, sensor nodes on the body have mobil-

ity features. Due to the postural body movements affecting BANs/BBNs as well as

their mobility, the use of networks incorporating infrastructure such as backbone

routers would generally be very costly and unfeasible. Even for indoor BANs coex-

istence with mobile people, while deploying a backbone router is possible to some

extent, the connection between a BAN hub and the router can be blocked/shadowed

by any obstacle or may go out of range because of the movement, e.g., postural

changes or mobility [96]. Importantly, people having mobility issues can incur

life-threatening risks, as these type of outages can be for a longer period of time

with only a simple postural change.

2.2.2 Time-varying dynamic topology

Unlike wireless sensor networks, the communication channels in BANs are heav-

ily attenuated from shadowing by the human body. Due to this shadowing and

postural body movements, the path loss between sensor nodes in a BAN will be

non-stationary and constantly changing [97–99]. BAN radio propagation typically

encounters significant path loss with deep fades that can last for a long time, of the

order of seconds [82]. This will cause serious topological partition problems and

time-varying channel conditions where links between nodes are broken, and built,

frequently. Additionally, when multiple BANs coexist in a very close proximity

for any special indoor/outdoor activity, or in any emergency indoor/outdoor sit-

uation, the interfering radio communications and shadowing from different bodies

or BANs (including the body parts of the BAN-of-interest) make it very difficult

for the BAN-of-interest to transfer the collected information to the intended access

point [96].

2.2.3 Routing challenges

Due to limited resources, unstable links, interference and network lifetime, selection

of routing protocols and routing metrics play a critical role in order to find out the

efficient route to the destination in wireless body-centric networks. Both periodic
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and real-time data transfer are required for BANs/BBNs. As stated in [100], even

though the general characteristics of BANs are somewhat similar to mobile ad

hoc networks (MANETs) [101] and wireless sensor networks (WSNs) [102], the

stringent requirements of BANs/BBNs impose certain constraints on the design of

their networking protocols that leads to novel challenges, which can not be met

through typical WSN/MANET routing protocols.

For example, the frequent topological changes in highly mobile coexisting BANs

particularly occur with group-based movement, rather than node-based movement

in MANETs, which suggests that all nodes in BANs move with keeping their posi-

tion with respect to one another, while in MANET each node moves independently

from other nodes in the network [103]. In fact, the on-body sensor nodes used in

BANs move relative to the coordinator node of the corresponding BAN which is

used as their reference point [104]. As the user moves, the whole network moves

and then may move into (and out of) the range of other networks frequently, which

results in network collision [105]. It is different to the interference events of cellu-

lar/sensor networks where only one or two nodes interfere, and base stations rarely

interfere [96]. The random nature of BAN movement means that network collisions

in BBN can be very short (e.g., people passing on the street) or very long (e.g.,

family members/hospital patients may remain close for hours) [105].

2.2.4 Power Constraints

The management of scarce resources, such as, low-power battery, and low transmit

power considering human body reaction to electromagnetic radiation is one of the

major issues to deal with in these types of networks. BANs have more strict energy

constraints in terms of transmit power when compared to traditional sensor and

ad hoc networks as frequent node replacements can be quite unfeasible, and might

require surgery in some scenarios, for implant nodes [2].

2.2.5 QoS consideration and Context-awareness

Body-centric networks exhibit specific QoS requirements at every single layer: data

reliability, traffic segmentation, data resolution, bandwidth, path latency, routing

maintenance, congestion management, path cost, connectivity robustness, com-
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munication range, throughput and transmission reliability [106, 107]. Moreover,

context-aware and adaptive strategies need to be developed where the network

adapt to topological, channel state, and environmental changes in a timely man-

ner.

2.2.6 Network Scalability and Interoperability

The number of people using wireless sensor devices for healthcare and other pur-

poses is rising at an alarming rate [4,108,109]. When the number of nodes increases

in the neighbourhood, scalability issues arise, which affect throughput, latency and

resource allocation of dense networks. Moreover, neighbouring BANs operating in

the same frequency bands are likely to interfere with each other. For instance, as

each member of a BBN can join or leave the network seamlessly, a variable number

of BANs need to be supported by the BBNs to increase the capacity and spectral

efficiency of the network with reduced latency.

2.2.7 Security and Privacy Issues

A number of security and privacy risks [110–113] arises from the advancement of

body-centric communications, specifically in health related applications. For in-

stance, unauthorised access, message disclosure, message modification, denial of

service, compromised node, routing attacks, eavesdropping, and malicious activi-

ties [111]. The networks associated with the user’s health data are prone to po-

tential risks of internal and external intrusions during data storage, access, and

wireless data transmission, which can lead to life-threatening and serious health

consequences. Furthermore, the stringent resource constraints, design, and usabil-

ity of these miniaturised sensor devices derive challenges to implement lightweight

security and authentication protocols with minimal complexity.

As the main focus of this thesis is in reliability and optimised connectivity, we

discuss existing works related to these specific matters in the following sections.
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2.3 Existing Research for Optimising Body-centric

Communications

2.3.1 Research on Cooperative Communications

Cooperative communications is widely used for improving and optimising reliability

and efficiency in body-centric communications. In [114], Chen et al. analysed coop-

erative diversity schemes in an ultra-wideband (UWB) BAN (in a sitting posture)

with a two-stage single-hop transmission model to statistically characterised the

channel parameters of a single-hop cooperative network. Huang et al. [115] inves-

tigated three transmission schemes in a BAN, i.e., direct transmission, single-relay

cooperation, and multi-relay cooperation and studied optimal power allocation with

and without posture state information. They showed that power allocation making

use of posture information can reduce energy consumption. The authors in [116]

investigated an incremental relay based cooperative communication scheme where

they demonstrated that the cooperative schemes improve energy efficiency signifi-

cantly when compared to direct communication. In [117], Arrobo et al. proposed

a cooperative network coding technique for improving throughput and network re-

liability in multiple-input-multiple-output (MIMO) BANs. In [118], the authors

proposed a cooperative BAN environment that supports multi-hop transmission

through cooperation involving both environmental sensors and BAN nodes. Their

solution extends the cooperation at the MAC layer to a cross-layered gradient

based routing solution that allows interaction between a BAN and environmental

sensors in order to ensure data delivery from BANs to a distant gateway. Arrobo et

al. [119] compared two different approaches – cooperative network coding (CNC)

and cooperative diversity combining (CDC) for BANs — where they found that

CDC provides higher throughput than CNC with lower complexity.

In [120], Dong. et al. showed that cooperative selection combining with two

dual-hop relayed links in an individual BAN provides significantly better co-channel

interference mitigation than single-link star topology BAN communications in case

of distributed multi-BANs coexistence. Dong. et al. [121] also proposed an oppor-

tunistic relaying scheme together with cooperative two-hop communication scheme
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for mitigating interference in a single BAN in case of multiple BANs coexistence.

In [122], the authors presented two-hop relay-assisted cooperative communications,

integrated with transmit power control, based on simple channel prediction for a

single BAN, where they demonstrated that relay assisted power control can reduce

circuit power consumption by approximately 60% from that of constant transmis-

sion at 0 dBm, without much loss in reliability. Wang et al. [123] proposed a

distributed cooperative scheduling scheme for increasing the packet reception rate

(PRR) of intra-BAN communications by reducing the inter-BAN interference for

coexisting BANs.

2.3.2 Research on Cross-layer Optimisation

In the past decade, several cluster-based and cross-layer routing protocols have

been proposed for BANs along with other routing protocols [100]. Some of the

cluster-based routing protocols (e.g. ANYBODY [124], HIT [125]) that have been

designed for BANs aim to minimise the number of direct transmissions from sensors

to the base station. WASP [126], CICADA [127], TICOSS [128] and BIOCOMM

[129] are some cross-layer protocols between Network and MAC layers for BANs.

Amongst these protocols, TICOSS and CICADA consume less energy, whereas

the WASP scheme outperforms others in terms of efficient packet delivery ratio

(PDR) [130]. Also, CICADA performs well among the other protocols in terms of

reducing packet delivery delay [130]. Otal et al. proposed an energy-saving MAC

protocol, DQBAN (Distributed Queuing Body Area Network) for BANs in [131], as

an alternative to the 802.15.4 MAC protocol, which suffers from low scalability, low

reliability and limited QoS in real-time environments. The proposed DQBAN is a

combination of a cross-layer fuzzy-logic scheduler and energy-aware radio-activation

policies [132]. The fuzzy-logic scheduling algorithm is shown to optimise QoS and

energy-consumption by considering cross-layer parameters such as residual battery

lifetime, physical layer quality and system wait time [132].

A number of interference-aware coexistence schemes for multiple BANs have

been proposed in [104,121]. In [121], a cooperative two-hop communication scheme

together with opportunistic relaying (OR) is applied on a single BAN (amongst co-

existing BANs), which improves the outage probability and level crossing rate of on-
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body channels with respect to suitable SINR threshold values. The authors in [104]

proposed an energy efficient and interference-aware channel allocation scheme that

also incorporates an intra-BAN and inter-BAN mobility model for BAN coexis-

tence. A Cross-layer Opportunistic MAC/Routing protocol (COMR) [133] has

also been proposed for improving reliability in BAN, where the authors have used

a timer-based approach with combined metrics of residual energy and receive signal

strength indicator (RSSI) as their relay selection mechanism in a single BAN, and

compared it with Simple Opportunistic Routing (SOR) [134]. In [135], the authors

have proposed an efficient cross-layer reliable retransmission scheme (CL-RRS)

without additional control overheads between physical (PHY) and MAC layers,

which significantly improves frame loss rate and average transmission time as well

as reduces power consumption.

Some WSN routing protocols for low power lossy networks (LLNs) are proposed

in literature. For example, RPL [136] uses a DODAG/rooted topology based on

expected transmission count (ETX) metric which is similar to the collection tree

protocol (CTP) proposed in [137] for WSNs, where the sink node collects data from

different sensors with datapath validation and adaptive beaconing. In RPL, any-

to-any routing is performed with a non-storing mode through the root node. To

improve the performance of RPL, opportunistic routing protocol (ORPL) is pro-

posed in [138], which combines opportunistic routing with a rooted topology, where

any-to-any routing is supported through the common ancestors along with the root

node based on EDC (Expected Duty Cycle) metric. In [139], the authors pro-

posed a reactive distance-vector routing protocol named LOADng, which inherits

the basic properties and operation of AODV (Adhoc On-demand Distance Vector

routing) [140], yet aims to reduce the per packet overhead for route discovery by a

smart route request [141] and expanding ring search [142]. Cooperative multi-path

routing [143] yields better performance than single-path routing by providing si-

multaneous parallel transmissions with load balancing over available resources. We

proposed a new CMR scheme in [22] for coordinated BANs, that uses two different

paths (incorporating shortest path routing) which are combined at the destination.

Also, it uses TDMA with low duty cycling to save energy consumption and avoid

interference from surrounding non-coordinated BANs.
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2.3.3 Research on Predictive Characteristics

In literature, there has not been much investigation into characterising predictive

properties, i.e., wide-sense-stationarity (WSS), long-range dependence (LRD) of

body-centric channels. To determine the WSS length/duration of wireless channels,

a parametric approach (Rao test) is proposed in [144] to detect non-stationarity

based on the time-variant auto-regressive (TVAR) model. A parametric unit-

root test is proposed in [145] to parameterise a predetermined structure. Willink

found non-stationarity in multiple-input multiple-output (MIMO) wireless chan-

nels in [146] by investigating the first and second moment with parametric one-way

ANOVA (analysis of variance) and non-parametric time-dependent evolutionary

spectrum analysis, respectively. In [147], the authors investigated WSS for vehic-

ular communications with co-linearity of the local scattering function, where they

found the channels to be strongly non-WSS. Other non-parametric approaches to

identify the stationarity intervals include run-test described in [148], comparison of

the delay power spectral density (PSD) estimated at different time instances [149]

and evaluation of the variation of time-localised PSD estimate [150]. In [99], the

authors used different parametric and non-parametric approaches for testing WSS

of on-body channels and showed that on-body channels have non-stationary char-

acteristics.

The concept of long-range dependence was introduced by Hurst in [151] with

rescaled range analysis for studying the flow of water in the Nile river, which

was further evaluated by Mandelbrot et al. in [152]. LRD characteristics are

vastly investigated in spatial and time series analysis of econometrics and statistical

measurements. However, several works have found LRD characteristics to exist

in different empirical local area, wide area and ad-hoc networks [153–156]. The

authors in [157] investigated the LRD property for bit, symbol and packet level

error process of IEEE 802.15.4 networks, where they found existence of memory in

bit and symbol level error process.

2.3.4 Research on Predictive Optimisation

Body-centric networks are resource-constrained networks that operate in dynamic

environments where global coordination is not possible and the channels experience
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interference and shadowing due to human-body movements, e.g., ambulatory and

postural movements, obstruction by body-parts. Therefore, these networks need to

be self-organised and perform dynamic optimisation for efficient resource utilisation

[158,159]. One of the widely used powerful optimisation tools for such dynamic sys-

tems is a Markov decision process (MDP) [160,161]. The MDP framework [160,161]

is a widely used powerful optimisation model for decision-making in stochastic and

dynamic environments under uncertainty where the outcome partially depends on

the decision made at each decision epoch. In wireless networks, MDPs are gener-

ally used to solve optimisation problem for obtaining desired objectives where the

channels are unstable and resource constrained such as wireless sensor networks

(WSNs). In [162], the authors performed an extensive survey of MDP models

that are proposed for various design, optimisation and resource management is-

sues in WSNs. To state a few, Lin et al. suggested a distributed algorithm for

delay-sensitive WSN in [163] based on an MDP framework to autonomously enable

routing and select transmission strategies to maximise the network utility. Simi-

larly in [164], Hao et al. proposed an adaptive routing protocol for WSNs where

they studied the energy consumption and delay trade-off based on an MDP frame-

work. In [165], the authors presented distributed and centralised channel access

models with hybid CSMA/CA-TDMA based on MDP, to access both contention

period and contention-free period of the IEEE 802.15.4 based single-hop wireless

personal area networks. Some further applications of MDP in WSNs include op-

portunistic transmission policy [166], transmit power control [167], relay selection

for cooperative communications [168, 169], energy harvesting [170, 171]. Also, a

detailed survey of MDPs in communications networks can be found in [172].

While MDP solutions have been rigorously investigated for WSNs, they have

not been widely studied for deployment in wireless body area networks (BANs),

or broadly BBNs (wireless Body-to-Body Networks), which falls within a specific

part of WSNs. BANs/BBNs possess more stringent requirements than WSNs or

MANETs as the body-centric networks are highly mobile due to the postural move-

ments and shadowing by body parts of the closely located BANs, and experience

sporadic periods (sometimes very long) of stability over time. The random nature

of BAN movement means that network collisions in BBNs can be very short (e.g.,

people passing on the street) or very long (e.g., family members/hospital patients
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may remain close for hours) [105]. Body-centric networks have strict power con-

straints as opposed to other standard wireless networks due to the management

of scarce resources, such as, low-power battery and low transmit power consider-

ing human body reaction to electromagnetic radiation. Also, as stated in [100],

the frequent topological changes in highly mobile coexisting BANs particularly oc-

cur with group-based movement, rather than node-based movement in MANETs

and the interference events are also quite different to those of cellular/sensor net-

works [96, 105]. The above mentioned factors differentiating BANs/BBNs from

WSNs/MANETs motivate the need for distinct study of MDPs in the field of body-

centric networks. In [173], the authors use an MDP in order to tune a MAC-frame

payload of BANs with a priority-based mechanism to optimize energy consumption

of each sensor node. In [174], the authors use a simple Markov model to optimise

the retransmission strategies of BAN under variable TDMA scheduling based on

the trade-off between energy consumption and packet delivery ratio. In [175], the

authors proposed a partially observable MDP (POMDP) to optimise physical ac-

tivity detection in a BAN based on the energy budget of the sensor nodes. Chaganti

et. al [97] presented a semi-Markov model for on-body fading channels where they

showed that the on-body channels are better modelled via a semi-Markov approach

than a pure finite state Markov (FSM) process.

In [176], the authors use a multi-objective genetic algorithm formulation with

POMDP to maximise the spectrum sensing in cognitive radio while keeping the

sensing overhead within a target value. The authors in [177] presented a compre-

hensive survey on the basics, metrics and relevant algorithms conceived for multi-

objective optimisation in WSNs, where they discussed on optimisation with trade-

offs between different performance metrics. Some other works in literature formu-

lates the multi-objective optimisation by using constrained MDP (CMDP) [178]

where each objective is optimised with constraints on others based on liner pro-

gramming method. The authors in [179] used constrained multi-objective reinforce-

ment learning for routing decisions in cognitive radio networks to minimise average

transmission delay with acceptable packet loss rate. In case of body-centric net-

works, a fair weights scheduling scheme that makes use of IEEE 802.15.6 standard

TDMA and a constrained MDP (CMDP) model to balance the network lifetime

and fairness of a BAN is proposed in [180]. The proposed scheme obtains optimal
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lifetime utilising an optimal policy under different degrees of constraints.

2.4 Research Gaps

Although extensive research has been conducted for optimising body-centric com-

munications in terms of improving reliability and efficiency, some important aspects

have not yet been studied or investigated in terms of enabling BANs coexistence

(or BBNs) as follows:

• Most of the works regarding BAN coexistence in literature focused on im-

proving the communication performance, e.g., reducing interference [121,181,

182], increasing reliability [183], reducing latency and outage [120,184,185]

due to shadowing of an individual BAN when multiple BANs come in to

the vicinity of a BAN-of-interest. However, the inter-BAN communications

or body-to-body (B2B) communications has not been properly investigated

and analysed for improving the connectivity among BANs when building

an independent network connection of BAN entities, which can serve as a

proxy network in different scenarios. Although inter-BAN or B2B communi-

cations is a part of the existing communication architecture of body-centric

networks, this specific type of body-centric communications needs further at-

tention and in-depth research for enabling BAN coexistence at a large-scale

for highly connected systems.

• Very few works, e.g., [122, 186–188] for BAN coexistence consider real-life

channel measurements for investigating the performance of BANs. Most

works, e.g., [189–192] analyse the performance of simulated channels pro-

duced by simple traditional channel models, without taking into account the

spatial and temporal variation of the radio channels, as well as mobility condi-

tions of body-centric networks. Moreover, most of the channel models devel-

oped for BANs are activity-oriented (i.e., standing, sitting, walking, running,

sleeping) [31, 193–196] or from anechoic chambers (hence avoiding realistic

scenarios) [197–199], which is not appropriate for practical BAN/BBN sce-

narios where the subjects are performing various mixed activities in different

indoor/outdoor scenarios.
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Specifically, in BBNs, the body-to-body communications experience a higher

amount of shadowing from surrounding human body and body-parts for con-

tinuous postural and ambulatory movements that blocks the communication

path time to time. Also, almost all of the experimental works have con-

sidered a single or small number of channels (e.g., on-body channels of a

single subject, inter-body channels between only two coexisting subjects) for

characterising and investigating the performance of body-centric communi-

cations [23, 200, 201]. Therefore, it is very important to characterise the

body-to-body channels from an adequate amount of real-life data collected

from practical scenarios for multiple BANs coexistence, and employ actual

real-life measurements for investigating performance of designed body-centric

networks optimisation.

• In traditional stack layered communication models, e.g., the OSI model [202],

the independent protocol layers only communicate directly with upper and

lower layers. Hence, layers are not jointly optimised and waste resources,

which is inadequate for resource-constrained networks like BANs, especially

in the case of vital healthcare deployment at large-scale. To remedy this

situation, cross-layer design averts the layered hierarchy by allowing proto-

cols from different layers to exchange information and relevant parameters.

However, most of the cross-layer protocols designed for BANs consider adja-

cent layer optimisation, e.g., physical-MAC, MAC-network layers [203–207].

To improve the network reaction performance (for networks which experi-

ence frequent changes, e.g., BBNs), non-adjacent cross-layer protocols (e.g.,

physical-network layer) are an important option to consider where the up-

ward/downward exchange of information are performed by creation of new

interfaces between non-adjacent layers.

• BBNs are envisioned to be self-organised networks, which require systematic

prediction of channel characteristics. For better modelling and prediction of

channels with higher accuracy, it is very important to characterise predic-

tive behaviour of the channels, i.e., can the channels be predicted? Some

important predictive characteristics of wireless channels are stationarity, in

particular, wide-sense-stationarity (WSS) or second-order stationarity, and
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statistical dependence, i.e., long-range dependence (LRD, or long-memory) of

the channel. In predictive analysis of wireless channels, in literature it is gen-

erally assumed that the time-varying channels are wide-sense-stationary (i.e.,

first and second moments of the channels are time-invariant) [208–212] and

memoryless (i.e., negligible correlation between samples) [210, 211]. How-

ever, in real-life the channels are not always wide-sense-stationary, such as

for narrowband on-body channels [99]. Furthermore, the very slowly-varying

nature of body-centric channels indicates possible dependence and significant

correlation between samples. Therefore, it is very important to investigate

and characterise the predictive behaviour of wireless body-centric channels,

particularly B2B channels, to avoid potential errors and deficient implemen-

tation by using standard memoryless models that assume a WSS property,

and also for accurate characterisation and modelling (e.g., shadow fading,

correlation, path-loss) of body-centric channels.

• In resource-constrained body-centric networks, it is often not possible to im-

prove network performance by optimising or improving a single objective

or performance metric. For example, increasing throughput will cause an

increase in energy consumption due to a higher active period and transmis-

sion overhead. On the other hand, for reducing power consumption, the

active period needs to be decreased with lower transmit power, which will

cause increased delay and packet failure rate. In existing literature, most of

the works related to body-centric networks concentrate on improving a single

performance metric without considering the effect on other performance met-

rics of the channel, e.g., [117, 213, 214]. Hence, multi-objective optimisation

is required for jointly optimising different performance metric with suitable

trade-offs for effective use of the scarce resources.

2.5 Summary

In this chapter, we have discussed existing research, studies, and developments

relevant to the scope of this thesis. We also presented the communication structure

and technology used for body-centric networks, along with some major challenges
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for BAN coexistence or BBNs. At the end, we discussed the research gaps found in

the literature directly related to the stated thesis problem of effective optimisation

of body-centric networks, and particularly body-to-body networks. These research

gaps are addressed well in the following four chapters.





Chapter 3

Experimentally-based Two-layer

Optimisation for Distributed

BBNs

3.1 Introduction

Wireless body-centric channels are slowly-varying, which means the channel condi-

tion changes very slowly and remains similar for a longer time period, e.g., hundreds

of milliseconds. As a result, when the channel is in outage, it can remain in out-

age for a very long time that significantly degrades the reliability of the channel.

To avoid this situation, a cooperative path through nearby node/sensor (acting

as relay) can be utilised to reach the destination. For the same reason, coopera-

tive paths are also practical in routing information within a wireless body-to-body

network (BBN) through nearby BANs. Also, due to the resource constraints of

BANs/BBNs, optimised communications is required to avoid unnecessary delay

and outages. In this chapter, we investigate the cross-layer optimisation between

physical and network layers, with cooperative communications in a distributed

BBN, to extend end-to-end network connectivity across co-located BANs with-

out central coordination, and validate the outcomes with experimental analysis.

First, we investigate cooperative receive diversity with on-body sensors and off-

body relays/hubs for sleeping subjects (with a star topology), where we find that

41
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cooperative combining significantly improves the outage probability and continu-

ous latency with two-hop communications for on-body/off-body channels of a BAN

used for monitoring a sleeping person. Then, we introduce two different cross-layer

optimised routing techniques across a BBN — shortest path routing (SPR) and co-

operative multi-path routing (CMR) that incorporates cooperative selection com-

bining, which improves reliability, latency, and energy efficiency of B2B channels.

The methods are applied to an experimental radio measurement dataset1 recorded

from ‘everyday’ mixed-activities and a range of measurement scenarios with people

wearing radios. In this chapter, we aim to address the following issues:

• How to improve the reliability of real-life body-centric communications under

significant shadowing with cooperative communications?

• How can the available channels (body-to-body) between coexisting BANs be

efficiently utilised, for improving the reliability of real-life BBNs?

In the following sections, we describe cooperative receive diversity for deployment

in real-life BAN channels for monitoring sleeping people; and the proposed cross-

layer PHY/NET schemes in detail, and discuss the experimental outcomes obtained

from applying those schemes over real-life experimental channel measurements.

3.2 Cooperative Communications for monitoring

a sleeping person

Because of its relatively slow varying and non-stationary or quasi-stationary (not

mobile, nor static) nature [216], the BAN radio channel for monitoring a sleeping

person is a difficult channel to communicate over. Due to shadowing by body parts

and simple postural movements, transmission links may be completely blocked

for very long periods of time (as people move relatively little during sleeping)

[82], which is critical as many patients can incur life-threatening risks during their

sleep. Hence, to improve the reliability of this atypical body-centric channel, we

use cooperatively combined relayed links, e.g., on-body, off-body with two hop

1available in http://doi.org/10.4225/08/5947409d34552 [215]
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communications. We analyse the performance from real-life experimental channels

collected from adult sleeping subjects and we find that

• The cooperative combining with two-hop communications provides up to 7

dB improvement over single/direct link communications, at 10% outage prob-

ability.

• In best-case scenario (at −100 dBm receive sensitivity), the outage probabil-

ity for cooperative communications is much lower (up to 8% less) than the

direct link outage probability.

• 3-branch selection combining (SC) provides a slight improvement in diversity

gain over 3-branch switch-and-examine combining (SwC), in terms of outage

probability.

• With cooperative combining, up to 20% less continuous outage duration

(greater than > 125 ms) is achieved over a star topology communications,

with a receive sensitivity of −86 dBm.

The experimental setup, cooperative schemes, and the performance analysis are

provided in the following subsections.

3.2.1 Experimental Setup for monitoring a sleeping person

Extensive on-body and off-body channel gain data taken over at least 2 hours

per measurement set from eight adult sleeping subjects are used for testing the

relayed cooperative schemes. Each measurement set contains 7 small wearable

radios operating at 2.36 GHz, of which three are transceivers (Tx/Rx) and four are

receivers (Rx). Radios were placed on different body-parts of the sleeping subject

in bed, some of them were also placed around the bed (illustrated in Fig. 3.1). The

radio locations described in our experiment were chosen as likely communications

locations that spanned the human body by plausible one-hop (star topology) and

two-hop links. The gateway/hub of a BAN is expected to be located on the places

central to the human body where a subject can comfortably wear a device that

is typically larger than the sensor nodes, for example, near the torso, at the hips

or on the chest. The on-body and off-body sensor locations are given in Table
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Figure 3.1: An illustration of a sleeping person wearing transceivers and receivers

Table 3.1: On-body and off-body sensor locations. NTBh: Next To Bed (head), Lw:
Left wrist, Hf : Hip front, Rw: Right wrist, Hb: Hip back, La: Left ankle, NTBf :
Next To Bed (foot); Tx/Rx implies to Transceiver and Rx implies to Receiver

Sensor Locations NTBh Lw Hf Rw Hb La NTBf

Transceiver/Receiver Tx/Rx Tx/Rx Tx/Rx Rx Rx Rx Rx

3.1. The wearable radios are described in [217] and the experimental datasets

are available for download in [215]. Each transmitter was broadcasting for 5 ms

in round-robin fashion. Hence, the received signal strength indicator (RSSI), in

dBm, was captured from any given transmitter every 15 ms (3 transceivers were

transmitting). With a Tx power of 0 dBm, each RSSI measurement provides an

equivalent channel gain (magnitude) in dB for each Tx to Rx packet transmission.
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Figure 3.2: Three-branch cooperative combining: one of the branches is a direct
link (hsd) and the other two are cooperative relay links (with two hops).

3.2.2 System Model

BAN channels are suitable for investigating cooperative receive diversity using re-

lays because of their stability and reciprocity. The channels are considered to be

stable, since 15 ms is significantly less than the channel coherence time for a BAN,

e.g., typically 500 ms, even in a highly dynamic scenario [218]. Also, due to the

reciprocity property, the channel from any Tx at position a to Rx at position b is

similar for Tx at b to Rx at a [217]. Effectively, simultaneous measurements based

on channel coherence describe the channel gains for relayed packets from Tx-Rxrelay-

Rx, where a direct link and two relayed links are accounted for. We investigate two

different types of cooperative combining: three-branch cooperative selection com-

bining (SC) and cooperative switch-and-examine combining (SwC), and compare

those with non-cooperative direct link. The three-branch cooperative combining

(one of the branches is a direct link and the other two are cooperative relay links)

is illustrated in Fig. 3.2. The RSSI-based narrowband channel gain (used as a neg-

ative measure of the channel attenuation) statistics are used for result estimation.

