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Large-Scale Systems

Usman A. Khan, Student Member, IEEE, and José M. F. Moura, Fellow, IEEE

Abstract—This paper presents a distributed Kalman filter to
estimate the state of a sparsely connected, large-scale, -dimen-
sional, dynamical system monitored by a network of sensors.
Local Kalman filters are implemented on -dimensional subsys-
tems, , obtained by spatially decomposing the large-scale
system. The distributed Kalman filter is optimal under an th
order Gauss–Markov approximation to the centralized filter. We
quantify the information loss due to this th-order approximation
by the divergence, which decreases as increases. The order of
the approximation leads to a bound on the dimension of the
subsystems, hence, providing a criterion for subsystem selection.
The (approximated) centralized Riccati and Lyapunov equations
are computed iteratively with only local communication and
low-order computation by a distributed iterate collapse inversion
(DICI) algorithm. We fuse the observations that are common
among the local Kalman filters using bipartite fusion graphs and
consensus averaging algorithms. The proposed algorithm achieves
full distribution of the Kalman filter. Nowhere in the network,
storage, communication, or computation of -dimensional vectors
and matrices is required; only dimensional vectors and
matrices are communicated or used in the local computations
at the sensors. In other words, knowledge of the state is itself
distributed.

Index Terms—Distributed algorithms, distributed estimation,
information filters, iterative methods, Kalman filtering, large-scale
systems, matrix inversion, sparse matrices.

I. INTRODUCTION

C ENTRALIZED implementation of the Kalman filter
[1], [2], although possibly optimal, is neither robust

nor scalable to complex large-scale dynamical systems with
their measurements distributed on a large geographical region.
The reasons are twofold: i) the large-scale systems are very
high-dimensional, and thus require extensive computations
to implement the centralized procedure; and ii) the span of
the geographical region, over which the large-scale system is
deployed or the physical phenomenon is observed, poses a large
communication burden and thus, among other problems, adds
latency to the estimation mechanism. To remove the difficulties
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posed by centralization, we decompose the large-scale system
into -dimensional subsystems and distribute the estimation
algorithm with a low order Kalman filter implemented at each
of these subsystems. To account for the processing, commu-
nication, and limited resources at the subsystems, the local
Kalman filters involve computations and communications with
local quantities only, i.e., vectors and matrices of low dimen-
sions, , where is the dimension of the state vector—no
sensor computes, communicates, or stores any -dimensional
quantity.

Much of the existing research on distributed Kalman filters
focuses on sensor networks monitoring low dimension systems.
This research replicates an th-order Kalman filter at each
sensor, which is only practical, when the dimension of the state
is small, for example, when multiple sensors mounted on a
small number of robot platforms are used for target tracking
[3]–[5]. The problem in such scenarios reduces to how to
efficiently incorporate the distributed observations, which is
also referred to in the literature as “data fusion”; see also
[6]. Data fusion for Kalman filters over arbitrary communi-
cation networks is discussed in [7], using iterative consensus
protocols provided in [8]. The consensus protocols in [8] are
assumed to converge asymptotically; thus, between any two
time steps of the Kalman filter, the consensus protocols require
an infinite number of iterations to achieve convergence. It is
worth mentioning that, with a finite number of iterations (true
for any practical implementation), the resulting Kalman filter
does not remain optimal. References [4] and [9] incorporate
packet losses, intermittent observations, and communication
delays in the data fusion process. Because they replicate an

-dimensional Kalman filter at each sensor, they communicate
and invert matrices locally, which, in general, is an
computation. This may be viable for low-dimensional systems,
as in tracking, but unacceptable in the problems we consider
where the state dimension is very large, for example, in the
range of to . In such problems, replication of the global
dynamics in the local Kalman filters is either not practical or
not possible.

Kalman filters with reduced-order models have been studied
in, e.g., [10] and [11] to address the computation burden posed
by implementing th-order models. In these works, the reduced
models are decoupled, which is suboptimal, as important cou-
pling among the system variables is ignored. Furthermore, the
network topology is either fully connected [10] or is close to
fully connected [11], requiring long-distance communication
that is expensive. We are motivated by problems where the
large-scale systems, although sparse, cannot be decoupled and
where, due to the sensor constraints, the communication and
computation should both be local.
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We present a distributed Kalman filter that addresses both
the computation and communication challenges posed by com-
plex large-scale dynamical systems, while preserving its cou-
pled structure; in particular, nowhere in our distributed Kalman
filter do we store, communicate, or compute any -dimensional
quantity. As an interesting remark, nowhere either in the net-
work is there a copy of the entire state estimate; in other words,
knowledge about the state is intrinsically distributed. We briefly
explain the key steps and approximations in our solution.

1) Spatial Decomposition of Complex Large-Scale Systems:
To distribute the Kalman filter, we provide a spatial decompo-
sition of the complex large-scale dynamical system (of dimen-
sion ) that we refer to as the overall system into several, pos-
sibly many, local coupled dynamical systems (of dimension ,
such that ) that we refer to as subsystems in the fol-
lowing. The large-scale systems we consider are sparse and lo-
calized. Physical systems with such characteristics are described
in Section II-A, as resulting, for example, from a spatio–tem-
poral discretization of random fields. These subsystems overlap,
i.e., they share states, and thus the resulting local Kalman fil-
ters also overlap. In addition to this overlap, the subsystems are
connected by local interactions that account for the coupling be-
tween the subsystems. We preserve this coupling by modeling
explicitly this information exchange among the subsystems.

2) Overlapping Dynamics at the Subsystems: Bipartite Fu-
sion Graphs: The subsystems that we extract from the overall
system overlap. In particular, some state variables are observed
by several subsystems. To fuse this shared information, we im-
plement a fusion algorithm using bipartite fusion graphs, which
we introduced in [12], and local average consensus algorithms
[13]. The interactions required by the fusion procedure are con-
strained to a small neighborhood and with a particular choice of
the communication topology the observation fusion procedure
remains single hop.

3) Assimilation of the Local Error Covariances—Distributed
Iterate-Collapse Inversion Algorithm: A key issue when dis-
tributing the Kalman filter is that the local error covariances
approximate the centralized error covariances in a meaningful
way. If the local error covariances evolve independently at each
subsystem they may lose any coherence with the centralized
error covariance. For example, in the estimation scheme in [14],
the coupled states are applied as inputs to the local observers,
but, the error covariances remain decoupled and no structure
of the centralized error covariance is retained by the local fil-
ters. To keep coherence between the local covariances and the
centralized covariance, we employ a cooperative assimilation
procedure among the local error covariances that is based on
approximating the centralized error process by a low dimen-
sional Gauss–Markov error process.1 The assimilation proce-
dure is carried out with a distributed iterate-collapse inversion
[(DICI), pronounced die-see] algorithm, briefly introduced in
[19].

