
Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 1

NEUROINFORMATICS

ORIGINAL RESEARCH ARTICLE
published: 30 January 2009

doi: 10.3389/neuro.11.002.2009

Distributed XQuery-based integration and visualization of 
multimodality brain mapping data

Landon T. Detwiler1, Dan Suciu2, Joshua D. Franklin1, Eider B. Moore1, Andrew V. Poliakov1, Eunjung S. Lee3, 
David P. Corina4, George A. Ojemann5 and James F. Brinkley1,2,3*

1 Department of Biological Structure, University of Washington, Seattle, WA, USA
2 Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
3 Department of Medical Education and Biomedical Informatics, University of Washington, Seattle, WA, USA
4 Department of Linguistics, University of California at Davis, Davis, CA, USA
5 Department of Neurological Surgery, University of Washington, Seattle, WA, USA

This paper addresses the need for relatively small groups of collaborating investigators to 

integrate distributed and heterogeneous data about the brain. Although various national 

efforts facilitate large-scale data sharing, these approaches are generally too “heavyweight” 

for individual or small groups of investigators, with the result that most data sharing among 

collaborators continues to be ad hoc. Our approach to this problem is to create a “lightweight” 

distributed query architecture, in which data sources are accessible via web services that accept 

arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP) 

accepts distributed XQueries in which subqueries are shipped to the remote data sources 

to be executed, with the resulting XML integrated by DXQP. A web-based application called 

DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, 

and to view the results in various formats including a 3-D brain visualization. Example results 

are presented using distributed brain mapping data sources obtained in studies of language 

organization in the brain, but any other XML source could be included. The advantage of this 

approach is that it is very easy to add and query a new source, the tradeoff being that the user 

needs to understand XQuery and the schemata of the underlying sources. For small numbers of 

known sources this burden is not onerous for a knowledgeable user, leading to the conclusion 

that the system helps to fi ll the gap between ad hoc local methods and large scale but complex 

national data sharing efforts.

Keywords: data integration, distributed query processing, XQuery, query shipping, brain mapping, neuroinformatics, 

semantic web, brain visualization

 requirement that data be submitted as a condition of publication 

(Nature Neuroscience, 2000).

Recognizing that not all investigators will want to or even be able 

to submit their data to a central site, projects like BIRN (Keator et al., 

2008) and caBIG (Oster et al., 2008) have established large scale 

grid based approaches to data sharing, in which members of the 

consortium maintain their data at their local sites and make them 

available to a federated data integration system. The BIRN project 

is especially relevant because its primary focus is neuroscience.

Although BIRN and caBIG facilitate large-scale data integration 

and sharing on a national level, a signifi cant effort is involved in 

integrating local lab data into these networks. Thus, these networks 

may not be well suited to a small group of collaborating labs who 

initially only wish to share and integrate data among themselves.

At the current time most data sharing among small groups of 

labs is done by email or similar ad hoc methods. Thus, there is a 

need for tools to facilitate small-scale integration and sharing of 

data. However, to be practical such tools need to be “lightweight”, 

not requiring great effort to setup; they must be easy to use by non-

programmers, they must allow for semantic interoperability, and 

they must be scalable both as new data sources are added, and as 

the sources become included in larger efforts such as BIRN.

INTRODUCTION

Ongoing improvements in the quality and quantity of available 

techniques have provided neuroscience researchers with multiple 

means of observing regions of brain activation in subjects perform-

ing behavioral tasks. This proliferation of data gathering techniques 

has lead to large volumes of data available regarding brain function. 

Because these data are often distributed, highly heterogeneous and 

sometimes contradictory, it has also emphasized the need for data 

organization and integration in order to develop theories about 

brain function.

Initially under the auspices of the Human Brain Project (HBP) 

(Koslow and Hyman, 2000), and more recently under other neu-

roinformatics efforts, there have been many efforts to integrate 

and share brain mapping information. Many of these efforts have 

resulted in centralized databases accessible through portals such 

as the neuroscience gateway (Society for Neuroscience, 2008). 

Examples of these centralized databases include SenseLab (Miller 

et al., 2001), SUMS (Van Essen, 2008) LONI (Laboratory of Neuro 

Imaging, 2008), the fMRI Data Center (Gazzaniga, 2008), and 

the Cell Centered Database (Martone et al., 2003). The utility of 

these sites is directly related to the willingness of investigators to 

take the time to deposit their data since in most cases there is no 

Edited by:

Maryann E. Martone, University of 

California, San Diego, USA

Reviewed by:

Jeffrey S. Grethe, University of 

California, San Diego, USA

Gwen Jacobs, Montana State 

University, USA

Jonathan Nissanov, Drexel University 

College of Medicine, USA

*Correspondence:

James F. Brinkley, Department of 

Biological Structure, University of 

Washington, Box No. 357420, Seattle, 

WA 98195, USA.

e-mail: brinkley@u.washington.edu



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 2

Detwiler et al. Distributed XQuery-based data integration

To approach this problem we are developing a lightweight 

 distributed query-based architecture, in which any web-service 

encapsulated data source may be included as long as it accepts 

incoming queries and returns XML results. Adding such a source is 

as simple as including it as a subquery in a distributed XQuery (the 

W3C recommended query language for XML) that is processed by 

a modifi ed XQuery processor we have developed. The advantage of 

this approach is that it is very easy to add a new source, although 

the tradeoff is that a developer (not necessarily end-user) must 

know XQuery and the schemata of the sources.

The key informatics novelty in our approach is that it is XML-

based rather than the more traditional SQL-based approach to 

distributed query systems. Although many such distributed query 

systems have been developed for relational databases (Ozsu and 

Valduriez, 1999), less is known about effective and effi cient methods 

of querying networks of semi-structured data like XML, particularly 

for large datasets. In fact, other than our own previous work in 

distributed XML databases (Bales et al., 2005; Re et al., 2004) we are 

aware of only one other effort in this area (Fernandez et al., 2007).

In the remainder of this paper we describe our lightweight 

distributed XML-based data integration system, which we call 

DXBrain. Beginning with a driving neuroscience use case we discuss 

the overall architecture of the system, the individual data sources, 

the web service wrappers which process source queries and deliver 

XML results, the distributed XQuery engine, and the web user appli-

cation and results visualization. We also illustrate example uses of 

the system. We conclude by discussing the tradeoffs in this approach 

versus more heavyweight approaches, the generality and scalability 

of this approach for other biomedical data sources, and the work 

that remains to be done in order to make this approach more easily 

usable by non-programmers. We also point to two downloadable 

Java libraries that could be useful to others wishing to deploy their 

own distributed query system.

