
DistributedSparseGrids.jl: A Julia library implementing
an Adaptive Sparse Grid collocation method
Maximilian Bittens 1 and Robert L. Gates2

1 Federal Institute for Geosciences and Natural Resources (BGR), Germany 2 Independent Researcher,
Germany

DOI: 10.21105/joss.05003

Software
• Review
• Repository
• Archive

Editor: Vincent Knight
Reviewers:

• @ericneiva
• @matt-graham

Submitted: 22 November 2022
Published: 07 March 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Abstract
Numerical integration or interpolation of high-dimensional functions is subject to the curse of
dimensionality on full tensor grids. One remedy to this problem is sparse grid approximations.
The additional construction effort is often worth spending, especially for underlying functions
whose evaluation is time-consuming. In the following, a Julia implementation of a local
Lagrangian adaptive hierarchical sparse grid collocation method is presented, which is suitable
for memory-heavy objects generated on distributed workers.

Statement of need
DistributedSparseGrids.jl is a Julia package for integrating and interpolating functions with
generic return types. There are other approaches to sparse grid approximation written in
the Julia language, such as SparseGrids.jl, AdaptiveSparseGrids.jl, GalerkinSparseGrids.jl, and
Tasmanian.jl. However, there is no Julia package available at the moment that is suitable if
the solution of the underlying (discretized) physical problem is time and resource-consuming,
requiring it to be solved on either a server or cluster environment, or the solution is memory-
heavy, like a Vector, Matrix, or, for example, a complete finite element solution.

Introduction
Sparse tensor product quadrature rules, mitigating the curse of dimensionality occurring in
full tensor grid constructions, were provided first by Smolyak (1963). In the last two decades,
collocation methods have been prominent in solving stochastic partial differential equations, as
shown in Babuška et al. (2007) and Nobile et al. (2008). Ma & Zabaras (2009) were able to
once again increase the efficiency of the collocation approach by introducing an error-adaptive
formulation of the method, which will serve as a basis for the collocation method described in
this project. For more information about the theory of the method implemented, see, e.g.,
Gates & Bittens (2015).

Features
In the following, some key features of the implemented approach are listed.

Arbitrary return types

DistributedSparseGrids.jl defines a HierarchicalCollocationPoint{N,CP,RT}, where N is the
number of dimensions, CP <: AbstractCollocationPoint{N,CT<:Real}, and RT is a generic
return type. RT can be conveniently defined as the type most suitable for studying the problem

Bittens, & Gates. (2023). DistributedSparseGrids.jl: A Julia library implementing an Adaptive Sparse Grid collocation method. Journal of Open
Source Software, 8(83), 5003. https://doi.org/10.21105/joss.05003.

1

https://orcid.org/0000-0001-9954-294X
https://doi.org/10.21105/joss.05003
https://github.com/openjournals/joss-reviews/issues/5003
https://github.com/baxmittens/DistributedSparseGrids.jl
https://doi.org/10.5281/zenodo.7673697
https://vknight.org
https://orcid.org/0000-0002-4245-0638
https://github.com/ericneiva
https://github.com/matt-graham
https://creativecommons.org/licenses/by/4.0/
https://github.com/baxmittens/DistributedSparseGrids.jl
https://github.com/robertdj/SparseGrids.jl
https://github.com/jacobadenbaum/AdaptiveSparseGrids.jl
https://github.com/ABAtanasov/GalerkinSparseGrids.jl
https://github.com/floswald/Tasmanian.jl
https://github.com/baxmittens/DistributedSparseGrids.jl
https://doi.org/10.21105/joss.05003

at hand, such as a Float64, a Vector{Float64}, or a Matrix{Float64}, for example. Suppose
the underlying physical problem stores its data in the VTU file format (Schroeder et al., 2000).
In that case, the Julia project VTUFileHandler.jl (Bittens, 2022) can be used; it implements
all operators needed to use complete result files with the sparse grid.

In-place operations

Computing the weights for the hierarchical basis as well as performing interpolation and
integration relies heavily on the use of arithmetic operators, which allocate memory. This can
be a problem, especially if the result type is memory heavy. Therefore, DistributedSparseGrids.jl
defines in-place variants to all of these actions given in-place variants for the arithmetic operators
are defined. For further information, see the documentation.

Distributed computing

If the function’s runtime to be evaluated is long, it may be necessary to distribute the load to
several workers. Julia provides this functionality out-of-the-box via the Distributed interface.
Due to the hierarchical construction of the basis and the level-wise adaptive refinement
indicator, it seems necessary to include this interface in the sparse grid for a performant
application of distributed computing. DistributedSparseGrids.jl uses all workers included by
the Distributed.addprocs command if the distributed_init_weights! function is used to
determine the hierarchical weights.

Additional features

• Nested one-dimensional Clenshaw-Curtis rule
• Smolyak’s sparse grid construction
• Local hierarchical Lagrangian basis
• Different pointsets (open, closed, halfopen)
• Adaptive refinement
• Multi-threaded calculation of basis coefficients with Threads.@threads

• Integration
• Experimental: integration over 𝑋∼(𝑖) (the 𝑋∼(𝑖) notation indicates the set of all variables

except 𝑋𝑖).