1In the error covariance domain, this approximation corresponds to the deter-
minant/entropy maximizing completion of a partially specified (L-band, in our
case) covariance matrix [15]–[18]. Such a completion results into a covariance
matrix whose inverse is L-banded. We refer to a matrix as an L-banded matrix
(L � 0), if the elements outside the band defined by the Lth upper and Lth
lower diagonal are 0.

4) The DICI Algorithm and Information Filters: We imple-
ment the Kalman filter in the Information filter format [11], [20],
which propagates in time the information matrices (inverse of
the error covariances). The information matrices are inverted
by the DICI algorithm in a distributed manner. Iterative ma-
trix inversion can also be implemented using the distributed Ja-
cobi algorithm [21], but the computational complexity of the
distributed Jacobi scales linearly with the dimension of the
overall system, whereas the computational complexity of the
DICI algorithm is independent of , without compromising the
convergence rate. In fact, the error process of the DICI algorithm
is bounded above by the error process of the distributed Jacobi
algorithm. We show the convergence of the iterate step of the
DICI algorithm analytically and resort to numerical simulations
to show the convergence of its collapse step.

In summary, spatial decomposition of complex large-scale
systems, fusion algorithms for fusing observations, and the DICI
algorithm to assimilate the local error covariances combine to
give a robust, scalable, and distributed implementation of the
Kalman filter.

We describe the rest of the paper. Section II motivates the
discrete-time models, describes the centralized Information
filters (CIFs) and the centralized -banded Information filters
(CLBIFs). Section III covers the model distribution step. We in-
troduce the local Information filters in Section III-B along with
the necessary notation. Section IV gives the observation fusion
step of the local Information filters, and Section V presents the
DICI algorithm. The filter step of the local Information filters is
in Section VI, and the prediction step of the local Information
filters is in Section VII. We conclude the paper with results
in Section VIII and conclusions in Section IX. Appendix A
discusses the -banded inversion theorem, [17].

II. BACKGROUND

In this section, we motivate the type of applications and large-
scale dynamical systems of interest to us. The context is that of a
time-varying random field governed by partial differential equa-
tions (PDEs); these systems can also be generalized to arbitrary
dynamical systems belonging to a particular structural class, as
we elaborate in Section II-A. To fix notation, we then present
the centralized version of the Information filter.

A. Global Model

1) Global Dynamical System: Our goal here is to moti-
vate how discrete linear models occur that exhibit a sparse
and localized structure that we use to distribute the model in
Section III. Examples include physical phenomena [22]–[26],
e.g., ocean/wind circulation and heat/propagation equations,
that can be broadly characterized by a PDE of the Navier–Stokes
type. These are highly nonlinear and different regimens arise
from different assumptions. For data assimilation, i.e., com-
bining models with measured data, e.g., satellite altimetry data
in ocean models, it is unfeasible to use nonlinear models; rather,
linearized approximations (dynamical linearization) are em-
ployed. Hence, we take a very simplistic example and consider
the discretization of a spatio–temporal dynamical system

(1)
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where is the time partial derivative of a continuous-time phys-
ical phenomenon (e.g., heat, wave or wind), is random noise,
and , for example, is a second-order elliptical operator (that
arises in the heat equation in diffusion)

(2)

where and represent the horizontal and vertical dimen-
sions, respectively, and and are constants pertinent to the
specific application. We start by discretizing the elliptical oper-
ator(2), using a standard second-order difference approximation
on an uniform mesh grid

(3)

where is the value of the random field, , at the th location
in the grid. We collect the variables, , in a state
vector, , by, for example, using lexicographic ordering. Let
be a tridiagonal matrix, with zeros on the main diagonal and
ones on the upper and lower diagonal; approximating the time
derivative in (1) by using the forward Euler method, we can
write the spatio–temporal discretization of (1) as

(4)

where is the discrete-time index and the matrix is given by

. . .
. . .

. . . (5)

where and the constants , , and
are in terms of , in (2), and is the Kronecker product

[27]. Putting , the discrete-time dynamical system
takes the form

(6)

In the above model, are the state initial conditions,
is the model matrix, is the state noise

vector and is the state noise matrix.
Remarks: Here, we note that the model matrix, , is highly

sparse, since the matrices and are at most tridiagonal and is
perfectly banded in case of PDEs. We can relax this to sparse and
localized matrices as when the coupling among the states decays
with distance (in an appropriate measure); for example, see the
spatially distributed systems in [28]. We mention briefly two
other examples where such discrete-space-time models (with
sparse and localized structure) also occur. In image processing,
the dynamics at a pixel depends on neighboring pixel values
[29], [30]; power grid models, under certain assumptions, ex-
hibit banded structures [31]–[33]. As a final comment, systems
that are sparse but not localized can be converted to sparse and
localized by using matrix bandwidth reduction algorithms [34].

2) Observation Model: Let the system described in (6) be
monitored by a network of sensors. Observations at sensor
and time are

(7)

where is the local observation matrix for sensor ,
is the number of simultaneous observations made by sensor

at time , and is the local observation noise. In the
context of the systems we are interested in, it is natural to assume
that the observations are localized. These local observations at
sensor may be, e.g., the temperature or height at location or an
average of the temperatures or heights at and neighboring lo-
cations. Mathematically, this can be characterized by assuming
that is sparse and banded, where is the global obser-
vation matrix, introduced below.

We stack the observations at all sensors in the sensor net-
work to get the global observation model as follows. Let be the
total number of observations at all the sensors. Let the global
observation vector, , the global observation matrix,

, and the global observation noise vector
be

...
...

... (8)

Then the global observation model is given by

(9)

We further assume that the overall system (6) and (9) is coupled,
irreducible, and the pair is observable.

3) Statistical Assumptions: We adopt standard assumptions
on the statistical characteristics of the noise. The state noise se-
quence , the observation noise sequence , and
the initial conditions are independent, Gaussian, zero-mean,
with

and

and

(10)

where the superscript denotes the Hermitian, the Kronecker
delta , if and only if , and zero otherwise. Since
the observation noises at different sensors are independent, we
can partition the global observation noise covariance matrix, ,
into blocks corresponding to the local observation
noise covariance matrices at each sensor , as

(11)

For the rest of the presentation, we consider time-invariant
models, specifically, the matrices , , , , and are time
invariant. The discussion, however, is not limited to either zero-
mean initial conditions or time-invariant models and generaliza-
tions to the time-variant models will be added as we proceed.
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B. Centralized Information Filter

Let and be the (filtered and prediction, respec-
tively) error covariances, and their inverses be the information
matrices and . Let and be the filtered
estimate and the predicted estimate of the state vector , re-
spectively. We have the following relations:

(12)

(13)

Define the -dimensional global transformed state vectors as

(14)

(15)

Define the -dimensional global observation variables as

(16)

(17)

and the -dimensional local observation variables at sensor as

(18)

(19)

When the observations are distributed among the sensors, see
(7), the centralized information filter (CIF) can be implemented
by collecting all the sensor observations at a central location; or,
with observation fusion, by realizing that the global observation
variables in (16)–(17) can be written as (see [3], [7], and [11])

(20)

(21)

The filter step of the CIF is

(22a)

(22b)

The prediction step of the CIF is

(23a)

(23b)

The CIF needs i) the knowledge of all the observations, ,
at a central location to compute (20), a nontrivial communica-
tion task when the number of sensors is large; and ii) global

filter computations, e.g., (23), an infeasible challenge when the
number of states is very large. Further, the CIF has the disad-
vantages of large latency and a single point of failure.