For two-hop communications, where every packet at a relay is transmitted to the

destination, the channel gain for one diversity branch can be described as hsrnd
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= min{hsrn , hrnd}, for any given relay rn where s indicates source (sensor) and d

indicates destination. hsrn and hrnd are the channel gains from source to nth relay

and nth relay to destination, respectively.

Cooperative Selection Combining For three-branch cooperative selection

combining, three branches (one of the branches is a direct link) are combined at the

destination, where the best branch is selected as the output gain. The equivalent

channel gain at the output of the selection combining (hsc) at time instant τ can

be calculated as follows:

hsc(τ) = max
{
hsd(τ), hsr1d(τ), hsr2d(τ)

}
, (3.1)

where hsd is the channel gain from source-to-destination (direct branch), hsr1d and

hsr2d are the channel gain of first and second diversity branch, respectively.

Cooperative Switch-and-Examine Combining In three-branch switch-and-

examine combining, a switch to another branch occurs when the channel gain on

the current branch goes below a given threshold, hT at time instant τ [218]. How-

ever, if the channel gain on this alternate branch is also less than hT , then another

switch occurs to the last branch and, whether or not the channel gain of this branch

is above or below hT , it becomes the chosen branch. Choosing the switching thresh-

old is important for the relative performance of switch-and-examine combining. In

this work, an optimum threshold of −86 dB is used for three-branch switch-and-

examine combining according to [219], due to optimal switching rate achieved at

this threshold. The equivalent channel gain from the output of switch-and-examine
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combining (hsw(τ)) at time instant τ can be estimated as follows:

hsw(τ) =





hsd(τ), ⇐⇒ (hsd(τ) ≥ hT )∧


(hsw(τ − 1) = hsd(τ − 1))

∨(hsr2d(τ) < hT )

}

hsr1d(τ), ⇐⇒ (hsr1d(τ) ≥ hT )∧


(hsw(τ − 1) = hsr1d(τ − 1))

∨(hsd(τ) < hT )

}

hsr2d(τ), ⇐⇒




(hsr2d(τ) ≥ hT )∧


(hsr1d(τ) < hT )∨
(hsw(τ − 1) = hsr2d(τ − 1))

}



∨




(hsd(τ) < hT )∧
(hsr1d(τ) < hT )

}

(3.2)

3.2.3 Performance Analysis

We consider outage probability and continuous outage duration as the two main

performance measures for the very slowly time-varying channels of a BAN moni-

toring a sleeping person [193]. We investigate the performance of the cooperative

schemes from agglomerated data (from 8 sleeping subjects) between an on-body

transceiver (located at the hip front) and all other possible nodes from the set-

up (described above). We also examine the same performance measures between

an off-body transceiver (located next to bed-head) and other possible nodes. For

proper estimation of outages, the effect of non-recorded measurements are referred

as incorrectly decoded packets and set to a value less than the radio’s receive sen-

sitivity (≈ −100 dBm).
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Figure 3.3: Outage probability as a function of receive sensitivity with Tx power
of 0 dBm, for direct link (DL), selection combining (SC), and switch-and-examine
combining (SwC), with on-body and off-body transceivers.

Outage Probability

The outage probability is estimated according to the mode of operation described

in equation (3.1) for cooperative selection combining and equation (3.2) for coop-

erative switch-and-examine combining. The empirical outage probability for direct

link (DL) and cooperative combining (with SC & SwC), for on-body and off-body

channels are shown in Fig. 3.3. At 10% outage probability, there is 3 dB and

7 dB performance improvement of cooperative combining over direct link for off-

body and on-body channels, respectively. Also, the best-case outage probabilities

(for both on-body and off-body channels) are almost 3% and 1.2% for cooperative

switch-and-examine combining and cooperative selection combining, respectively.

This implies better improvement over the best-case outage probability of direct

link for on-body (9.1%) and off-body (6.3%) channels. Additionally, this indicates

better diversity gain for 3-branch SC over 3-branch SwC, although switch-and-

examine combining has significantly lower switching rate and reduced complexity

than that of selection combining [219].
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Table 3.2: Empirical result analysis for direct link (DL) and cooperatively com-
bined links (with SwC/SC); RS, OP, and COD imply receive sensitivity, outage
probability, and continuous outage duration, respectively

DL(on-

body)

SwC(on-

body)

SC(on-

body)

DL(off-

body)

SwC(off-

body)

SC(off-

body)

Best case

OP
9.1% 3.3% 1.15% 6.3% 3% 1.17%

COD

> 10s

at RS of

−86 dBm

16.3% 2% 2% 11.5% 1.8% 1.8%

COD

> 125ms

at RS of

−86 dBm

24% 4% 4% 17% 4% 4%

Continuous Outage Duration

Continuous outage duration provides an estimate of continuous latency, hence is of

significant importance for body-centric channels. Figs. 3.4 and 3.5 illustrate the

percentage of time that continuous outages larger than x seconds (on horizontal

axis) occur with direct link and cooperatively combined links for on-body and off-

body channels, correspondingly. As can be seen in Fig. 3.4, an on-body receiver

(with a receive sensitivity of −86 dBm) will experience outages of larger than

10 seconds for more than 16% of the time in case of direct link; whereas, the

occurrence has reduced to 2% for cooperatively combined links. As per Fig. 3.5,

an off-body receiver (with a receive sensitivity of −86 dBm) will experience outages

of larger than 10 seconds for more than 11% of the time for direct link, while for

cooperatively combined links, outages of larger than 10 seconds will occur less than

2% of the total measured time. In addition, outages of larger than a typical latency

requirement of 125 ms [220, 221] occur almost 24% (Fig. 3.4) and 17% (Fig. 3.5)

of the time for on-body and off-body direct links, respectively; while it has been

considerably reduced to 4% for both on-body (Fig. 3.4) and off-body (Fig. 3.5)

cooperatively combined links. The empirical results are shown in Table 3.2, as per

results obtained from Figs. 3.3 to 3.5.
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3.3 Cross-layer optimised routing across multi-

ple BANs

We now investigate cross-layer optimisation to route information across distributed

wireless body-to-body networks, to analyse the general performance of closely lo-

cated BANs while utilising body-to-body communications. We perform and analyse

the cross-layer optimisation techniques (i.e., SPR and CMR) across the physical

and network layers for two-tiered communications, with on-body BANs at the

lower tier and a BBN at the upper tier to enable real-time, reliable human mon-

itoring and communications across narrowband BANs. The methods are applied

to the experimental radio measurement dataset2 with 10 co-located BANs (people

wearing radios) performing ‘everyday’ mixed-activities. We compare the results

of cooperative multi-path routing (CMR) with shortest path routing (SPR) and

other state-of-the-art WSN protocols (i.e., ORPL [138], LOADng [139]). The key

findings, based on empirical results derived from real-life measurements [215], are

as follows:

• Negligible (almost 0%) packet error rate (less than 10%, thus fulfilling the

requirement of the IEEE 802.15.6 Standard [222]) is achieved with reason-

ably sensitive receivers for both shortest path routing (SPR) and cooperative

multi-path routing (CMR) in a dynamic environment associated with mobile

subjects, using the available nodes/hubs as relays.

• CMR provides up to 8 dB, 7 dB, and 6 dB performance improvement over

ORPL3, SPR, and LOADng3, respectively, at 10% outage probability.

• ETX (Expected Transmission Count) or hop count metric (used in SPR,

CMR, and LOADng in a mesh) can perform better than EDC (Expected

Duty Cycles) metric (used in ORPL with DODAG4 topology) in case of any-

to-any routing among BANs.

2available in http://doi.org/10.4225/08/5947409d34552 [215]
3We have implemented these protocols (i.e., ORPL, LOADng) in MATLAB and applied on

the same measurement dataset (used in this chapter) to compare with SPR and CMR.
4Destination Oriented Directed Acyclic Graph [137,223].
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• CMR outperforms other protocols in case of throughput (packets/second) by

providing 95% successful packet delivery (19 packets/s at a packet transmis-

sion rate of 20 Hz).

• The maximum amount of end-to-end delay is the lowest for CMR (135 ms)

with respect to other protocols and also below the IEEE 802.15.6 latency

requirement (< 250 ms) for non-medical applications [29]. Also, the average

end-to-end delay for CMR (47.5 ms) is an acceptable amount (< 125 ms) for

BAN medical applications [29].

• CMR consumes more energy on average than other techniques due to the

cooperative combining at route-hops, although the maximum energy con-

sumption with CMR is much lower than other protocols (except SPR with

hop restriction).

• CMR produces the lowest amount of average end-to-end delay with respect

to other protocols, when estimated with lower receive sensitivity, e.g., −90
dBm, −86 dBm.

• With less receive sensitivity, e.g., −90 dBm, −86 dBm, the energy consump-

tion of CMR remains relatively similar, while the energy consumption of other

protocols increases significantly due to an increase in packet failure rate and

retransmissions.

• The empirical received signal amplitude through SPR has a gamma distribu-

tion while the empirical received signal amplitude through CMR has a Rician

distribution.

In the following sections, we provide the system model and discuss the experimentally-

based results in detail.

3.3.1 System model

We assume a two-tiered network architecture formed from 10 co-located mobile

BANs (people with fitted wearable radios) deployed for experimental measure-

ments, where the hubs of the BANs are in tier-2 in a mesh (inter-BAN/ BBN
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H1

H2

H3

H4

Tier-2 network (mesh)

BBN communication Hub

Tier-1 BAN
(On-Body

communication)
Tier-1 BAN

Tier-1 BAN

Tier-1 BAN

sensor/relay

Figure 3.6: Two tiered architecture with 4 coexisting BANs (intra-BAN commu-
nications at the lower tier and inter-BAN communications at the upper tier); Hub
on the left-hip and two sensors/relays on the left-wrist and right-upper-arm, re-
spectively.

communications) and the on-body sensors of the corresponding BANs are in tier-1

(intra-BAN communications). An abstraction of the architecture is given in Fig.

3.6, with four co-located BANs. It can be portrayed as a hybrid mesh architecture

where BANs (hubs/gateways) are performing as both clients and routers/relays,

which will enable flexible and fast deployment of BANs to provide greater radio

coverage, scalability and mobility. When a node/BAN hub is unable to send in-

formation directly to the intended destination node/hub, it tries to relay the infor-

mation through the nearby BAN hubs. A given node, when acting as relay, follows

the decode-and-forward relaying scheme for which it decodes the signal and then

retransmits it. Any-to-any routing is performed in a cross-layered approach, with

two different routing techniques, i.e., shortest path routing (SPR) and cooperative

multi-path routing (CMR), that utilise and interact with the physical layer. There-

fore, changes in channel states (i.e., expected transmission counts, hop counts) are

directly sent from the physical layer to the network layer, so that the routes with

the most favourable channel conditions are chosen (illustrated in Fig. 3.7). The

cross-layer approach across the PHY–Network layer can be implemented by the
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- Route Selection
- Multi-path Routing

Network Layer

- Channel Estimation
- Cooperative Combining

Physical Layer

Interface for upward
information flow, e.g.,

channel state information
(CSI)

Interface for downward
information flow, e.g.,
setting parameter for
physical layer

Figure 3.7: Cross-layer optimisation between Physical and Network layers.

creation of new interfaces for upward/downward information flow [224]. In this

chapter, we investigate the performance of SPR and CMR without any multiple

access scheme or interference mitigation among the co-located BANs.In the next

chapter, we demonstrate the performance of these routing techniques including

some appropriate MAC layer schemes.

For real-time dynamic estimation, we time-stamp5 the samples of any given link

continuously with a reasonable time-stamp period of 500 ms, given the longer co-

herence times of 500 ms (up to 1 s) for ‘everyday’ activities of narrowband on-body

BAN channels [82], and 900 ms (calculated in [225]) for narrowband body-to-body

channels used here. Therefore, the routing table for a given time-stamp is up-

dated based on the estimated channel condition from the previous time-stamp. We

consider 10 mobile people (with intra-body and inter-body interactions) for BAN

coexistence experimentation, to adequately capture the dramatic impact caused

by the slowly-varying human-body dynamics and shadowing by body-parts, both

for the on-body and inter-body channels [226–228]. This also meets the guideline

for the number of closely-located BANs to be supported at the physical layer ac-

cording to the IEEE 802.15.6 Standard [222]. We use MATLAB for analysing and

investigating the performance of coexisting BANs according to the experimental

dataset. The parameters applied for estimating the performance metrics are listed

in Table 3.3. The experimental scenario for the co-located BANs and the routing

techniques (i.e., SPR, CMR) are described in detail in the following sections.

5The whole channel is divided into time-stamps of a given period and the routing table updates
after each time-stamp. The samples are taken periodically over the time-stamp period.
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Table 3.3: Applied Parameters

Parameter Value

Carrier Frequency 2.36 GHz

Data rate 486 kbps

Packet size 273 bits

Sampling rate 20 Hz

Packet transmission time (Tpacket) 0.6 ms

Transmission period (Tactive) 5 ms

Sampling period 50 ms

Tx/Rx mode power consumption:

on-body hub (PTXh
/PRXh

)
6 mW

Tx/Rx mode power consumption:

on-body sensor (PTXs
/PRXs

)
5 mW

Idle mode power consumption (Pidle) 1 mW

Transmit power 0 dBm

Timestamp period 500 ms

Total time 45 mins

Experimental Scenario for co-located mobile BANs

A group of experimental radio measurement datasets6 consisting of large-scale mea-

surements7 were captured from a range of measurement scenarios with various num-

bers of co-located mobile people (wearing body-worn sensors/radios developed in

NICTA8) at different times. The closely located mobile subjects were performing

‘everyday’ mixed activities, e.g., walking, sitting, standing in indoor/outdoor en-

vironments, e.g., building, office space, street, cafe/pub, hence capturing measure-

ment data from typical dynamic real-life scenarios for standard BBN framework.

The team walked along a corridor, into a lift, out into a 3-storey foyer, and then

walked along a street towards a cafe and also a pub where they sat around a table,

after a while they walked back to the office building. The walking segments were

‘natural’ in the sense that people clumped together, moved near and away from

6available in http://doi.org/10.4225/08/5947409d34552 [215].
7intra-BAN (on-body) and inter-BAN (body-to-body) channel gain data (RSSI values) of

around one hour per link.
8National Information and Communications Technology Australia (NICTA) has been incor-

porated into Data61 of CSIRO.



56 Experimentally-based Two-layer Optimisation for Distributed BBNs

Figure 3.8: The radio-frequency testbed with major components highlighted. Bat-
tery (disconnected) is on reverse side

others (relatively at 1 meter distance), and generally moved as a group – chatting

and walking (not in formation).

The wearable radios (XBee/ZigBee devices) in each dataset were transmitting

in a sequential order at 0 dBm transmit power (along with −100 dBm receive

sensitivity) with 5 ms separation between each other. A range of different carrier

frequencies (near 400, 900 and 2400 MHz) and communication bandwidths were

used during the measurements [229]. In the works throughout the thesis, 2.36 GHz

narrow-band is used per link, as it is close to the 2.4 GHz ISM band and also is free

of ISM interference. A detailed description of the testbed used in the measurements

(shown in Fig. 3.8) along with the wearable radios and the hardware platform can

be found in [217]. As described in [217], the testbed used in the measurement is a

programmable radio transceiver with non-volatile data storage, designed to be worn

by test subjects for several hours. The testbed is comprised of – radio transceiver

(Texas Instruments CC2500) which communicates digital data in the form of pack-

ets with the micro controller, Bluetooth surface-mount ceramic multi-layer ‘chip’

antenna (YAGEO CAN4311111002451K), micro controller (Atmel ATmega1281),
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microSD card socket and rechargeable battery (Energiser CP18NM). The microSD

card is used to store gain measurements, which is transferred to a computer using

an off-the-shelf card reader. Each transmitter sends packets with a transmit ID

attached. When a channel sounder device receives a packet from another device it

logs the packet ID and RSSI (receive signal strength indicator): the ID provides

the link identification and the RSSI provides the instantaneous signal strength for

that link [96].

The open-access dataset [215] stated here, consists of continuous extensive intra-

BAN (on-body) and inter-BAN (body-to-body) channel gain data9 incorporating

mixed ‘everyday’ activities including different ambulatory and postural movements,

e.g., walking, sitting, chatting, turning, standing at indoor/outdoor environments.

We analyse the performance of the protocols upon a suitable portion of the dataset

(can be downloaded from [215]) of around 45 minutes, captured from 10 closely

located mobile subjects (adult male and female). We consider 10 mobile people

(with intra-body and inter-body interactions) as a reasonable amount for BAN

coexistence experimentation, due to the dramatic impact caused by the slowly-

varying human-body dynamics and shadowing by body-parts, both on the on-

body and inter-body channels [226–228]. The experimented subjects were walking

together to a hotel bar, sitting there for a while and then walking back to the office.

Each subject wore 1 transceiver on the left-hip and 2 receivers on the left-wrist and

right-upper-arm, respectively (shown in Fig. 3.6).

For real-time dynamic estimation, we time-stamp the samples of a given link

periodically with a continuous time-stamp period of 600 ms, given the longer co-

herence times of up to 1 s for the ‘everyday’ mixed activities for narrowband body-

centric channels [82, 225]. Each transceiver is broadcasting in every 50 ms with

a transmission time of 5 ms to every 9 other subject's receivers as well as their

own receivers (all small body-worn radios/hubs/sensors), along with capturing the

RSSI values in dBm, which gives a total of 300 channel measurements (including

both on-body and body-to-body links) in real-time over the whole network during

the measurement period. Due to the reciprocity property, the channel from any Tx

(transmitter) at position a to Rx (receiver) at position b, is similar for Tx at b to

9estimated from measured RSSI values with 0 dBm transmit power, with a receive sensitivity
of −100 dBm and a noise floor at (≈ −101) dBm.
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Rx at a [217], thus transmitters and receivers can be considered interchangeably to

model multiple synchronous networks [96].

Shortest Path Routing (SPR)

We perform dynamic shortest path routing (SPR) [230] based on an Open Shortest

Path First (OSPF) protocol, which uses link-state algorithm, e.g., Dijkstra’s algo-

rithm, where any source node intends to find route with a minimum cost (based on

routing metrics) to any destination and updates the routing table dynamically to

adapt variable channel conditions and topological changes. Routing metric predicts

the cost of the route calculated from the use of a certain routing protocol, which

plays a critical role in finding out the efficient route to the destination in a network.

For investigating the performance of the dynamic routing, we use a combination of

different routing metrics (e.g. ETX, hop count etc.). Although some well-known

WSN protocols, e.g., CTP [137], RPL [136] make use of the ETX metric, the cal-

culation of ETX in our work differs with respect to the gradient descent technique

followed by those protocols to calculate ETX.

As these protocols (i.e., CTP, RPL) use a rooted topology (for collecting in-

formation), each node maintains an estimation of its route cost to a collection

point/specific sink node, where the collection point exhibits a cost of zero, which

leads to a convergence towards the root node, as a node only selects forwarding

nodes that provide strictly more progress than itself with a lower ETX. By con-

trast, in our work, we simply find routes between two nodes (from any source to

any destination) which have minimum cost (sum of the ETX values of the links in

a route), without any back propagation to a root node. Furthermore, in RPL, if a

source node wants to communicate with any node (other than root or sink node),

the route has to go first upwards (towards the root node) and then downwards

(towards the destination), as RPL uses only one common ancestor node instead of

a full mesh (similar as CTP) [138]. This increases the number of hops in a route

as well as the delay and energy consumption. In our work, we have restricted the

routes to a maximum of two hops, which saves energy and latency while providing

acceptable packet delivery ratio (demonstrated in following sections).
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Algorithm 1: Finding shortest path route (ETX + max. two hops count)

input : Source node (S), destination node (D), and set of intermediate
nodes (N).

output: Shortest path from S to D.

1 Petx ← Set of ETX values for every possible paths from S to D;
2 [i, j] ← [1,length(Petx)];
3 while i 6= j do
4 etxmin ← minimum(Petx);
5 if PathHopCount(etxmin) = 2 then
6 OutputSPR ← Path(etxmin);
7 else
8 Petx ← Petx − etxmin;
9 etxmin ← minimum(Petx);

10 j ← j − 1;

11 end
12 i← i+ 1;

13 end
14 if isempty(OutputSPR) then
15 OutputSPR ← direct path;
16 end

ETX The Expected Transmission Count (ETX) path metric is a simple, proven

routing path metric that favours high capacity and reliable links. This metric esti-

mates the number of retransmissions required to send unicast packets by measur-

ing the loss rate of broadcasted packets between pairs of neighbouring nodes [231],

which can be calculated as follows:

ETX =
1

1−Op

, (3.3)

where Op is the outage probability with respect to the receiver sensitivity, e.g.,

−100 dBm. ETX adds more reasonable behaviour under real life conditions, since

this metric is based on packet loss and thus the number of packets sent.

Hop count Hop count identifies the route which has minimal number of hops.

The primary advantage of this metric is its simplicity. Once the network topology

is known, it is easy to compute and minimise the hop count between a source and
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Figure 3.9: Shortest path routing (SPR), with and without hop restriction. The
path taken without hop restriction can be a longer path with the lowest cost.

its destination. However, the primary disadvantage of this metric is that it doesn’t

take packet loss, bandwidth, power consumption or any other characteristic of a

link into account [231].

Here, an optimal path is selected by combining these two metrics (ETX + Hop

count), restricting the hop count to two hops. A pseudo-code for this process is

given in Algorithm 1. The ETX of a given link is estimated from EQ. (3.3) with

the RSSI values of the previous time-stamp (500 ms) to be applied in the next

time-stamp of 500 ms. As the router performs periodic updates, when there is no

route from source to destination (ETX =∞), the router chooses the direct link for

the given time-stamp period to possibly avoid longer delay. In SPR, the combined

channel gains at the destination can be measured as follows:

sprcomb = min
(
h1, ..., hk

)
, (3.4)

where k is the number of hops in the route; k = 2 when two hop restriction is

applied on SPR. In Fig. 3.9, an illustration of shortest path routing (SPR) is

presented, where the difference between using the ETX metric with and without

hop restriction is demonstrated. The path taken without hop restriction can be

a longer path with the lowest cost. However, the path associated with combined
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metric (ETX + maximum two hops) is an optimal path, having the lowest cost

possible with a maximum of two hops.

Cooperative Multi-path Routing (CMR)

Multi-path routing yields better performance than single-path routing by providing

simultaneous parallel transmissions with load balancing over available resources.

Hence, cooperative multi-path routing (CMR) has been considered in [143]. We

propose a new CMR scheme that employs 3-branch selection combining (SC) within

individual route paths, incorporating shortest path routing (SPR) and improving

the performance of SPR.

In dynamic cooperative multi-path routing, we use cooperative paths from

source to destination with combined channels in each route-hop. Here, route-hop

refers to each hop of a path/route in CMR from source hub to destination hub

through an intermediate BAN hub (acting as a mesh router/relay). In each route-

hop, 3-branch cooperative selection combining is used, where one of the branches

is the direct link and the other two branches (cooperative relayed links) have two

link-hops. Link-hop refers to each hop of the branch from a BAN hub through

on-body relays of the corresponding BAN. A decode-and-forward protocol is ap-

plied at each on-body relay. The equivalent channel gain at the output of selection

combining can be estimated as follows:

hsc(τ) = max
{
hsd(τ), hsr1d(τ), hsr2d(τ)

}
, (3.5)

where hsc(τ) is the equivalent channel gain at the output of the selection combining,

at time instant τ . hsd is the channel gain from source-to-destination (direct link),

hsrid = min{hsri , hrid} are the channel gains of the first and second cooperative

relayed links (with two link-hops, s to ri, and ri to d), i = [1, 2], respectively.

For multi-path routing here, two different paths are used (if more than one

path is available) from source hub to destination hub, where both paths can have

maximum of two route-hops. The shortest path is chosen according to an SPR

calculation, hence the two paths go through the two nearest BAN hubs from the

source. The nearest BANs from any given source can be found from the source

hub-to-connected hub channel gains, approximated from the RSSI at the connected
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Figure 3.10: Cooperative multi-path routing (CMR) with 3-branch selection com-
bining in each route hop.

BAN hubs. In CMR, the combined channel gains at the destination for a given

path/route is measured as follows:

cmrcomb = min
{
hRH1

, hRH2

}
, (3.6)

where hRHj are the cooperatively combined (with selection combining) channel

gains at route hop j = [1, 2] of the route. hRHj can be calculated from Eq. (3.5).

The destination process the data/information once it receives the packet/data

through any of the paths. Also, for body-centric channels (specially for B2B chan-

nels), retransmissions of failed packets are often impractical (except for critical

applications) [232] due to the longer coherence times. For instance, retransmitting

a failed packet multiple times (with a retransmission timeout period) will increase

the delay and energy consumption, with lower probability of successful delivery

as the channel condition remains similar for hundreds of milliseconds. One of the

main objective of cooperative multi-path routing is to reduce such retransmissions

in order to avoid unnecessary delay. Here, retransmission is only permitted in CMR

when the shortest path has a single route-hop and no alternate path is possible.
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Algorithm 2: Estimating Output of CMR

input : Source node (S), destination node (D), and set of intermediate
nodes (N).

output: Result of CMR at destination node.

1 P1← FindShortestPathWithHopRestriction(S,D,N);
2 P2← FindShortestPathWithHopRestriction(S,D,N) 6= P1;
3 if isempty(P2) 6= 1 then
4 for i← 1 to 2 do
5 for j ← 1 to length(Pi) do
6 PiRHj ← SelectionCombining(Route Hopj);
7 end

8 end
9 if length(P1) > 2 then

10 CombP1 ← minimum(P1RH1
, P1RH2

);
11 else
12 CombP1 ← P1RH1

;
13 end
14 CombP2 ← Repeat steps 9 to 13 for P2;
15 if CombP1 is successful then
16 OutputCMR ← CombP1;
17 else
18 OutputCMR ← CombP2;
19 end

20 else
21 Repeat steps 4 to 14;
22 if CombP1 is successful then
23 OutputCMR ← CombP1;
24 else
25 Retransmit through P1;
26 end

27 end

However, in CMR, the use of an alternate path and the cooperative combining in

each route-hop of a path increases the chance of successful packet delivery despite

avoiding retransmissions (as shown in the following section). The process for CMR

is illustrated in Fig. 3.10 and described with a pseudo-code in Algorithm 2.
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3.3.2 Experimentally-based Results

In this section, we analyse the performance of the cross-layer approach and com-

pare the results with different WSN protocols, i.e., ORPL [138], LOADng [139]

for low-power and lossy networks (LLNs) that support any-to-any routing. We

implement ORPL and LOADng in MATLAB, and applied those protocols on the

same measurement dataset [215] for a fair comparison with SPR and CMR. When

implementing ORPL and LOADng, two nodes are considered as neighbours if the

link RSSI is greater than or equal to the receiver sensitivity (i.e., −100 dBm).

ORPL ORPL uses a combination of a rooted/DODAG (Destination Oriented

Directed Acyclic Graph) topology with opportunistic routing based on the EDC

(Expected Duty Cycles) metric [233]. As described in [233], the EDCi of node i

for a given subset Si of neighbours with link quality pij and EDCj (j ∈ Si) is as
follows:

EDCi(Si) =
1∑

j∈Si
pij

+

∑
j∈Si

pijEDCj∑
j∈Si

pij
+ ω, (3.7)

where the first term is the single hop EDC, which denotes how many units of time

it requires on average to transmit a packet to one of the neighbouring nodes in Si.

The second term describes the routing progress that the neighbouring nodes in Si

offer, weighted by their link qualities pij (estimated from Packet Reception Rate

(PRR)). The third term, ω, adds a weight to reflect the cost of forwarding.

With a DODAG topology, the root node has an EDC of 0. We select node 6

from the experimental measurement used in our work as the root node because

of its suitable position (with better proximity) and communication with all other

nodes, hence EDCnode6 = 0. The forwarding cost ω is chosen to be 0.1 according

to [233] as a good balance between energy efficiency, delay and reliability. EDC

selects the forwarder sets (the nodes that can forward/relay the data) for each node

from the neighbours. According to ORPL, node a will only forward to a receiver
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node b, if and only if it has the destination on its routing set and,

(EDCb + ω < EDCa) ∩ (pab > 50%)

(when routing upwards towards root)

(EDCa < EDCb + ω) ∩ (pab > 50%)

(when routing downwards towards destination)

If there are multiple successful forwarders the node will select the forwarder with the

best EDC or, link quality. ORPL uses randomised periodic broadcast for updating

the routing information with a Trickle timer (based on Trickle algorithm [234,235]).

Here, for the wake-up interval of the trickle timer, the lower bound is set to be 400

ms and the upper bound is set to be 1000 ms. We analysed the performance of

ORPL with different redundancy constants, e.g., k = 2, 3, 4 of the trickle timer and

we obtained nearly identical results. We chose the redundancy constant as k = 4

according to [138,236], where k = 3 to 5 is investigated as an optimal redundancy

constant in deployments.