MATERIALS AND METHODS

The development of DXBrain has been driven by the need to under-

stand language organization in the brain. Under the auspices of 

the Human Brain Project, the University of Washington (UW) 

Structural Informatics Group (SIG) has constructed data man-

agement, visualization, and analysis systems to aid neuroscience 

researchers in the study and mapping of language centers in the 

human brain (Brinkley, 2008; Brinkley et al., 1997).

The language mapping data sources differ in modality (e.g. tex-

tual transcriptions of patient responses, 2D operative photographs, 

3D MRI volumes), data model (e.g. textual data might be tabular 

in nature, such as CSV or relational, or it could be hierarchical 

like XML), data format (e.g. tab delimited vs. comma separated 

data), and data storage (e.g. fl at fi les vs. relational database sys-

tems). Although the data are highly heterogeneous, the sources also 

share unifying information. In particular many sources contain 

information about the same set of subjects, often performing the 

same sets of language tasks (i.e. fMRI images of patients perform-

ing a set of object naming tasks vs. textual transcriptions of their 

responses to the same set of tasks performed while undergoing 

neurosurgery). These common information elements provide the 

basis for integration.

ARCHITECTURE

The overall architecture of the DXBrain system consists of the 

 following four layers, reading from the bottom up in Figure 1:

FIGURE 1 | System architecture.



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 3

Detwiler et al. Distributed XQuery-based data integration

Source data: Data sources are separately maintained at distrib-

uted locations on the network. The data models and/or formats of 

these sources are limited, conceptually, only by the source wrappers 

at the next level of our architecture. In our current system, we have 

two types of sources: XML fi les and application interfaces.

Source wrappers: Data sources are made available for query by 

means of source wrappers. All wrappers present a query method, 

accepting source-specifi c sub-queries, and returning XML results. 

These wrappers are accessible as web services.

Distributed query processor: The Distributed XQuery Processor 

(DXQP) takes distributed XQueries (or DXQueries) as input, del-

egates the appropriate sub-queries to the appropriate source wrap-

pers, gathers all wrapper results, and constructs unifi ed query result 

documents in XML.

Web server application: The DXBrain application itself accepts 

queries from the user, communicates with DXQP to evaluate 

user queries, and provides multiple means for formatting and/or 

visualizing the query results. It also provides facilities for saving/ 

retrieving/editing user queries.

In the remainder of this section we describe the specifi c imple-

mentation of these layers in greater detail.

Source data and source wrappers

As a data integration system, DXBrain must support the incorpora-

tion of multiple data sources. In our driving biological application, 

as in many other scientifi c experiments, the data sources are highly 

heterogeneous in terms of the data model (i.e. relational data model 

vs. hierarchical data model) and in terms of the data format (i.e. 

CSV vs. Excel vs. relational tables).

When interacting with our system we wanted these heterogene-

ous sources to behave in a homogeneous manner. We achieve this by 

wrapping our sources in a common query interface. It is the job of 

the wrapper to translate incoming queries into source specifi c data 

requests and to transform source results into appropriate XML.

We have developed a Java application called WIX (Web Interface 

to XML) that can auto-generate an XQuery web-service encapsula-

tion of any valid XML document (regardless of schema) (Structural 

Informatics Group, 2007b). WIX is essentially a wrapper generator. 

As such it is very easy to add a new XML data source to the network. 

Although standard XQuery provides the ability to process arbitrary 

XML documents through the “doc” command, the “doc” command 

implements the document shipping paradigm, in which the entire 

document must be shipped to the query processor. WIX, on the 

other hand, implements the query shipping paradigm, in which only 

the query and query results need be shipped over the network.

The WIX website shows a demo of its use, and provides a down-

loadable version that can be used to add any new XML fi le to the 

DXBrain source network. The program is an executable Java JAR 

fi le that takes an arbitrary XML fi le as input (with optional XML 

Schema), and generates a Web Archive (WAR) fi le that can deployed 

as a web service by dropping it into a container such Apache Tomcat 

(Apache Software Foundation, 2007). The service then provides 

a method for evaluating an XQuery over the XML fi le, and for 

returning the schema if it exists.

Although many data sources will be in the form of web-serv-

ice encapsulated XML documents, they do not all need to be. In 

fact all that is required is that the source provide some sort of 

web  accessible query method that returns XML results. In fact the 

source does not even need to be a static database, but can instead 

be an interface to an application that dynamically generates XML 

results.

In the following sections we illustrate these different kinds of 

data sources using examples from our driving application. These 

sections refer to the boxes at the bottom two levels of Figure 1.

Cortical stimulation mapping data. The Cortical Stimulation 

Mapping (CSM) database contains information gathered by neu-

rosurgeons during intra-operative studies of epileptic patients 

(Brinkley et al., 2004; Hinshaw et al., 2002; Ojemann et al., 1989). 

The study procedure involves direct electrical stimulation of local-

ized points on the surface of a patient’s brain while simultaneously 

asking the patient to perform object naming tasks (i.e. the patient 

is shown a picture of a boat and asked to name the object that they 

see). Object naming errors are correlated with the stimulation site 

location (in X–Y–Z patient-specifi c coordinates) in order to iden-

tify brain regions essential for language function.

An XML export of the CSM data source is loaded into a WIX web 

service wrapper (CSM WIX in Figure 1) exposing CSM data to the 

DXBrain system. SilkRoute, an earlier tool we developed to process 

XQueries over relational data, facilitates this export (Fernandez 

et al., 2002; Re, 2006).

fMRI data. The fMRI data source stores MRI (magnetic resonance 

imaging) and fMRI (functional magnetic resonance imaging) data 

for many of the same patients found in the CSM source (performing 

the same object naming tasks as in the CSM case). This data source 

contains image processing metadata produced by our XBatch 

plugin (Poliakov et al., 2007) to the SPM fMRI analysis package 

(Wellcome Department of Cognitive Neurology, 2001).

Like the CSM database, an XML export of the fMRI data source 

is made available to DXBrain via a WIX wrapper (fMRI WIX in 

Figure 1).

Transformation service. This source is an application which trans-

forms the X–Y–Z patient specifi c coordinates of CSM stimulation 

sites into the common MNI (Montreal Neurological Institute) 

neuroanatomical coordinate system (Evans et al., 1993). Such spa-

tial normalization is necessary in order to account for anatomical 

variability among individual brains. The transformation data are 

generated offl ine by a non-linear warping procedure in SPM that 

registers the structural MRI image volume of the patient to an 

MRI image volume of a population average brain. The warping 

procedure specifi es, for each voxel in the MRI volume, the deforma-

tion necessary to transform it from patient-specifi c coordinates to 

normalized space. A transformation service (Figure 1) applies this 

deformation to transform a set of input patient-specifi c coordinates 

(typically stimulation sites retrieved from the CSM database) into 

the corresponding output MNI coordinates. The transformation 

server is wrapped in a web service that returns the result in XML 

format (Figure 1).