C. Centralized -Banded Information Filters

To avoid the computations of the global quantities in
(23), e.g., the inversion, , we may approximate the in-

formation matrices and , to be -banded matrices,
and . We refer to the CIF with this approximation

as the centralized -banded Information filter (CLBIF). This ap-
proach is studied in [35], where the information loss between
and , is given by the divergence

(24)

where for estimation and for prediction,
is the Frobenius norm, and is the th eigen-

value of the matrix . Although, for a fixed the divergence
in (24) is bounded, the sequence may be unbounded
for small values of . Here, we assume that is chosen large
enough, i.e., , such that exists.
The choice of varies for different dynamical systems and
loosely speaking depends on the structure of the model matrices

.
This banded approximation of the information matrices is

equivalent to the determinant/entropy maximizing completion
of its inverse, a covariance matrix, part of whose elements are
unspecified. In our case, the unspecified elements are the non-
-band elements, and it is well known that such completion of the
covariance matrices have banded inverses with the same band-
width; see, for instance, [15], [17], and [18], and the references
within. Furthermore, such covariance matrices result from ap-
proximating the Gaussian error processes

(25)

to Gauss–Markov of the th order [16] (for , this has
also been studied in [36]). Reference [17] presents an algorithm
to derive the approximation that is optimal in Kullback–Leibler
or maximum entropy sense in the class of all -banded ma-
trices approximating the inverse of the error covariance matrix.
In the sequel, we assume this optimal -banded approximation.
The CLBIF (with the -banded information matrices and

) is given by the filter step in (22a)–(22b) and the predic-
tion step in (23a)–(23b), where the optimal information matrices

and are replaced by their -banded approxima-
tions. The algorithms in [17] and [37] reduce the computational
complexity of the CLBIF to , but the resulting algorithm
is still centralized and deals with the -dimensional state. To
distribute the CLBIF, we start by distributing the global model
(6)–(9) in Section III.
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III. SPATIAL DECOMPOSITION OF COMPLEX

LARGE-SCALE SYSTEMS

Instead of implementing CLBIF based on the global
model, we implement local Information filters at the subsys-
tems obtained by spatially decomposing the overall system.
Section III-A deals with this decomposition by exploiting the
sparse and localized structure of the model matrix .

A. Reduced Models at Each Sensor

This subsection shows how to distribute the global model (6)
and (9), in order to get the reduced order subsystems. We illus-
trate the procedure with a simple example that reflects our as-
sumptions on the dynamical system structure. Consider a five-
dimensional system with the global dynamical model

(26)

The system has two external noise sources .
We monitor this system with sensors, having scalar
observations at each sensor . The global observation vector

stacks the local observations, , and is

(27)

where ; the elements and
in (26) and (27) are such that the dynamical system is
-observable. We distribute the global model of (26) and

(27) in Sections III-A-1) and III-A-2).
1) Graphical Representation Using System Digraphs: A

system digraph visualizes the dynamical interdependence of
the system. A system digraph [14], , is a directed
graphical representation of the system, where is
the vertex set consisting of the states and
the noise inputs . The interconnection matrix

is the binary representation (having a 1 for each nonzero
entry) of the model matrix and the state noise matrix
concatenated together. The interconnection matrix for the
system in (26) is

(28)

The system digraph is shown in Fig. 1(a).
2) Subsystem Derivation Using Cut-Point Sets: We have

sensors monitoring the system through the observation

Fig. 1. System digraph and cut-point sets: (a) Digraph representation of the 5-D
system (26)–(27). The circles represent the states x, and the squares represent
the input noise sources u. (b) Cut-point sets associated to the three subsystems
(4) are shown by the dashed circles. (c) Partitioning of the global model matrix
F into local model matrices F , and the local internal input matrices D ,
shown for subsystem 1 and subsystem 3, from the example system (26)–(27).

model (27). We implement a subsystem at each sensor; thus,
subsystem corresponds to sensor . We associate to each
subsystem a cut-point set , where . We choose
to include the states in a cut-point set that are observed by
the sensors in its corresponding subsystem; see [38] for an
alternate definition of the cut-point sets, and algorithms to
find all cut-point sets and a minimal cut-point set, if it exists.
The cut-point sets select the local states involved in the local
dynamics at each subsystem. From (27), the cut-point sets2 are
shown in Fig. 1(b), where we have the following cut-point set,
e.g., at subsystem 1,

3) Dimension of the Subsystems: The local states at sub-
system , i.e., the components of its local state vector are
the elements in its associated cut-point set . The dimension
of the local Kalman filter implemented at subsystem is now .
The set of -dimensional local Kalman filters will give rise, as

2For simplicity of the presentation, we chose here that each state variable is
observed at least by one subsystem. We can easily account for this when this is
not true by extending the cut-point sets V toV , such that V = X .
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will be clear later, to an -banded centralized information ma-
trix with . The loss in the optimality as a
function of is given by the divergence (24). Hence, for a de-
sired level of performance, i.e., for a fixed , we may need to
extend (include additional states in a cut-point set) the cut-point
sets to , such that

(29)

where when applied to a set denotes its cardinality. This pro-
cedure of choosing an based on a certain desired performance
gives a lower bound on the dimension of each subsystem.

4) Coupled States as Inputs: The directed edges coming into
a cut-point set are the inputs required by the local model at that
subsystem. In the context of our running illustration (26)–(27),
we see that the local state vector for subsystem 1 is

, and the inputs to the local model consist of
a subset of the state set (at subsystem 1, is the input
coming from subsystem 2) and a subset of the noise input set
( at subsystem ).