LOADng We implement LOADng based on a distance-based routing followed

from traditional AODV protocol [140]. Here, the RSSI values from the measure-

ments are used for anticipating the distance between particular nodes and estimat-

ing the hop count to reach from source to destination. However, BAN radio propa-

gation is dominated by local variations and not by distance-based path losses [96].

As a reactive protocol, LOADng routes are updated whenever a packet is lost due

to a broken link condition. Besides being a reactive protocol, LOADng also uses

a Route Hold Time (RHT) [237] to specify the lifetime of a route. After the RHT

expires, the router updates the route to ensure the selection of a shortest path.

Here, we have used a RHT of 500 ms.

We consider outage probability, throughput (successful packets/s), average end-

to-end delay and average energy consumption (per packet) as the performance

metrics for evaluating the experimentally-based optimisation techniques in this

chapter. Furthermore, we demonstrate the percentage of hop count induced from

different protocols. Additionally, the statistical distribution fits for SPR and CMR
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are investigated.

Outage Probability

An estimation of packet error rate and packet delivery ratio, and hence general

performance can be made from outage probability, since it is the cumulative dis-

tribution function of channel gains. The average outage probability for a network

of 10 co-located mobile BANs with SPR and CMR, is presented in Fig. 3.11 and

can be expressed as follows:

Poutx = Prob
(
xcomb < rsth

)
, (3.8)

where Poutx is the probability of combined channel gain xcomb across routing tech-

nique x, being less than a given receive sensitivity threshold, rsth. The outage

probabilities are taken from the overall network at assuming different receive sen-

sitivities at a transmit power of 0 dBm. For estimating the outages properly, the

effect of non-recorded measurements (NaN) due to incorrectly decoded packets

were replaced with a value of −101 dBm, just below the receiver sensitivity of

−100 dBm. In Fig. 3.11, it can be seen that SPR, LOADng and ORPL techniques

have approximately similar results, where SPR (without hop restriction) has only

marginally better packet delivery ratio than the SPR method with hop restriction,

as it takes the path with lowest cost (where most of the routes consist of one or

two hops) but can consume more energy and network lifetime due to the length of

some routes (up to eight hops).

LOADng provides slightly better packet delivery ratio than SPR because of the

immediate route repair technique, however it can also take lengthy routes without

hop count restriction. In that case, the routes chosen by SPR with respect to the

combined metric (ETX + maximum two hops) provide a good trade-off between

throughput and energy consumption (as shown in following subsections), as it

is restricted to two hops. On the other hand, CMR (which uses a similar hop

count restriction) provides up to 8 dB, 7 dB, and 6 dB improvement over ORPL,

SPR with hop restriction, and LOADng (as well as SPR without hop restriction),

respectively, at 10% outage probability. It is shown that in the best-case scenario

(at −100 dBm receive sensitivity), there is 0% outage probability for 10 hubs
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Figure 3.11: Outage probability of the averaged gains (over the network with 10
BANs) found from ORPL (routing metric: EDC, k = 4), LOADng (routing metric:
hop count), SPR and CMR (routing metric: ETX, hop count); transmit power 0
dBm. Black dotted curves represent the theoretical cdf (cumulative distribution
function) of the corresponding outage probability and are well aligned.

with all the protocols (with ORPL, that is 0.4%), which indicates a packet error

rate close to 0% (< 10%), thus achieving the requirement of the IEEE 802.15.6

Standard. Importantly, SPR (along with LOADng) and CMR techniques achieve

less than 10% outage probability at −95 dBm and −88 dBm receive sensitivity,

respectively.

The same process is repeated for SPR and CMR with transmit power 10 dBm

(at hubs) and 5 dBm (at relays) in Fig. 3.12. The minimum receive sensitivity is

considered to be −90 dBm, owing to the increased transmit power, which causes the

lower limit of measured channel gains to be at −100 dB. For the same reason, the

actual receiver sensitivity of the sensors is considered to be −86 dBm for calculating

ETX values. By comparing Figs. 3.11 and 3.12, it can be seen that the curves in

Fig. 3.12 shift right with the change of transmit power and receive sensitivity, which

implies that with increased transmit power of on-body nodes, excellent reliability

is obtained with less sensitive receivers. In this case, the average outage probability

for 10 hubs is also less than 10% for both SPR and CMR, for receive sensitivities

of ≤−84 dBm and ≤−80 dBm, respectively.
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Figure 3.12: Outage probability of the averaged gains (over the network with 10
BANs) found from SPR and CMR (routing metric: ETX, hop count); transmit
power 10 dBm (at hubs) and 5 dBm (at relays). Black dotted curves represent
the theoretical cdf (cumulative distribution function) of the corresponding outage
probability and are well aligned.

Throughput (successful packets/s)

Throughput provides an assumption of how much information can be transferred

per unit time (with a given transmission rate). The throughput (in packets/s) is

analysed considering that in each transmission period (or active period) the node

will transmit at least one packet, however given the transmission period and packet

transmission time (Table 3.3), more than one packet can be transmitted during the

transmission period. We then estimate the throughput, Θx (number of successful

packets per second) based on the received signal strength at the destination for

different protocols as follows:

Θx =

∑(
xcomb ≥ rsth

)

Total time (s)
, (3.9)

where Θx is the total number of successful packets (estimated from the combined

channel gain xcomb across routing technique x, with respect to the given receive

sensitivity threshold, rsth) per unit time (second). The number of successful packets

is averaged over the whole network at continuous times. The average throughput
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Figure 3.13: Average throughput (packets/s) for SPR, CMR, ORPL, and LOADng;
at −100 dBm receive sensitivity with transmit power 0 dBm.

over the network with 10 BANs with different protocols is shown in Fig. 3.13. It

can be seen that CMR outperforms the other protocols in terms of throughput by

providing 95% successful packet delivery (19 packets/s at a packet transmission

rate of 20 Hz), which indicates increased successful transmissions with multi-path

routing incorporating cooperative combining. Also, SPR (with hop restriction) and

ORPL has lower throughput with respect to other protocols.

Delay

Delay is an important design and performance characteristic of network. The term

delay used throughout this chapter is referred to as the end-to-end delay, which

specifies how long it takes for a data packet to travel across the entire network path

from source to destination. End-to-end delay can be roughly estimated as follows:

Dend end = Dtrans +Dqueue +Dproc +Dprop, (3.10)

where Dtrans, Dqueue, Dproc, and Dprop are the transmission, queuing, processing,

and propagation delays, respectively. As the processing and propagation delays

are negligible in the scenario described in this chapter, we have calculated trans-

mission and queuing delays to evaluate the end-to-end delay. The transmission
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delay (Dtrans) is the delay for packet transmission (Tpacket). The queuing delay is

referred to as the waiting delay that occurs at intermediate nodes (hubs/relays)

during a packet delivery. As each node is transmitting every 50 ms without central

coordination, we consider the highest possible amount of waiting period (e.g., 49

ms, excluding the packet transmission time of around 1 ms) when estimating the

waiting/queuing delay at intermediate BANs/relays.

In case of retransmission due to the failure of delivering a packet, the amount

of Dend end is doubled. In CMR, the on-body sensors/relays (in each route-hop)

are operating in a different tier and coordinated by their hub with a sequential

transmission. Again, we consider the highest amount of waiting delay for the

intermediate BAN/relay node in CMR, e.g., 59 ms considering the extra waiting

time for the packet transmission of the cooperative relayed links at the route-hop.

It should be noted that in practical situations the end-to-end delay may be less

than the estimated delay here, e.g., the waiting period at an intermediate node can

be lower than the maximum amount, as the packet can arrive at any time during

the transmission period and the intermediate BAN hub can transmit at any time

during the sampling period.

The average end-to-end delays at continuous times with different protocols over

the whole network consisting of 10 co-located BANs are presented in Fig. 3.14. Ac-

cording to the IEEE 802.15.6 Standard guideline [29], latency should be less than

125 ms in medical applications and less than 250 ms in non-medical applications.

The average and maximum end-to-end delay over the whole period of the BBN

with different protocols are shown in Fig. 3.15, where all of them are producing

an acceptable amount of delay (on average) according to the IEEE 802.15.6 BAN

Standard for medical and non-medical applications. As the average delay is esti-

mated for the specific dataset with a finite amount of channel measurements, the

knowledge of the maximum amount of delay (with the dataset) is beneficial in the

long run to get an assumption of the upper limit of the delay that can be caused

by the protocols.

Although CMR generates slightly increased delay (still acceptable) on average

than SPR (with hop restriction) and LOADng due to the selection combining at

route-hops, the maximum delay caused by CMR is lower then all other protocols

owing to the reduced retransmissions (yet producing the highest throughput). The
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Figure 3.14: Average end-to-end delay at continuous times for SPR, CMR, ORPL,
and LOADng; at −100 dBm receive sensitivity with transmit power 0 dBm.

maximum amount of delay of CMR and SPR (with hop restriction) is less than

250 ms, which is an acceptable amount of latency for BAN non-medical applica-

tions. The maximum delay generated by other protocols are very high, specially

for ORPL, which produces the highest amount of delay (61 ms on average, can go

up to 605 ms), as the delay increases when there is no possible forwarding node in

the forwarding set. In all of the cases, the transmit power and receive sensitivity

are 0 dBm and −100 dBm, respectively, across all nodes (hubs/relays).

We also estimate the average end-to-end delays with differing receive sensitiv-

ities, e.g., −90 dBm, −86 dBm for different protocols (results are shown in Table

3.4). It can be seen from Table 3.4 that with respect to CMR, the average de-

lays for other protocols, e.g., SPR, ORPL, LOADng increase significantly, due to

the added retransmission delays for increased packet failure rate and longer paths

taken for reliable packet delivery with less receive sensitivity. More importantly,

with less receive sensitivity, e.g., −90 dBm, −86 dBm at the same transmit power,

i.e., 0 dBm, the average amount of delay for CMR remains lower than all other

protocols.
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Figure 3.15: Average and maximum end-to-end delay over the whole period for
SPR, CMR, ORPL, and LOADng with the network consisting of 10 BANs; with
transmit power 0 dBm at −100 dBm receive sensitivity.

Energy Consumption

Energy consumption is one of the main performance metrics for resource-constrained

networks like BANs. The energy consumption for each transmitted packet is cal-

culated as follows:

Ep =

h∑

i=1

Epacketi +

n∑

j=1

Eidlej , (3.11)

where Epacketi is the energy consumption for packet transmission in ith hop and

Eidlej is the energy consumed by the jth transceiver in idle period during packet

transmission. h and n are the number of hops and intermediate nodes/relays of a

given route from source to destination, respectively.

Epacket and Eidle for each hop are calculated as follows:

Epacket =





Tpacket × (PTXh + PRXh), for hub-to-hub.

Tpacket × (PTXh + PRXs), for hub-to-sensor.

Tpacket × (PTXs + PRXh), for sensor-to-hub.

(3.12)
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Figure 3.16: Average energy consumption (per packet delivery) at continuous times
for SPR, CMR, ORPL, and LOADng; at −100 dBm receive sensitivity with trans-
mit power 0 dBm.

Eidle = Tidle × Pidle, (3.13)

where Tpacket is the packet transmission time, Tidle is the idle period of the transceiver

during a packet transmission, PTXh/PRXh are the power consumption of the on-

body hubs during TX/RX mode, PTXs/PRXs are the power consumption of the

on-body sensors during TX/RX mode and Pidle is the power consumption in idle

mode. The applied parameters for the energy consumption estimation are given in

Table 3.3.

The average energy consumption (per packet delivery) at continuous times over

the whole network with different protocols is shown in Fig. 3.16. Also, the average

and maximum energy consumption of the network over the whole measurement

period is shown in Fig. 3.17. From Fig. 3.17, reasonably, the average energy

consumption over the total time for CMR (0.1 mJ) is more than the other protocols

because of the extra energy consumption of the on-body sensors in each route hop.

But CMR consumes less energy (0.2 mJ) with respect to other protocols (except

SPR with hop restriction) in terms of maximum energy consumption, e.g., ORPL

can consume up to 0.7 mJ energy per packet delivery. Although LOADng consumes

lower energy on average (0.05 mJ) because of its highly reactive characteristic,
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Figure 3.17: Average and maximum energy consumption (per packet delivery) over
the whole period for SPR, CMR, ORPL, and LOADng with the network consisting
of 10 BANs; with transmit power 0 dBm at −100 dBm receive sensitivity.

the energy consumption can rise 10 times higher (0.5 mJ) when considering the

maximum energy consumption, which can further increase in high-density networks

with larger hop counts [237]. Also, it can be seen from Fig. 3.16 that in some

cases, the other protocols, e.g., SPR without hop restriction, ORPL, LOADng

consume more energy than CMR, owing to the extra energy consumption of an

increased number of hops and from retransmission of packets in case of failure.

Interestingly, from Table 3.4, when lowering the receive sensitivity, e.g., −90 dBm,

−86 dBm with the same transmit power, the average energy consumption increases

for all the protocols except CMR. In this case, CMR in fact helps to improve

energy consumption by reducing the packet failure rate and retransmissions with a

cooperative path, having a possible route (up to two hops) with a lower idle period.

However, it is plausible to further reduce the energy consumption by optimising

the overhearing and broadcasting transmissions of nodes, reducing the overhead

of frequent periodic updates of the routing table (updating when necessary) and

opportunistic relaying in route hops of CMR. Besides that, if the hub can be carried

by the BAN, e.g., as a smart phone or any other device rather than worn as an

on-body sensor, then the energy consumption will cause limited overhead for hub-

to-hub communications.
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Percentage of Hop Count

The hop count percentage of routes taken by a given protocol indicates how much

overhead, e.g., delay, energy consumption is caused by that protocol. We have in-

vestigated the percentage of different number of hop counts with different protocols

(with −100 dBm receiver sensitivity), as shown in Fig. 3.18. It can be seen in Fig.

3.18 that a major portion of the time for all protocols is occupied by routes that

consist of one hop (around 45% on average) or two hops (around 38% on average).

On the other hand, the ORPL protocol takes more than two hops (up to nine hops)

for a significant amount of time (26% of the total period) because of the DODAG

topology, which increases the overall delay and energy consumption due to extra

overhead, e.g., finding forwarding node which has the destination on its routing set.

Additionally, it is found that with the EDC metric (which partially depends on the

quality of the links connected to the root node), there is no possible route for up

to 13% of the time with ORPL, as ORPL only takes the forwarder nodes which

has PRR greater than 50%. Hence, the restriction to a maximum of two hops (in

conjunction with the ETX metric) is a suitable choice to jointly optimise energy

consumption and reliability, while incorporating less overhead. However, with a

maximum two hop restriction, SPR and CMR choose direct (one hop) links more

than 50% of the time, as it chooses the best path (with one or two hops) that has a

smaller transmission/retransmission count. Furthermore, as shown in this section,

we have gained an acceptable outage probability and delay performance (compliant

with the IEEE 802.15.6 Standard guideline [29]) by the use of the combined metric

(ETX + maximum two hops).

The empirical results found from Figs. 3.11 to 3.17, are summarised in Table

3.4.

Probability Density Functions

We investigate distribution fits, using typical statistical distributions, for the com-

bined channel gains, acquired after SPR and CMR techniques are applied on the

experimentally measured channel gain data. In Figs. 3.19 and 3.20, it is shown

that the probability density function of the combined channel gains across dy-

namic SPR and dynamic CMR provide gamma (Fig. 3.19) and Rician (Fig. 3.20)
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Table 3.4: Empirical result analysis for different protocols; OP, RS, TP, and EC
imply outage probability, receive sensitivity, transmit power, and energy consump-
tion, respectively

SPR

(without

hop restr-

iction)

SPR

(with hop

restriction)

CMR
ORPL

(k = 4)

LOADng

(RHT =

500 ms)

Best-case OP;

RS: −100 dBm;

TP: 0 dBm

0% 0% 0% 0.4% 0%

At 10% OP,

CMR gain

w.r.t. others;

TP: 0 dBm

6 dB 7 dB - 8 dB 6 dB

Avg. throughput

RS: −100 dBm
18 17 19 17 18

Avg. latency

RS: −100 dBm
51.7 ms 44.3 ms 47.5 ms 61 ms 45.9 ms

Max. latency

RS: −100 dBm
555 ms 155 ms 135 ms 605 ms 455 ms

Avg. latency

RS: −90 dBm
61.9 ms 53.3 ms 50.5 ms 72.2 ms 57 ms

Avg. latency

RS: −86 dBm
84.5 ms 72.3 ms 60 ms 97.1 ms 81.4 ms

Avg. EC

RS: −100 dBm
0.06 mJ 0.05 mJ 0.1 mJ 0.07 mJ 0.05 mJ

Max. EC

RS: −100 dBm
0.6 mJ 0.17 mJ 0.2 mJ 0.7 mJ 0.5 mJ

Avg. EC

RS: −90 dBm
0.07 mJ 0.06 mJ 0.1 mJ 0.08 mJ 0.07 mJ

Avg. EC

RS: −86 dBm
0.1 mJ 0.08 mJ 0.12 mJ 0.11 mJ 0.09 mJ
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                      3 hops: 10%

4/5/6/7 hops: 2%          

(c) LOADng (RHT = 500
ms)

Figure 3.18: Percentage of hop count of routes with different protocols (SPR,
ORPL, LOADng), at −100 dBm receiver sensitivity.

distribution fits, respectively. The maximum likelihood estimation (MLE) parame-

ter [238] is used to select the best fit. Channel gains are taken over 5329 continuous

time-stamps, each of which is for 500 ms.

The probability distribution for the combined channel after applying shortest

path routing (SPR) over coexisting BANs is gamma, which can be calculated from

f(x | κ, θ) = 1

θκΓ(κ)
xκ−1 exp

(−x
θ

)
, x > 0, (3.14)

where κ = 9.58 and θ = 0.00000334 are the shape and scale parameter, respectively,

for this channel gain fit after SPR is performed.

A Rice or Rician distribution (also known as a Nakagami-n distribution) models

Rician fading, in which signal cancellations affect radio propagation [239]. Rician

fading occurs when the signal arrives at the receiver by several different paths and

one of the paths (typically a line-of-sight path) is stronger than the others. Here,

the probability distribution for the combined channel gains from cooperative multi-

path routing (CMR) with coexisting BANs can be approximated from the Rician

probability distribution as follows:

f(x | ν, σ) = x

σ2
exp

(−(x2 + ν2)

2σ2

)
Io

(xν
σ2

)
, (3.15)

where Io(z) is the modified Bessel function of the first kind with order zero, and

ν = 0.0000626 and σ = 0.0000185 are the two shape parameters, for the combined
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Figure 3.19: The empirical probability density of combined channel gain data from
SPR with a gamma distribution fit, where κ = 9.58 and θ = 0.00000334 are the
shape and scale parameter, respectively.
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Figure 3.20: The empirical probability density of combined channel gain data from
CMR with a Rician distribution fit, where ν = 0.0000626 and σ = 0.0000185 are
the two shape parameters.

channel gain fit after CMR is performed.



3.4 Summary 79

3.4 Summary

In this chapter, we have investigated the performance of cooperative communica-

tions for a BAN for monitoring a sleeping person, where we have demonstrated that

up to 7 dB and 20% performance improvement can be achieved with cooperative

communications (with two-hop links), for outage probability and outage duration,

respectively. We have also proposed and analysed cross-layer methods, i.e., shortest

path routing (SPR) and cooperative multi-path routing (CMR) with experimental

measurements, to optimise radio communications across distributed wireless body-

to-body networks (BBNs), by utilising distinct features at the physical and network

layers. Physical layer information, e.g., ETX, hop count was dynamically fed into

the network layer for determining real-time and reliable routes among BAN hubs.

We have compared the performance of SPR and CMR with some state-of-the-art

WSN protocols, e.g., ORPL, LOADng that support any-to-any routing. From our

analysis, it is evident that the ETX or the hop count metric with mesh topology can

perform better than the EDC metric (with DODAG topology) in case of any-to-any

routing, as ORPL performance (which makes use of the EDC metric) falls behind

the other protocols. This also implies that SPR and CMR provides improvement

over the CTP and RPL protocols (other state-of-the-art WSN protocols) as ORPL

outperforms those protocols.

We have shown that in the best-case scenario (at −100 dBm receive sensi-

tivity), shortest path routing (SPR) and cooperative multi-path routing (CMR)

along with other protocols provide negligible packet error rate and an acceptable

amount of end-to-end delay (on average) according to the IEEE 802.15.6 BAN

Standard. At 10% outage probability, CMR gives significantly better performance

than other protocols by contributing up to 8 dB, 7 dB, and 6 dB improvement

over ORPL, SPR, and LOADng, respectively, occurring at practical receive sensi-

tivities. The maximum amount of end-to-end delay with CMR (135 ms) is lowest

amongst all protocols (e.g., ORPL generates a maximum end-to-end delay of 605

ms) due to the reduced retransmissions and hop count restrictions. Notably, CMR

outperforms other protocols in terms of throughput (successful packets/s) while

providing an acceptable amount (for medical/non-medical applications) of average

end-to-end delay (47.5 ms), at −100 dBm receive sensitivity. Also, CMR provides
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the lowest amount of average end-to-end delay with respect to other protocols for

reduced receive sensitivity, e.g., −86 dBm, −90 dBm. Our analysis has shown

that CMR consumes more energy (on average) than other protocols because of the

power consumption in the cooperative relayed links at route-hops. However, the

maximum energy consumption with CMR is much lower than other protocols (ex-

cepting SPR with hop restriction). Also, in some cases, CMR in fact reduces the

energy consumption by increasing packet delivery ratio with less retransmissions.

For instance, with less receive sensitivity, e.g., −86 dBm, −90 dBm, the average

energy consumption for other protocols, e.g., SPR, ORPL, LOADng increases while

the average energy consumption of CMR remains approximately the same.

Furthermore, it has been demonstrated that most of the routes for all of the

protocols consist of one or two hops, thus validating the applicability of two hop

restriction using the ETX metric to optimise the performance of BBN communica-

tions in real-life scenarios. We have also observed that the combined channel gains

across a complete SPR route with narrowband communications possess a gamma

distribution, whereas the complete combined channel gains from CMR have a Ri-

cian distribution. This work has provided a feasible method for the deployment

of many closely-located BANs in decentralised real-world applications with large-

scale and highly-connected medical/non-medical systems. In the next chapter, we

analyse the performance of the routing techniques (proposed here) with different,

suitable, MAC layer schemes, i.e., time division multiple access (TDMA) and car-

rier sense multiple access with collision avoidance (CSMA/CA).
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Chapter 4

Experimentally-based Three-layer

Optimisation for Distributed

BBNs

4.1 Introduction

When multiple co-located BANs form a network, i.e., a wireless body-to-body net-

work (BBN) with local coordination between them, some other mobile BANs can

enter in their proximity, which can cause interference and performance degradation

of the coordinated BBN. Here, we investigate such real-life scenarios where some

mobile BANs (people wearing sensors) are coming into the vicinity of coordinated

BANs, hence causing interference. This chapter is an extension of the previous

chapter, where now we perform cross-layer optimisation across three layers: the

physical, MAC, and network layers; to route information across the BBN. At the

network layer, the best route is selected according to channel state information

directly fed from the physical layer, associated with different suitable MAC layer

interference mitigation schemes, i.e., low duty cycle TDMA (time division multiple

access), and a novel adaptive CSMA/CA (carrier sense multiple access with colli-

sion avoidance). Among these two top foremost popular medium access techniques

used in BANs, TDMA has maximum bandwidth utilisation and lower power con-

sumption compared to CSMA/CA [240], whereas CSMA/CA improves the overall

83
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throughput by avoiding a fixed waiting period. The routing techniques proposed in

Chapter 3 – i.e., shortest path routing (SPR) and cooperative multi-path routing

(CMR) incorporating three branch selection combining, are applied over real-life

channel measurements to analyse the performance. In this chapter we aim to ad-

dress the following issues:

• How to improve reliability with interference mitigation amongst real-life co-

existing BANs?

• How to utilise the slowly varying channel conditions to apply adaptive mech-

anisms over real-life body-centric channels?

In the following sections, we demonstrate the outcomes of cross-layer optimisation

across PHY-MAC-NET layers, validated with experimental analysis, for distributed

co-located BANs.

4.2 Cross-layer optimised routing with low duty

cycle TDMA across BBNs

We study the performance of cross-layer optimisation across the physical, MAC and

network layers, with radio interference mitigation for two-tiered communications

across multiple coexisting wireless body area networks (BANs), based on real-life

measurements. Time division multiple access (TDMA) is used as the MAC layer

protocol with low duty cycling for improving co-channel interference. The routing

techniques (i.e., shortest path routing (SPR), and cooperative multi-path routing

(CMR) incorporating 3-branch selection combining) perform real-time and reliable

data transfer across co-located BANs operating near the 2.4 GHz ISM band. Our

key findings according to empirical analysis are as follows:

• CMR obtains up to 14 dB and 10 dB improvement over SPR with higher

(8.3%) and lower (0.2%) duty cycles, respectively, at 10% outage probability

with respect to an acceptable SINR in a dynamic environment associated

with mobile subjects.
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• With 90% packet delivery ratio (PDR), CMR provides up to 9 dB (with 8.3%

duty cycle) and 8 dB (with 0.2% duty cycle) performance improvement over

SPR, at −89 dBm receive sensitivity.

• In the best-case scenario (at −100 dBm receive sensitivity), both SPR and

CMR achieve almost 100% PDR (equivalent to negligible packet error rate).

• CMR has better spectral efficiency than SPR with a spectral efficiency of up

to 0.15 bits/s/Hz at −95 dBm receive sensitivity.

• The empirical received SINR through SPR has an inverse Gaussian or, log-

normal distribution while the empirical received SINR through CMR has a

Burr (type XII) distribution.

4.2.1 System Model

In this work, 10 co-located mobile BANs (people with fitted wearable radios) are

deployed for experimental measurements (the experimental scenario is described in

Chapter 3) where we consider 4 BANs as coordinated and 6 other BANs causing

interference by coming in the range of the transmissions. We follow the same two-

tiered network architecture (described in Chapter 3) formed from the coordinated

BANs, where the hubs of the BANs are in tier-2 in a mesh (inter-BAN/ BBN

communications) and the on-body sensors of the corresponding BANs are in tier-1

(intra-BAN communications), illustrated in Fig. 4.1 with four coordinated BANs.

Each subject wore 1 transceiver (hub) on the left-hip and 2 receivers (sensors/

relays) on the left-wrist and right-upper-arm, respectively. As the transceivers are

broadcasting in a sequential order, with 4 coordinated BANs (a total of 12 nodes),

each transmitter is transmitting every 60 ms (5 ms ×12) to every 3 other subject’s

receivers as well as their own receivers (all small body-worn radios/hubs/sensors),

along with capturing the RSSI (Receive Signal Strength Indicator) values in dBm.

An abstraction of the PHY-MAC-Network cross-layer optimisation is provided

in Fig. 4.2. Dynamic routing is performed at the network layer according to the

changes directed from physical layer, and TDMA is employed as the co-channel

access scheme across all BANs to enable co-channel interference mitigation. As
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Figure 4.1: Two-tiered architecture of 4 coordinated BANs

Figure 4.2: Cross-layer optimisation across physical-MAC-network layers

global coordination is not feasible across coexisting BANs [121], the starting time

of each coordinated node is randomly selected from an uniform distribution between

0 ms and the idle period ([0, Tidle]). The idle period of the coordinated nodes, Tidle

is calculated as Tidle = (nd − 1)(Ptrans × t), where nd is the total number of nodes

(hubs + relays/sensors) of the coordinated BANs, Ptrans is the number of packets
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transmitted per node and t is the packet transmission time. The duty cycle, Dc of

a given node is measured as follows:

Dc =
(Ptrans × t

∆

)
× 100%, (4.1)

where (Ptrans × t) is the active period of the node in a given time period ∆.

To substantially decrease the interference level, the duty cycles are lowered by

increasing the idle period of the nodes, hence decreasing the active period. The

time-stamp1 is set to be 10 times the sampling period of the coordinated BANs for

considering different ranges of duty cycles.

Cross-layer Optimised Routing

We perform dynamic shortest path routing (SPR) [230] and cooperative multi-path

routing (CMR) that incorporates SPR. The routing techniques are based on Open

Shortest Path First (OSPF) protocol that uses link-state algorithm (i.e., Dijkstra’s

algorithm), where the source nodes intend to find routes with a minimum cost

(based on routing metrics, i.e., expected transmission count and hop count) to

their destinations for periodically updating the routing table. In CMR, two paths

are used from source hub to destination hub, where both paths have two route-

hops [22]. In each route-hop, 3-branch selection combining is performed. The

detailed description of SPR and CMR can be found in Chapter 3. Here, for CMR,

we combine the two different paths at the end destination as follows:

Outcomb(cmr) = max
(
OutP1

, OutP2

)
, (4.2)

where OutPi = min
(
OutRH1

, OutRH2

)
; [i = 1, 2] is the combined output of path i

with two route hops. OutRHj ; [j = 1, 2] is the combined output of the 3-branch

selection combining in route hop j. The process for CMR incorporating SPR

described with a pseudo-code in Algorithm 3.