Foundational model of anatomy ontology. The Foundational 

Model of Anatomy (FMA) is a symbolic representation (ontol-

ogy) of the taxonomic and structural relationships that comprise 



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 4

Detwiler et al. Distributed XQuery-based data integration

our SOAP source  wrappers. We then added functions to the DXQP 

XQuery library that enable us to construct Anglo calls directly from 

an XQuery. While we endeavored to maintain compatibility with 

all standards-compliant XQuery processors, this extension works 

only on the Saxon processor (and possibly on others which offer 

similar support for Java calls, such as QEXO; GNU, 2008).

The primary user-callable XQuery function in this case is called 

dxq:xqueryWS, which takes as input the URL of the source web 

service, the port, the web service method name, and the query. 

This function then calls the appropriate Java-coded function in 

Anglo:

declare function dxq:xqueryWS(   

$wsdlURL as xs:string,     

$portName as xs:string,     

$callName as xs:string,     

$query as xs:string) as node()

{       

anglo:xquery($wsdlURL,$portName,$callName,$query)

};

Get services. In addition to SOAP style services, DXQP also sup-

ports simple HTTP get web services where the query is encoded in 

the URL, and results are returned in XML. In the DXQP XQuery 

libraries we enabled interaction with simple get style source wrap-

pers through the use of XQuery’s built in doc($url) function. This 

function allows an XQuery to refer to any web accessible XML 

document. Because simple get services are accessible via a URL, 

and because they return XML results, they appear to the XQuery 

processor as XML documents. By passing queries to simple get 

source wrappers as URL arguments, the wrapper can dynamically 

generate XML results (a query shipping approach).

The primary user-callable XQuery function in this case is called 

dxq:xquery, which takes as input the server web address and the 

query. It constructs a URL by concatenating the server address, 

the web service method (called XQuerylet), and the hex-encoded 

query, and then calls the XQuery doc function to execute the 

query:

declare function dxq:xquery( 

$server as xs:string, 

$query as xs:string) as node()  

{

let $queryString :=  encode-for-uri($query)     

let$url := concat($server, "/XQuerylet?query =", 

$queryString) 

return doc($url)

};

Additional DXQP processing. In addition to delegating sub-queries 

to the appropriate source wrappers, DXQP can also process some 

portions of an XQuery locally. This enables DXQP to perform query 

operations such as cross-source data joins, result fi ltering, and other 

sorts of post processing tasks (such as in-query analysis).

Web server application

The DXBrain web server application (Figure 1) is an applica-

tion server for integrating the multimodality brain mapping 

canonical human anatomy (Rosse and Mejino, 2003). The FMA is 

useful, in DXBrain, for augmenting cross-source data alignment. 

This goes beyond direct equivalence mapping (i.e. cerebral cortex 

in source A is equivalent to cortex cerebri in source B) to identi-

fying “related” anatomical entities (i.e. that the middle temporal 

gyrus is a part of the temporal lobe). Such relationships can be 

used to develop “intelligent” queries in DXBrain that, for exam-

ple, fi nd all CSM sites located anywhere in the temporal lobe, as 

we show in Section ‘Consulting an Ontology to “Intelligently” 

Filter by Anatomical Location’. The FMA demonstrates the utility 

of using domain ontologies to facilitate semantic interoperability 

(whereas the transformation server in the previous section is a 

method for providing spatial interoperability through anatomical 

normalization).

As is the case with other sources the FMA must be made avail-

able via a web service interface that returns XML results in response 

to queries such as, “Find the parts of the temporal lobe”. We have 

developed several such query interfaces (Mork et al., 2003; Stalder 

and Brinkley, 1999), the most recent being an ontology web service 

that accesses an OWL representation of the FMA, where OWL is 

a representation language for the semantic web (World Wide Web 

Consortium, 2005c).

The service accepts queries in the vSparQL query language 

(vSparQL Processor in Figure 1), an extension we are develop-

ing to the standard W3C recommended SparQL query language 

(World Wide Web Consortium, 2005b), that facilitates the crea-

tion of views over semantic web ontologies (Brinkley et al., 2006; 

Detwiler et al., 2008; Shaw et al., 2008). Since the result of a 

vSparQL view query is RDF (resource description framework) 

(World Wide Web Consortium, 2005a), which in turn is valid 

XML, the results of such a query can be included in a distributed 

XQuery. In fact the results of any standard SparQL query created 

with the SparQL “CONSTRUCT” statement can be included as a 

DXBrain source.

Distributed XQuery processor (DXQP)

DXQP (Figure 1) is responsible for processing DXQueries. It del-

egates source specifi c sub-queries to the appropriate source wrap-

pers, and it handles local query operations such as cross-source 

joins, result fi ltering, and post processing. DXQP is described in 

its own project web page, and is available for download (Structural 

Informatics Group, 2007a). The primary component of DXQP is 

an XQuery library, which supports calls to our data source web 

service wrappers. Library functions are provided for working with 

both SOAP and simple HTTP get web services in order to allow 

inclusion of as many sources as possible.

SOAP services. SOAP (simple object access protocol) is a set of 

conventions for invoking code using XML over HTTP (W3C, 2008). 

SOAP provides a standardized way of calling remote program meth-

ods. However, XQuery does not have any built in means of com-

municating with SOAP services. To enable DXQP to communicate 

with SOAP source wrappers, we used an extension provided by the 

XQuery processor Saxon (Kay, 2008). Saxon is a free XQuery proc-

essor, written entirely in the Java programming language. Saxon 

facilitates the invocation of Java methods as external XQuery func-

tions. We implemented a Java library, Anglo, to communicate with 



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 5

Detwiler et al. Distributed XQuery-based data integration

data sources described in Section “Source Data and Source 

Wrappers”. DXBrain communicates with DXQP [see “Distributed 

XQuery Processor (DXQP)”], which it currently incorporates as 

a Java library, enabling it to process DXQueries over the source 

network.

DXBrain is built as a dynamic web application using Java JSP 

and Servlet technologies. As such it presents a page-based naviga-

tional metaphor. A small number of pages allow users to perform 

the required operations: authentication, query construction, stor-

ing and retrieving queries, executing queries, and displaying query 

results. These pages communicate with the data sources using the 

DXQP libraries, as well as a local database for storing user authen-

tication information and saved queries. Query results can also be 

piped to an external 3-D visualization application we developed 

called MindSeer (Moore et al., 2007).