Example
Below, an example of an adaptive sampling of a function with a curved singularity in 2D is
provided. Figure 1 shows an illustration of the sparse grid approximation.

using DistributedSparseGrids

using Distributed

using StaticArrays

import PlotlyJS

function sparse_grid(N::Int,pointprobs,nlevel=6,RT=Float64,CT=Float64)

define collocation point

CPType = CollocationPoint{N,CT}

define hierarchical collocation point

HCPType = HierarchicalCollocationPoint{N,CPType,RT}

init grid

asg = init(AHSG{N,HCPType},pointprobs)

set of all collocation points

cpts = Set{HierarchicalCollocationPoint{N,CPType,RT}}(collect(asg))

fully refine grid nlevel-1 times

Bittens, & Gates. (2023). DistributedSparseGrids.jl: A Julia library implementing an Adaptive Sparse Grid collocation method. Journal of Open
Source Software, 8(83), 5003. https://doi.org/10.21105/joss.05003.

2

https://github.com/baxmittens/VTUFileHandler.jl
https://github.com/baxmittens/DistributedSparseGrids.jl
https://baxmittens.github.io/DistributedSparseGrids.jl/dev/#In-place-operations
https://github.com/baxmittens/DistributedSparseGrids.jl
https://doi.org/10.21105/joss.05003

for i = 1:nlevel-1

union!(cpts,generate_next_level!(asg))

end

return asg

end

Sparse Grid with 4 initial levels

pp = @SVector [1,1]

asg = sparse_grid(2, pp, 4)

add 2 worker

ar_worker = addprocs(2)

@everywhere begin

using StaticArrays

Function with curved singularity

fun1(x::SVector{2,Float64},ID::String) =

(1.0-exp(-1.0*(abs(2.0 - (x[1]-1.0)^2.0 -

(x[2]-1.0)^2.0) +0.01)))/(abs(2-(x[1]-1.0)^2.0-(x[2]-1.0)^2.0)+0.01)

end

calculate weights on master

init_weights!(asg, fun1)

adaptive refine

for i = 1:20

call generate_next_level! with tol=1e-5 and maxlevels=20

cpts = generate_next_level!(asg, 1e-5, 20)

calculate weights on all worker

distributed_init_weights!(asg, collect(cpts), fun1, ar_worker)

end

plot

surfplot = PlotlyJS.surface(asg, 100)

gridplot = PlotlyJS.scatter3d(asg)

PlotlyJS.plot([surfplot, gridplot])

Figure 1: Refined sparse grid.

Bittens, & Gates. (2023). DistributedSparseGrids.jl: A Julia library implementing an Adaptive Sparse Grid collocation method. Journal of Open
Source Software, 8(83), 5003. https://doi.org/10.21105/joss.05003.

3

https://doi.org/10.21105/joss.05003

References
Babuška, I., Nobile, F., & Tempone, R. (2007). A stochastic collocation method for elliptic

partial differential equations with random input data. SIAM Journal on Numerical Analysis,
45(3), 1005–1034. https://doi.org/10.1137/100786356

Bittens, M. (2022). VTUFileHandler: A VTU library in the Julia language that implements an
algebra for basic mathematical operations on VTU data. Journal of Open Source Software,
7 (73), 4300. https://doi.org/10.21105/joss.04300

Gates, R. L., & Bittens, M. R. (2015). A multilevel adaptive sparse grid stochastic collocation
approach to the non-smooth forward propagation of uncertainty in discretized problems.
arXiv Preprint arXiv:1509.01462. https://doi.org/10.48550/arXiv.1509.01462

Ma, X., & Zabaras, N. (2009). An adaptive hierarchical sparse grid collocation algorithm for
the solution of stochastic differential equations. Journal of Computational Physics, 228(8),
3084–3113. https://doi.org/10.1016/j.jcp.2009.01.006

Nobile, F., Tempone, R., & Webster, C. G. (2008). A sparse grid stochastic collocation method
for partial differential equations with random input data. SIAM Journal on Numerical
Analysis, 46(5), 2309–2345. https://doi.org/10.1137/060663660

Schroeder, W. J., Avila, L. S., & Hoffman, W. (2000). Visualizing with VTK: A tutorial. IEEE
Computer Graphics and Applications, 20(5), 20–27. https://doi.org/10.1109/38.865875

Smolyak, S. A. (1963). Quadrature and interpolation formulas for tensor products of certain
classes of functions. Doklady Akademii Nauk, 148, 1042–1045.

Bittens, & Gates. (2023). DistributedSparseGrids.jl: A Julia library implementing an Adaptive Sparse Grid collocation method. Journal of Open
Source Software, 8(83), 5003. https://doi.org/10.21105/joss.05003.

4

https://doi.org/10.1137/100786356
https://doi.org/10.21105/joss.04300
https://doi.org/10.48550/arXiv.1509.01462
https://doi.org/10.1016/j.jcp.2009.01.006
https://doi.org/10.1137/060663660
https://doi.org/10.1109/38.865875
https://doi.org/10.21105/joss.05003

	Abstract
	Statement of need
	Introduction
	Features
	Arbitrary return types
	In-place operations
	Distributed computing
	Additional features

	Example
	References