1The routing table updates after each time-stamp and the samples are taken periodically over
the time-stamp period.
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Algorithm 3: Estimating output of CMR, incorporating SPR (with ETX +
max. 2 hops count)

input : Source node (S), destination node (D), and set of intermediate
nodes (N).

output: Result of CMR at destination node.

1 Petx ← Set of ETX values for every possible paths from S to D;
2 [i, j] ← [1,length(Petx)];
3 while i 6= j do
4 etxmin ← minimum(Petx);
5 if PathHopCount(etxmin) = 2 then
6 OutputSPR ← Path(etxmin);
7 else
8 Petx ← Petx − etxmin;
9 etxmin ← minimum(Petx);

10 j ← j − 1;

11 end
12 i← i+ 1;

13 end
14 if isempty(OutputSPR) then
15 OutputSPR ← direct path;
16 end
17 P1← OutputSPR;
18 Petx ← Petx \ P1;
19 P2← Repeat steps 2 to 16;
20 for i← 1 to 2 do
21 for j ← 1 to length(Pi) do
22 PiRHj ← SelectionCombining(Route Hopj);
23 end

24 end
25 if length(P1) > 2 then
26 CombP1 ← minimum(P1RH1

, P1RH2
);

27 else
28 CombP1 ← P1RH1

;
29 end
30 CombP2 ← Repeat steps 20 to 29 for P2;
31 OutputCMR ← maximum(CombP1, CombP2);
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Table 4.1: Applied Parameters

Parameter Value

Bandwidth (B) 1 MHz

Carrier Frequency 2.36 GHz

Data rate 486 kbps

Packet size (ℓ) 273 bits

Packet transmission time (t) 0.6 ms

Transmit power (ptx) 0 dBm

Total Time (T ) 45 mins

TSIFS 50 µs

TACK 0.2 ms

4.2.2 Performance Analysis with Experimental Results

In this subsection, we discuss and compare the results found from SPR and CMR

techniques with the experimental measurements. The results are averaged from

1000 trials for obtaining comprehensive outcomes. We consider outage probabil-

ity with respect to SINR as a performance metric for the optimisation techniques

applied on the coordinated network in case of interference mitigation. For estimat-

ing the outages properly, the effect of non-recorded measurements (NaN) due to

incorrectly decoded packets were replaced with a value of −101 dBm, just below

the receiver sensitivity of −100 dBm. We also estimate the packet delivery ratio

and spectral efficiency of the network with respect to different receive sensitivi-

ties when applying those routing techniques on the experimental measurements.

Furthermore, we investigate the theoretical results of SINR distributions produced

from simulated channels (modelled with a lognormal distribution with distribution

parameters found from the measured channels) and compare them with the exper-

imental results. The applied parameters for the performance analysis are listed in

Table 4.1.

Outage Probability with respect to SINR

The outage probability with respect to SINR threshold can be expressed as,

Pout = Prob
(
γs < γth

)
, (4.3)
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where Pout is the probability of received SINR (γs) being less than a given thresh-

old value, γth. The signal-to-interference-plus-noise ratio (SINR) for any given

link/branch is measured as follows:

γs(τ) =
ptx |hs,d(τ)|2

n∑

i=1

(
ptx |hinti,d(τ)|2

)
+ |ν(τ)|2

, (4.4)

where γs(τ) is the measured SINR value of a signal s at time instant τ , ptx is the

transmit power, n is the number of interfering nodes, |hs,d| and |hinti,d| are the

average channel gains across the time instant of the signal-of-interest and the ith

interfering signal, respectively. |ν| represents the instantaneous noise level at the

destination node. The received noise power is set at −100 dBm. In SPR, the

combined SINR at the destination node is measured as follows:

γcomb(spr) = min
(
γH1

, γH2

)
, (4.5)

where γH1
and γH2

are the SINR of the first and second hops of the shortest path

from source to destination, respectively. In CMR, the completely combined SINR

at the destination is measured as follows:

γcomb(cmr) = max
(
γP1

, γP2

)
, (4.6)

where γPi = min
(
γRH1

, γRH2

)
; [i = 1, 2] is the combined SINR of path i with two

route hops. γRHj ; [j = 1, 2] is the combined SINR of the 3-branch selection com-

bining (by following equation (3.5) for SINR values instead of channel gains) in

route hop j. The averaged outage probability with respect to SINR for SPR and

CMR with different duty cycles is presented in Fig. 4.3. As can be seen, CMR

provides up to 14 dB performance improvement over SPR at 10% outage proba-

bility with respect to a SINR of 5 dB with 8.3% duty cycle. Also, with a lower

duty cycle of 0.2%, CMR obtains up to 10 dB performance improvement over SPR

at the same outage probability with respect to a SINR of 10 dB. Also, the best

fits for the SINR distributions are validated according to their cumulative distribu-

tion functions (black dotted curve with each outage probability curve) where the
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theoretical cumulative distribution functions (cdfs) show a good match with the

empirical results.

The distribution parameters found from the best fit of the SINR values (ob-

tained from experimental measurements) from SPR and CMR with different duty

cycles are given in Table 4.2. According to Table 4.2, the SINR values obtained

from SPR provide a good fit for an inverse Gaussian distribution with higher duty

cycles and for a lognormal distribution with lower duty cycles. An inverse Gaussian

distribution with shape parameter λ→ 8 becomes more like a normal (Gaussian)

distribution. SINR values obtained from CMR posses a three-parameter Burr (burr

type XII) or generalised log-logistic distribution. In reliability applications, the use

of the log-logistic is often proposed as an alternative to the lognormal. Thus, the

Burr offers an even more flexible alternative to the lognormal with all of the ad-

vantages of the log-logistic (as the log-logistic distribution is a special case of the

Burr) [241]. The cdf of the inverse Gaussian distribution is:

F (x | µ, λ) = exp2µ/λΦ
{
−

√
(λ/µ)(1 + x/µ)

}
+

Φ
{√

(λx)(xµ− 1)
}
, x > 0,

(4.7)

where Φ is the cdf of the standard normal distribution, µ(> 0) and λ(> 0) are the

mean and shape parameters of the inverse Gaussian distribution, respectively.

The cdf of the Burr (type XII) distribution is:

F (x | α, c, k) = 1−
(
1 + (x/a)c

)
−k

, x > 0, (4.8)

where α(> 0) is the scale parameter and c(> 0) and k(> 0) are the shape parame-

ters of the Burr distribution. The density of the distribution is unimodal (having

one clear peak) if c > 1 and L-shaped if c ≤ 1.

And, the cdf of lognormal distribution is:

F (x | µ, σ) = 1

xσ
√
2π

exp

(−(ln(x)− µ)2
2σ2

)
, x > 0, (4.9)

where µ and σ are the measured log-mean and log-standard deviation, respectively.

The distributional relationship on x can be expressed as x = exp(z), where x is
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Figure 4.3: Average outage probability with respect to SINR threshold for SPR and
CMR, with different duty cycles (dc) per node for the 4 coordinated BANs. Re-
ceiver sensitivity −100 dBm, transmit power 0 dBm; black dotted curves represent
the theoretical cdf of SINR with corresponding duty cycles

the log-normally distributed random variable and z ∼ Normal(µ, σ).

Packet Delivery Ratio (PDR)

The packet delivery ratio (PDR) with respect to different receive sensitivities is

given in Fig. 4.4. It is shown that the packet delivery ratio, which is the ratio of the

successfully delivered packets (Psucc) to the transmitted packets (Ptrans) at a given

time, remains stable (slightly improved) as the duty cycle is lowered. With a packet

delivery ratio of 90% (or, packet error rate (PER) of 10%, as PER = 1 − PDR),
the CMR provides up to 9 dB and 8 dB performance improvement over SPR with

a higher duty cycle of 8.3% and a lower duty cycle of 0.2%, respectively, at −89
dBm receive sensitivity. Also, the best-case (at −100 dBm receive sensitivity) PDR

for SPR and CMR are almost 100%, which is equivalent to a negligible PER (thus
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Table 4.2: Distribution parameters of SINR values; {µ,λ} are the mean and shape
parameter of the inverse Gaussian distribution; {µ,σ} are the log-mean and log-
standard deviation of the lognormal distribution; {α, c, k} are the scale and two
shape parameters of the burr distribution; exp. and sim. imply experimental and
simulated data, respectively

Routing

method

Duty

cycle

Distribution

fit
Parameters

SPR

(exp.)

8.3% Inv. Gaussian µ = 1.799, λ = 0.511

5.8% Inv. Gaussian µ = 2.27, λ = 0.856

4.2% Inv. Gaussian µ = 4.39, λ = 1.29

1.7% Lognormal µ = 1.24, σ = 1.15

0.2% Lognormal µ = 1.74, σ = 1.22

SPR

(sim.)

8.3% Inv. Gaussian µ = 1.65, λ = 0.593

5.8% Inv. Gaussian µ = 2.0012, λ = 0.989

4.2% Inv. Gaussian µ = 4.1002, λ = 1.45

1.7% Lognormal µ = 1.304, σ = 1.11

0.2% Lognormal µ = 1.702, σ = 1.22

CMR

(exp.)

8.3% Burr α = 6.56, c = 2.58, k = 0.752

5.8% Burr α = 14.4, c = 2.056, k = 1.32

4.2% Burr α = 18.1, c = 2.35, k = 1.019

1.7% Burr α = 33.6, c = 2.086, k = 1.46

0.2% Burr α = 32.1, c = 2.105, k = 1.15

CMR

(sim.)

8.3% Burr α = 8.302, c = 2.99, k = 0.632

5.8% Burr α = 13.8, c = 2.49, k = 0.817

4.2% Burr α = 19.9, c = 2.71, k = 0.799

1.7% Burr α = 36.02, c = 2.26, k = 1.13

0.2% Burr α = 32.2, c = 2.13, k = 1.14

fulfilling the IEEE 802.15.6 BAN Standard requirement of PER being less than

10%).

Spectral Efficiency

The spectral efficiency (ζ) of the network with coordinated BANs is estimated as

follows:

ζ =
Θ× ω
B

, (4.10)
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where ω is the number of coordinated BANs and B is the bandwidth. The aggre-

gated throughput of the network can be defined as (Θ×ω), where the throughput
Θ can be measured as follows:

Θ =
Psucc × ℓ

T
, (4.11)

where Psucc is the number of successfully delivered packets over the total time

T and ℓ is the length of the packet. The bandwidth and packet size can be

found from Table 4.1, which are chosen in accordance with the IEEE 802.15.6

Standard for narrowband communications [222]. The average spectral efficiency

with respect to different receive sensitivities (e.g. −95 dBm, −88 dBm) with

different number of coordinated BANs (e.g. 4,5,6 coBANs) and corresponding

different duty cycles are presented in Figs. 4.5 and 4.6. In Figs. 4.5 and 4.6,

duty cycles (dc1, dc2, dc3, dc4, dc5) refer to (8.3%, 5.8%, 4.2%, 1.7%, 0.2%) for 4
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Figure 4.5: Average spectral efficiency with respect to −95 dBm receive sensitivity
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coordinated BANs, (6.7%, 4.7%, 3.3%, 1.3%, 0.1%) for 5 coordinated BANs and

(5.6%, 3.9%, 1.7%, 1.1%, 0.1%) for 6 coordinated BANs. It is shown in Fig. 4.5

that, CMR provides up to 0.15 bits/s/Hz spectral efficiency with 8.3% duty cycle

at −95 dBm receive sensitivity. Also, with a lower duty cycle (e.g. 0.2%, 0.1%),

the spectral efficiency is greater than or equal to 0.01 bits/s/Hz for SPR and CMR

at −95 dBm receive sensitivity. Furthermore, Fig. 4.6 shows CMR provides better

spectral efficiency than SPR (with 0.2% or, 0.1% duty cycle, the spectral efficiency

for CMR is greater than or equal to 0.01 bits/s/Hz at −88 dBm receive sensitivity).

Distributions from Simulated SINR

For investigation purposes, we model the measured on-body and inter-body links

using a lognormal distribution (as lognormal is the typical distribution for single-

link narrowband small-scale fading channels [82]). We simulate the dynamic on-

body and inter-body channels according to the appropriate log-mean and log-

standard deviation parameters found from the measured channels. The best fit

parameters for the SINR distributions (averaged from 1000 trials) with different

duty cycles after applying SPR and CMR on the lognormally modelled channels
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are given in Table 4.2. It can be seen that, the distribution results found from

simulated channels match well with the results obtained from experimental data.

4.3 Cross-layer optimised routing with adaptive

CSMA/CA across BBNs

In this section, we propose an adaptive carrier sensing mechanism with CSMA/CA

as the MAC layer scheme for interference mitigation across a distributed BBN,

to obtain a suitable trade-off between the amount of interference, throughput,

latency and energy consumption of CSMA/CA channels. The channel state infor-

mation from the physical layer is passed on to the network layer using an adaptive

cross-layer carrier sensing mechanism between the physical and MAC layer, which

adjusts the carrier sense threshold, e.g., RSSI periodically based on the slowly-

varying channel conditions with an adequate periodic time-stamping for routing

updates. From the implementation of the proposed adaptive CSMA/CA with the

experimental measurements used here, we demonstrate the following:

• With the proposed adaptive carrier sensing, the percentage of longer (greater
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than 3 s) continuous back-off duration is trivial (0%), whereas with static

threshold, e.g., −95 dBm, the channel can remain continuously in back-off

for very long period (more than 1000 s) with 6% of the total time.

• The average continuous back-off duration of the CSMA/CA channels with

the proposed adaptive carrier sensing mechanism is 237 ms, whereas it can

goes up to 11 s on average with a static carrier sensing threshold of −95 dBm.

• The proposed adaptive mechanism can provide more than 50% improvement

over static carrier sensing, in terms of throughput (successful packets/s) and

packet arrival rate.

• Even though static carrier sensing provides better outage probability with

respect to signal-to-interference-plus-noise-ratio (SINR) as it is strict towards

avoiding larger interference levels, it suffers from decreased throughput and

increased latency.

• Adaptive CSMA/CA provides up to 20% and 30% improvement over TDMA

(with a higher duty cycle of 8.3%), in terms of average throughput (successful

packets/s) and packet arrival rate, respectively.

• For spectral efficiency, adaptive CSMA/CA provides up to 6% improvement

over TDMA with 8.3% duty cycle.

4.3.1 System Model

We use the same two-tiered network architecture (Fig. 4.1) used for the TDMA

approach in the previous section. Here, all 10 BANs form a distributed BBN (with

decentralised coordination between them) on which we apply the same routing

techniques: SPR and CMR. Hence, the experimental scenario is also same for this

work. As all the co-located BANs are used, each transmitter is transmitting in

every 50 ms (with a sampling rate of 20 Hz) to all 9 other subject’s receivers as

well as their own receivers (all small body-worn radios/hubs/sensors), along with

capturing the RSSI (Receive Signal Strength Indicator) values in dBm2, which

2Any received signal strength below −100 dBm, resulting in incorrectly decoded packets in
experiment, is set at −101 dBm in analysis
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gives a total of 300 channel measurements (including both on-body and body-to-

body links) in real-time over the whole network during the measurement period.

For effective dynamic estimation of the channel, continuous time-stamping is used

every 600 ms which is reasonable, given the longer coherence times of 500 ms (up

to 1 s) for ‘everyday’ activities of narrowband on-body BAN channels [82], and for

body-to-body channels used here where we have calculated the coherence time to

be 900 ms (with auto-correlation coefficient of 0.7).

Proposed Adaptive carrier sensing mechanism

Adaptive CSMA/CA with maximum-interference-power carrier-sensing (MPCS) is

employed as the co-channel access scheme across (inter-BAN/coordinator level)

and within (intra-BAN/sensor level) all BANs to enable co-channel interference

mitigation without global coordination. Whenever a node is ready to transmit data,

it checks the availability of the channel by measuring the maximum interference

power from the potential interference caused by the surrounding nodes that are

trying to access the channel at the same time. For a given time instant τ of ith

time-stamp (τi), the transmission of a given link (signal-of-interest from source to

destination) is permitted by the simple carrier sensing mechanism with collision

avoidance by MPCS, if

max(η) < csthi (4.12)

where η =
(
ptx |hintk,d(τi)|2

)
, k = 1, . . . , n

where ptx is the transmit power, |hintk,d(τi)| is the interfering channel gain from the

kth interfering BAN to the destination d at time instant τ of ith time-stamp, n is

the number of interfering BANs and csthi is the adaptive carrier sense threshold,

e.g., RSSI in ith time-stamp. If the condition in (4.12) is not fulfilled, the node

defers its transmission for a back-off period (still sensing the medium) until it finds

the channel available for transmission. When the channel is found available by the

node, it waits for a short inter-frame space period (TSIFS) and then transmits the

data. If an acknowledgement (ACK) is not received by the node, it implies a failure

has occurred and the node tries to retransmit the data with the same procedure.

We apply adaptive carrier sensing to reduce the longer back-off period, hence
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improving throughput and end-to-end delay of the overall network. The channel

conditions, e.g., back-off percentage, ill-conditioned periods of incorrectly decoded

packets of each time-stamp are used as an approximation of the channel conditions

of the next time-stamp:

Xi+1 ≈ Xi, i ≥ 1, (4.13)

where for time-stamp i, the channel condition of the next time-stamp Xi+1 can be

estimated from the current channel condition Xi. This estimation is a systematic

approach for dynamic prediction of the inter-BAN channels given the longer co-

herence time of around 900 ms and the time-stamp period (600 ms) used in this

work. In our proposed method, if the probability of back-off period is higher than

50%, the carrier-sense threshold is adjusted to permit more transmissions, despite

the amount of interference, to reduce continuous latency. Additionally, if the prob-

ability of transmitting incorrectly decoded packets is higher than 50% even though

having a lower back-off duration, the threshold is adjusted to decrease the amount

of interference to reduce packet failure rate. This way there is a suitable trade-

off between the latency, throughput and amount of interference of the CSMA/CA

channels. The RSSI threshold for the first time-stamp is predicted to be −90 dBm

from an estimated median of typical on-body and inter-body RSSI measurements.

The routes for the first time-stamp are estimated with a randomly selected value

(≥ 1 and < 8) for each link, based on the defined routing metric, i.e., ETX. The

dynamic setting of the carrier-sense threshold is described in Algorithm 4.

4.3.2 Performance Analysis

In this section, we discuss and compare the results found from adaptive CSMA/CA

applied on SPR and CMR techniques with the experimental measurements. We

compare the performance of applying static and adaptive carrier sensing thresholds

for CSMA/CA in case of continuous back-off duration and throughput (successful

packets/s) vs. packet arrival rate and outage probability with respect to SINR. We

also provide a performance comparison between adaptive CSMA/CA and coordi-

nated TDMA in terms of throughput vs. packet arrival rate, packet delivery ratio

and spectral efficiency. The applied parameters for the performance analysis are

listed in Table 4.1.
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Algorithm 4: Estimating Adaptive Carrier Sense Threshold

input : The current time-stamp (i) and the carrier sense threshold for the
current time-stamp (CSthi).

output: The carrier sense threshold for the next time-stamp (CSthi+1
).

1 TSi ← outcome of CSMA/CA for the ith time-stamp;
2 BOPi ← estimate back-off percentage of TSi;
3 ICPi ← estimate the percentage of ill-conditioned period of TSi;
4 if BOPi ≥ 50% then
5 CSthi+1

← CSthi + 1;
6 else
7 if BOPi < 50% & ICPi > 50% then
8 CSthi+1

← CSthi − 1;
9 else

10 CSthi+1
← CSthi ;

11 end

12 end

Continuous Back-off Duration

Since the continuous back-off duration is a key contributor to latency, this duration

is an important performance metric for CSMA/CA channels. The continuous back-

off duration of the CSMA/CA channels for body-to-body communications with

different static carrier sense thresholds and an adaptive threshold, applied according

to Algorithm 4, are shown in Fig. 4.7. It is demonstrated that apart from having a

higher percentage of shorter continuous back-off duration, using an adaptive carrier

sense threshold yields a negligible (0%) occurrence of longer (greater than 3 s) back-

off duration, whereas there is a higher percentage of longer continuous back-off

duration with static carrier sense thresholds. According to the IEEE 802.15.6 BAN

Standard guidelines [29], latency should be less than 125 ms in medical applications

and less than 250 ms in non-medical applications. With the adaptive technique,

the estimated average continuous back-off duration over the total time is 237 ms

(< 250 ms). Also, the highest percentage (more than 7% of the measured time)

in Fig. 4.7 is for continuous back-off duration of 100 ms (< 125 ms) with this

approach. On the other hand, with a static threshold of −95 dBm, channels can

remain continuously in back-off over more than 1000 s, almost 6% of the time, and
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Figure 4.7: Percentage of continuous back-off duration of CSMA/CA links with an
adaptive carrier sense threshold (CSth) and different static carrier sense thresholds
(CSth), at transmit power 0 dBm, with 10 coexisting BANs.

more importantly, the average continuous back-off duration within this threshold

is up to 11 s, which is very large for delay-constrained networks like BANs.

Throughput (Successful Packets/s) vs. Packet Arrival Rate

The average throughput (in terms of successful packets per-second) vs. the average

packet arrival rate is shown in Fig. 4.8. It can be seen that the proposed adaptive

CSMA/CA achieves the best result in terms of both throughput and packet arrival

rate. Notably, with a higher static carrier sense threshold of −86 dBm the through-

put is significantly lower with respect to packet arrival rate which indicates that,

although more packets can be transmitted with a higher threshold (as it permits a

higher interference level), the overall performance will degrade because of possibly

lower SINR of the signal-of-interest. In Fig. 4.8, we also compare the CSMA/CA

approach with a coordinated TDMA approach from [22], where the same setup

is used with 4 coordinated BANs receiving interference from 6 non-coordinated

nearby BANs. It is shown that adaptive CSMA/CA provides up to 20% and 30%

improvement over TDMA (with a higher duty cycle of 8.3%), in terms of average

throughput and packet arrival rate, respectively.
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Outage Probability with respect to SINR

The outage probability with respect to SINR threshold can be expressed as,

Pout = Prob
(
γs < γth

)
, (4.14)

where Pout is the probability of received SINR, γs, being less than a given thresh-

old value γth. The signal-to-interference-plus-noise ratio (SINR) for any given

link/branch is measured as follows:

γs(τ) =
ptx |hs,d(τ)|2

n∑

i=1

(
ptx |hinti,d(τ)|2

)
+ |ν(τ)|2

, (4.15)

where γs(τ) is the measured SINR value of a signal s at time instant τ , ptx is

the transmit power, n is the number of interfering nodes, |hs,d| and |hinti,d| are
the average channel gains across the time instant of the signal-of-interest and the

ith interfering signal, respectively. |ν| represents the instantaneous noise level at

the destination node. The received noise power is set at −100 dBm. The averaged
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outage probability with respect to SINR thresholds found from SPR and CMR with

adaptive and static (at −86 dBm) carrier sensing scheme applied over 10 coexisting

BANs is shown in Fig. 4.9. It is demonstrated that the use of a static threshold

(i.e., −86 dBm) in CSMA/CA improves the outage probability with respect to

SINR as it constantly avoids a significant interference level, although resulting in

a longer back-off period (Fig. 4.7) and throughput degradation (Fig. 4.8).

Packet Delivery Ratio (PDR)

The averaged packet delivery ratio (PDR) with respect to different receive sen-

sitivities for the given scheme with adaptive CSMA/CA and TDMA approach is

presented in Fig. 4.10. It is shown that adaptive CSMA/CA yields better perfor-

mance than a higher duty cycle TDMA. With a packet delivery ratio of 90% (or

packet error rate (PER) of 10%, as PER = 1 − PDR), the SPR with adaptive

CSMA/CA provides 4 dB improvement over SPR with TDMA. It can also be seen

that CMR gives more than 50% (up to 65%) performance improvement over SPR

with adaptive CSMA/CA, at −88 dBm receive sensitivity. Additionally, the best-
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case (at −100 dBm receive sensitivity) PDR for SPR and CMR is almost 100%

which is equivalent to a negligible PER (thus significantly surpassing the IEEE

802.15.6 BAN Standard requirement of PER being less than 10%).

Spectral Efficiency

The spectral efficiency (ζ) over BANs across which routing occurs is estimated as

follows:

ζ =
Θ× nc
B

, (4.16)

where nc is the number of actively routed BAN channels and B is the bandwidth.

The aggregated throughput can be defined as (Θ × nc), where the single channel

throughput Θ can be measured as follows:

Θ =
Psucc × ℓ

T
, (4.17)

where Psucc is the number of successfully delivered packets over the total time T

and ℓ is the length of the packet. The bandwidth and packet size can be found

from Table 4.1, which are chosen in accordance with the IEEE 802.15.6 Standard
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ferent receive sensitivities for SPR and CMR (associated with adaptive CSMA/CA
and 8.3% duty cycle TDMA), with different routing metrics (e.g., only ETX, ETX
+ max. 2 hops), at transmit power 0 dBm

for narrowband communications [222]. The average spectral efficiency of the overall

network with respect to different receive sensitivities for adaptive CSMA/CA and

higher (8.3%) duty cycle TDMA are presented in Fig. 4.11. It can be seen that,

adaptive CSMA/CA shows improvement over TDMA while contributing up to 6%

performance improvement over higher duty cycle TDMA at best-case scenario (at

−100 dBm receive sensitivity). Even though, the adaptive CSMA/CA with SPR

(ETX + max. 2 hops) technique suffers from lower spectral efficiency because of

the hop restriction, it shows improvement when performing SPR without any hop

restriction due to the increased number of transmissions with longer paths.

4.4 Summary

In this chapter, we have analysed cross-layer methods — SPR and CMR (incor-

porating cooperative combining), validated using experimental measurements, to

optimise radio communications and mitigate interference across many co-located

wireless body area networks or BANs (forming a BBN), by utilising distinct features

at the physical, MAC and network layers. Along with studying the performance of
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low duty cycle TDMA, we have introduced a simplified adaptive cross-layer carrier

sensing mechanism for CSMA/CA in case of routing information across a BBN. We

have shown that the proposed CMR achieves up to 14 dB performance improve-

ment with 8.3% TDMA duty cycle, and 10 dB improvement with 0.2% TDMA

duty cycle over SPR, at 10% outage probability with respect to an acceptable

SINR. Also, CMR provides up to 9 dB improvement over SPR with 90% packet

delivery ratio. Moreover, CMR contributes to suitable BAN spectral efficiency of

up to 0.15 bits/s/Hz at −95 dBm receive sensitivity.

On the other hand, adaptive CSMA/CA demonstrates more than 50% gain

over static carrier sensing, in terms of throughput (successful packets/s) vs. packet

arrival rate, as well as providing improved latency. We have also compared the

performance of adaptive CSMA/CA with a high duty cycle TDMA by performing

cross-layer optimised dynamic routing, SPR and CMR, validated by experimental

measurements. It was shown that adaptive CSMA/CA yields better performance

than TDMA while providing up to 4 dB, 20% and 6% improvement over higher

(8.3%) duty cycle TDMA in terms of PDR, throughput and spectral efficiency,

respectively. The demonstrated feasibility of our proposed methods motivate the

practical deployment of many closely-located BANs at large-scale, in both highly-

connected medical and non-medical applications. In the next chapter, we investi-

gate and characterise the predictive behaviour of real-life body-centric channels, to

be deployed for predictive optimisation of those channels with greater accuracy.
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Chapter 5

Predictive Characteristics of

Real-life Body-centric Channels

5.1 Introduction

Wireless body-to-body networks (BBNs) are envisioned to be self-organising, smart,

and mobile networks that create their own centralised/decentralised network con-

nection without any external coordination to improve the end-to-end network con-

nectivity in various circumstances. This type of autonomous decision making ac-

tivity requires systematic prediction and modelling of the channel behaviour, which

leads to the investigation of the ‘wide-sense-stationarity’ (Definition 5.1) and ‘long-

memory’ (Definition 5.2) characteristics of the channel, which significantly affect

the performance of predictive analysis and characterisation of the channel [146,157].

Definition 5.1. (Wide-sense-stationarity or second-order stationarity) A process

X(t) is wide-sense-stationary if the first and second moments, e.g., mean, auto-

covariance of X(t) are independent of time t, such as,

E[X(t)] = µx(t1) = µx(t1 + ω), for all ω ǫ t,

Cov[X(t1), X(t2)] = Cov[x(t1, t2)] = Cov[x(t1 + ω, t2 + ω)], for all ω ǫ t,

where µx(t) is the mean of X(t) and Cov[X(t1), X(t2)] = E
[{
X(t1)−µx(t)

}{
X(t2)−

µx(t)
}]

depends on ω where ω = t2 − t1. In other words, the auto-covariance will

109
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remain similar for a given lag duration ω, regardless of the position of ω over the

channel.