Creating queries. Queries may be created in several ways. The sim-

plest method allows users to compose their own custom DXQueries 

by simply entering them manually. This input method is fl exible 

and powerful, but it is also requires users to fi rst understand the 

XQuery language.

A second method provides a web form, which allows users 

to select from a set of available query parameters, as for exam-

ple, codes describing the particular type of error during CSM 

stimulation (Figure 2). These options are inserted into pre-defi ned 

portions of a template query (a prewritten XQuery not crafted 

by the user). This method allows users to compose some queries 

without actually writing any XQuery, but it supports only a very 

small subset of possible queries. This input method serves mostly 

as a demonstration of the usability gained by layering an easy to 

use, use-case specifi c user interface on top of an expressive and 

fl exible query engine.

Storing and retrieving queries. We have found that the most use-

ful means for composing queries is to retrieve a previously stored 

query and use it as a template for creating a new one. Any query, 

whether it is generated anew, created from a template via the selec-

tion interface, or retrieved from existing queries, may be saved in a 

local query database. Each saved query is given a title and descrip-

tion so that it may be retrieved from a list of stored queries, organ-

ized by the user. For example, Figure 3 shows a portion of one such 

stored query, called “csm_view_code_fma_fmri”. Any of the Title, 

Description or Query fi elds may be edited by the user who owns 

the query. The query may be marked public, allowing other users 

to access it in the list of stored queries, or it can be made private 

(which is usually done while the query is being developed).

Executing queries. No matter what the input method a query is 

executed by clicking on one of the output format buttons at the 

bottom of the page (Figure 3). In each case the query is sent to 

DXQP for local execution or dispatch of query fragments to the 

separate sources, after which the consolidated XML results returned 

by DXQP are transformed if necessary into the requested output 

format.

RESULTS

We illustrate DXBrain by showing how it is used to process the 

following query:

“Find all female patients who made a semantic naming error during 

cortical stimulation mapping (CSM). For each of these patients fi nd 

all CSM stimulation sites where at least one such error was made 

and that are located in the temporal lobe of the brain. For each of 

these sites return the normalized 3-D coordinates so that they may 

be compared. In addition, for each patient with at least one such 

error, return the associated fMRI study that was done using the 

same object identifi cation protocol, if there is one.”

Simple modifi cations of this query would, for example, substi-

tute male for female, and syntactic error for semantic error. The 

purpose of this query is to determine if different types of language 

processing are localized in different parts of the brain for differ-

ent population subgroups (males versus females in this case) and 

whether there are any correlations between different measures of 

language such as CSM and fMRI.

This query needs to integrate CSM and fMRI data stored in the 

CSM and fMRI data sources. It also needs to access the transforma-

tion service to normalize patient coordinates. In addition, the query 

asks for stimulation sites (stimsites) that are located in the temporal 

lobe. However, in the CSM database stimsites are annotated with 

anatomical names that are of a fi ner granularity than “temporal 

lobe” (i.e. “Middle part of superior temporal gyrus”). Thus, the 

query also needs to query the FMA to determine the parts of the 

temporal lobe, and then only retain stimsites that are annotated 

by any part of the temporal lobe.

FIGURE 2 | Portion of DXBrain template query GUI interface.



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 6

Detwiler et al. Distributed XQuery-based data integration

EXAMPLE DXQUERY

The Query box of Figure 3 shows a snippet of a DXQuery that 

answers the above query. The full DXQuery, which is 251 lines long, 

is available as a demo that can be examined and run (Structural 

Informatics Group, 2008). Note, however, that the results returned 

by the demo will be minimal since full access to the data is restricted 

to authorized users. The next few sections explain snippets of this 

query.

Parameter assignments

As shown in the portion of the query displayed in Figure 3 

saved queries often start with a set of parameter assignments, 

which represent search or display parameters. In the sample 

query, $code is a list of CSM error codes for searching the CSM 

database (as in Figure 2), $contrast_name and $protocol are 

parameters for searching the fMRI database, and $showtext, 

$color and $shape are parameters for our 3D visualization tool, 

FIGURE 3 | Saved query.



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 7

Detwiler et al. Distributed XQuery-based data integration

Mindseer. In future work these parameters could be set in an 

automatically-generated parameter selection interface like that 

shown in Figure 2.

A view of the CSM database

The next part of the query snippet shown in Figure 3 sets a local 

variable $csm_view to be an in-memory XML view of the CSM 

database that includes only those elements desired for the sub-

sequent searches. This view may also involve renaming of some 

of the elements, as for example, <age> for <age_at_registration>. 

The constructed view query is executed by means of the dxq:csm 

XQuery function, which is a shortcut for the dxq:xquery HTTP get 

style function described in Section “Get Services”. This shortcut 

allows users to call the CSM service without having to remember 

its URL. In DXBrain several of the other web services (fMRI, trans-

formation) are similarly encapsulated.

Filtering the CSM view by sex and error code

The following sections include snippets of the full query that are 

not visible in Figure 3.

The CSM view is next fi ltered by the selected $sex parame-

ter and the particular set of error codes specifi ed by the $code 

parameter, the result of which is assigned to the $sex_code_fi ltered 

variable:

let $sex_code_filtered: = 

<sex_code_filtered>

{for $p in $csm_view/csm_view/patient

where $p/sex = $sex

and $p/surgery/stimsite/trial/trialcode/

term/abbrev/text() = $code

return

<patient>

…

The result of this subquery is that $sex_code_fi ltered now points 

to an in-memory XML fragment containing only females who made 

a stimulation error of type 2 anywhere in the brain.

Consulting an ontology to “intelligently” fi lter

by anatomical location

To limit the location to just the temporal lobe the separate FMA 

source ontology is fi rst consulted to determine the transitive closure 

(all parts of parts) of the Temporal lobe. In this case the language 

of the source-specifi c sub-query is not XQuery, but rather vSparQL 

(see “Foundational Model of Anatomy Ontology”). The following 

simplifi ed snippet shows a small part of the OWL representation 

of the FMA ontology (which has over 72,000 concepts and 2 mil-

lion relationships).

fma:Temporal_lobe fma:regional_part 

fma:Middle_temporal_gyrus.

fma:Middle_temporal_gyrus fma:regional_part

fma:Posterior_part_of_middle_temporal_gyrus.

fma:Posterior_part_of_middle_temporal_gyrus 

fma:Preferred_name fma:fma_term_08300.

fma:fma_term_08300 fma:name "Posterior part of 

middle temporal gyrus".

The corresponding vSparQL query, which is assigned to the 

variable $query in the distributed XQuery, is shown below.