5) Local Models: For the local model at subsystem , we col-
lect the states required as input in a local internal input vector

(we use the word internal to distinguish from the externally
applied inputs), and the noise sources required as input in a local
noise input vector . We collect the elements from corre-
sponding to the local state vector in a local model matrix

. Similarly, we collect the elements from corresponding to
the local internal input vector in a local internal input matrix

, and the elements from corresponding to the local noise
input vector in a local state noise matrix . Fig. 1(c)
shows this partitioning for subsystems 1 and 3. We have the fol-
lowing local models from (26):

(30)

(31)

(32)

We may also capture the above extraction of the local states
by the cut-point sets, with the following procedure. Let the total
number of states in the cut-point set at subsystem , , be

. Let be an selection matrix, such that it selects

states in the cut-point set from the entire state vector ,
according to the following relation:

(33)

For example, the selection matrix at subsystem 1 is

(34)

We establish a reduced local observation matrix by re-
taining the terms corresponding to the local state vector
from the local observation matrix . We may write

(35)

where “#” denotes the pseudo-inverse of the matrix. In the con-
text of our running illustration, the reduced local observation
matrix is obtained from the local observation
matrix . Note that picks the states from
the global state vector , whereas picks the states from the
local state vector . The reduced local observation models are
given by

(36)

We now make some additional comments. For simplicity of the
explanation, we refer to our running example (26)–(27). We
note that the subsystems overlap, as shown by the overlapping
cut-point sets in Fig. 1(b). Due to this overlap, observations cor-
responding to the shared states are available at multiple subsys-
tems that should be fused. We further note that the local model
(30) at subsystem 1 is coupled to the local model (31) at sub-
system 2 through the state . The state at subsystem 1
does not appear in the local state vector, i.e., . But, it
is still required as an internal input at subsystem 1 to preserve the
global dynamics. Hence, subsystem 2 communicates the state

, which appears in its local state vector, i.e., , to
subsystem 1. Hence, at an arbitrary subsystem , we derive the
reduced model to be

(37)

Since the value of the state itself is unknown, subsystem 2 com-
municates its estimate to subsystem 1. This allows sub-
system 1 to complete its local model and preserve global dy-
namics, thus, taking into account the coupling subsystems. This
process is repeated at all subsystems. Hence, the local internal
input vector is replaced by its estimate . It is worth men-
tioning here that if the dynamics were time-dependent, i.e., the
matrices, , , and change with time , then the above de-
composition procedure will have to be repeated at each . This
may result into a different communication topology over which
the subsystems communicate at each .

B. Local Information Filters

To distribute the estimation of the global state vector , we
implement local Information filters (LIFs) at each subsystem ,
which are based on the subsystem models (37) and (36). Each
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Fig. 2. Block Diagram for the LIFs: Steps involved in the LIF implementation.
The ovals represent the steps that require local communication.

Fig. 3. Relationship between the global error covariance matrices S and their
inverses, the global information matricesZ, withL = 1-banded approximation
on Z. The figure also shows how the local matrices S and Z constitute
their global counterparts. Since this relation holds for both the estimation and
prediction matrices, we remove the subscripts.

LIF computes local quantities (matrices and vectors of dimen-
sion ), which are then fused (if required) by exchanging in-
formation among the neighbors. Some of the update procedures
are iterative. Although, no centralized knowledge of the estima-
tion of the global state exists, the union of the local state vector
represents, in a distributed way, the knowledge that exists in a
centralized fashion in the CLBIF. In most applications, nowhere
in the network is there the need for this centralized knowledge.

The LIFs consist of initial conditions, a local filter step (in-
cluding observation fusion and distributed matrix inversion) and
a local prediction step; see Fig. 2. These steps are presented in
the next four sections. To proceed with Sections IV–VIII, we
provide next needed notation.

Notation: The superscript refers to a local reduced-order
variable ( vector or matrix) at subsystem . For
example, the reduced observation vector, , and the reduced
observation matrix, , are

(38)

(39)

The local error covariance matrices and are the
overlapping diagonal submatrices of the global error covariance
matrices and . Let and be the local in-
formation matrices. These local information matrices are over-
lapping diagonal submatrices of the global -banded informa-
tion matrices and . These local matrices overlap be-
cause the subsystems overlap. Fig. 3 captures the relationship

between the local error covariance matrices and the local infor-
mation matrices given by (12) and (13).

IV. OVERLAPPING REDUCED MODELS

After the spatial decomposition of the dynamical system, in-
troduced in Section III, the resulting subsystems share state vari-
ables, as shown by the overlapped cut-point sets in Fig. 1(b).
Since the subsystems sharing the states have (conditionally) in-
dependent observations of the shared states, observations corre-
sponding to the shared states should be fused. We present obser-
vation fusion in Section IV-A with the help of bipartite fusion
graphs, [12].

A. Observation Fusion

Equations (20) and (21) show that the observation fusion is
equivalent to adding the corresponding -dimensional local
observation variables (18)–(19). In CLBIF, we implement
this fusion directly because each local observation variable in
(18)–(19) corresponds to the full -dimensional state vector

. Since the -dimensional reduced observation variables
(38)–(39), correspond to different local state vectors, , they
cannot be added directly.

For simplicity and without loss of generality, we assume each
local observation matrix to be a row. To achieve observation
fusion, we introduce the following undirected bipartite fusion
graph3 . Let be the set of sensors and
be the set of states. The vertex set of the bipartite fusion graph

is . We now define the edge set of the fusion
graph . The sensor is connected to the state variable , if

observes (directly or as a linear combination) the state vari-
able . In other words, we have an edge between sensor and
state variable , if the local observation matrix at sensor
contains a nonzero entry in its th column. Fig. 4(a) shows the
bipartite graph for the example system in (26)–(27). The set of
sensors that observe the th state come directly from the
bipartite fusion graph . For example, from Fig. 4(a), we see
that contains as a single sensor, whereas contains the
sensors , , and so on.4 States having more than one sensor
connected to them in the bipartite fusion graph are the states
for which fusion is required, since we have multiple observa-
tions for that state.

With the help of the above discussion, we establish the fusion
of the reduced observation variables, (38)–(39). The reduced
model at each sensor involves state variables, and each el-
ement in the reduced observation vector corresponds
to one of these states, i.e., each entry in has some informa-
tion about its corresponding state variable. Let the entries of the

reduced observation vector at sensor be subscripted

3A bipartite graph is a graph whose vertices can be divided into two disjoint
sets X and S , such that every edge connects a vertex in X to a vertex in S ,
and there is no edge between any two vertices of the same set [39].

4Mathematically, this can be captured as follows. Let the number of nonzero
elements in the jth column, h , of the global observation matrix H be given
by N and let 
 be the set of the locations of these nonzero elements, with
j
 j = N and 
 be its & th element. Let V be an N � N matrix with
ones on the (&;
 )th locations and zeros elsewhere. Considering S 8j as a
column vector, we have S = V S .
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Fig. 4. (a) Bipartite Fusion graph, B, is shown for the example system
(26)–(27). (b) Subgraphs G for observation fusion.

by the state variables modeled at sensor . In the context of
the example given by system (26)–(27), we have

(40)

For the th state , the observation fusion is carried out on the
set of sensors attached to this state in the bipartite fusion
graph . The fused observation vectors denoted by are given
by

(41)

Generalizing to the arbitrary sensor , we may write the entry,
, corresponding to in the fused observation vector,

as

(42)

where is the entry corresponding to in the reduced ob-

servation vector at sensor , .

B. Implementation

We now provide further notation on the communication
topology to formulate the observation fusion procedure pre-
cisely. For the th state , let be
a fully connected5 (fc) subgraph, such that its vertices are

5A fully-connected graph, G = S ;E , is such that every pair of
distinct vertices in S is connected by an edge in E .

all the sensors that observe . With this definition, we can

define , where is given in
footnote 4 and the overline denotes the binary representa-
tion, as introduced in Section III-A-1). For the th state ,

let be a connected6 subgraph.
Now, the overall sensor network topology required for the
observation fusion with fully connected subgraphs can

be given by

and for the connected subgraphs can be given by

. These graphs are shown in
Fig. 4(b).