Definition 5.2. (Stationary long-memory process) A second-order stationary pro-

cess X is long-range dependent or has long-memory property if the auto-correlation

function decays very slowly (hyperbolic decay) such as

lim
ω→∞

rxx(ω) = 0, (5.1)

and, is not summable [242]:
∞∑

ω=0

rxx(ω) =∞ (5.2)

As stated in [146], much analysis of wireless signals and time-series modelling

assumes that time-varying channel gains are at least wide-sense-stationary (with

uncorrelated scattering) whilst real-world radio channels often demonstrate ‘quasi-

stationary’ behaviour [243]. Therefore, it is crucial to investigate the wide-sense-

stationarity (WSS) of radio channels to exploit the WSS period/duration (Defini-

tion 5.3) for appropriate channel characterisation.

Definition 5.3. (Wide-sense-stationary duration) The WSS duration/segment is

the average duration over the channel for which the channel can be considered WSS

(probability of satisfying the WSS assumption is greater than or equal to a given

threshold). The WSS duration, X(t)ψ can be expressed as X(t)ψ = γX(t)ψ ≥ θ,

where θ is the threshold ranges between 50% to 70%.

As stated in [244], in a conventional sense, second order stationary (or WSS)

random functions are considered to be short-range dependent or memoryless [245,

246]. However, it is not likely that a wide-sense-stationary channel is always mem-

oryless, as is the case in a stationary long-memory process (Definition 5.2) where

the channel samples possess long-term statistical dependence, known as long-range

dependence (LRD) or long-memory – the term ‘memory’ indicates to what ex-

tent past information is related to future consequences. Analysis of these types

of processes can produce spurious results if dealt with by standard memoryless

models, e.g., Markov chains. Basically, body-centric channels are slowly-varying in

nature due to human body dynamics and shadowing by body parts [226], which
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indicates possible dependence or auto-correlation between samples. Therefore, it

is important to evaluate long-range dependence (LRD) or long-memory property

along with wide-sense-stationarity of body-centric channels to perform accurate

modelling, characterisation and predictive analysis.

Wide-sense-stationarity together with long-range dependence have not been

broadly investigated for wireless networks (and even more particularly for wireless

body-centric networks). Some related work in terms of WSS and LRD characteris-

tics of wireless channels have been listed in the literature review in Chapter 2. To

the best of our knowledge, this work is the first detailed investigation of the WSS

and LRD properties of body-centric channels (specifically body-to-body channels),

based on the work in [99] (where the authors showed that, on-body channels are

typically non-stationary). Here, we aim to answer the following important ques-

tions:

• What is the expected range of WSS duration for ‘everyday’ wireless body-to-

body channels?

• Do the WSS characteristics vary for B2B channels between different on-body

sensor locations in different environments?

• Do wireless body-centric channels have long-memory?

• Are the WSS characteristics of body-centric channels associated with long-

range dependence?

• What is the importance and benefit of the WSS duration for stationary long-

range dependent body-centric channels?

• Is retaining long-memory sufficient to make reliable prediction for body-centric

channels?

Hence, in this work, we perform the same stationarity tests from [247] over different

experimental datasets with different numbers of people/BANs, i.e., 3, 8, 10, 20

coexisting in different surroundings, e.g., cafe, pub, indoor/outdoor to examine the

potential range of the WSS duration for B2B channels in 2.36 GHz narrowband.

We also investigate the long-range dependence or long-memory of the channels in
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association with the Hurst exponent [248] and the pattern of the decaying auto-

correlation function (ACF). Our key findings from such estimation of WSS and

LRD characteristics based on experimental measurements in 2.36 GHz narrowband

are as follows:

• The expected range of WSS duration for body-to-body channels is 0.5 s to 9 s

(approximately 5 s) with 95% confidence level and 0.5 s to 15 s (approximately

8 s) with 99% confidence level.

• The shadowing effect from different wearable sensor locations, body pos-

tures/movements and indoor/outdoor environments contributes to the vary-

ing WSS characteristics of narrowband body-to-body channels. For instance,

in an experimental scenario with 8 co-located BANs, the left-hip-to-left-wrist

link (shadow fading distribution: Burr type XII) can hold the WSS dura-

tion for up to 4 s, with 95% confidence level. On the other hand, the left-

hip-to-left-hip link (shadow fading distribution: Rician) depicts almost non-

stationary behaviour with several test statistics with 95% confidence level.

• In all circumstances, B2B channels show more stability over time than on-

body channels with respect to satisfying the null hypothesis assumption of

WSS (on-body channels show non-stationary characteristics in almost all

cases).

• Body-centric channels have hyperbolic decay of their auto-correlation func-

tion, which can be inferred as the presence of long-range dependence or long-

memory.

• Both on-body and B2B channels have higher value of their Hurst exponent

(around 0.9) which is indicative of long-memory.

• There is no causal link between the WSS and LRD characteristics of body-

centric channels. Both WSS and non-WSS channels can hold LRD charac-

teristics.

• The WSS duration of B2B channels helps to estimate a period over which

prediction can be reliably made from received channel samples with long-

range dependence.
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• Having only long-memory is not sufficient for performing predictive analysis,

as unlike B2B channels, on-body channels depict non-stationary behaviour,

which limits the efficiency of the predictability of those channels.

5.2 Experimental Scenarios

The general description of the experimental scenario for the experimental datasets

used throughout the thesis is presented in Chapter 3. In this chapter, we analyse the

WSS and LRD characteristics of body-centric channels with an extensive amount of

channel measurements from different experimental datasets1 consisting of various

numbers of co-located mobile people/BANs, i.e., 8, 10, 20 co-located BANs. A

brief description of those datasets is given below:

5.2.1 Dataset 1 (3 BANs wearing hubs/transceivers)

In this dataset, there were 8 coexisting BANs with three receivers/on-body sen-

sors on Left–Wrist (LW), Right–upper–Arm (RA), and Left–Hip (LH), respec-

tively. Amongst them, 3 BANs (or subjects) were wearing an extra on-body sensor

(transceiver) on Right–Hip (RH). Hence, the result for a specific body-to-body

(B2B) channel (i.e., RH–LW, RH–RA, RH–LH) is averaged over (3× 7) links, ex-

cept the RH–RH links among transceivers where the result is averaged over only

(3× 2) links. The sampling rate for each channel in this dataset is 66.7 Hz.

5.2.2 Dataset 2 (8 coexisting BANs)

In this dataset, each BAN/subject is wearing three on-body sensors: one transceiver

on the Left–Hip (LH) and two receivers on the Left–Wrist (LW) and Right–upper–

Arm (RA), respectively. The result for a specific body-to-body (B2B) channel is

averaged over (8 × 7) links. The sampling rate for each channel in this dataset is

25 Hz.

1available in http://doi.org/10.4225/08/5947409d34552 [215]
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On-body Hub

On-body Sensor

LH–LH

LH–RA

LH–LW

on–body link

(a) (b)

Figure 5.1: (a) Different on-body sensor locations and example of body-centric
links (on-body, body-to-body) with two co-located BANs; (b) The radio-frequency
testbed with major components highlighted. Battery (disconnected) is on reverse
side

5.2.3 Dataset 3 (10 coexisting BANs)

In this dataset, each BAN/subject is wearing three on-body sensors: one transceiver

on the Left–Hip (LH) and two receivers on the Left–Wrist (LW) and Right–upper–

Arm (RA), respectively. The result for a specific body-to-body (B2B) channel is

averaged over (10× 9) links. The sampling rate for each channel in this dataset is

20 Hz.

5.2.4 Dataset 4 (20 coexisting BANs)

Here, each BAN wore one transmitter/on-body sensor on Right–Hip (RH). The

sampling rate for each channel in this dataset is 10 Hz. Although, there were 20

coexisting BANs, all the B2B links were not used to estimate the results. In fact the

result is averaged over around 160 links for the body-to-body (RH–RH) channel.

5.3 Test of Significance for WSS

To investigate the wide-sense-stationarity (WSS) of the B2B channels, we use the

‘frequentist’ approach along with the null hypothesis significance testing (NHST)
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Table 5.1: The body-to-body channels with different sensor locations. ‘×’ indicates
the B2B channels correspond to datasets with different number of coexisting BANs

Dataset

No.

coexisting

BANs

Sampling

Rate

(per link)

Body-to-body links with different sensor locations

LH–

LH

LH–

RA

LH–

LW

RH–

RH

RH–

LW

RH–

RA

RH–

LH

1
8 BANs

(3 transmitting)
66.7 Hz × × × ×

2 8 BANs 25 Hz × × ×
3 10 BANs 20 Hz × × ×
4 20 BANs 10 Hz ×

[249] from different test statistics (i.e., difference between mean, variance, and

distribution properties). Wide-sense-stationarity requires that the first and second

moments (i.e., mean, variance, auto-covariance) of a time varying stochastic process

X(t) do not vary with respect to time t (Definition 5.1). In this chapter, WSS

is tested over a wide range of window lengths (L) from 100 ms to 100 s, L =

[100, 200, 300, ..., 100000] ms. Here, we follow the process from [99], where the

whole channel is divided into m consecutive non-overlapping intervals of length

ℓ (where ℓ = L/2) to perform (m − 1) independent pairwise comparisons across

two consecutive intervals. Hence, for each window length L, i.e., (L = 2ℓ), there

will be (m − 1) pairwise independent null hypothesis tests. An illustration of the

pairwise comparison is provided in Fig. 5.2. We consider a lower bound for the

amount of samples in an interval, i.e., 30 samples according to [250] to minimise the

probability of Type-I and Type-II errors. We estimate the average probability of

stationarity for a window length of L over (m−1) tests with NHST, which provides

the percentage of the channel being stationary as a function of L, disregarding the

position of L over the channel. We consider:

H0 : L retains WSS (null hypothesis).

H1 : L does not retain WSS (alternative hypothesis).

Then,

pL = P
{
TL > TLobs

∣∣H0

}
, (5.3)
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Interval
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Pc(3)
Pc(m− 2)

Pc(m− 1)

Figure 5.2: (m− 1) pairwise comparison (Pc) across two consecutive intervals (ℓ)

where pL (often called p-value) is a measure of evidence (i.e., strong evidence/weak

evidence) against the null hypothesis2,3. This implies the observation of a more

extreme test statistic (TL) than the one actually observed (TLobs), given that the

null hypothesis is true (observing a significant difference due to random sampling

error while there was none or negligible difference).

if pL ≥ α, H0 is not rejected,

if pL < α, H0 is rejected in favour of H1,

where α is the significance level/threshold for measuring the significance of the test

outcome (based on pL). For instance, a pL ≥ 0.05 indicates weak evidence against

the null hypothesis as there is 5% or more risk of concluding that a difference exists

when there is no actual difference, therefore the null hypothesis is not rejected. We

examine different statistical significance levels (α) with α ǫ {0.01, 0.05}, which

corresponds to a confidence level (cℓ) of cℓ ǫ {0.99, 0.95}, as cℓ = (1 − α). For

example, α = 0.05 implies that while there is 5% probability of incorrectly rejecting

the null hypothesis, there is 95% probability that the confidence interval contains

2A measure of deviation from the actual outcome of the stationarity tests when the null
hypothesis is true. A higher value of pL implies weak evidence against the null hypothesis and a
lower value implies strong evidence against the null hypothesis.

3The p-value is often interpreted as the probability of incorrectly rejecting the null hypothesis,
which is a misconception (as described in [251]) resulted from the mixing of two approaches (i.e.,
Fishers p-value approach and Neyman-Pearsons alpha level) in the widely used NHST.
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the null hypothesis value, i.e., 0 for difference, 1 for ratio [252].

The average probability of stationarity (γL) for a window length L over the

entire period can be calculated as follows:

γL =

m−1∑
i=1

Wi

m− 1
, Wi =




1, p̃L

i ≥ α

0, p̃L
i < α,

(5.4)

which indicates the percentage of pairwise comparisons (for a window length L)

that satisfy the null hypothesis assumption over the whole period (from m − 1

pairwise comparisons). A given L with a higher value of γL, e.g., greater than or

equal to 70% can be considered as WSS, as it fails to reject the null hypothesis for

the majority of the cases. That also complies with the definition of WSS (second

property of Definition 5.1), which is to have the WSS characteristics valid for L over

the channel regardless of its position. When calculating the average pL
i for the ith

pairwise comparison (ith window) over multiple similar links from different subjects,

we choose the median (typical) value (p̃L
i) to obtain a more robust estimation, as

the median is not affected by outliers.

Here, we apply one-way ANOVA [253], Brown-Forsythe (B–F) [254] and Kolmogorov-

Smirnov (K–S) [255] tests to evaluate the mean, variance, and distribution consis-

tency of the body-centric channels. ANOVA relies on the assumption of the nor-

mality and homogeneity of the variances of the underlying distribution. In general,

the B2B channels are not normally distributed (they typically possess a skewed

distribution). Fortunately, ANOVA is fairly robust to moderate deviations from

normality [256], specially with a large number of observations. Additionally, it is

not very sensitive against the homoscedasticity (homogeneity of the variances) as-

sumption with balanced data (when the sets/intervals are the same size and have

similar distribution) [257]. Alternatively, a non-parametric version of the ANOVA

(Kruskal-Wallis (K–W) test [258]) can be used, which does not depend on the nor-

mality assumption. By comparing the results of the K–W test and ANOVA test,

negligible difference was observed. Hence, the classical one-way ANOVA analysis

results are provided here.

The B–F test is a modified version of the Levene’s test [259] (estimation of the
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deviation from the mean), which does not rely on the normality assumption, and

therefore provides good robustness against many types of non-normal data while

retaining good statistical power [260, 261]. Also, non-parametric tests are more

useful when investigating physical phenomena, e.g., radio propagation, as unlike

parametric tests they make no assumptions regarding the probability distributions

of the sampled process [146]. The advantage of the K–S test (which tests whether

the test samples come from the same distribution) is that the distribution of the

test statistic does not depend on the underlying CDF (cumulative distribution

function) being tested. The p-values for the test statistics are calculated using the

asymptotic p-value calculation [262] with an approximation to the true distribution

of the observed samples in each interval.

The description and estimation of the test statistics for these statistical hy-

pothesis tests is provided in appendix A. We also investigated the variation in

short-time power spectral coefficients [150] (appendix A) of the B2B channels in

windowed data segments over time with dataset 3 in [247], where we estimated the

variance of the multi-taper power spectral density (PSD) of specific data segments

(e.g., 5s, 10s) over the whole channel. We found that for these data segments with

most of the B2B channels, the power spectral variation is negligible, which satisfies

the WSS assumption.

5.4 Experimental outcome of WSS investigation

In this section, we demonstrate the results obtained from the hypothesis tests with

different experimental datasets (described in Section III and Table 5.1). We also

provide some justifications of our findings based on the experimental results. The

average probability of stationarity (found from ANOVA, B–F, and K–S hypothesis

tests) with respect to different window lengths for dataset 1−4 (Table 5.1) is shown
in Figs. 5.3 to 5.6, respectively. The probability of stationarity for a B2B link with

a given sensor-location pair is estimated from (m− 1) median p-values, calculated

from (m−1) pairwise comparisons of multiple similar links between identical source

and destination nodes.
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5.4.1 Results of Dataset 1

For dataset 1, the minimum window length to be considered for precisely assessing

an assumption of WSS is 1 s (interval length of 0.5 s with around 30 samples).

According to the hypothesis tests (Fig. 5.3), the Right-hip-to-Left-Hip (RH-LH)

links satisfies the WSS assumption (in 70% of cases) for longer window lengths of

up to 3 s and 5 s with 95% and 99% confidence levels, respectively. However, the

other B2B links, e.g., RH–RA, RH–RH, RH–LW hold a WSS assumption for lower

window lengths ranging from 1 s to 3 s (can be more than that with respect to

homogeneity of variance (Fig. 5.3b). It can also be seen from Fig. 5.3c that the on-

body channels do not satisfy the WSS assumption even for the minimum required

window length (1 s), except for the on-body links between Right-Hip-to-Left-Hip.

5.4.2 Results of Dataset 2

For dataset 2, the minimum window length to be considered for precisely assessing

an assumption of WSS is 2.4 s (interval length of 1.2 s with around 30 samples).

It can be seen from the test results in Fig. 5.4 that the Left-Hip-to-Left-Wrist

(LH-LW) links show better probability (around 70%) of satisfying the null hypoth-

esis for a window length of up to 4 s and 8 s with confidence levels of 95% and

99%, correspondingly. However, the other two B2B links hardly satisfy the WSS

assumption for the minimum required window length of 2.4 s in most cases. In Fig.

5.4c, the on-body channels also exhibit non-stationary behaviour.

5.4.3 Results of Dataset 3

For dataset 3, the minimum window length to be considered for precisely assessing

an assumption of WSS is 3 s (interval length of 1.5 s with around 30 samples).

The results of hypothesis tests are shown in Fig. 5.5, where the LH–LH links

(hub-to-hub channels) show better probability of stationarity than the other B2B

channels. This channel can hold reasonable stationarity (in 70% to 80% of cases)

with window lengths of up to 9 s and (more than) 10 s with 95% and 99% confidence

levels, respectively. The LH–RA links also satisfy the WSS assumption in 70% of

cases over the channel for up to 5 s and 9 s window lengths (with 95% and 99%
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(a) ANOVA
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(b) B–F

0.1 0.5  1 2 3 5 10 50 100

Window length, L (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e
 p

ro
b

a
b

ili
ty

 o
f 

s
ta

ti
o

n
a

ri
ty

, 
L

(c) K–S

Figure 5.3: Average probability of stationarity with (a) ANOVA, (b) B–F, and (c)
K–S hypothesis tests for different body-to-body links of dataset 1, i.e., R. Hip to L.
Hip (RH–LH), R. Hip to R. upper Arm (RH–RA), R. hip to R. hip (RH–RH), R.
Hip to L. Wrist (RH–LW). The results for each link are averaged over (3× 7) links
except RH–RH link (averaged over (3× 7) links). The minimum required window
length to precisely investigate WSS is 1 s (indicated by black dotted vertical line).
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(a) ANOVA
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(b) B–F
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(c) K–S

Figure 5.4: Average probability of stationarity with (a) ANOVA, (b) B–F, and (c)
K–S hypothesis tests for different body-to-body links of dataset 2, i.e., L. Hip to L.
Wrist (LH–LW), L. Hip to R. upper Arm (LH–RA), L. hip to L. hip (LH–LH). The
results for each link are averaged over (8× 7) links from 8 subjects. The minimum
required window length to precisely investigate WSS is 2.4 s (indicated by black
dotted vertical line).

confidence levels, respectively). With 95% confidence level, the on-body channels

show non-stationary characteristics in this scenario (Fig. 5.5c).



122 Predictive Characteristics of Real-life Body-centric Channels

0.1 0.5  1 3 5 10 50 100

Window length, L (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 p

ro
b
a
b
ili

ty
 o

f 
s
ta

ti
o
n
a
ri
ty

, 
L

(a) ANOVA
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(b) B–F
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(c) K–S

Figure 5.5: Average probability of stationarity with (a) ANOVA, (b) B–F, and (c)
K–S hypothesis tests for different body-to-body links of dataset 3, i.e., L. hip to
L. hip (LH–LH), L. Hip to R. upper Arm (LH–RA), L. Hip to L. Wrist (LH–LW).
The results for each link are averaged over (10 × 9) links from 10 subjects. The
minimum required window length to precisely investigate WSS is 3 s (indicated by
black dotted vertical line).
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Figure 5.6: Average probability of stationarity with different hypothesis tests, i.e.,
ANOVA, B–F, K–S for body-to-body links of dataset 4, i.e., Right-Hip-to-Right-
Hip (RH–RH). The results for each link are averaged over 160 links from 20 sub-
jects. The minimum required window length to precisely investigate WSS is 6 s
(indicated by black dotted vertical line).

5.4.4 Results of Dataset 4

For dataset 4, the minimum window length to be considered for precisely assessing

an assumption of WSS is 6 s (interval length of 3 s with around 30 samples). From

Fig. 5.6, it can be seen that the body-to-body links (RH–RH) show acceptable

probability (70% to 80%) of being stationary with different hypothesis tests over

very large window lengths ranging from 35 s to 85 s (more than 400 samples), with

95% confidence level.

The acceptable amount of WSS duration from different stationarity tests for

various sensor location pairs (with different datasets) are presented in Table 5.2. We

have also shown the test results for best-case and worst-case stationarity with single

B2B links, for different channels in dataset 3 with K–S and B–F hypothesis tests in

Fig. 5.7. It can be seen that the best-case LH–LH and LH–RA links are showing

higher amount of stationarity, e.g., around 80% probability of satisfying the null

hypothesis assumption for a window length of 50 s (with K–S test). And, the best-

case LH–LW link is showing better stationarity than the averaged outcome (Fig.

5). On the other hand, in the worst-case scenario, the B2B links are not satisfying

the null hypothesis for the minimum required window length with K–S test and
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(b) B–F

Figure 5.7: (a) K–S and (b) B–F hypothesis test results for the probability of
stationarity (with cℓ = 0.95) across different body-to-body links, i.e., left-hip-to-
left-hip (LH-LH), left-hip-to-right-upper-arm (LH-RA), left-hip-to-left-wrist (LH-
LW). Subscript ‘b’ and ‘w’ imply the best and worst case, respectively.

are hardly satisfying the null hypothesis (with around 50% probability) with B–F

test. It can also be seen from Fig. 5.7 that in the case of longer window lengths

the B2B channels have lower probability of satisfying the B–F test (homogeneity

of variance) than the K–S test (consistency of distribution).
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Table 5.2: The WSS duration (in second) with 70% probability of stationarity
for various sensor location pairs of B2B links with different stationarity tests and
confidence levels (i.e., 95%, 99%); ‘N/A’ implies to the case where the B2B channel
does not satisfy the WSS assumption for minimum required window length

Dataset No. Body-to-body Link
with 95% Confidence Level with 99% Confidence Level

ANOVA B–F K–S ANOVA B–F K–S

1

RH–LH 1 s 3 s 2 s 2 s 5 s 3 s

RH–RA 0.5 s 2 s 1 s 1 s 3 s 2 s

RH–RH 0.5 s 2 s 1 s 1 s 3 s 2 s

RH–LW N/A 1 s 0.5 s 0.5 s 2 s 1 s

2

LH–LW 2.4 s 4 s 3 s 3 s 8 s 4 s

LH–RA N/A 2.4 s N/A N/A 5 s 2.4 s

LH–LH N/A 2.4 s N/A N/A 5 s 2.4 s

3

LH–LH 5 s 9 s 9 s 9 s 15 s 13 s

LH–RA N/A 5 s 4 s 4 s 9 s 6 s

LH–LW N/A 4 s N/A 3 s 7 s 4 s

4 RH–RH 35 s 50 s 85 s 60 s 75 s > 100 s

Claim 5.1. Let ψ[X(a, b)σ] be the WSS duration/segment of a body-to-body channel

X between on-body sensor locations from a to b with shadowing effect σ. Then

ψ[X(a, b)σ] = Lw
cl ,




Lw

cl ǫ R : 0.5s ≤ Lw
cl ≤ 9s, for cl = 95%.

Lw
cl ǫ R : 0.5s ≤ Lw

cl ≤ 15s, for cl = 99%.

Proof. The range of the WSS duration for body-to-body channels can be justified

by using Chebyshev’s interval found from Chebyshev’s theorem [263]. According

to this theorem, at least 75% of the data must lie within 2 standard deviations

from the mean and 89% of the data must lie within 3 standard deviations from the

mean, which can be generalised as

P
{
E(X)− kσ ≤ X ≤ E(X) + kσ

}
≥

(
1− 1

k2
)
, k > 1,

whereX is the set of observations. We apply Chebyshev’s theorem over all the WSS

duration (based on different stationarity tests) for various B2B channels (listed in

Table 5.2). We exclude the values found from dataset 4 where the WSS durations
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are exceptionally high, which is assumed to be the consequence of temporal aliasing

due to lower sampling rate for a bigger number of co-located BANs (20 subjects),

wearing only a single transmitter.

We find that for 95% confidence level, 90% of the WSS duration fall between

Chebyshev’s interval of [0 s, 8 s] (with ±2 standard deviations from the mean, i.e.,

3 s with 95% confidence level) and 100% values fall between Chebyshev’s interval of

[0 s, 10 s] (with ±3 standard deviations from the mean). Also, for 99% confidence

level, 92% of the values fall between Chebyshev’s interval of [0 s, 12 s] (with ±2
standard deviations from the mean, e.g., 5 s with 99% confidence level) and 100% of

values fall between Chebyshev’s interval of [0 s, 26 s] (with ±3 standard deviations

from the mean). By considering the lower and upper limits of the WSS duration

from Table 5.2, the WSS duration of B2B channels ranges from 0.5 s to 9 s with

95% confidence level, which can go up to 15 s with 99% confidence level.

Remark 5.1. To obtain a typical measure of the WSS duration, we can approxi-

mate the results from dataset 2 and 3 where the people/BANs have similar sensor

location set-ups. From the more general K–S hypothesis test (Appendix A), the ap-

proximate amount for the WSS duration is around 5 s with 95% or 99% confidence

level. Also, from B–F hypothesis test which is another powerful non-parametric test

that calculates the F statistic resulting from an one-way ANOVA on the absolute

deviations from the median (Appendix A), the approximate WSS duration are 5 s

(with 95% confidence level) and 8 s (with 99% confidence level).

Claim 5.2. ψ[X(a, b)σ] depends on (a, b) and σ, where (a, b) is a given sensor-

location pair and σ is the shadowing effect from the surrounding body-movements

and body-parts for a given amount of co-located BANs, and the particular in-

door/outdoor environment.

Proof. It is observable from the above results and the summary in Table 5.2 that

the WSS duration (Definition 5.3) is not similar for B2B channels between different

sensor location pairs in a given scenario or environment. Furthermore, it is not

likely that the B2B channels between the same sensor location pairs in different

scenarios/environments will satisfy the WSS assumption for a similar time period.

For instance, the LH–LH link in dataset 3 (Fig. 5.5c) shows 90% probability of

stationarity for a window length of 5 s, whereas the LH–LW link (Fig. 5.5c) depicts
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non-stationary behaviour for the same window length with only 20% chance of

satisfying the WSS assumption. Furthermore, the maximum amount of WSS period

varies for different B2B channels with the same dataset (Table 5.2). Therefore,

the WSS duration varies for B2B channels between different sensor location pairs

depending on the shadowing characteristics (shown in Table 5.4 in Section VII).

Additionally, the LH–LH link is considered to be the most stationary in the

dataset with 10 BANs (dataset 3, Fig. 5.5) in a pub environment, whereas the same

link is the least stationary (hardly satisfies the WSS assumption with minimum

required window length) in the dataset with 8 BANs (dataset 2, Fig. 5.4) in a

cafe environment. On the other hand, the left-hip-to-left-wrist (LH–LW) link is

the least stationary in dataset 3, but the most stationary in dataset 2. Hence, it

can be inferred that the similar ψ[X(a, b)σ] will not be held for channels between

the same sensor locations, e.g., (a, b) for all σ, and ψ[X(a, b)σ] will vary depending

on the sensor-location pair (a, b) and the corresponding σ of the channel.

Remark 5.2. As a consequence, to make the most out of the WSS assumption of

B2B channels, it is recommended that the wide-sense-stationarity should be tested

for B2B channels before applying that WSS amount/segment for modelling or fore-

casting the channel behaviour, as the WSS assumption and WSS duration can vary

for different B2B channels (with different sensor location pairs and shadowing effect

caused from different surroundings).

Observation 5.1. The probability of satisfying the WSS assumption for body-

centric channels gradually decreases with increasing window length.

Discussion. It can be seen from the results of the stationarity tests that the prob-

ability of stationarity reduces significantly (becomes non-stationary) with larger

window lengths. The body-centric channels used in this chapter are collected from

a measurement of around one hour (although the results are averaged over many

channels between similar sensor locations of the coexisting BANs), which leads to

an open question – if the decrease in stationarity can be an artefact of larger win-

dows (hence a lower number of windows) and sampling rate. However, the results

in this chapter do not truly depend on the number of windows used for the station-

arity tests. For instance, in dataset 1− 3, a similar number of windows are tested

for window lengths of 9.5 s, 10 s, and 10.5 s, respectively. It can also be seen from
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the results of the stationarity tests, e.g., K–S hypothesis test that the channels in

dataset 1 and 2 have very lower probability of stationarity for the given window

lengths, whereas some of the channels in dataset 3 have higher probability of sta-

tionarity for these specific window lengths. It is possible that the sensor locations

and shadowing effects from the co-located people and environment (as mentioned

above) contribute more to the varying probability of stationarity than any other

factors. Also, as discussed later (observations 5.2 and 5.3) in the following section,

the auto-correlation between samples of the body-centric channels analysed here,

does not significantly affect whether those channels are stationary. �

5.5 Long-Range Dependence or ‘Long-memory’

Long-range dependence (LRD) or Long-memory is a very important characteristic

for effective modelling and characterisation of the wireless channel behaviour in

predictive analysis. It is the level of statistical dependence between two points in a

time series. The ‘memory’ refers to how profoundly the past can impact the future

or, in other words, how useful is the past data to predict the future consequences.