(: Define the parameters of the ontology web 

service :)

let $wsdlURL :=  "http://…/VSparQLService.wsdl"

let $serviceName := "VSparQLService"

let $methodName :=  "executeQuery"

(: Define the subquery in extended SparQL :)

let $query := 

'PREFIX fma: <http://…/fma_2_0#>

PREFIX gleen:<java:edu.washington.sig.gleen.>

PREFIX qv:<http://sig.biostr.washington.

edu/query_view#>

CONSTRUCT { fma:Temporal_lobe qv:hasPartName 

?part_name. }

FROM <http://…/fma_2_0>

WHERE

{

fma:Temporal_lobe gleen:OnPath

("([fma:regional_part]|[fma:constitutional_

part]) +" ?part).

?part gleen:OnPath ("[fma:Preferred_name]/

[fma:name]" ?part_name).

}’

(: Execute the query and return only temporal 

lobe parts from the XML result tree :)

let $temporalLobeParts :=  dxq:xqueryWS($wsdlURL, 

$serviceName, $methodName, $query)//

qv:hasPartName

As noted in Section “Foundational Model of Anatomy 

Ontology” vSparQL (Shaw et al., 2008) is a set of extensions to 

SparQL we are developing to enable the creation of views over 

large ontologies like the FMA. In particular this query uses the 

Gleen regular expression library (Detwiler et al., 2008) to follow 

arbitrary paths in ontologies. For example, in the above query 

the search starts with the node called “Temporal_lobe”, follows 

any number of regional_part or constitutional_part links (which 

together defi ne the generic parts), and for each of these, fi nds the 

string representing the preferred name of that part. This string is 

then assigned to each element <hasPartName> of the result. Since 

the annotations of the CSM database were controlled to use these 

exact strings then the result of this query may be used directly to 

match against the CSM data. In a more complex situation a sepa-

rate mapper web service associated with a particular data source 

could be used to convert widely accepted ontology terms to local 

terms. The DXBrain architecture would treat such a mapper as 

just another data source.

The list of parts of the Temporal lobe is then used to fur-

ther filter the $sex_code_filtered result by selecting only those 

patients who have stimsites that are annotated with at least one 

of the parts of the temporal lobe (via the anatomical_name 

child element of stimsite). The result of this filtering operation 

is assigned to variable $fma_filtered. Its effect is to restrict the 

retrieved stimsites to only those that are in the temporal lobe, 

without requiring the user to know the specific parts of the 



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 8

Detwiler et al. Distributed XQuery-based data integration

temporal lobe that were used to annotate the data in the original 

CSM database:

let $fma_filtered := 

<fma_filtered>

{for $p in $sex_code_filtered/patient

where $p/surgery/stimsite/anatomical_name = 

$temporalLobeParts

return

<patient>

…

Querying a second data source

Next, a view of the fmri database is assigned to the variable $fmri_

view via dxq:xbatch, a shortcut function that directs xqueries to 

the fMRI Wix wrapper in Figure 1. As in csm_view, many of the 

elements in the original database are deleted or renamed, as for 

example, <Subject> becomes <patient> to conform to the usage 

in the CSM database.

let $fmri_view :=  dxq:xbatch("

<fmri>

{for $subject in $root//Subject

let $subjectID :=  data($subject/

@Subject_ID)

let $pnum :=  replace($subjectID,'P',")

order by $pnum

return

<patient>

…

This view is then fi ltered and assigned to variable $fmri_fi ltered 

so that only fMRI protocols and contrasts as specifi ed by the search 

parameters are retained:

let $fmri_filtered := 

<fmri>

{for $patient in $fmri_view//patient

where $patient/protocol/name/

text() = $protocol_name and

$patient/protocol/contrast/name/

text() = $contrast_name

return

<patient>

…

Merging results from the two data sources

The $fmri_fi ltered result is then joined with the $fma_fi ltered 

result, with the result that available fMRI contrasts are included 

with the results from the CSM database.

let $merged := 

<merged>

{for $p in $fma_filtered//patient

return

<patient>

…

{for $s in $fmri_filtered//patient

where $p/pnum = $s/pnum

return

$s/contrast

}

</patient>

}

</merged>

Finally, the merged result, along with a count of patients, is 

returned as the overall result of the query:

return

<patients>

<count>{count($merged/patient)}</count>

{$merged/patient}

</patients>

DISPLAYING QUERY RESULTS

DXBrain provides multiple formats for displaying the results of 

a dxquery. The textual output formats XML, HTML and CSV are 

generic to any data source. The Image2 and 3D formats, which 

layer results on a 2D and 3D representation of the brain respec-

tively, are specifi c to the DXBrain application. The buttons shown 

at the bottom of Figure 3 are used to execute the query in the 

Query box, and to transform the results to the requested output 

format.

Displaying results in XML

XML is the native format of query results from DXQP. If the user 

selects the XML output format, he or she is presented with the 

raw results, as they are received from DXQP, without any addi-

tional post-processing. For example, Figure 4 shows a snippet of 

the XML results obtained from running the sample query. In this 

case 16 females made semantic paraphasia errors during CSM that 

were located in the temporal lobe. The fi gure shows one of these, 

P175, together with the one stimsite where the error was made, 

the magnet (patient-specifi c coordinates) of that site, the assigned 

anatomical name, “Middle part of middle temporal gyrus”, which 

is part of the temporal lobe, and the associated CSM trials during 

which the error was made. For example, in trial 69 the patient 

was presented with a picture of a chicken while site 28 was stimu-

lated. The response, “hen, rooster”, was coded as a semantic error 

(trialcode 2).

In addition, the full local pathname to an associated fMRI con-

trast fi le, spmT_0012.hdr, is also shown. This fi le represents an 

fMRI study with similar object identifi cation task as that used 

in the CSM study, the goal being to compare the CSM and fMRI 

results.

Displaying results in HTML and CSV

The HTML and CSV output options allow users to view DXQP 

results transformed from XML into HTML or CSV, where CSV is 

a useful input format for spreadsheet programs like Excel. In both 

cases we generated the transformed output by means of internal 

XQueries that are applicable to any well-formed XML fi le, regard-

less of schema.

Figure 5 shows a snippet of the HTML generated from the XML 

fi le shown in Figure 4, whereas Figure 6 is a snippet of the CSV 

output from the XML fi le, after being loaded into Excel.



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 9

Detwiler et al. Distributed XQuery-based data integration

FIGURE 5 | HTML output.

FIGURE 4 | XML output.