Remarks: We now make some comments. First, if we choose
the overall sensor communication graph, , that results from
the union of the fully-connected subgraphs , the ob-
servation fusion procedure does not require an iterative proce-
dure and is realized in a single step. If we choose the overall
sensor communication graph that results from the union of the
connected subgraphs , the observation fusion procedure
requires an iterative consensus algorithm7 and can be realized
using weighted averaging algorithms [13].

With the assumption of a localized global observation matrix,
, as motivated in Section II-A-2, the overall sensor communi-

cation network, or , is not necessarily fully connected, as
shown in Fig. 4(b).

With any choice of the overall sensor communication graph
or , the communication required for observation fusion is

single-hop.
It is worth mentioning that the observation fusion procedure

implemented in [7] cannot be realized in single-step unless the
overall sensor communication graph is fully connected, which
we do not require anywhere in our solution.

A similar procedure on the pairs of state variables and their as-
sociated subgraphs can be implemented to fuse the reduced ob-
servation matrices . Since we assume the observation model
to be stationary ( and are time-independent), the fusion on
the reduced observation matrix is to be carried out only once
and can be an offline procedure. If that is not the case, and
and are time dependent, fusion on has to be repeated at each
time .

A comment on estimate fusion. Since we fuse the observa-
tions concerning the shared states among the sensors, one may
ask if it is required to carry out fusion of the estimates of the
shared states. It turns out that consensus on the observations
leads to consensus on the estimates. This will become clear with
the introduction of the local filter and the local prediction step of
the LIFs; therefore, we defer the discussion on estimate fusion
to Section VII-C.

6A connected graph, G = S ;E , is such that there exists a path
from any vertex in S to any other vertex in S .

7In this case, we assume that the communication is fast enough so that the con-
sensus algorithm can converge, see [40] for a discussion on distributed Kalman
filtering based on consensus strategies. The convergence of the consensus al-
gorithm is shown to be geometric and the convergence rate can be increased by
optimizing the weight matrix for the consensus iterations using semidefinite pro-
gramming [41]. The communication topology of the sensor network can also be
improved to increase the convergence speed of the consensus algorithms [42].
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V. DISTRIBUTED MATRIX INVERSION WITH

LOCAL COMMUNICATION

In this section, we discuss the cooperative assimilation
procedure on the local error covariances. Consider the example
model (26)–(27), when we employ LIFs on the distributed
models (30)–(32). The local estimation information matrices

, , and correspond to the overlapping diagonal
submatrices of the global 5 5 estimation information matrix,

; see Fig. 3, with -banded approximation on . It
will be shown (Section VII-A) that the local prediction infor-
mation matrix is a function of the local error covariance

matrices , and hence we need to compute from the

local filter information matrices , which we get from the
local filter step (Section VI). As can be seen from Fig. 3 and
(12), for these local submatrices

(43)

Collecting all the local information matrices at each
sensor and then carrying out an matrix inversion is not
a practical solution for large-scale systems (where may be
large), because of the large communication overhead and
computational cost. Using the -banded structure on the global
estimation information matrix , we present below a dis-
tributed iterate collapse inversion with overrelaxation [(DICI-
OR), pronounced die-see-O-R] algorithm.8 We present a gen-
eralization of the centralized Jacobi overrelaxation (JOR) algo-
rithm to solve matrix inversion in Section V-A and show that the
computations required in its distributed implementation scale
linearly with the dimension, , of the system. We then present
the DICI-OR algorithm and show that it is independent of the
dimension, , of the system. For simplicity of the presentation,
we ignore the Kalman filter time subscripts, , in the remainder
of this section.

A. Centralized Jacobi Overrelaxation (JOR) Algorithm

The centralized Jacobi overrelaxation (JOR) algorithm for
vectors [21] solves a linear system of equations iteratively,
by successive substitution. It can be easily extended to get the
centralized JOR algorithm for matrices that solves

(44)

for the unknown matrix , where the matrices and are
known. Let , for some

(45)

8It is worth mentioning here that the DICI algorithm [for solving ZS = I,
with (symmetric positive definite) SPD L-banded matrix Z 2 and the
n � n identity matrix I] is neither a direct extension nor a generalization of
(block) Jacobi or Gauss–Seidel type iterative algorithms (that solve a vector
version, Zs = b with s;b 2 , of ZS = I; see [21], [43]–[45]). Using the
Jacobi or Gauss-Seidel type iterative schemes for solving ZS = I is equivalent
to solving n linear systems of equations, Zs = b; hence, the complexity scales
linearly with n. Instead the DICI algorithm employs a nonlinear collapse oper-
ator that exploits the structure of the inverse, S, of a SPD L-banded matrix, Z,
which makes its complexity independent of n.

converges to and is the centralized JOR algorithm for ma-
trices, solving coupled linear systems of equations (44), where

is sometimes called a relaxation parameter [21]. Putting
, we can iteratively solve for , and, if is

known, the following iterations converge to :

(46)

where the multiplier matrix is defined as

(47)

The Jacobi algorithm can now be considered as a special case
of the JOR algorithm with .

1) Convergence: Let be the stationary point of the itera-
tions in (46), and let denote the iterations in (46). It can
be shown that the error process for the JOR
algorithm is

(48)

which decays to zero if , where denotes the
spectral norm of a matrix. The JOR algorithm (46) converges for
all symmetric positive definite matrices, , for sufficiently small

, see [21], an alternate convergence proof is provided in
[46] via convex -matrices, whereas convergence for parallel
asynchronous team algorithms is provided in [47]. Since the in-
formation matrix is the inverse of an error covariance matrix;

is symmetric positive definite by definition, and the JOR al-
gorithm always converges. Plugging in (46) gives us the
centralized Jacobi algorithm for matrices, which converges for
all diagonally dominant matrices; see [21]. We can further write
the error process as

(49)

where the matrix is the initial condition. The spectral norm
of the error process can be bounded by

(50)

The JOR algorithm is centralized as it requires the complete
matrices involved. This requires global communication

and an th order computation at each iteration of the algorithm.
We present below its distributed implementation.

2) Distributed JOR Algorithm: We are interested in the local
error covariances that lie on the -band of the matrix .
Distributing the JOR (in addition to [21], distributed Jacobi and
Gauss–Seidel type iterative algorithms can also be found in [43],
[45], and [46]) algorithm (46) directly to compute the -band
of gives us the following equations for the th element in

(51)

where the row vector is the th row of the multiplier matrix
; the column vector is the th column of the matrix ; and

the scalar element is the th diagonal element of the diagonal
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matrix . Since the matrix is -banded, the multiplier matrix
in (47) is also -banded. The th row of the multiplier matrix
contains nonzeros at most at locations in the index

set . These nonzero elements pick
the corresponding elements with indices in the index set in the
th column of . Due to the -bandedness of the multiplier

matrix , the JOR algorithm can be easily distributed with
appropriate communication with the neighboring sensors.