If a channel possesses long-range-dependence, more realisations of past channels

have to be used to predict future channel instants with greater accuracy. We

investigate the LRD characteristics of body-to-body and on-body channels from

different datasets based on two different factors: the decaying pattern of the auto-

correlation function (ACF) and the Hurst exponent. We discuss the results from

dataset 3 in the following subsections (all the other datasets produced similar

outcome).

5.5.1 Decaying pattern of auto-correlation function

A rough analysis of the dependence is to compare the decaying pattern of the

auto-correlation function (ACF) of the channel with an exponential decay. For a

short-memory or memoryless process, the dependence between two points in a time

series decreases rapidly with an increase in time difference, hence the ACF has an

exponential decay (faster decay) or goes down to 0 after a certain time lag. On

the other hand, if the channel possesses long-memory, the ACF decays more slowly
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(power-like decay) than an exponential decay.

We analyse the average ACF of different on-body/B2B channels where we fit the

single term exponential and power series models (EQs. (5.5) and (5.6), respectively)

to the ACF decay, which uses the trust-region algorithm with a non-linear least-

squares method.

f(x) = a× expbx, (5.5)

f(x) = a× xb, (5.6)

where a and b are the coefficients with 95% confidence bounds.

The power and exponential fit to the measured averaged ACF for different B2B

and on-body channels from Dataset 3 (with 10 co-located BANs) are shown in Figs.

5.8 and 5.9, respectively. To determine the optimum result, the models are fitted

to the ACF decay to a moderate correlation coefficient of 0.5 (below which the

auto-correlation between samples is generally considered to be weak). We measure

the goodness-of-fit with the sum of squared errors of prediction (SSE) statistic [264]

(EQ. (5.7)), which is the sum of the squares of deviations predicted from actual

empirical values of data. It is a measure of the discrepancy between the data and

an estimation model. A value closer to 0 indicates that the model has a smaller

random error component, and that the fit will be more useful for prediction.

SSE =
n∑

i=1

(yi − y′i)2, (5.7)

where n is the number of observations, yi is the ith value of the variable to be

predicted and y′i is the predicted value of yi.

It can be seen from Figs. 5.8 and 5.9 that both the on-body and B2B channels

show a power-like decay for the auto-correlation function (SSE closer to 0), which

implies that these channels can possess long-range dependence. The values of

the coefficients and SSE for different fits with different B2B/on-body channels are

listed in Table 5.3. We also found power-like decay for ACFs in both best-case and

worst-case links (in terms of coherence time).
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Figure 5.8: Power fit and exponential fit to averaged auto-correlation decay of
different body-to-body channels, i.e., LH–LH, LH–RA, LH–LW from Dataset 3 (10
co-located BANs); SSE implies to the sum squared error of the fits. A SSE value
closer to 0 indicates that the model has a smaller random error component, and
that the fit will be more useful for prediction.
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Table 5.3: Fitting parameters with SSE values for power and exponential fits to
the ACF decay of different B2B and on-body channels with 10 co-located BANs

on-body/B2B

channels

Power Model Fit Exponential Model Fit

a b SSE a b SSE

LH–LH (B2B) 1.067 -0.152 0.035 0.805 -0.00541 0.11

LH–RA (B2B) 1.069 -0.155 0.023 0.799 -0.00541 0.134

LH–LW (B2B) 1.077 -0.157 0.0254 0.802 -0.00549 0.142

LH–RA (on-body) 1.035 -0.165 0.0103 0.814 -0.0091 0.085

LH–LW (on-body) 1.125 -0.137 0.124 0.789 -0.00217 0.198

5.5.2 Hurst exponent

A more systematic approach to analyse the dependence of the channels is estimat-

ing the Hurst exponent, which is also referred to as the index of dependence and

indicates the extent or strength of the auto-correlation between the samples. The

Hurst exponent is a useful statistical method to analyse channel characteristics

without making assumptions about stationarity (opposed to the stationarity as-

sumption made in the null hypothesis analysis). The value of the Hurst exponent

(hE) ranges between 0 and 1. If hE = 0.5, then there is no correlation/dependence

between the points of the channel. While if (0.5 < hE < 1), then the channel

characteristics are persistent, e.g., an increment/decrement is followed by another

increment/decrement and that characteristic tends to last for a long time into the

future. And, if (0 < hE < 0.5), then the channel characteristics are anti-persistent,

e.g., an increment is followed by a decrement in the future and vice-versa – result-

ing in significant fluctuation. In summary, as hE shifts away from 0.5 (in either

direction), it indicates stronger correlation between the samples along with the

persistency of the correlation, e.g., persistent/anti-persistent, hence the channel

becomes more predictable.

For measuring the Hurst exponent, we follow the rescaled range (R/S) analy-

sis method described in [248,265]. First, we calculate the dependence of the rescaled

range on the time span τ over the whole channelN , where τ ǫ [N,N/2, N/4, ..., N/2k];

k is a positive value. We then calculate the averaged rescaled range R(τ)/S(τ) for

each τ from all the partial time span with length τn over the whole channel. The

estimation method is given below:
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Figure 5.9: Power fit and exponential fit to averaged auto-correlation decay of
different on-body channels, i.e., LH–RA, LH–LW from Dataset 3 (10 co-located
BANs); SSE is the sum squared error of the fits

Let X(τ) be a part of the signal with a specific time span τ . The rescaled range

of each part as X(τ) with length τn over the whole channel is calculated as follows,

R(τ)

S(τ)
=

max[Z(τ)]−min[Z(τ)]√
1
τn

∑τn
i=1

(
Xi(τ)−Xm(τ)

)2 , (5.8)
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where S(τ) is the standard deviation and R(τ) is the range estimated from the

bounds of the cumulative deviate series Z(τ), which is calculated as follows,

Zt(τ) =
t∑

i=1

Yi(τ), t = 1, 2, ..., τn, (5.9)

where

Y (τ) = Xj(τ)−Xm(τ), j = 1, 2, ..., τn, (5.10)

is the mean-adjusted series, and

Xm(τ) =
1

τn

τn∑

i=1

Xi(τ), (5.11)

is the mean of X(τ).

The Hurst exponentH is estimated by fitting the power law E[R(τ)/S(τ)] = τHn

to the data, which can be found from the slope of a log-log plot of the R/S statistics

(by plotting log[R(τ)/S(τ)] as a function of logτ).

We average the E[R(τ)/S(τ)] value from different groups of similar B2B/on-

body links and measure the approximate Hurst exponent for specific type of B2B/on-

body links. The results from dataset 3 are shown in Fig. 5.10, where all of the links

are demonstrating a higher value (around 0.9) of Hurst index which is indicative

of having long-range dependence. Also, we estimate the Hurst exponent for some

best-case and worst-case links (in terms of coherence time) where we found that

even in worst-case (very small coherence time), the B2B channels have a Hurst

exponent of around 0.75 (> 0.5), which can go up to 1 for best-case link.

Claim 5.3. The body-centric channels can retain long-memory or long-range de-

pendence.

Proof. It is shown in the above results (Figs. 5.8 and 5.9) that both the body-

to-body and on-body channels demonstrate a hyperbolic/power-like decay (rather

than an exponential decay) for the auto-correlation functions. One of the major

attributes of the power-law is its scale invariance. If we scale the argument x in
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Figure 5.10: Hurst regression from averaged R/S values for different B2B and on-
body links, i.e., LH–LH, LH–RA, LH–LW from Dataset 3 (10 co-located BANs).
Hurst exponent (hE) is calculated from the slopes of the red lines. The higher value
(around 0.9) of hE is indicative of having long-range dependence.

EQ. (5.6) by a constant factor C, such as

f(Cx) = a(Cx)b = Cbaxb = Cbf(x) ∝ f(x),

then it produces a simple multiplication or proportional scaling of the function
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itself. That is, all f(x) with a scaling exponent b are homogeneous of degree b, since

each is generally a scaled version of the others. On the other hand, exponential

decays are memoryless or dominate quick variation (proved in [266]).

Hence, slower (power-like) decay (or the scale homogeneity) of the ACFs is in-

dicative of statistical dependence between the samples of the body-centric channels.

Another major characteristic of LRD processes is that they have a Hurst exponent

greater than 0.5, which is also the case for both of those channels – Hurst exponent

is around 0.9 (Fig. 5.10). From these results it can be inferred that body-centric

channels (B2B/on-body) incorporate long-memory or long-range dependence.

Claim 5.4. The wide-sense-stationarity and long-range dependence of the body-

centric channels are not correlated.

Proof. From Proposition 5.3, all types of body-centric channels (on-body/B2B)

demonstrate long-range dependence. On the other hand, from the experimental

results of Section V, it can be seen that B2B channels are more stationary than on-

body channels (typically, on-body channels depict non-stationary behaviour [99]).

Hence, it can directly be inferred that there is no mutual connection between

stationarity and long-range dependence properties. Both stationary and non-

stationary body-centric channels can have long memory or long-range dependence.

This is further discussed in the following observation.

Observation 5.2. For a body-centric channel, the variation in correlation coeffi-

cient r(ω) of a time lag ω [ω ≥ 0] does not significantly impact the stationarity

characteristics of ω.

Discussion. It can be seen from Figs. 5.5c and 5.8 (with Dataset 3) that even

with a similar amount of auto-correlation, e.g., r ≥ 0.5 for ω ≤ 5 s (Fig. 5.8),

different B2B links, i.e., LH–LH, LH–RA, LH–LW can hold different amounts of

stationarity (Fig. 5.5c). For instance, with the K–S hypothesis test (Fig. 5.5c)

at 95% confidence level, LH–LH link exhibits more stationarity than the other

two links (and can hold reasonable stationarity for around 10 s) whereas the LH–

LW link depicts non-stationary behaviour. This can also be deduced for on-body

channels (in Fig. 5.9), where they have very different amount of auto-correlation

but both of them are considered as non-stationary (Fig. 5.5c).
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From the above discussion, we can see that there is no relation between long-

range dependence (which indicates significant auto-correlation between samples)

and wide-sense-stationarity of the body-centric channels. �

Observation 5.3. There is no effect of reduced auto-correlation on the stationarity

outcome of body-centric channels.

Discussion. The authors in [99] investigated the effects of reduced auto-correlation

on the stationarity (possibility of Type-I Error) of on-body channels by down-

sampling the signals. According to their analysis, reduced auto-correlation does

not significantly improve the channel stationarity. This is also evident from Fig.

5.9 where the LH–RA (on-body) channel has much lower amount of auto-correlation

(r ≥ 0.5 for ω ≤ 3 s) than LH–LW (on-body) channel (r ≥ 0.5 for ω ≤ 12 s), yet

the stationarity is not improved accordingly (Fig. 5.5c) and, both of them are

considered non-stationary in terms of minimum required amount of samples for

the hypothesis tests.

Additionally, if there was a significant effect of reduced auto-correlation on the

stationarity outcome of the B2B channels, the probability of stationarity of those

links would have improved (even slightly) for the window length of more than 5 s

(r < 0.5 for ω > 5 s). On the contrary, it can be seen from Fig. 5.5 that the

probability of stationarity gradually decreases (goes down to 0 at window length

of ≥ 50 s) despite the reduced auto-correlation (r < 0.5) on the increased lag or

window length. �

Observation 5.4. ψ(Xλ) can be utilised as pivotal points in predictive analysis of

stationary LRD process Xλ, where ψ(Xλ) is the WSS duration of Xλ.

Discussion. As in Xλ, the past event can affect the future events, it is important

to know how much information is adequate to predict the future. It is practically

impossible according to the definition of LRD (Definition 5.2), where the sum of

the correlation coefficients r(ω) does not converge as ω → ∞ (ACF decays very

slowly). Although, LRD implies that the longer the observation, the better the

prediction, it is not practically feasible to use indefinitely large observations due

to time and resource constraints. Therefore, ψ(Xλ) can be utilised to approximate

the period over which the channel samples can be used for prediction of Xλ with
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greater accuracy, where some past values can be used to predict the future values

within ψ(Xλ) and progress iteratively with possible overlapping. �

5.6 Modelling Body-to-Body Channels

The body-centric channels are generally dominated by body-shadowing resulted

from slowly-varying dynamics of the surrounding body-parts and movements. Specif-

ically, in the case of BAN coexistence (BBNs), the links between different bodies

can experience significant shadowing from nearby users’ bodies and obstacles, be-

cause of the continuous movement (postural/ambulatory) of the BAN entities and

the power absorption (of up to 60 dB [96]) by the human body. It is discussed

in [82, 227] that for body-centric channels, considering the shadowing as large-

scale fading is inappropriate and estimating traditional distance-based path-loss

measures in terms of line-of-sight/non-line-of-sight categorisation is misleading.

However, small-scale fading occurs in body-centric channels due to the ambulatory

and postural movement of the mobile BAN entities in a close proximity, which is

also often dominated by shadowing [226]. As a result, many studies of body-centric

channels have characterised the fading model of the received signal without decom-

posing into body-shadowing and small-scale components [82,197,218,226,267–269].

For on-body channels, many narrowband [195, 270] and ultra-wideband [271,

272] characterisation has been performed in literature where the popular fading

models include lognormal [82], gamma [82], generalised gamma [82], Ricean [268],

Nakagami-M [199], and Weibull [218] distributions. In [273], Cotton et al. showed

that the κ − µ distribution demonstrates a good fit to the small-scale fading of

narrowband B2B channels between two subjects in comparison to other models,

e.g., Nakagami-m, lognormal, Rice, and Weibull. And, the authors in [274] argued

that the ultra-wideband inter-body shadowing between two subjects can be best

described with a lognormal model. In this chapter, we investigate the first-order

and second-order statistics, e.g., shadow fading distributions, time-dependence for

characterising the narrowband body-to-body channels collected from multiple co-

located BANs. Here, we discuss the results from dataset 3 with 10 co-located

subjects/BANs.
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5.6.1 Fading Characteristics

The B2B channels are generally considered as fading channels due to the continuous

movement and power absorption by the body-parts of different entities that signifi-

cantly affects the propagation channels between Tx and Rx devices. We characterise

the shadow fading (slow flat-fading dominated by shadowing from surrounding hu-

man body and body-parts) distributions for narrowband body-to-body channels

of dataset 3 (with 10 co-located people) between different sensor location pairs,

where the channel gains (magnitude values) for each type of channel (between spe-

cific sensor-location pairs) is averaged over 90 links with similar sensor-location

pairs. As the channels are transmitting in a round-robin, each channel gain sample

is averaged from 90 samples transmitted each 50 ms (this period is well-fitted within

the coherence time of B2B channels, e.g., around 1 second [225]). The statistical

modelling of different B2B channels from dataset 3 are presented in Fig. 5.11, and

some of the best fits with maximum likelihood estimate (MLE) parameters [238]

for those links are provided in Table 5.4.

It can be seen from Table 5.4 that the shadow fading characteristics of nar-

rowband B2B links in general can be best described by Burr (Burr type XII) and

Weibull distributions. The other distributions that are sometimes also applicable

for B2B channels are the generalised extreme value (GEV), log-logistic, Rician,

lognormal, and gamma. The three-parameter Burr type XII is a generalisation of

the log-logistic distribution, hence it is also referred to as generalised log-logistic

distribution [275]. The use of the log-logistic is often proposed as an alternative

to the lognormal (with heavier tails). Thus, the Burr offers an even more flexible

alternative to the lognormal with all of the advantages of the log-logistic (as the

log-logistic distribution is a special case of the Burr) [241]. The probability density

function (PDF) of the Burr distribution is as follows:

f(x | α, c, k) = αc

k

(x
k

)α−1[
1 +

(x
k

)α]−c−1

, x > 0, (5.12)

where α(> 0) is the scale parameter and c(> 0) and k(> 0) are the shape parame-

ters of the Burr distribution. The density of the distribution is unimodal (having

one clear peak) if c > 1 and L-shaped if c ≤ 1. The Weibull distribution is also
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Figure 5.11: Statistical model fits to probability distribution of measured averaged
channel gains (amplitudes) for B2B links with different sensor-location pairs — i.e.,
(a) LH–LH, (b) LH–RA, (c) LH–LW — of dataset 3.
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Table 5.4: Log-likelihood values (LLVs) and maximum likelihood estimate (MLE)
parameters of different statistical fits to the probability distribution function (PDF)
of B2B links with different sensor-location pairs of dataset 3; GEV implies to
Generalised Extreme Value

B2B link Statistical Fit LLV MLE Parameters

LH–LH

(average of links)

Burr 534202 α = 0.0000281, c = 7.69, k = 0.497

GEV 533226 k = 0.173, σ = 0.00000847, µ = 0.0000293

log-logistic 532556 µ = −10.3, σ = 0.180

lognormal 529918 µ = −10.3, σ = 0.345

gamma 525754 a = 7.50, b = 0.00000481

LH–LH

(best-case link)
log-logistic 597162 µ = −11.6, σ = 0.140

LH–LH

(worst-case link)
Weibull 407367 α = 0.000190, β = 1.19

LH–RA

(average of links)

Weibull 519970 α = 0.0000742, β = 5.71

Rician 518179 s = 0.00006704, σ = 0.0000145

log-logistic 514610 µ = −9.58, σ = 0.126

gamma 514434 a = 18.8, b = 0.00000366

lognormal 511745 µ = −9.61, σ = 0.245

LH–RA

(best-case link)
log-logistic 599759 µ = −11.6, σ = 0.134

LH–RA

(worst-case link)
Weibull 401522 α = 0.000227, β = 1.35

LH–LW

(average of links)

Burr 503749 α = 0.0000883, c = 5.86, k = 2.011

log-logistic 502719 µ = −9.49, σ = 0.144

gamma 502190 a = 14.7, b = 0.00000523

GEV 501840 k = −0.125, σ = 0.0000185, µ = 0.0000685

Rician 501671 s = 0.0000739, σ = 0.0000202

LH–LW

(best-case link)
log-logistic 586970 µ = −11.6, σ = 0.176

LH–LW

(worst-case link)
Burr 423835 α = 0.000126, c = 1.903, k = 1.34

shown to be the most appropriate distribution for most cases in the pseudo-dynamic

situations of body-centric channels [276]. The B2B channels can also be modelled
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with the following Weibull probability density function:

f(x | α, β) = β

α

(x
α

)β−1

exp

(
−
(x
α

)β)
, x > 0, (5.13)

where α and β are the scale and shape parameters, respectively.

Generalised extreme value (GEV) [277] combines three simpler distributions,

i.e., type I (Gumbel), type II (Frechet), and type III (Weibull), to allow a range of

possible shapes that includes all three distributions. The PDF for GEV is:

f(x|k, µ, σ) =
(
1

σ

)
exp

(
−
(
1+k

x− µ
σ

)
−

1
k

)(
1+k

x− µ
σ

)
−1− 1

k

; for 1+k
x− µ
σ

> 0,

(5.14)

where (k 6= ∅), µ, and σ are the shape, location, and scale parameter, respectively.

And, the PDF for the log-logistic distribution [278] is:

f(x | µ, σ) = 1

xσ

ez

(1 + ez)2
; x ≥ 0, µ > 0, σ > 0, (5.15)

where z = log(x)−µ
σ

, and µ and σ are the mean and standard deviation of the

logarithmic values, respectively.

We also provide the fading parameters for some best and worst links (in terms

of wide-sense-stationarity) of different types of B2B channels in Table 5.4 where

we show that in the best-case (with higher stationarity) the B2B links can be

characterised with a log-logistic distribution, and in worst-case the best fits are

Burr and Weibull distributions.

5.6.2 Time-dependence

We also characterise the coherence time (second-order statistics) of narrowband

body-to-body channels between different sensor-location pairs of dataset 3. The

median (typical) coherence time for different sensor-location pairs with respect to

different correlation coefficients, i.e., 0.7, 0.5 (of the ACF, calculated by equation

5.16 [279]) are presented in Table 5.5. Also, we provide some best and worst links

(in terms of auto-correlation) coherence time for different B2B channels in the same
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Table 5.5: Median (med.), best-case, and worst-case coherence time for different
B2B channels (LH–LH, LH–RA, LH–LW) with 10 co-located BANs (dataset 3);
for correlation coefficient, r ≥ 0.7 and r ≥ 0.5.

r

Different B2B channels

LH–

LH

(med.)

LH–

LH

(best)

LH–

LH

(worst)

LH–

RA

(med.)

LH–

RA

(best)

LH–

RA

(worst)

LH–

LW

(med.)

LH–

LW

(best)

LH–

LW

(worst)

r ≥ 0.7 1.1 s 5 s 150 ms 900 ms 23.6 s 50 ms 700 ms 25.5 ms 150 ms

r ≥ 0.5 5 s 18 s 3.6 s 4.7 s 86 s 150 ms 5 s 110 s 450 ms

table (Table 5.5).

rk =
1
T

∑T−k
t=1 (yt − y)(yt+k − y)

c0
, (5.16)

where rk is the auto-correlation for lag k, and c0 is the sample variance of the time

series.

5.7 Prospective Use-cases

Here, we state some of the possible applications from our experimental investiga-

tions of the WSS and LRD characteristics of body-centric channels.

5.7.1 Statistical characterisation

Due to the WSS property, appropriate statistical characterisation, e.g., first-order,

second-order statistics of B2B channels can be performed (as provided in the pre-

vious section). For instance, the WSS duration of B2B channels have distribution

consistency (according to the K–S hypothesis test), which can be investigated for

different segments of the channel to get an approximation of the distribution fits

and estimated parameters. Besides, the B2B channels can be modelled with pre-

dictive analysis based on the distribution properties and the coherence time by

utilising long-range dependence characteristics. This is not the case for on-body

channels as they exhibit an inconsistent distribution in almost all cases, over short

or long time segments. Furthermore, due to the non-stationary behaviour, the

second-order statistics will not be consistent over time for on-body channels.
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5.7.2 Modelling long-range dependence

As stationary long-range dependent channels are considered to have long-memory,

they can not be modelled by well-known stochastic Markov models which consid-

ers that the future state only depends on the state of the current sample, hence

memoryless. Instead, a semi-Markov approach would be more efficient when mod-

elling stationary long-memory process, e.g., B2B channels, also in some cases of

on-body channels [97], as this approach does not follow the memoryless nature

of the Markovian model but is Markovian at the specific jumps [280]. A Markov

model with memory can also be used (an example prospective work) where the

WSS windows can be divided into intervals consisting of multiple samples. The

observations from one interval can then be used to estimate the channel condition

of the next interval as they are assumed to maintain similar channel characteristics.

The same procedure can be applied for following windows with/without overlap-

ping (as according to Definition 5.1, the WSS segment is considered to be valid

regardless its position over the channel) and so on. In that way, we hold on to the

more recent (important) information and forget the unnecessary information, yet

make a more accurate estimation for future samples based on the information from

past samples.

In order to model the long-range dependent process (with locally stationary or

non-stationarity characteristics), Granger and Joyeux introduced auto-regressive

fractionally integrated moving average (ARFIMA) model in [281], which nests an

ARMA (auto-regressive moving average) model by fractionally integrating a non-

stationary process. In [282], the authors used a piece-wise ARFIMA process for

modelling non-stationary channels with long-range dependence. A stochastic model

based on WSSUS (wide-sense-stationary uncorrelated scattering) assumption [243]

was proposed in [283], where the authors model non-stationary small-scale fading

by modelling the change in delay and Doppler frequency of scatterers as a linear

function of time.

5.7.3 Predictive control/decision-making

One of the major applications of WSS and LRD properties is in predictive anal-

ysis [284]. When a channel has statistical dependence or long-range dependence
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between data points, it becomes more predictable as statistical inference can be

made more accurately based on several past correlated data. Besides, to avoid com-

plex estimation from a large amount of previous data, the WSS period/duration

can be utilised to approximate pivotal points for using recent information to pre-

dict the near future channel characteristics with greater accuracy within the WSS

duration. Also, learning algorithms can be applied for making intelligent decisions

to control and optimise the performance of the body-to-body channels that hold

WSS and LRD characteristics.

5.8 Summary

This chapter provided extensive analysis of the wide-sense-stationarity and long-

range dependence characteristics of wireless body-centric channels (on-body/body-

to-body) at 2.36 GHz narrowband with a number of experimental datasets captured

over many hours, consisting of a different number of co-located BANs in different

scenarios. We employed null hypothesis significance tests with different test statis-

tics to get an approximation of the WSS duration with an acceptable range for

B2B channels from different set-ups. We also investigated the effect of different

on-body sensor locations and environments on the WSS properties of body-centric

channels. Additionally, we estimated the Hurst parameter and the ACF decay of

the body-centric channels to examine the presence of LRD characteristics in these

channels.

It has been shown that almost all B2B channels can satisfy a WSS assumption

for a certain period of time, ranging from 0.5 s to 15 s, depending on the on-body

sensor locations and the shadowing effect caused by movement, body-posture and

surroundings. On the other hand, as shown in prior works, most on-body channels

do not exhibit WSS characteristics even for the minimum amount of samples re-

quired for the tests to be considered as valid. We also found that the ACFs of both

on-body and B2B channels decay very slowly (hyperbolic decay) and the estimated

Hurst exponent from the channels have higher values (approximately 0.9), which

implies that both on-body and B2B channels have long-memory. However, due to

its WSS characteristics, B2B channels can be predicted with more accuracy than

on-body channels.
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It has also been demonstrated that the statistical dependence between the data

points of body-centric channels does not affect their WSS characteristics, which is,

as evident from the outcomes of WSS tests of on-body and B2B channels, despite

the fact that both of those channels has long-range dependence. Furthermore, the

length of WSS of B2B channels can be utilised to avoid the complexity of using an

unknown amount of information for predictive analysis with long-memory chan-

nels. We have also shown that the shadow fading of narrowband B2B channels can

be best described by Burr type XII, log-logistic, and Weibull distributions, and the

typical coherence time of narrowband B2B channels is around 1 second. We have

also addressed how our findings might be applied for future channel modelling

and prediction of body-centric channels. Our work can serve as a precise docu-

mentation of WSS and LRD characteristics to use in channel characterisation and

prediction for real-life, low-power wireless body-centric networks taking small-scale

and shadow fading into consideration. In the next chapter, we utilise the WSS

and LRD characteristics to formulate a multi-objective MDP, for applying adap-

tive scheduling to jointly optimise throughput, latency, and energy consumption of

body-to-body channels.
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Chapter 6

Multi-Objective Optimisation for

Real-life BBNs

6.1 Introduction

In this chapter, we perform analytics for body-to-body (B2B) communications

utilising the predictive characteristics determined in the previous chapter. Wire-

less body-to-body networks (BBNs) are resource-constrained networks that oper-

ate in dynamic environments where global coordination is not possible. More-

over, BBN channels experience interference and shadowing due to human-body

movements, e.g., ambulatory and postural movements, obstruction by body-parts.

Therefore, these networks need to be self-organised and perform dynamic optimi-

sation for efficient resource utilisation. One of the widely used optimisation tools

for such dynamic systems is a Markov decision process (MDP) [160] where differ-

ent probability-based decisions are made at epochs, often to optimise a specific

network objective. But there are situations when multiple, possibly conflicting,

objectives need to be optimised for, as in [285, 286]. This is particularly the case

for body-centric communications, due to their various resource constraints [2,287].

In this chapter, we aim to address the following issue:

How to utilise the predictive characteristics of B2B channels for multi-objective

optimisation over BBNs?

Therefore, we employ a multi-objective Markov decision process (MOMDP)

147
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[288, 289] for adaptive scheduling to optimise the performance of BBNs in terms

of different performance metrics. We also define and analyse a decision period or

sojourn time for the Markov decision process used in this work, by utilising the

predictive characteristics, i.e., wide-sense-stationarity (WSS) [247] and long-range

dependence (LRD) [290] (described in Chapter 5) of B2B channels.