Displaying results as 2-D images

In addition to these general result formats DXBrain provides two 

additional means for visualizing query results. These two output 

methods are specifi c to the DXBrain data network. The fi rst, a 2D 

visualization (Image2 button in Figure 3), shows a segmented brain 

schematic, where each region in the diagram is colored according 

to the number of retrieved stimulation sites that are annotated 

with the name of that region. The region labels are mapped to 

terms from the FMA ontology. For example MSTG is an abbrevia-

tion for Middle part of superior temporal gyrus. Figure 7A shows 



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 10

Detwiler et al. Distributed XQuery-based data integration

such a visualization for female patients, and Figure 7B shows male 

patients after re-running the example query with the $sex param-

eter changed to “M”.

Displaying results as 3-D visualizations

The second visualization method pipelines results from DXBrain 

to an external 3D visualization suite we developed, called MindSeer 

(Moore et al., 2007). It does this by fi rst connecting to the 

Transformation service (Figure 1) to convert the patient-specifi c 

(magnet) coordinates of each stimsite, as returned in Figure 4, to 

normalized coordinates. It then invokes MindSeer via Java Web 

Start, with parameters that include the results returned by run-

ning the query.

MindSeer is both a standalone and a client-server Java3D pro-

gram that supports the visualization of spatial data, including 

spatial data resulting from DXBrain queries. For example, stimu-

lation sites from multiple patients can be viewed together spa-

tially normalized, on a common brain. Additional data modalities, 

such as fMRI, can be overlaid within the same visualization. Two 

canonical brain atlases are available within which MindSeer can 

display DXBrain results, the Collin brain and the Average MNI 

Brain (Evans et al., 1993). Results can also be viewed on any of the 

individual patient’s brains as well. Such a capability could be useful 

for surgical planning, in order to show likely regions of language, 

based on population studies, which could be further explored at 

the time of surgery.

Figure 8A shows the normalized stimulation sites retrieved as a 

result of the sample query as large blue spheres (one of the param-

eters of the query, Figure 3). In addition, the single retrieved fMRI 

study (based on the query parameters $contrast and $protocol in 

Figure 3) is shown. In this case the intensity values of the fMRI 

volume (which represent areas of the brain that are activated as 

a result of the task) are used to color the nearest surface patches 

on the canonical brain surface, thereby allowing comparison with 

the CSM sites. In this case the cold colors (like blue) in the color 

scheme mean the area had decreased activation relative to a control 

task (fi xation), and warm colors (like orange) means the area had 

increased activation. It should be noted that no conclusions as to 

the relationship between fMRI and CSM measures of language can 

be inferred from this one example, and in fact, other studies suggest 

that there may in fact not be a relationship. The point for this paper 

is that the tools we have developed facilitate such comparisons.

Figure 8B shows the results of running the sample query in 

which males are substituted for females, as in Figure 7B. In this 

case no fMRI study is available that matches the search crite-

ria (the fMRI database is currently only sparsely populated). 

FIGURE 6 | CSV output displayed in Excel.

FIGURE 7 | 2-D image output. Intensity of colored regions is proportional to the number of sites in that region returned by the query. (A) Females, (B) Males.



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 11

Detwiler et al. Distributed XQuery-based data integration

Although the CSM data shown in Figures 7 and 8 suggest that 

semantic processing is more posterior in the temporal lobe for 

males than for females, these suggestions need to be validated 

both by statistical analysis and by looking at other sources of 

data. The CSV output format (Figure 6) facilitates this sort of

analysis by external statistical packages, and the ability of DXBrain, 

the FMA and MindSeer to query and integrate multiple sources of 

data should allow these other sources to be more readily accessed 

than would be the case if they each had to be accessed manually.

ADDING A NEW SOURCE

One of the primary advantages of the distributed query approach is 

that it is very easy to add new data sources to the network, even those 

that were not anticipated during the original system deployment. 

As DXBrain does not enforce a centralized schema, and because it 

places few requirements or restrictions on new data sources, adding 

such sources is relatively simple. To make it even easier we provide 

the WIX tool (see “Source Data and Source Wrappers”) to assist 

users in the task of source deployment.

Using the WIX tool, we performed a small test to determine the 

diffi culty of adding a new, unanticipated source to the network. 

For the source, we used an XML export of the EndNote library 

for this paper. While this source adds little value to the network, it 

was chosen due to its dissimilarity with existing sources. We also 

downloaded the DTD fi le containing the general EndNote XML 

export schema. We launched WIX, selected our XML and Schema 

fi les and then clicked the “Generate War” button, which produces 

a .war fi le (Web ARchive) suitable for deployment in any J2EE web 

application container (such as Apache Tomcat). This process took 

roughly 1 min. We used Tomcat’s manager application to deploy 

our newly generated .war fi le, which again took about a minute.

Our source is now available for querying from DXBrain.

To test our new source deployment, we went to the DXBrain 

“New Query” page and issued a query against our new source. The 

query we chose fi nds the titles of all references where the author 

name contains the word “Bales”. Here is our test query, which took 

about 5 min to generate as we needed to refer to the schema when 

creating the query, and our results:

let $endnote_query := "

<results>

{

for $record in $root//record

for $record_style in $record//author/style

where contains($record_style,'Bales')

return 

<title>{$record//title/style/text()}</title>

}

</results>"

return

dxq:xquery

("http://xiphoid:8080/DXBrain_EndNote/",

$endnote_query )

-------------------------------------------------

<?xml version = "1.0" encoding = "UTF-8"?"

<results>

<title>A framework for XML-based integration 

of data, visualization and analysis in a 

biomedical domain</title>

</results>

DISCUSSION

In this paper we have described a distributed XML-based approach 

to data integration, and have shown its implementation within a 

specifi c application in brain mapping. The approach is lightweight 

and effi cient, in that it is very easy to add a new data source, and 

query processing is relatively fast. However a cognitive burden is 

moved from the administrator to the user, who must now under-

stand all the source schemata. We have partially reduced this burden 

by allowing the use of saved queries, which can be re-executed at 

FIGURE 8 | 3-D Visualization of retrieved CSM sites mapped onto a canonical brain atlas. (A) Females, also showing a related fMRI study, (B) Males.



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 12

Detwiler et al. Distributed XQuery-based data integration

any time with new parameters that may or may not be generated by 

custom user interfaces. Thus, we envision that one or more XQuery 

experts, who know the data sources, will be required to generate 

the saved queries, whereas end-users will be able to simply re-run 

the queries or use simple graphical interfaces to complete pre-built 

template queries. In practice we have found that if the query results 

are useful enough, and if there are enough example saved queries 

to serve as templates, the collaborating biologists do indeed take 

the time to learn enough XQuery to obtain results. In fact some of 

the saved queries on our demo website were generated by one such 

collaborating biologist. In contrast, it is unlikely that a collaborating 

biologist would be willing to take the considerable time needed to 

create and maintain a data warehouse or mediated system if all they 

want is to get a new result for a single publication.