A major drawback of the distributed JOR algorithm is that
at each sensor the computation requirements scale linearly with
the dimension of the system. This can be seen by writing out
the iteration in (51), e.g., for an -banded element such that

(i.e., for the elements that lie on the th upper
or th lower diagonal). In the context of Fig. 3, we can write

from (51) as

(52)

The element does not lie in the -band of , and, hence,
does not belong to any local error covariance matrix . Iter-
ating on it using (51) gives

(53)

The computation in (53) involves iterating on which, in
turn, requires another off -band element, , and so on.
Hence, a single iteration of the algorithm, although distributed
and requiring only local communication, sweeps the entire
rows in and the computation requirements scale linearly with

. We now present a solution to this problem.

B. Distributed Iterate Collapse Inversion Overrelaxation
Algorithm

In this section, we present the distribute iterate collapse inver-
sion overrelaxation (DICI-OR) algorithm. The DICI-OR algo-
rithm is divided into two steps: i) an iterate step and ii) a collapse
step. The iterate step can be written, in general, for the th el-
ement that lies in the -band of the matrix
as

,
,

(54)

where the symbols are defined as in Section V-A-2).
As we explained before in Section V-A-2), the implementa-

tion of (54) requires non- -banded elements that, in turn, re-
quire more non- -banded elements. To address this problem,
we introduce a collapse step. We employ a determinant max-
imizing completion of assuming that its non -band ele-
ments are unspecified and use the results9 in [37]. In general,
a non- -band element of an st-order Gauss-Markov co-
variance matrix (whose inverse is -banded) can be written
as

(55)

9If S is the inverse of an L-banded matrix, then the submatrices that do not
lie in the L-band of S, can be computed from the submatrices that lie in the
L-band of S, [37]. So, to compute the inverse S = Z of anL-banded matrix
Z, we just compute the submatrices that lie in the L-band of its inverse S; the
remaining submatrices are derived from these using the expressions given in
[37].

which gives us the collapse step. In the context of Fig. 3, instead
of iterating on as in (53), we employ the collapse step

(56)

that avoids the need to iterate further on the non- -band
elements.

Recall that at time of the Information filter, we are inter-
ested in going from local information matrices to the local

error covariances . Since at time , the sensors have already
computed the local error covariances at time , we use them
as the initial condition of the DICI algorithm. This choice of
the initial conditions is an efficient starting point and provides a
one-step convergence of the DICI algorithm in the steady state.
The initial conditions of the DICI-OR algorithm are, thus, given
by

(57)

(58)

Equations (57)–(58) do not require communication and can be
computed at each sensor directly from the local information
matrix, . This is because the matrix is diagonal, and

is the direct inverse of in (57).
We refer to (54)–(55), combined with (57)–(58), and ap-

propriate communication from neighboring sensors as the
DICI-OR algorithm. The DICI-OR algorithm can be easily
extended to . The only modification required is in the
collapse step, since (55) holds only for . The appropriate
formulas to replace (55), when , are provided in [37].
The computation requirements for the DICI-OR algorithm are
independent of , at each subsystem, and it provides a scalable
implementation of the matrix inversion problem. The DICI
algorithm (without the overrelaxation parameter, ) can be
obtained from the DICI-OR algorithm by setting .

1) Convergence of the DICI-OR Algorithm: We introduce
the following definition.

Definition 1: Let be the set of semiseparable matrices [48],
[49] defined by

is an -banded

symmetric positive definite matrix (59)

The iterate and the collapse steps of the DICI algorithm can
be combined in matrix form as follows:

Iterate Step: (60)

Collapse Step: (61)

The operator is the collapse operator; it employs a maxi-
mizing determinant/entropy completion of a covariance matrix
whose non -band elements are unspecified using the results in
[37]. The DICI algorithm is a composition of the linear function
(the iterate step in (60)), , followed
by the collapse operator, given in (55) for and in
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Fig. 5. Histogram of �: Simulations of the quotient of (64) are performed
1:003 � 10 times and the results are provided as a histogram.

[37] for . Combining (60)–(61) summarizes the DICI al-
gorithm for as

(62)

We define a composition map, , as .
To prove the convergence of the DICI-OR algorithm, we show
that the composition map, , is a contraction map under some
norm, that we choose to be the spectral norm , i.e., for some

(63)

The convergence of the iterate step of the DICI-OR algorithm
is based on the multiplier matrix , which is proved to be a
contraction map in [21]. For the convergence of the collapse
operator , we resort to a numerical procedure and show, in the
following, that (63) is a contraction by simulating (63)

times.
For the simulations, we generate matrices ,

with independent and identically distributed (i.i.d.) normally
distributed elements and get . We
eigendecompose . We replace with a di-
agonal matrix , whose diagonal elements are drawn from
a uniform distribution in the interval . This leads to a
random symmetric positive definite matrix that lies in when
we apply the collapse operator For

and a random integer between 1 and , we
compute, by Monte Carlo simulations, the quotient of (63)

(64)

The number of trials is . The histogram of the values
of , in (64), (with 1000 bins) is plotted in Fig. 5. The maximum
value of found in these simulations is 0.9851 and
the minimum value is 0.8252. Since , i.e., strictly less
than 1, we assume that (63) is numerically verified.

2) Error Bound for the DICI-OR Algorithm: Let the matrix
produced by the DICI-OR algorithm at the th iteration be

. The error process in the DICI-OR algorithm is given by

(65)

Fig. 6. Simulation for the error bound of the DICI-OR algorithm.

Claim: The spectral norm of the error process of
the DICI-OR algorithm is bounded above by the spectral norm
of the error process of the JOR algorithm. Since,
the JOR algorithm always converges for symmetric positive
definite matrices , we deduce that the DICI-OR algorithm
converges. We verify this claim numerically by Monte Carlo
simulations. The number of trials is 4490, and we compute
the error process of the DICI-OR algorithm and the
error process of the JOR algorithm. We choose the
relaxation parameter to be 0.1. In Fig. 6(a)–(c), we show the
following:

against the number of iterations of the JOR and DICI-OR algo-
rithm. Since all the three figures show that the max, min, and
the mean of the difference of the spectral norm of the two error
processes is always , we de-
duce that [using (50)]

This verifies our claim numerically and provides us an upper
bound on the spectral norm of the error process of the DICI
algorithm.
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VI. LOCAL INFORMATION FILTERS: INITIAL CONDITIONS AND

LOCAL FILTER STEP

The initial conditions and the local filter step of the LIFs are
presented in Sections VI-A and B.

A. Initial Conditions

The initial condition on the local predictor is

(66)

Since the local information matrix and the local error covari-
ances are not the inverse of each other, (43), we obtain the ini-
tial condition on the prediction information matrix by using the

-banded inversion theorem [17], provided in appendix A. This
step may require a local communication step further elaborated
in Section VII-A.