In multi-objective optimisation, the solution is often the most desired trade-off

between multiple competing objectives [291]. Here, our goal is to achieve a Pareto

optimal trade-off between increased throughput and decreased continuous latency

that reduces energy consumption as much as possible. To define the conditions

for the Pareto optimal state that will produce the most balanced outcome across

all objectives, we examine different combinations of packet success rate and con-

tinuous latency with a brute-force approach. The domain used for the exhaustive

search consists of a significantly large amount of real-life B2B links with extensive

channel measurements. There are 270 links, each for a duration of approximately

45 minutes, containing a total of around 720 million samples (2664800 data points

per link), collected from a reasonable number of colocated BANs performing ‘ev-

eryday’ mixed activities (e.g., walking, sitting, standing, turning, talking) in in-

door/outdoor environments (e.g., building, office space, street, cafe/pub). Such

extensive analysis provides a normalized outcome from many typical BBN sce-

narios. The same dataset is also used as training data for the offline learning

and policy search of the MOMDP. For the adaptive scheduling with MOMDP

here, the two most popular medium access techniques for body-centric networks –

time division multiple access (TDMA) and carrier sense multiple access with col-

lision avoidance (CSMA/CA) — are combined. As stated in Chapter 4, TDMA

has maximum bandwidth utilisation and lower power consumption compared to

CSMA/CA [240], whereas CSMA/CA provides higher throughput by continuously

sensing the medium as opposed to TDMA with fixed waiting intervals. However,

fixed interval TDMA has higher latency for very slowly-varying body-centric chan-

nels under severe channel attenuation, which can be reduced in CSMA/CA with

an effective carrier sensing mechanism [292].

Therefore, our aim is to adaptively exploit the advantages of both TDMA and

CSMA/CA for jointly optimising the throughput, continuous latency, and energy

consumption of B2B communications between any two BANs (direct link) in the
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presence of other coexisting (interfering) BANs, with multi-objective predictive

decision-making utilising properties of body-to-body channels. We perform the

decision-making employing real-life experimental measurements collected from closely-

located mobile people with body-worn sensors. We compare our Pareto optimum

outcome (from adaptively selecting between TDMA and CSMA/CA actions with

different parameters) with the results of TDMA and CSMA/CA schemes applied

separately. From experimental results across additional 168 tested narrowband

B2B channels from a similar set-up as the training dataset, we find that

• The Pareto optimum outcome (f ∗) can provide up to 3.4 times better through-

put than TDMA (with a 10% duty cycle), but also can consume up to 3.2

times more energy (because of the increased active period) than TDMA (as

TDMA schemes have fixed duty cycles). Then again, f ∗ produces an ac-

ceptable amount of continuous latency with respect to TDMA — a slightly

(around 5%) higher amount of continuous latency than TDMA schemes for

smaller intervals and similar amount of continuous latency as TDMA for

longer intervals (≥ 4 s).

• CSMA/CA with −70 dBm carrier sense threshold (csth) consumes around 2.3

times more energy, and has much higher continuous latency, than the Pareto

optimum f ∗, although it provides almost twice as much throughput than the

Pareto optimum (f ∗). For instance, CSMA/CA with csth = −70 dBm has

a continuous latency of greater than or equal to 250 ms for around 46% of

the total time, whereas f ∗ produces the same amount of latency for less than

30% of the total time.

• The Pareto optimum outcome has the highest packet delivery ratio (PDR

> 80%), than all other actions.

• For the body-to-body channels with an increase in period of stationarity of the

body-to-body channels, the performance of TDMA schemes degrades while

the performance of CSMA/CA schemes improves, along with an improved

trade-off between these two schemes for the Pareto optimum.

• It is also observed from the individual outcome of 168 channels tested sep-

arately that with the CSMA/CA schemes, the B2B channels are producing
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either higher throughput with higher energy consumption, or lower through-

put with higher continuous latency. On the other hand, TDMA schemes

always provide lower throughput regardless of the amount of continuous la-

tency, with fixed duty cycles. And the Pareto optimal solution provides a

balanced trade-off between throughput, continuous latency, and energy con-

sumption.

• The application of least square linear regression and goodness-of-fit sum

squared error validate the consistency of the predictive MOMDP model.

6.2 System Model

A Markov decision process, as used here, follows the Markov property where it is

assumed that the process is stationary or wide-sense-stationary (WSS), and the fu-

ture state only depends on the current state and is independent of the past states.

Generally, the decision epochs of MDP are discrete time variables, e.g., 1, 2, 3, ...

with a constant holding/decision period, e.g., typically 1 data point, hence assum-

ing no correlation between data points/samples. However, we have investigated

the WSS property of B2B channels in [247] where we found that B2B channels

typically hold the WSS characteristics (in around 70%−80% of cases) for a certain

period (i.e., 5 seconds), which is consistent over the whole time of operation. We

also found in [247] that B2B channels are stationary long-memory processes that

means, along with WSS, B2B channels can retain long-memory or long-range de-

pendence (LRD) characteristics [290], which indicates significant auto-correlation

between samples. Hence, for B2B channels, we formulate a discrete-time MDP

with memory as follows:

P{Xti+1
= s′ |Xti = s}, t = [1, 2, ...,m], (s, s′) ǫ S (6.1)

where t is the decision interval that consists of m correlated samples, i is a non-

negative integer (i ǫN) that denotes the index of the decision interval, and S is the

set of states. We choose the decision interval t based on the WSS duration of B2B

channels. As we have found that the WSS duration remains consistent over time
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Figure 6.1: Pareto optimality between two objectives in a multi-objective function.

for B2B channels, we use half of the WSS duration as the decision period to satisfy

the Markov property with memory, i.e., the future state in the decision period ti+1

depends only on the current state in the decision period ti.

It should be noted that, in semi-Markov decision process (SMDPs) as an exten-

sion of MDPs, variable holding periods are permitted where the state conditions

are measured over these holding periods [293]. Although, we use holding period or

sojourn time between decision epochs, because of the fixed duration of that period

here, a simple MDP formulation is more appropriate, where the decision period is

considered as a whole entity with correlated samples. And, each entity depends on

the past entity (not on the sequence of preceding entities) based on the duration

for WSS, hence satisfying the generalised Markov property with memory (6.1).

The formulation of the MDP and the experimental scenario are elaborated in the

following subsections.

6.2.1 Formulation of the MDP

We formulate the problem of multi-objective optimisation for different performance

metrics with adaptive scheduling as a finite state, finite horizon discrete-time

Markov decision process (DTMDP) where the time between the decision epochs is
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Figure 6.2: MDP transition probabilities from one state to another state with a
given action a ϵ A.

fixed and consists of multiple samples. Technically, an MDP is a 4-tuple stochastic

control problem: M(S,A,T,R) where S is the set of states in the system, A is the

set of actions available, T is the state transition function defining the probability

of going from one state (s ǫ S) to another state (s′ ǫ S) by choosing action a ǫ A,

and R is the reward function that is the reward for going to a certain state. The

objective of an MDP is to calculate an optimal strategy or policy (π∗) that will

maximise the end rewards. We formulate the multi-objective optimisation problem

subject to a set of conditions for jointly optimising throughput, continuous latency,

and energy consumption of B2B channels as follows:

f ∗ = E
{
ωr |fr − z∗r |

}
, r = (1, 2, 3) (6.2)

subject to cp, {cp : (ps ≥ 60%, d < 125 ms) | cp ǫ CP},

where f ∗ is the Pareto optimal solution that produces a vector for optimising dif-

ferent objectives r (here, the number of objectives is 3), ω is the weight depending

on the specific objective, z∗ is the solution if each objective is independently opti-

mised, cp is the condition for the Pareto optimal state, composed of packet success
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rate (ps) and continuous latency (d) of the channel, and CP is the set of conditions

considered for the Pareto optimal state. The three objectives are:

r = 1 : maximise throughput

r = 2 : minimise continuous latency

r = 3 : minimise energy consumption.

It is important to define the conditions for the Pareto optimal state prior to ap-

plying the MDP, as there are multiple objectives that need to be jointly optimised

for an acceptable outcome, which is not biased towards any particular objective.

As mentioned earlier, the aim is to achieve a suitable trade-off between increased

throughput and decreased continuous latency that also minimises the energy con-

sumption, so we focus on the conditions of packet success rate (which indicates

throughput) and continuous latency, to define the Pareto optimal state. We use

different combinations of packet success rate and continuous latency to define the

conditions in CP, such that

CP =





ps ≥ x′, x′ ǫ {50%, 60%, 70%, 80%, 90%}
∧

d < y′, y′ ǫ {125 ms, 250 ms}

The amount of acceptable continuous latency is found from the guideline of the

IEEE 802.15.6 BAN standard [29] for medical (less than 125 ms) and non-medical

(less than 250 ms) applications1. The target is to reach a state that has higher

packet success rate and lower continuous latency, with a moderate energy consump-

tion. However, a higher packet success rate will produce higher throughput, which

will also increase the active period and processing overhead resulting in increased

energy consumption. Also, the decision-making pattern (choice of actions) of the

MDP can get biased under certain conditions. Therefore, we choose the condition

for the Pareto optimal state based on a brute-force approach2 where we use all the

combinations (5 × 2 = 10 combinations) of the conditions in CP individually for

the Pareto optimal state, to apply the MOMDP over a significant amount of B2B

1The IEEE 802.15.6 BAN standard guideline [29] can generally be applied for BBN, as the
nodes/sensors in BBN are placed on different bodies in a close proximity.

2The combinations of the limited conditions for the two metrics provide a feasible search
space for the brute-force approach.
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links that are collected from many typical BBN scenarios. We found that with the

given condition, cp in (6.2), the multi-objective optimisation makes the most bal-

anced use of different actions, as well as providing the highest packet delivery ratio3

(greater than 80%), along with a suitable trade-off between throughput, continuous

latency, and energy consumption. The concept of Pareto optimality is illustrated

in Fig. 6.1 with a multi-objective function that has two objectives.

(a)

On-body Hub

On-body Sensor

LH–LH

LH–RA

LH–LW

(b)

Figure 6.3: (a) Different on-body sensor locations and example of body-to-body
links with two co-located BANs; (b) The radio-frequency testbed with major com-
ponents highlighted. Battery (disconnected) is on reverse side

States and decision epoch

Here, it is assumed that the state space S is finite where the state of a channel

{s(c) | s ϵ S, c ϵCS} is defined by a set of conditions CS, jointly represented by two

factors: packet success rate (ps)

ps : (ps ≥ 60%) ∨ (ps < 60%)

and continuous latency (d)

d : (d ≥ 125 ms) ∨ (d < 125 ms)

3packet delivery ratio is equivalent to the packet success rate
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Algorithm 5: Classification of state values in MDP

input : decision interval, t
output: classification of the channel state, s(ps, d) and state value of the

decision interval, V (St)

1 if ps(t) ≥ 60% & d(t) < 125 ms then
2 s(ps, d)→ 1;
3 [state 1 (Pareto optimal)]

4 else if ps(t) ≥ 60% & d(t) ≥ 125 ms then
5 s(ps, d)→ 2;
6 [state 2]

7 else if ps(t) < 60% & d(t) < 125 ms then
8 s(ps, d)→ 3;
9 [state 3]

10 else
11 s(ps, d)→ 4;
12 [state 4]

13 end
14 V (St)← V (s(ps, d));

The set of states, S of the MDP is formulated based on the Pareto optimal con-

dition, where each state is labelled with a value from {1, 2, 3, 4}, as shown in Al-

gorithm 5. We consider state 1 (in Algorithm 5) as the target state or Pareto

optimal state, where the packet delivery ratio is greater than or equal to 60% and

continuous latency is less than 125 ms. The objective is to always reach to the

target state (i.e., state 1).

We divide the whole channel duration into small fixed-sized intervals/decision

periods of 2.5 seconds based on the previously described acceptable WSS segments

of around 5 seconds [247]. The state at a given decision interval is estimated from

the samples over this 2.5 second period, and in each period there are multiple

correlated samples, based on which a decision is made at the decision epoch. Thus,

the future state over a decision interval of 2.5 s depends only on the current state

over a decision interval of 2.5 s, satisfying the Markov property.
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Actions/Decisions

The decision, implying action performed, at each epoch affects the transition prob-

ability of going to a good state or target state from the current state. Here, we use

different scheduling schemes associated with time division multiple access (TDMA)

and carrier sense multiple access with collision avoidance (CSMA/CA) as available

actions at each decision epoch. TDMA with different low duty cycles (i.e., 10%,

5%, 1%) is implemented within a simple round-robin fashion among each hub of

the BBN and the duty cycles are obtained by lowering the sampling rate of the

channels to lessen the active period, hence reducing energy consumption. On the

other hand, CSMA/CA is applied with suitable static carrier sense thresholds to

increase throughput and decrease continuous latency in comparison to TDMA with

its fixed waiting period. We use the maximum-interference-power-carrier-sensing

(MPCS) for CSMA/CA proposed in [292] where the transmission is permitted only

if the maximum interference power is less than an adaptive carrier sense threshold

(csth) and the adaptive csth changes periodically after each decision period based

on the channel condition of that decision period. Due to the complexity of keeping

track of the changing csth when applying combined TDMA and CSMA/CA, we

restrict to a choice of 3 values of csth (−70 dBm, −75 dBm, −78 dBm) that appear

more frequently in the adaptive mechanism of [292]. The finite set of actions A are

listed in Table 6.1.

Table 6.1: Set of Actions (A)

Action Description

1 TDMA with 10% duty cycle

2 TDMA with 5% duty cycle

3 TDMA with 1% duty cycle

4 CSMA/CA with csth = −70 dBm

5 CSMA/CA with csth = −75 dBm

6 CSMA/CA with csth = −78 dBm
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State Transition Function

The state transition function T(s, a, s′) defines the transition probability of going

from state s ǫ S to state s′ ǫ S with action a ǫ A (shown in Fig. 6.2):

T
(
s, a, s′

)
= P

{
s′|s, a

}
, [(s, s′) ǫ S, a ǫ A].

Hence, for each action a ǫ A, there is an [M ×M ] transition probability matrix

(here, with M = 4 states) such that

T as,s′ = P
{
Sti+1

= s′ | Sti = s
}
, (6.3)

and,
m∑

i=1

P
{
s′i|s, a

}
= 1, (6.4)

where St is the estimated state value of decision interval t (with multiple samples).

We estimate the state transition function T(s, a, s′): the expected probability of

going from state s to state s′ with a given action a, by pairwise estimation of

continuous decision intervals after applying action a as

n−1∑
i=1

E{Sti+1
= s′ | Sti = s, a}

(n− 1)
, [(s, s′) ǫ S, a ǫ A], (6.5)

where n is the number of decision intervals over the whole period of which the

channel is active. We use 270 body-to-body links from the training set (from 10

closely located BANs) to estimate the transition function for each action.

Reward Function

The reward function R(s, a, s′) evaluates the outcome when action a is chosen at

state s:

R
(
s, a, s′

)
= R

{
s′|s, a

}
, [(s, s′) ǫ S, a ǫ A].

It defines the expected rewards/consequences for being in different states with re-

spect to several conditions (as sown in Algorithm 5). For instance, the reward for
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Algorithm 6: Optimal policy

input : transition probability (T), set of states (S), set of actions (A)
output: optimal policy (π∗)

1 V (s)← statevalue(s,T);
2 for all s ϵ S do
3 for all a ϵ A do
4 pa ← P{V (s1) | V (s), a};
5 end
6 π(s)← a : maximum(pa);

7 end
8 π∗ ← π(s) for all s ǫ S;

being in state 1 is increased packet delivery ratio and reduced continuous latency,

hence increased throughput. The expected sum of rewards is maximised by choos-

ing an optimal action at each decision epoch. The overall expected reward (Pareto

optimum) is then estimated across all decision intervals:

R∗ =
n∑

i=1

E[Rti ] (6.6)

Optimal Policy

The optimal policy (π∗) is the solution of an MDP which maps the state action

pairs π(s, a) and maximises the expected sum of rewards. At each decision epoch,

the best action is chosen based on the estimated channel state (s ǫ S), which is

considered to be the optimal action (π) for that state. We use the transition

probability matrix to find the Pareto optimal action for each state — the action

which gives the highest probability of going to the Pareto optimal state, i.e., state

1, from the current state, such that

π(s, a) = maxP
{
V (s1) | V (s), a

}
, s ǫ S, a ǫ A. (6.7)

The optimal actions for all the states in S then construct the optimal policy

π∗ (Algorithm 6). At each decision epoch, the best action is chosen from different

TDMA and CSMA/CA schemes (actions 1 to 6 in A), based on the estimated
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Algorithm 7: Applying optimal policy

input : set of states (S), set of actions (A),
optimal policy (π∗)

output: Total expected reward

1 t→ decision period/interval (contains multiple samples);
2 n→ number of decision intervals;
3 i→ index of decision interval;
4 V (ts)← statevalue(s,t1);
5 for i← 2 to n do
6 π ← FindOptimalAction(π∗, V (ts));
7 Outi ← ApplyAction(π, ti);
8 V (ts)← statevalue(s, Outi);

9 end

10 Out→ E

[
∑n

i=1R{Outi}
(
V (Outi), A{ti}, V (Outi−1)

)∣∣∣∣π∗

]
;

channel state (s ǫ S) of the decision interval, which is considered to be the optimal

action (π) for the next decision interval. As mentioned earlier, with the condition

(cp) chosen for the Pareto optimal state, the MOMDP makes the best use of differ-

ent actions (adaptively chooses from both TDMA and CSMA/CA schemes). The

optimal policy is used as a look-up table to choose the best action at the decision

epochs, iteratively, over the whole channel duration for maximising the expected

sum of rewards as:

max
π

E

[
n∑

i=1

R{ti}
[
V (ti), A{ti}, V (ti−1)

]∣∣∣∣π∗

]
,

where t is the decision interval and n is the number of decision intervals over the

whole period. The whole process is described with Algorithm 6 and 7. The result

of applying the optimal policy is the optimised outcome or reward over the whole

channel from adaptively combining different TDMA and CSMA/CA schemes. We

use 168 B2B channels as a test set (with 8 closely located BANs) to obtain the

average optimal outcome of the MDP.
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6.2.2 Experimental Scenario

The open-access datasets [215]4 used (described in Chapter 3 and 5), consist of

continuous extensive intra-BAN (on-body) and inter-BAN (body-to-body) channel

gain data (estimated from measured RSSI values with 0 dBm transmit power),

incorporating varying amount of movements for many tens of hours of measure-

ments, captured from a range of measurement scenarios with various numbers of

closely-located mobile people (wearing body-worn sensors/radios). The receive sen-

sitivity is −100 dBm with a noise floor at (∼ −101) dBm. The wearable radios

(XBee/ZigBee devices) in each dataset were transmitting in a sequential order at

0 dBm power (along with −100 dBm receive sensitivity) with 5 ms separation

between each other. Hence, each device is transmitting for 5 ms with a gap of

(n− 1)× 5 ms where n is the number of transmitting devices. Each sample of the

channel measurement was the average received signal strength indicator (RSSI)

value over the 5 ms period. In this work, we perform linear interpolation between

consecutive samples of the original measured channels, to be considered as channels

with continuous samples for applying both TDMA and CSMA/CA schemes over

the channels. The datasets employed in this analysis use 2.36 GHz narrowband.

We use two different datasets with a similar setup for training and testing the

predictive model:

Training dataset

In this dataset, 10 co-located mobile subjects were used with each subject wearing

three on-body sensors: one transceiver on the Left–Hip (LH) and two receivers

on the Left–Wrist (LW) and Right–upper–Arm (RA), respectively. The different

body-to-body channels between these sensor locations are shown in Fig. 6.3a. As

there are 10 people and each is transmitting to all others, there are (10× 9) = 90

links for each type B2B channels between a sensor location pair, i.e., LH–LH, LH–

RA, LH–LW, hence a total of 270 B2B links, each for a duration of approximately

45 minutes that are employed for training the predictive model. As mentioned

above, here the original measured channels are estimated with linear interpolation

over the sampling period (transmission period + waiting period). For instance,

4available in http://doi.org/10.4225/08/5947409d34552



6.3 Experimental Outcome and Analysis 161

with a sampling rate of 20 Hz and 5 ms transmission time, the original channels

had 1 sample in each 50 ms period for a given link. With the interpolated samples,

we consider a transmission time of 1 ms (including transmission time of data packet

≈ 0.6 ms, control packet ≈ 0.2 ms and extra bits) for each sample. As a result,

instead of 1 sample, there are now 50 samples in each 50 ms period, hence more than

2.5 million (∼ 2664800) samples per link, which gives a total of around 720 million

samples over the training dataset. The interpolated channels are reasonably similar

as the actual channel measurement of 50 ms falls well within the coherence time of

body-to-body channels (around 1 s [292]), which are also in general slow flat-fading

channels. When applying TDMA, we then resample the interpolated channels with

different sampling rates to achieve the expected duty cycles for TDMA.

Testing dataset

In this dataset, 8 co-located mobile subjects are used with the same set up in the

training dataset. With 8 people, there are (8× 7) = 56 links for each type of B2B

channel, i.e., LH–LH, LH–RA, LH–LW, hence a total of 168 B2B links, each for

a duration of nearly 42 minutes, over which the predictive model is applied and

tested. The original sampling rate and transmission time are 25 Hz and 5 ms,

respectively, which results in 1 sample per 40 ms period. Similar as the training

channels, the original testing channels are linearly interpolated with a transmission

time of 1 ms, hence instead of 1 sample, there will be now 40 samples per 40 ms

period, hence around 2.5 million (∼ 2505160) samples per link, resulting in more

than 420 million samples over the testing dataset.

6.3 Experimental Outcome and Analysis

In this section, we analyse the outcome of applying the MOMDP over body-to-body

channels in terms of different objectives associated with throughput, continuous

latency, and the active fraction over the whole period (which gives an estimate of

the energy consumption). The results are averaged from a total of 168 experimental

channel measurements used for testing the predictive model. In previous work, we

performed the analysis of the predictive characteristics (WSS [247] and LRD [290])
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Table 6.2: Performance Analysis Parameters

Parameter Value

Carrier Frequency 2.36 GHz

Data rate 486 kbps

Transmission time (Ttrans) 1 ms

Transmit power (ptx) 0 dBm

Decision period/interval (t) 2.5 s

WSS duration 5 s

Measurement period (per link) for training data ∼ 45 minutes

Measurement period (per link) for testing data ∼ 42 minutes

Samples (per link) for training data ∼ 2664800

Samples (per link) for testing data ∼ 2505160

of B2B channels with different datasets and different sensor location pairs where we

found that these characteristics are variable depending on on-body sensor positions,

which also contribute to the shadowing effect across the B2B channels.

Hence, in this work, we also analyse the performance of the MOMDP over

B2B channels with specific sensor location pairs, i.e., LH–LH, LH–RA, and LH–

LW, where the transition probabilities for each of those pairs are estimated over

90 channels (between the same sensor location pairs) and the results are aver-

aged over 56 channels (also between the same sensor location pairs). We compare

the Pareto optimum outcome (f ∗) that combines both TDMA and CSMA/CA in

terms of the three objectives — maximising throughput, and minimising continu-

ous latency and energy consumption — with the outcomes of different individual

actions (a ϵ A). Additionally, we demonstrate the distribution of the outcome of

the adaptive scheduling (combined TDMA and CSMA/CA), compared to individ-

ual actions, for all the 168 tested channels plotted individually in a scatter plot.

Furthermore, we perform regression fit and sum squared error analysis to evaluate

the efficiency of the MDP model for different actions. The experimental results are

provided in the following subsections and the parameters used in this analysis are

given in Table 6.2.
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6.3.1 Throughput and Packet Delivery Ratio

The first of the three objectives of the predictive optimisation performed in this

chapter is to optimise throughput. We estimate the throughput (in successful

kilobits/second) with the following equation:

Throughput =
Psucc × Psize

1000

∆
, (6.8)

where Psucc is the successful data packets or samples, Psize is the sample size (in

bits), and ∆ is the total time (in second). We also estimate the packet delivery ratio

(PDR), which is the ratio of the number of successfully delivered packets and the

number of transmitted packets. The averaged results from 168 channels (including

all the different sensor locations) are shown in Fig. 6.4 (for throughput) and Fig.

6.5 (for PDR). It is shown that the throughput with the Pareto optimal outcome

(f ∗) is 125 kbps, which is 3.4 times better than the throughput of a TDMA with

10% duty cycle (a1 : 37 kbps) and 31 times better than a very lower (1%) duty

cycle TDMA (a3 : 4 kbps). CSMA/CA with csth = −70 dBm (a4) provides the

highest amount of throughput (245 kbps), which is twice as the throughput of f ∗,

due to the higher active period of CSMA/CA (shown later in this section).

Importantly, it can be seen from Fig. 6.5 that the Pareto optimal solution

(f ∗) provides the highest packet delivery ratio (PDR), of more than 80%, which is

higher than any other individual action (a ǫ A). It can also be seen that despite

having very low throughput, TDMA schemes (a1 − a3) provide better PDR than

CSMA/CA schemes (a3− a4). The main reason behind this difference is the lower

number of packet transmissions by low duty cycle TDMA, which results in a lower

number of packet failures with respect to the number of transmitted packets. On

the other hand, because of the higher active period, CSMA/CA transmits more

packets, increasing the packet failure rate. Importantly, f ∗ provides a good balance

between TDMA and CSMA/CA schemes by producing an acceptable throughput,

as well as providing the highest PDR.

In case of different B2B channels (with different sensor location pairs), it can

be seen from Fig. 6.6 that the B2B channel from left-hip-to-left-wrist (LH–LW)

provides a better outcome (Fig. 6.6c) than other B2B channels (i.e., LH–LH, LH–
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Figure 6.4: Average throughput from 168 tested channels over the whole period
for the Pareto optimum (f ∗) of the MOMDP and individual actions (a ϵ A).

f a1 a2 a3 a4 a5 a6
0

10

20

30

40

50

60

70

80

90

100

P
a

c
k
e

t 
D

e
liv

e
ry

 R
a

ti
o

 (
P

D
R

)

81%

76% 75% 75%
72%

65%

59%

Figure 6.5: Average PDR from 168 tested channels over the whole period for the
Pareto optimum (f ∗) of the MOMDP and individual actions (a ϵ A).

RA). This channel demonstrates an optimal throughput of 132 kbps which is 4.4

times better than action 1 (a1). The throughput of action 4 (a4) in Fig. 6.6 is



6.3 Experimental Outcome and Analysis 165

f a1 a2 a3 a4 a5 a6
0

50

100

150

200

250

300
T

h
ro

u
g

h
p

u
t 

(k
ilo

b
it
s
/s

e
c
o

n
d

)

129

41

20

4

255

127

64

(a) LH–LH

f a1 a2 a3 a4 a5 a6
0

50

100

150

200

250

300

T
h

ro
u

g
h

p
u

t 
(k

ilo
b

it
s
/s

e
c
o

n
d

)

115

40

20

4

222

124

73

(b) LH–RA

f a1 a2 a3 a4 a5 a6
0

50

100

150

200

250

300

T
h

ro
u

g
h

p
u

t 
(k

ilo
b

it
s
/s

e
c
o

n
d

)

132

30

15

3

257

203

160

(c) LH–LW

Figure 6.6: Average throughput for different B2B channels (i.e., (a) LH–LH, (b)
LH–RA, (c) LH–LW) estimated over 56 channels for each sensor location pair, for
the Pareto optimum (f ∗) and for individual actions (a ϵ A).

almost double that of f ∗, similar to the result in Fig. 6.4. We also found that the

Pareto optimum outperforms all other individual actions for PDR. For instance, f ∗

with LH–LH links provides a PDR of 87%, which is very close to the IEEE 802.15.6

standard guideline (PDR ≥ 90%) [222] for packet delivery ratio of BANs.
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Figure 6.7: Fraction out of the total measured time for continuous latency ≥ x s
(x axis values) for the Pareto optimum (f ∗) and individual actions (a ϵA) over the
168 tested channels.

6.3.2 Continuous Latency

The second of three objectives, continuous latency refers to the uninterrupted delay

duration when the channel is in outage, or not transmitting, due to waiting or a

back-off period. This is a very important performance measure for body-centric

channels as these channels are often used for medical applications. Fig. 6.7 demon-

strates the fraction or portion (on average) out of the total measured time with a

continuous latency greater than or equal to x second (x-axis value) for the testing

channels. It can be seen from Fig. 6.7 that CSMA/CA schemes experience larger

continuous latency than TDMA schemes (due to the back-off mechanism in case

of significant channel attenuation). For instance, with action 6 (CSMA/CA with

csth = −78 dBm), the B2B channels encounter continuous delay greater than or

equal to 125 ms for 78% of the overall period (on average), which reduces to 47%

with action 4 (CSMA/CA with a csth = −70 dBm). On the other hand, TDMA

schemes (action 1−3) produce continuous delay greater then or equal to 125 ms for

22% to 23% of the whole period of the channels (on average). The Pareto optimal

outcome (f ∗) provides continuous delay greater than or equal to 125 ms for 29% of
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Figure 6.8: Fraction out of the total measured time for continuous latency ≥ x s
(x axis values) for different B2B channels, (a) LH–LH, (b) LH–RA, (c) LH–LW,
for the Pareto optimum (f ∗) and individual actions (a ϵ A) .

the overall period (on average), hence providing suitable trade-off between TDMA

and CSMA/CA with reduced latency from CSMA/CA along with greater through-

put than TDMA, as already shown. Additionally, the portion of longer continuous

delay for f ∗ is similar to TDMA schemes — at less than 10%, for periods greater
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Figure 6.9: Active fraction (%) from all (168) tested channels over the whole period
for the Pareto optimum (f ∗) and individual actions (a ϵ A).

than 4 seconds.