In spite of the limitations we have found the system to be very 

useful in its present state as a way to rapidly query disparate data 

sources. In fact many of the sources we have queried in this way 

are not even related to brain mapping, as, for example the EndNote 

library described in Section “Adding a New Source”. Thus, in our 

future work we will generalize our approach, removing the depend-

encies on brain mapping and relegating these to a plugin mecha-

nism. In addition we will develop methods for adding additional 

sources, without requiring the developer to know the schema of 

every source, through the creation of views over multiple sources, 

which can themselves be queried as though they were a single 

source. Such an approach is analogous to views in relational data-

bases, and similar to our current work in view generation over 

ontologies (Brinkley et al., 2006).

As the number of sources increases methods for semantic inter-

operability will become increasingly important, so the semantic 

web query methods described in Section ‘Consulting an Ontology 

to “Intelligently” Filter by Anatomical Location’ will need to be 

enhanced. In addition, since our eventual goal is to allow the end 

user to create queries without the need to understand the com-

plex XQuery language, we will need to develop graphical XQuery 

generation languages similar to a prototype we have developed 

but not yet integrated in DXBrain (Li et al., 2007). Finally, as the 

number of sources becomes larger, or as the data become ready 

for submission to large central repositories or federations such as 

BIRN, it will be necessary to develop interfaces such that it is easy 

to either import the results of a distributed query into one of these 

systems, or to treat the distributed query engine as a processing 

node in the larger grid.

Many of the components of DXBrain are analogous to those in 

other data integration systems: the use of wrappers over data sources, 

a distributed query processor, semantic web and other technologies 

for interoperability, and user interfaces. An important advantage of 

XQuery and its distributed extensions is that it is a complete pro-

gramming language, thus allowing many of these components to be 

developed within a common framework, and then saved as modules 

(in the form of saved queries). Thus, as methods for re-using these 

modules and for graphically generating them become available it 

should be possible to build from the bottom-up networks of data 

sources from small groups of collaborating labs. These networks 

could in turn be combined together through additional saved query 

modules, and eventually incorporated as nodes in the larger national 

grids. Although additional research is needed before this kind of 

bottom-up creation of an information sharing network becomes 

available the current version of DXBrain, especially the download-

able modules, should be of use now by others who wish to create 

local shared networks of data. Tools to create such networks should 

help to fi ll the gap between the mostly ad hoc methods currently 

used by small-scale investigators and the large-scale heavyweight 

methods employed by projects such as BIRN.

ACKNOWLEDGEMENTS

This work was funded by NIH grants DC02310 and HL087706. In 

addition to the authors, several other individuals have been involved 

in various aspects of this work, including Chris Re, Nathan Bales, 

Stacy Tang, Hao Li, Erin Gibson, Brandon Loudermilk, and Ettore 

Lettich. We thank Natasha Noy, at the Stanford National Center for 

Bioontology, for converting the Foundational Model of Anatomy 

to OWL.

REFERENCES

Apache Software Foundation. (2007). 

Apache Tomcat. 2007. Available at: 

http://tomcat.apache.org/.

Bales, N., Brinkley, J, Lee, E. S., Mathur, S., 

Re, C., Suciu, D. (2005). A Framework 

for XML-Based Integration of Data, 

Visualization and Analysis in a 

Biomedical Domain. Trondheim, 

Proceedings, Third International XML 

Database Symposium (XSym 2005), 

pp. 207–221.

Brinkley, J. F. (2008). University of 

Washington Integrated Brain 

Project, Home Page. Available 

at: http://sig.biostr.washington.

edu/projects/brain.

Brinkley, J. F., Jakobovits, R. M., 

Poliakov, A. V., Martin, R. F., 

Gibson, E. R., Corina, D. M., 

Ojemann, G. A. (2004). An experi-

ment management system for cortical 

stimulation mapping data. San Diego, 

Society for Neuroscience Annual 

Meeting, p. 1032.12.

Brinkley, J. F., Myers, L. M., Prothero, J. S., 

Hei l , G. H. , Tsuruda, J. S . , 

Maravilla, K. R., Ojemann, G. A., 

Rosse, C. (1997). A structural 

information framework for brain 

mapping. In: Neuroinformatics: 

An Overview of the Human Brain 

Project, S. H. Koslow and M. F. 

Huerta, eds (Mahwah, Lawrence 

Erlbaum), pp. 309–334.

Brinkley, J. F., Suciu, D., Detwiler, L. T., 

Gennari, J. H., Rosse, C. (2006). 

A framework for using reference 

 ontologies as a foundation for the 

semantic web. Proc. AMIA Annu. Fall 

Symp. 2006, 96–100.

Detwiler, L. T., Suciu, D., Brinkley, J. F. 

(2008). Regular paths in SparQL: 

 querying the NCI thesaurus. Proc. 

AMIA Annu. Fall Symp. 2008, 

161–165.

Evans, A. C., Collins, D. L., Mills, S. R., 

Brown, E. D. , Kel ly, R. L. , 

Peters, T. M. (1993). 3D Statistical 

neuroanatomical  models from 305 

MRI volumes. Proc. IEEE Nucl. 

Sci. Symp. Med. Imag. Conf. 1993, 

1813–1817.

Fernandez, M., Jim, T., Morton, K., 

Onose, N., Simeon, J. (2007). DXQ: 

A Distributed XQuery Scripting 

Language. Beijing, XIME-P-2007: 

4th International Workshop on 

XQuery Implementation, Experience 

and Perspectives.

Fer n a n d e z ,  M . ,  Ka d iy s k a ,  Y. , 

Morishima, A., Suciu, D., Tan, W. 

(2002). Silkroute: a framework for 

publishing relational data in XML. 

ACM Trans. Database Technol. 27, 

1–6.

Gazzaniga, M. S. (2008). The fMRI Data 

Center. 2001. Available at: http://www.

fmridc.org/.

GNU. (2008). QEXO – The GNU 

Kawa Implementation of XQuery. 

Available at: http://www.gnu.

org/software/qexo/.

Hinshaw, K. P., Poliakov, A. V., 

Ma r t i n ,  R .  F. ,  Mo o re ,  E .  B . , 

Shapiro, L. G., Brinkley, J. F. (2002). 

Shape-based cortical  surface 

 segmentation for visualization brain 

mapping. Neuroimage 16, 295–316.

Kay, M. (2008). SAXON: The XSLT and 

XQuery Processor. Available at: http://

saxon.sourceforge.net/.

Keator, D. B., Grethe, J. S., Marcus, D., 

Ozyurt, B., Gadde, S., Murphy, S., 

Pieper, S., Greve, D., Notestine, R., 

Bockholt, H. J., Papadopoulos, P. 