(67)

B. Local Filter Step

In this section, we present the local filter step of the LIFs. The
local filter step is given by

(68a)

(68b)

where and denote the fused observation variables. Fu-
sion of the observations is presented in Section IV-A. The distri-
bution of the addition operation “ ” in (22) is straightforward in
(68). Recall that the observation fusion, (42), is carried out in a
single-step for the sensor communication graph, , or using the
iterative weighted averaging algorithm for the sensor commu-
nication graph . In case of , the asymptotic convergence of
this iterative algorithm is guaranteed under certain conditions;
see [13] for details on such conditions. Hence, with the required
assumptions on the subgraph , the observation fusion algo-
rithm, (42), asymptotically converges, and hence (with a slight
abuse of notation),

and (69)

The above notation implies that the local fused information vari-
ables, and , when combined over the entire sensor net-
work, asymptotically converge to the global information vari-
ables, and . This, in turn, implies that the local filter step of
the LIFs asymptotically converges to the global filter step, (22),
of the CLBIF.

Once the local filter step is completed, the DICI algorithm
is employed on the local information matrices obtained
from (68a) and (68b) to convert them into the local error co-
variance matrices . Finally, to convert the estimates in the

information domain to the estimates in the Kalman filter

domain , we specialize the DICI algorithm to the matrix-
vector product (15) that does not require a collapse step; hence,
convergence can be proved analytically.

VII. LOCAL INFORMATION FILTERS: LOCAL PREDICTION STEP

This section presents the distribution of the global prediction
step, (23), into the local prediction step at each LIF. This sec-
tion requires the results of the DICI algorithm for the -banded
matrices, introduced in Section V.

A. Computing the Local Prediction Information Matrix

Because of the coupled local dynamics of the reduced sensor-
based models, each sensor may require that some of the esti-
mated states be communicated as internal inputs to its LIF,
as shown in (37). These states are the directed edges into each
cut-point set in Fig. 1(b). Hence, the error associated to a local
estimation procedure is also influenced by the error associated to
the neighboring estimation procedure, from where the internal
inputs are being communicated. This dependence is true for all
sensors and is reflected in the local prediction error covariance
matrix , as it is a function of the global estimation error
covariance matrix . Equation (70) follows from (23a)

after expanding (23a) for each diagonal submatrix in
.

(70)

The matrix (the matrix is introduced in (33)) is an
matrix, which relates the state vector to the local state

vector . Fig. 1(c) shows that the matrix is further divided
into and . With this subdivision of , the first term on
the right-hand side of (70), , can be expanded,
and (70) can be written as

(71)

where

is the local error covariance matrix, which is
available from (68a) and the DICI algorithm at
sensor ;

is the local error covariance matrix, which is
available from (68a) and the DICI algorithm
at the sensors having the states, , in their
reduced models;

is the error cross correlation between the local
state vector, , and the local internal input
vector, .

The non- -banded entries in this matrix can be computed
from (56); see [37]. Since the model matrix is sparse, we do
not need the entire error covariance matrix , only cer-
tain of its submatrices. Since the model matrix is localized,
long-distance communication is not required, and the subma-
trices are available at the neighboring sensors.

Once we have calculated the local prediction error covariance
matrix , we realize (43) and compute the local prediction
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information matrix , using the -banded Inversion The-
orem (see [17] and Appendix A).

(72)

From (78) in Appendix A, to calculate the local prediction infor-
mation matrix , we only need the from sensor “ ”

and from some additional neighboring sensors. Hence is
again computed with only local communication and th order
computation.

B. Computing the Local Predictor,

We illustrate the computation of the local predictor
for the 5-D system, (26)–(27), with . The local predictor

at sensor 3 follows from the global predictor, (23b), and
is given by

(73)

where is the only term arising due to the -banded
(tridiagonal) assumption on the prediction information matrix

. Note that is a result of
, where is the third row of the model matrix . A

model matrix with a localized and sparse structure ensures that
is computed from a small subset of the estimated

state vector , communicated by a subset of
the neighboring sensors, which are modeling these states in their
reduced models. This may require multihop communication.

Generalizing, the local predictor in the information domain
is given by

(74)

for some , where is a linear function and
depends on .

C. Estimate Fusion

We present the following fact, if any is not fully connected.
1) Fact: Let denote the number of iterations of the con-

sensus algorithm that are employed to fuse the observations [re-
call (42)]. As , the local estimates, , in (68b) also
reach a consensus on the estimates of the shared states, i.e., the
local estimates converge to the CLBIF estimates.

It is straightforward to note that, if the local predictors
of the shared states are the same over the sensors that share these
states, then as we have a consensus on the estimates (of
the shared states) in the local filter step (68b). To show that the
shared local predictors are the same over the sensors that share

these states, we refer back to our illustration and write the local
predictors for sensor 2 as follows:

(75)

The predictor for the shared state can now be extracted for
sensor 3 from (73) and for sensor 2 from (75) and can be verified
to be the following for each 2, 3.

(76)

The elements belong to the prediction information matrix,
which is computed using the DICI algorithm and the -banded
inversion theorem. It is noteworthy that the DICI algorithm is
not a consensus algorithm and thus the elements are the same
across the sensor network at any iteration of the DICI algorithm.
With the same local predictors, the iterations of the consensus
algorithm on the observations lead to a consensus on the shared
estimates.

VIII. RESULTS

A. Summary of the Local Information Filters

We summarize the distributed local Information filters. The
initial conditions are given by (66) and (67). Observation fu-
sion is carried out using (42). The fused observation variables

and are then employed in the local filter step, (68a) and
(68b), to obtain the local information matrix and the local esti-
mator and , respectively. We then implement the DICI
algorithm (54) and (55) to compute the local error covariance
matrix from the local information matrix . The DICI
algorithm is again employed to compute the local estimates in
the Kalman filter domain from the local estimator as
a special case. Finally, the local prediction step is completed by
computing the local prediction error covariance matrix ,

the local prediction information matrix , and the local

predictor from (71), (72), and (74), respectively.

B. Simulations

We simulate an -dimensional system with
sensors monitoring the system. Fig. 7(a) and (b) shows the

nonzero elements (chosen at random) of the model matrix, ,
such that its maximum eigenvalue is unity, i.e., .
The model matrix in Fig. 7(a) is -banded. The model ma-
trix in Fig. 7(b) is -banded that is obtained by employing
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Fig. 7. (a), (b) Nonzero elements (chosen at random) of 100� 100,
L = 20-banded [Fig. 7(a)] and L = 36-banded [Fig. 7(b)] model matrices,
F, such that kFk = 1.