We also investigate the continuous latency for different types of B2B channels

between different sensor location pairs (shown in Fig. 6.8). It is shown that for LH–

LH and LH–RA links, f ∗ produces greater continuous delay than TDMA (actions

1 − 3) but the amount is lower than those produced with CSMA/CA schemes

(actions 4 − 6). In case of LH–LW links (Fig. 6.8c), the amount of continuous

delay increases for TDMA schemes along with f ∗ (compared to other links) while

the overall continuous latency decreases for the CSMA/CA schemes, yet is still

higher than f ∗ and the TDMA schemes.

6.3.3 Active Fraction and Energy Consumption

The active fraction over a channel is the ratio of the active period (when the node

is active and transmitting) to the total measured period of the channel:

α =
(Ptrans × Ttrans

∆

)
× 100, (6.9)
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Figure 6.10: Active fraction (%) for different B2B channels (i.e., (a) LH–LH, (b)
LH–RA, (c) LH–LW) over the whole period for the Pareto optimum (f ∗) and
individual actions (a ϵ A) over 56 channels (for each sensor location pair).

where Ptrans is the number of transmitted packets/samples and Ttrans is the trans-

mission time. The active fraction is directly proportional to energy consumption,

as an increase in active fraction causes an increase in energy consumption. The

active fractions over the whole period (on average) for B2B channels with different
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actions are shown in Fig. 6.9.

It is shown that with the Pareto optimum (f ∗), the channels remain active for

32% (on average) of the total time without any fixed duty cycle, which is around

22% higher than TDMA with 10% duty cycle (a1), hence consuming approximately

3.2 times more energy than a1 (but also providing much greater throughput than

TDMA schemes: Fig. 6.4). On the other hand, action 4 (CSMA/CA with csth =

−70 dBm) that has the highest throughput (Fig. 6.4), also has the highest active

fraction (around 72%) which consumes 2.3 times more energy than f ∗, along with

producing higher continuous latency than f ∗, as shown in Fig. 6.7.

The active fraction over different B2B links (between different sensor location

pairs) is shown in Fig. 6.10. It can be seen that LH–LW links are active for

a slightly greater percentage of time with f ∗, 3.7 times more active period than

TDMA with 10% duty cycle, compared to other links (LH–LH, LH–RA), that

results in more energy consumption but also provides greater throughput with

respect to other links (Fig. 6.6). Importantly, with LH–LW links, the active

fraction with CSMA/CA schemes are increased, which contributes to the slightly

higher active period (Fig. 6.10) and continuous latency (Fig. 6.8) of LH–LW links.

6.3.4 Spatial Distribution of Multivariate Outcomes

The averaged Pareto optimum for multi-objective optimisation along with the av-

eraged outcome for individual actions, over all the tested channels is plotted in

Fig. 6.11a, with respect to three criteria — throughput, percentage of continuous

latency that is greater than 125 ms, and energy consumption. In the same figure

(Fig. 6.11b,) all the Pareto optima and the outcomes of individual actions for all

of the 168 tested channels are plotted individually with a scatter plot, to show the

spatial distribution of these multivariate outcomes. It can be seen from Fig. 6.11b

that with CSMA/CA schemes, most of the outcomes are either producing higher

throughput with higher energy consumption, or lower throughput with higher per-

centage of larger continuous latency (i.e., greater than 125 ms). There are also

some regions where the CSMA/CA schemes are producing less throughput with

very high percentage of larger continuous latency and energy consumption. On the

other hand, TDMA schemes are always producing less throughput (irrespective of
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Figure 6.11: (a) Average outcome of the MOMDP with respect to all three objec-
tives; (b) Spatial distribution of the outcome of the MOMDP with respect to all
three objectives. The x-axis shows the percentage of continuous latency > 125 ms
over the total operating period.

the amount of larger continuous latency, which is significant in some cases) with

fixed duty cycles. It can be clearly seen from Fig. 6.11 that the Pareto optima

are providing a balance between the TDMA and CSMA/CA schemes, hence pro-

ducing a desirable trade-off between throughput, continuous latency, and energy

consumption of the B2B channels.

6.3.5 Evaluating the MOMDP

To evaluate and validate the multi-objective Markov decision process (MOMDP),

we regress observed vs. predicted values from different actions and compare the

slopes of different regression lines against the reference line (with a slope of 1).

A simple least square linear regression method [294] is used to find the regression

lines for different actions. This is demonstrated in Fig. 6.12a, where we plot

the observed transition probabilities (from training channels) against the predicted

transition probabilities (from testing channels) for different actions of the action

set A. For a hypothetically ideal predictive model, the slope of the regression of

observed vs. predicted values will be 1, hence we compare the slope (a) of the

regression lines with different actions against a 45 degree angled reference line with
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Figure 6.12: (a) Linear regression fit and (b) sum squared error (SSE) of the
MOMDP for different actions (a ϵ A).

slope 1. From Fig. 6.12a, it can be seen that all of the regression lines have a slope

greater than 0.7 and closer to 1, which indicates the consistency of the MOMDP

model.

We also measure the goodness-of-fit with the sum squared error (SSE) statis-

tic [264], which is the sum of the squares of deviations predicted from actual em-

pirical values of data. It is a measure of the discrepancy between the data and

an estimation model. A value closer to 0 indicates that the model has a smaller

random error component, and that the fit will be more useful for prediction. The

SSE values for the prediction with different actions are shown in Fig. 6.12b, where

it can be seen that the predictions have smaller SSE values ranges from 0 to 0.02,

which validates the MOMDP predictive analysis.

6.4 Discussion

In this section we make some general key observations following from analysis,

leading to a brief discussion of extending this work.

Comment 6.1. The predictive characteristics, i.e., WSS durations, of B2B chan-

nels affect the outcome of different actions, such as TDMA and CSMA/CA schedul-

ing applied over those channels, which further affects the outcome of the MOMDP.
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Discussion. From the results of the MOMDP, it can be seen that, the performance

of the multi-objective optimisation differs for B2B channels with different sensor

location pairs (Figs. 6.6, 6.8, and 6.10). As mentioned in Section IV, from an

extensive analysis of the predictive properties of B2B channels we previously found

that the WSS duration varies for different sensor location pairs and respective

shadowing between sensor locations of two bodies. For example, with the dataset

of 8 coexisting BANs (used for testing the predictive model in this chapter), the LH–

LW links remained wide-sense stationary for a longer period than other links (i.e.,

LH–LH, LH–RA), due to the variation in their fading characteristics. Interestingly,

it can be seen from the above experimental results that the increased amount of

stationarity has an adverse effect on TDMA with fixed duty cycles as opposed to

CSMA/CA, which shows significant performance improvement with increased WSS

duration.

Thus, in Fig. 6.6, it can be seen that the throughput is increased for actions 4

to 6 (CSMA/CA), whereas the throughput is decreased for actions 1 to 3 (TDMA)

for LH–LW links (Fig. 6.6c), compared to the other B2B links. Because of the fixed

active and waiting period of TDMA, greater signal attenuation across a stationary

channel will continue for a longer period, and hence will produce less through-

put, which can be improved with the carrier sensing and back-off mechanism of

CSMA/CA, where the transmission occurs based on suitable channel conditions.

Such variation is even more noticeable with the continuous latency of the LH–LW

links (Fig. 6.8c) where the average continuous latency is increased for actions 1 to

3 (TDMA) because of the fixed duty cycle, whereas it is significantly reduced for

actions 4 to 6 (CSMA/CA), compared to other links (Fig. 6.8).

As the Pareto optimum (f ∗) combines different actions with TDMA and CSMA/CA,

the outcome f ∗ is also affected by an increase in stationarity, e.g., the increase in

continuous latency of the LH–LW links (Fig. 6.8) for f ∗. However, LH–LW links

(with better stationarity) provide comparatively better balance between TDMA

and CSMA/CA than other B2B links. For instance, LH–LW links provide the

highest throughput, 4.4 times better than TDMA (with a duty cycle of 10%), con-

siderably lower active fraction and hence, lower energy consumption, by a factor of

2.4 than CSMA/CA (with csth = −70 dBm), along with producing similar contin-

uous latency to TDMA and less continuous latency than CSMA/CA. Thus, overall
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it can be inferred that the predictive characteristics (along with the shadow fading

characteristics) of body-to-body channels have a significant effect on the outcome

of the MOMDP. �

Comment 6.2. Multiple Pareto optima can be derived from multi-objective opti-

misation to generate a Pareto set (Pareto frontier).

Discussion. In this work, a single Pareto optimum is derived based on the condi-

tions used for state classifications. For instance, the target of the MDP is to reach

to a state with increased packet delivery ratio (≥ 60%) and reduced continuous la-

tency (< 125 ms). It can be seen from the averaged outcomes discussed above that

this condition jointly optimises multiple objectives by providing greater throughput

than TDMA with acceptable continuous latency (considering the longer periods of

latency), and less energy consumption and continuous latency than CSMA/CA.

As this is a Pareto optimum, no other solution can dominate this outcome, such

as, to reduce the energy consumption, the active period of the channels need to

be reduced, and as a result throughput will be decreased. Also, decreasing the

active period will increase the waiting period, which will increase the continuous

latency of the channel. Therefore, multiple Pareto optima can be derived for the

problem in (6.2) to produce a Pareto set or Pareto frontier, which is subject to

the given conditions. A Pareto frontier is the set of all parameterisations that are

Pareto optimal, which can be obtained by aggregating all the different conditions

for classifying the states, to improve or optimise different objectives of (6.2). This

can be formulated as follows:

ρf∗(CS) =
{
c′ : (c′′ > c′, c′′ 6= c′) = ∅

}
, (c′, c′′) ǫ CS. (6.10)

Exploring the Pareto frontier is useful for approximating the amount of trade-off

for achieving different Pareto optima of the multi-objective function.

A constrained MDP (CMDP) could also be developed for the multi-objective op-

timisation for maximising particular objectives, according to specific applications,

with constraints on others. For instance, only throughput can be optimised, i.e.,

maximised, by employing some deterioration boundary for continuous latency and

energy consumption. Moreover, the conditions used here for defining the states,
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i.e., packet delivery ratio and continuous latency, could be used as constraints to-

gether with some additional constraints on throughput or active fraction, as an

alternate implementation of the multi-objective optimisation. �

6.5 Summary

We have developed and empirically analysed the feasibility of a multi-objective

Markov decision process (MOMDP) to perform adaptive scheduling over real-life

narrowband wireless body-to-body (B2B) channels. The MDP was formulated

based on the predictive properties, wide-sense-stationarity and long-range depen-

dence of body-centric channels. We defined the conditions for the Pareto optimal

state for the MDP with a brute-force search by employing an extensive amount

of real-life experimental B2B channels, which were also used to estimate the tran-

sition probability and optimal policy of the MOMDP. From the application of

the MOMDP that adaptively chooses between different scheduling schemes, i.e.,

TDMA and CSMA/CA with different parameters, over a significant number of ex-

perimental channels, we obtained a Pareto optimum that dominates other Pareto

optima according to multiple key criteria. We showed that the Pareto optimum

(f ∗) provides a desired trade-off between different conflicting objectives. Such as,

f ∗ can provide better throughput than TDMA, up to 3.4 times that of TDMA

with 10% duty cycle, along with increased energy consumption, approximately 3.2

times greater than TDMA. Furthermore, f ∗ produced slightly (around 5%) higher

amount of continuous latency than TDMA for smaller intervals and similar amount

of continuous latency (as TDMA) for longer intervals, e.g., ≥ 4 s. On the other

hand, f ∗ produced less throughput than CSMA/CA, almost one half with a carrier

sense threshold of −70 dBm, but also consumed considerably less energy and had

much lower continuous latency than CSMA/CA. Additionally, f ∗ had the highest

packet delivery ratio (more than 80%) compared to the individual actions (a ϵ A).

In addition to that, we validated the consistency of the MOMDP model, by

performing linear regression and sum squared error analysis over the large-scale

experimental data. It was also observed that the outcomes of the individual actions

of the MOMDP depends on the WSS characteristics of body-centric channels — for

B2B channels with an increase in stationarity the performance of TDMA actions
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deteriorate while the performance of CSMA/CA actions improve, with the Pareto

optimum providing a better balance between CSMA/CA and TDMA. A Pareto

set or Pareto frontier can be developed with all Pareto optima subject to the

state defining conditions used in this chapter. It is also alternately possible to

optimise a specific objective with constraints on others for maximising the output

according to a particular BBN application. Some other possible future directions

include, application of Semi-Markov decision processes (SMDPs), neural networks

and reinforcement learning with multi-objective optimisation, to compare with the

MOMDP described in this chapter.

6.6 Related Publications

• Samiya M. Shimly and David B. Smith: ‘Multi-Objective Markov Decision

Process for Adaptive Scheduling in Wireless Body-to-Body Networks’, under

review in IEEE Internet of Things Journal, March, 2019.







Chapter 7

Conclusion and Future Work

In this chapter, we conclude the thesis by precisely describing some fundamental

key points of the contributions made in this thesis, along with providing some

future research directions that can be evolved from this study.

7.1 Conclusion

This thesis aimed to address the issues of reliable, efficient and optimised commu-

nications among closely located BANs (people with body-worn sensors), in order

to extend the connectivity of distributed body-centric networks, i.e., BBNs (body-

to-body networks) by utilising body-to-body (B2B) communications. Importantly,

the proposed solutions of this thesis were validated with extensive real-life experi-

mental narrowband channel measurements collected from a reasonable number of

co-located BANs/subjects in different empirical scenarios, which provides a gen-

eralised performance evaluation of practical BBN framework. Existing research,

along with research gaps related to optimisation of the body-centric communica-

tions (studied here) have been discussed, following the description of the general

communications architecture, technology standards, and challenges associated with

BAN coexistence. As discussed body-centric channels experience shadowing by hu-

man body and body-parts, e.g., during postural and ambulatory movements in close

proximity, which degrades the reliability of those channels. Sometimes this shad-

owing lasts for a longer period, e.g., with a simple postural change when the subject

179
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has less mobility — during sleep, mobility impairment; and dense coexistence in

a close vicinity. In such cases, a cooperative path through nearby body-worn sen-

sors (whether on the same body or a different body) can contribute to improve

the reliability of the communications between the source and destination, as was

demonstrated here. Additionally, due to the resource constraints of these networks,

efficient optimisation, of the type in this thesis of the body-centric communications

is required for practical implementation of such networks.

Therefore, at first, we investigated the performance of cooperative receive diver-

sity (with two-hop communications) for on-body and off-body channels of various

sleeping subjects, with two different cooperative combining techniques, i.e., se-

lection combining and switch-and-examine combining. It was demonstrated that

two-hop cooperative communications can substantially improve the reliability of di-

rect link communication, in case of body-centric channels incorporating significant

shadowing (i.e., channels with subject sleeping). Then, we proposed two cross-layer

optimised dynamic routing techniques — shortest path routing (SPR) and coop-

erative multi-path routing (CMR) that incorporates 3-branch selection combining,

to improve and optimise the reliability and efficiency of routing information across

BBN. The physical layer channel state information was directly sent to the network

layer to choose the best route according to the channel condition, in a periodic ba-

sis (based on coherence time). The proposed CMR (with multiple paths) reduces

retransmissions and increases throughput compared to SPR (with single path),

by the use of alternate cooperative paths. Furthermore, CMR reduces end-to-end

delay and energy consumption compared to SPR and other state-of-the-art WSN

routing protocols (i.e., ORPL, LOADng).

We also analysed the performance of SPR and CMR with interference miti-

gation, associated with different MAC layer schemes, i.e., low duty cycle TDMA

(time division multiple access) and novel adaptive CSMA/CA (carrier sense multi-

ple access with collision avoidance), by performing PHY-MAC-Network cross-layer

optimisation. It was shown by empirical analysis that even with a lower duty cycle

(0.2%) TDMA, CMR improves the outage probability and packet delivery ratio

compared to SPR. For CSMA/CA, we proposed a novel adaptive cross-layer car-

rier sensing mechanism that adjusts the carrier sense threshold (i.e., receive signal

strength indicator) periodically based on the slowly-varying channel condition with
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an adequate periodic time-stamping for routing updates, which then was applied

over SPR and CMR techniques. In comparison to static carrier sensing, the pro-

posed adaptive mechanism produced negligible continuous delay of longer intervals

and, provided increased throughput (successful packets/s) and packet arrival rate

(as well as compared to a TDMA with higher duty cycle of 8.3%).

Subsequently, we characterised the predictive behaviour of body-centric chan-

nels to explore the feasibility of prediction-based optimisation over such channels,

in order to build self-organised BBNs, capable of autonomous decision-making.

Therefore, we investigated the wide-sense-stationarity (WSS) and long-range de-

pendence (LRD) characteristics of body-centric channels that are essential for pre-

dictive analysis. We demonstrated that unlike on-body channels (which are consid-

ered as non-stationary), a WSS assumption can be held for body-to-body channels

for a range of window lengths between 0.5 s and 15 s (typically 5− 8 s) depending

on the on-body sensor locations and the shadowing effect of the corresponding B2B

channel. We also found that both on-body and body-to-body channels can retain

LRD or long-memory characteristics. Along with the LRD property, the WSS du-

ration of B2B channels can be utilised to estimate the period over which reliable

prediction can be made from multiple samples with greater accuracy. Thus, we

developed a multi-objective Markov decision process (MOMDP) that utilised WSS

and LRD of body-centric channels, to apply adaptive scheduling that combines

both TDMA and CSMA/CA schemes. The multi-objective optimisation performed

in this thesis jointly optimises three separate metrics: throughput, continuous la-

tency, and energy consumption of body-to-body (B2B) communications. A Pareto

optimal solution was devised from the MOMDP that provided a desirable trade-off

between the three objectives of maximising throughput, and minimising continuous

latency and energy consumption. It was also observed that WSS characteristics of

body-centric channels have a significant effect on the outcome of such analytics.

The proposed solutions, validated with experimental analysis in this thesis are

very beneficial for deploying real-life body-centric networks with distributed large-

scale systems, associated with self-organised, reliable, and optimised communica-

tions. Importantly, the work in this thesis leads to more potential methods that can

also improve reliability and efficiency of body-centric communications, as discussed

in the following section.
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7.2 Future Work

This thesis successfully addressed reliability and optimised connectivity of body-

centric communications across many closely located body area networks, with real-

life experimental analysis. Potential future research work that could be performed

in extension of our study includes:

• For the cooperative multi-path routing (CMR) proposed in this thesis, we

employed two different paths with a maximum of two hops (route-hops),

following from the percentage of hop counts estimated from a specific number

of co-located BANs, i.e., 10 BANs. For practically deploying this technique at

a larger scale, routing paths with more than two hops may be required, which

can be further analysed with a larger number of co-located BANs/subjects,

to investigate the hop count limit and efficiency of multi-path routing for

such networks.

• To further optimise delay and energy consumption of the proposed CMR,

opportunistic relaying and routing could be applied. For example, instead

of performing 3-branch selection combining at each route-hop, cooperative

combining could be performed only when necessary, such as when the direct

link is not available. The branch with the best relay could also be selected as

a cooperative link (opportunistic relaying) among the available cooperative

relayed links.

• With the two tiered architecture described in this thesis for body-centric

networks (i.e., BBN at upper tier, BAN at lower tier), different frequency

bands and technology standards could be applied in different tiers, so as to

improve scalability and efficiency of such networks.

• The predictive characteristics of body-centric channels described in this thesis

were based on some specific real-life scenarios and activities for a number

of closely located subjects. Therefore, further investigation into WSS and

LRD could be carried out for more densely populated networks in a range of

scenarios with subjects very closely located, as well as being more dispersed,

based on capturing more empirical data. Additionally, as stated earlier, the
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majority of body-centric networks analysis assumes that the radio channel is

wide-sense stationary, but this is often not the case. Thus, further predictive

analytics design could be performed in light of the deployment scenario in

body-centric networks, and operation, with respect to appropriate LRD and

WSS properties.

• Multi-objective optimisation could alternatively be implemented with rein-

forcement learning, or other machine learning techniques, to compare with

the MDP framework proposed in this thesis. Also, constrained MDP could

also be applied to maximise one objective by putting constraints on others

according to the particular application.

• Wireless body-centric networks are very much susceptible to security attacks

and intrusions, as mentioned in chapter 2. For body-to-body communica-

tions, this problem is crucial as the data passes through different user’s sen-

sor devices. Therefore, it is very important to ensure legitimate access to

the stored and transmitted information along with secured communications

for such networks, which has not been adequately addressed so far. To im-

prove the acceptance and usability of BBNs, data encryption algorithm and

context-aware access control mechanism could be developed and integrated

with the data dissemination protocols of coexisting BANs.





Appendix A

Hypothesis Tests

ANOVA Test

The ANOVA (Analysis of Variance) test is used for analysing the variation (as the

name implies) or difference between the means of two or more sets of observations.

We use the parametric one-way ANOVA test statistic (TLanova) which is the ratio of

the mean square variance between the intervals to the mean square variance within

each interval [253].

TLanova =
Sbetween

Swithin
, (A.1)

where

Sbetween =

∑mt
i=1 ni(X i −X)2

mt − 1
, (A.2)

and

Swithin =

∑mt
i=1

∑ni
j=1(X ij −X i)

2

N −mt

, (A.3)

where mt is the number of intervals over which the hypothesis is being tested (here,

mt = 2), Xij is the jth element of the ith interval, ni is the number of observations

in ith interval and N is the total number of observations across mt intervals. X i

is the mean of ith interval and X is the mean over mt intervals
(
X = 1

N

∑N
i=1Xi

)
.

Brown–Forsythe Test

To investigate the homogeneity of the variances over the window lengths, hence

further testing the homoscedasticity assumption made for ANOVA, we use the

185
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non-parametric Brown–Forsythe (B–F) test [254], which calculates the F statistic

resulting from an one-way ANOVA on the absolute deviations from the median.

TLBF =

∑mt
i=1 ni(di−d)

2

mt−1
∑mt
i=1

∑ni
j=1(dij−di)

2

N−mt

, (A.4)

where d =
∣∣Xij − X̃i

∣∣ and X̃i is the median of the ith interval.

For Levene’s test [259], d =
∣∣Xij −Xi

∣∣ where Xi is the mean of the ith interval.

Kolmogorov–Smirnov Test

We use the non-parametric two-sided Kolmogorov-Smirnov (K-S) two-sample test

[255] to examine whether the samples of two consecutive intervals come from the

same distribution. This test is sensitive to any difference in median, dispersion,

and skewness between two distributions, as it estimates the maximum absolute

difference between the two empirical distributions as follows,

TLKS = sup(x)
∣∣Fy(x)− Fz(x)

∣∣, x = x1, ..., xn+l, (A.5)

where TLKS is the K-S test statistic and, y = X(t1), ..., X(tn) and z = X(t1+l), ..., X(tn+l)

are two consecutive intervals of X(t), where tn is the element at time instance t.

Power Spectral Variation

Ŝk
ξ
(f) =

∣∣∣∣∣
L∑

t=1

gk(t)Xξ(t)e
−i2πft/L

∣∣∣∣∣

2

ξ = [1, 2, ...,M ], (A.6)

where Ŝk
ξ
(f) is the kth eigenspectrum found from the absolute square of the Short

Time Fourier Transform (STFT) of window length L and gk(t) is the k
th rectangular

window/taper from the discrete prolate spheroidal (Slepian) sequences of length L.

M is the number of windows over the whole channel (M = Nc/L where Nc is the
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length of the whole channel).

Ŝξ(f) =
1

K

K−1∑

k=0

Ŝk
ξ
(f), (A.7)

where K is the total number of the discrete prolate spheroidal sequences and Ŝξ(f)

is the multi-taper PSD estimation, which is the average of the K modified peri-

odograms.

Ŝ(f) =
1

M

M∑

ξ=1

Ŝξ(f), (A.8)

where Ŝ(f) is the average of PSD for M windows over the whole channel and the

variance of PSD with window length L over the whole channel is

ϑL =
1

M

M∑

ξ=1

(
Ŝξ(f)− Ŝ(f)

)2

(A.9)

The power spectral variation (VL) with window length L over the whole channel is

measured as follows,

VL =
1

LM

L∑

t=1

M∑

ξ=1

(
Ŝξ(f)− Ŝ(f)

)2

(A.10)

The amount of VL would be 0 when the channel is stationary over the window

length L [150].
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[213] Köksal Gündoğdu and Ali Çalhan, “An implementation of wireless body area

networks for improving priority data transmission delay,” Journal of medical

systems, vol. 40, no. 3, pp. 75, 2016.

[214] Mari Carmen Domingo, “Packet size optimization for improving the energy

efficiency in body sensor networks,” ETRI Journal, vol. 33, no. 3, pp. 299–

309, 2011.

[215] D Smith, L Hanlen, D Rodda, B Gilbert, J Dong, and V Chaganti, “Body

area network radio channel measurement set,” 2012.

[216] Vasanta Chaganti, Leif Hanlen, and David Smith, “Non-stationarity of body

area networks for sleep monitoring,” Electronics Letters, vol. 49, no. 15, pp.

927–929, 2013.

[217] Leif Hanlen, Vasanta Chaganti, Barry Gilbert, David Rodda, Tharaka Lama-

hewa, and David Smith, “Open-source testbed for body area networks: 200

sample/sec, 12 hrs continuous measurement,” in IEEE 21st International

Symposium on Personal, Indoor and Mobile Radio Communications Work-

shops (PIMRC Workshops), Turkey, Sep, 2010, pp. 66–71.

[218] DB Smith, J Zhang, LW Hanlen, Dino Miniutti, David Rodda, and Ben

Gilbert, “Temporal correlation of dynamic on-body area radio channel,”

Electronics Letters, vol. 45, no. 24, pp. 1212–1213, 2009.

[219] David B Smith, “Cooperative switched combining for wireless body area

networks,” in 23rd International Symposium on Personal Indoor and Mobile

Radio Communications (PIMRC), Sydney, Australia. IEEE, Sep, 2012, pp.

2275–2280.

[220] B Zhen, “Body area network (BAN) technical requirements,” 15-08-0037-

03-0006-ieee-802-15-6-technical-requirements-document-v-5-0. doc, 2008.

[221] Daniel Lewis, “802.15.6 call for applications-response summary,” 15-08-0407-

00-0006-tg6-applications-summary. doc, 2008.



216 Bibliography

[222] IEEE 802.15 Task Group 6, “IEEE standard for local and metropolitan area

networks-part 15.6: Wireless body area networks (WBANs),” IEEE Standard

for Information Technology, vol. 802, no. 6, pp. 1–271, 2012.

[223] P Buonadonna and Gilman Tolle, “MultihopLQI,” 2004.

[224] Vineet Srivastava and Mehul Motani, “Cross-layer design: a survey and the

road ahead,” IEEE Communications Magazine, vol. 43, no. 12, pp. 112–119,

2005.

[225] Samiya M Shimly, David B Smith, and Samaneh Movassaghi, “Cross-layer

designs for body-to-body networks: Adaptive CSMA/CA with distributed

routing,” in IEEE International Conference on Communications (ICC),

USA, May, 2018, pp. 1–6.

[226] David B Smith and Leif W Hanlen, “Channel modeling for wireless body area

networks,” in Ultra-Low-Power Short-Range Radios, pp. 25–55. Springer,

2015.

[227] LW Hanlen, Dino Miniutti, David Smith, David Rodda, and Ben Gilbert,

“Co-channel interference in body area networks with indoor measurements

at 2.4 ghz: Distance-to-interferer is a poor estimate of received interference

power,” International Journal of Wireless Information Networks, vol. 17, no.

3-4, pp. 113–125, 2010.

[228] David Smith, Leif Hanlen, Dino Miniutti, Jian Zhang, David Rodda, and

Ben Gilbert, “Statistical characterization of the dynamic narrowband body

area channel,” in IEEE 1st International Symposium on Applied Sciences on

Biomedical and Communication Technologies, ISABEL’08. IEEE, 2008, pp.

1–5.

[229] David B Smith, Leif W Hanlen, Jian Andrew Zhang, Dino Miniutti, David

Rodda, and Ben Gilbert, “First-and second-order statistical characterizations

of the dynamic body area propagation channel of various bandwidths,” annals

of telecommunications-annales des télécommunications, vol. 66, no. 3-4, pp.
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