(2008). A national human neuroim-

aging collaboratory enabled by the 



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 2 | 13

Detwiler et al. Distributed XQuery-based data integration

World Wide Web Consortium. (2005a). 

Resource Description Framework 

(RDF). 2005. Available at: http://www.

w3.org/RDF/.

World Wide Web Consortium. 

(2005b). SparQL query language for 

RDF. 2005. Available at: http://www.

w3.org/TR/rdf-sparql-query/.

World Wide Web Consortium. 

(2005c). The OWL Web Ontology 

Language. Available at: http://www.

w3.org/TR/owl-features/.

Conflict of Interest Statement: The 

authors declare that the research was con-

ducted in the absence of any commercial or 

fi nancial relationships that could be con-

strued as a potential confl ict of interest.

Received: 30 October 2008; paper pending 

published: 10 December 2008; accepted: 10 

January 2009; published online: 30 January 

2009

Citation: Detwiler LT, Suciu D, Franklin 

JD, Moore EB, Poliakov AV, Lee ES, Corina 

DP, Ojemann GA and Brinkley JF (2009) 

Distributed XQuery-based integration 

and visualization of multimodality brain 

 mapping data. Front. Neuroinform. (2009) 

3:2. doi: 10.3389/neuro.11.002.2009

Copyright © 2009 Detwiler, Suciu, 

Franklin, Moore, Poliakov, Lee, Corina, 

Ojemann and Brinkley. This is an open-

access article subject to an exclusive license 

agreement between the authors and the 

Frontiers Research Foundation, which 

permits unrestricted use, distribution, and 

reproduction in any medium, provided the 

original authors and source are credited.

the Foundational Model of Anatomy. 

J. Bioinform. 36, 478–500.

Shaw, M., Detwiler, L. T., Brinkley, J. F, 

Suciu, D. (2008). Generating 

 application ontologies from refer-

ence ontologies. Proc. AMIA Annu. 

Fall Symp. 2008, 672–676.

Society for Neuroscience. (2008). 

Neuroscience Database Gateway. 2008. 

Avaialable at: http://ndg.sfn.org/.

Stalder, D. S., and Brinkley, J. F. (1999). 

The Digital Anatomist Foundational 

Model Server. Monterey, Perl 

Conference 3.0.

St ructura l  Informat ics  Group. 

(2007a). DXQP – Distributed 

XQuery Processor. 2007. Available 

at: http://sig.biostr.washington.

edu/projects/dxqp/. 

Structural Informatics Group. (2007b). 

WIX: Web Interface for XQuery. 

2007. Available at: http://sig.biostr.

washington.edu/projects/wix/index.

html.

Structural Informatics Group. (2008). 

DXBrain Demo Query. 2007 Available 

at: http://sig.biostr.washington.edu/

projects/dxbrain/demoquery.html.

Van Essen, D. (2008). SumsDB. Available 

at: http://sumsdb.wustl.edu:8081/

sums/dispatch.do?forward = index.

W3C. (2008). Simple Object Access 

Protocol (SOAP). Available at: http://

www.w3.org/TR/soap/.

Wellcome Department of Cognitive 

Neurology. (2001). Statistical 

Parametric Mapping. Available 

at :  http://www.f i l . ion.ucl .ac .

uk/spm/.

and effi cient access to large seman-

tic networks. J. Biomed. Inform. 36, 

501–517.

Nature Neuroscience. (2000). A debate 

over fMRI data sharing. Nat. Neurosci. 

3, 845–846.

Ojemann, G., Ojemann, J., Lettich, E., 

Berger, M. (1989). Cortical language 

localization in left, dominant hemi-

sphere: an electrical stimulation map-

ping investigation in 117 patients. J. 

Neurosurg. 71, 316–326.

Oster, S., Langella, S., Hastings, S., Ervin, 

D., Madduri, R., Phillips, J., Kurc, T., 

Siebenlist, F., Covitz, P., Shanbhag, K., 

Foster, I., Saltz, J. (2008). caGrid 1.0: an 

enterprise Grid infrastructure for bio-

medical research. J. Am. Med. Inform. 

Assoc. 15, 138–149.

Ozsu, T., and Valduriez, P. (1999). 

Principles of Distributed Database 

Systems. Prentice Hall.

Poliakov, A., Hertzenberrg, X., Moore, E. B., 

Cor ina , D. , Ojemann, G. A. , 

Brinkley, J. F. (2007). Unobtrusive 

integration of data management 

with fMRI analysis. Neuroinformatics 

5, 3–10.

Re, C. (2006). SilkRoute II – Efficient 

relational publishing to XML. 

2006. Available at: http://silkroute.

cs.washington.edu/.

Re, C., Brinkley, J., Hinshaw, K., Suciu, D. 

(2004). Distr ibuted XQuer y. 

Proceedings of the Workshop on 

Information Integration on the Web 

(IIWeb), pp. 116–121.

Rosse, C., and Mejino, J. L. V. (2003). A 

reference ontology for bioinformatics: 

Biomedical Informatics Research 

Network (BIRN). IEEE Trans. Inf. 

Technol. Biomed. 12, 162–172.

Koslow, S., and Hyman, S. (2000). Human 

brain project: a program for the new 

millenium. Einstein Q. J. Biol. Med. 

17, 7–15.

Laborator y of  Neuro Imaging. 

(2008). LONI Image Database. 

Available at: http://www.loni.ucla.

edu/Research/Databases/.

Li, X., Gennari, J. H., Brinkley, J. (2007). 

XGI: a graphical interface for XQuery 

creation. Proc. AMIA Annu. Fall Symp. 

2007, 453–457.

Martone, M. E., Zhang, S., Gupta, A., 

Qian, X., He, H., Price, D. L., Wong, M., 

Santini, S., Ellisman, M. H. (2003). The 

cell-centered database: a database for 

multiscale structural and protein 

localization data from light and elec-

tron microscopy. Neuroinformatics 1, 

379–395.

Miller, P. L., Nadkarni, P., Singer, M., 

Marenco, L., Hines, M., Shepard, G. 

(2001). Integration of multidiscipli-

nary sensory data: a pilot model of the 

Human Brain Project approach. J. Am. 

Med. Assoc. 8, 34–48.

Moore, E. B., Poliakov, A. Lincoln, P., 

Brinkley, J. (2007). MindSeer: a 

portable and extensible tool for 

visualization of structural and func-

tional neuroimaging data. BMC 

Bioinformatics 8, 389.

Mork, P., Brinkley, J. F. Rosse, C. (2003). 

OQAFMA Querying Agent for the 

Foundational Model of Anatomy: 

a prototype for providing flexible 