Fig. 8. Global observation matrix, H. The nonzero elements (chosen at
random) are shown. There are N = 10 sensors, where the lth row of H
corresponds to the local observation matrix, H , at sensor l. The overlapping
states (for which fusion is required) can be seen as the overlapping portion of
the rows.

the reverse Cuthill–Mckee algorithm [34] for bandwidth reduc-
tion of a sparse random . The nonzeros (chosen at random as
Normal(0,1)) of the global observation matrix are shown in
Fig. 8. The th row of the global 10 100 observation matrix

is the local observation matrix at sensor . Distributed
Kalman filters are implemented on i) in 7(a) and in Fig. 8;
and ii) in 7(b) and in Fig. 8. The trace of the error co-
variance matrix is simulated for different values of in

and the plots are shown (after averaging
over 1000 Monte Carlo trials) in Fig. 9(a) for case i) and in
Fig. 9(b) for case ii). The stopping criteria for the DICI algo-
rithm and the consensus algorithm are such that the deviation in
their last 10 iterations is less than . In both Fig. 9(a) and (b),

represents the trace of the solution of the Riccati equa-
tion in the CIF (no approximation).

With 1000 Monte Carlo trials, we further simulate the trace of
the error covariance, , for case ii) with -banded
approximation (on the information matrices) as a function of
the number of iterations, , of the DICI-OR algorithm. We com-
pare this with a) the simulation obtained from the direct
inverse of the error covariance (with -banded approxi-
mation on its inverse) and b) , trace of the solution of
the Riccati equation of the CIF (no approximation). We choose

for the DICI algorithm and show the re-
sults in Fig. 10. As , the curves we obtain from the DICI al-
gorithm get closer to the curve we obtain with the direct inverse.

The simulations confirm the following. First, the LIFs
asymptotically track the results of the CLBIF (see Fig. 10).
Second, we verify that as , the performance is virtually
indistinguishable from that of the CIF, as pointed out in [37];
this is in agreement with the fact that the approximation is
optimal in Kullback–Leibler sense, as shown in [17]. Here, we
also point out that, as we increase , the performance increases,
but, we pay a price in terms of the communication cost, as we

Fig. 9. (a), (b) Distributed Kalman filter is implemented on the model ma-
trices in Fig. 7(a) and (b) and the global observation matrix H (Fig. 8), in
Fig. 9(a) and (b). The expectation operator in the trace (on horizontal axis) is
simulated over 1000 Monte Carlo trials.

Fig. 10. Performance of the DICI algorithm as a function of the number of
DICI iterations, t.

may have to communicate in a larger neighborhood. Third, in
Fig. 9(a) and (b), it can be verified that should be greater
than some for the CLBIF to converge, as pointed out in
Section II-C. Fourth, since the trace of the error covariance is
the trace of an expectation operator, we use Monte Carlo trials
to simulate the expectation operator. If we increase the number
of Monte Carlo trials the variations reduce, and the filters
eventually follow the solution of the Riccati equation .
Fifth, the curve in Fig. 10 with shows the decoupled
LIFs, when the local error covariances are not assimilated. This
investigates the case where the distributed estimation scheme
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fails because the covariances at the local filters are decoupled.
We next discuss the computational advantage of the LIFs over
some of the existing methods.

C. Complexity

We regard the multiplication of two matrices as an
operation, inversion of an matrix also as an

operation, and multiplication of an matrix and an
vector as an operation. For all of the following, we

assume sensors monitoring the global system, (6).
1) Centralized Information Filter: This is the case where

each sensor sends its local observation vector to a centralized
location or a fusion center, where the global observation vector
is put together. The fusion center implements the CIF, with an

computation complexity for each time , so we have the
complexity as , with inordinate communication require-
ments (back and forth communication between the sensors and
the central location).

2) Information Filters With Replicated Models at Each
Sensor and Observation Fusion: In this scheme, the local
observation vectors are not communicated to the central loca-
tion, but are fused over an all-to-all communication network
[3] or an arbitrary network [7]. Computational complexity at
each sensor is in [3]. In [7], let the complexity of the
iterative algorithm be and let be the number of
iterations of the consensus algorithm. Each sensor implements
a CIF after fusing the observations. For each time index , each
sensor requires operations plus the operations required
for the consensus algorithm, which are ; so the
total computation complexity is at each
sensor. Communication requirements are global in [3] and local
in [7].

3) Distributed Kalman Filters: Local Information Filters:
The distributed Kalman filter presented in this paper has three
iterative algorithms. In all other steps, the computation com-
plexity is dominated by , where . Let be
the iterations required by the weighted averaging algorithm,
where at each step of the iterative algorithm the computations
are dominated by . Let be the iterations required
by the DICI algorithm for vectors, where at each step of
the iterative algorithm the computations are dominated by
an operations. Let be the iterations required by
the DICI algorithm, where at each step of the iterative algo-
rithm the computations are dominated by operations.
Recalling that from Section III, the total computa-
tion complexity is . Let

, then the computation complexity is
bounded by at each sensor for the LIFs, which
is much smaller than the computational cost of the solutions
in VIII-C-1) and VIII-C-2). The communication requirement
in the LIFs may be multihop but is always constrained to a
neighborhood because of the structural assumptions on the
model matrix .

IX. CONCLUSION

In conclusion, we presented a distributed implementation
of the Kalman filter for sparse large-scale systems monitored
by sensor networks. In our solution, the communication, com-
puting, and storage is local and distributed across the sensor
network, no single sensor processes -dimensional vectors or
matrices, where , usually a large number, is the dimension of
the state vector representing the random field. We achieve this
by solving three linked problems: 1) Spatial decomposition of
the global dynamical system into subsystems; these subsystems
are obtained using a graph-theoretic model distribution tech-
nique; 2) fusing, through distributed averaging, multiple sensor
observations of the state variables that are common across
subsystems; and 3) inverting full -dimensional matrices, with
local communication only, by deriving an iterative DICI algo-
rithm. The DICI algorithm only requires matrices and vectors
of order of the reduced state vectors. The DICI algorithm
preserves the coupling among the local Kalman filters. Our
solution is optimal when the error processes of the Kalman
filter are constrained to Gauss–Markov random processes
and contrasts with existing Kalman filter solutions for sensor
networks that either replicate an -dimensional Kalman filter
at each sensor or reduce the model dimension at the expense of
decoupling the field dynamics into lower-dimensional models.
The former are infeasible for large-scale systems and the latter
are not optimal and further cannot guarantee any structure of
the centralized error covariances.

Simulations show that the distributed implementation with
local Kalman filters implemented at each sensor converges to
the global Kalman filter as the bandwidth of the approximated
information matrices is increased.

APPENDIX

-BANDED INVERSION THEOREM

Let be -banded. We apply the algorithm, given in
[17], to obtain from the submatrices in the -band of . We
use the following notation, in (77), to partition matrix addition
and subtraction in terms of its constituent submatrices. Also
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represents the principal submatrix of spanning rows through
, and columns through .

The inverse of , when is -banded, is given by
(78) shown at the top of the previous page, taken from [17], in
terms of the -banded submatrices of . Note that, to compute a
principal submatrix in , we do not need the entire , or even all
the -banded submatrices in . Instead, we only require neigh-
boring submatrices in the -band of . For proofs and further
details, the interested reader can refer to [17].
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