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Abstract

Let G be a graph of order n and 3 ≤ t ≤ n
4 be an integer. Recently,

Kaneko and Yoshimoto [5] provided a sharp δ(G) condition such that
for any set X of t vertices, G contains a hamiltonian cycle H so that the
distance along H between any two vertices of X is at least n/2t. In this
paper, minimum degree and connectivity conditions are determined
such that for any graph G of sufficiently large order n and for any
set of t vertices X ⊆ V (G), there is a hamiltonian cycle H so that
the distance along H between any two consecutive vertices of X is
approximately n

t . Furthermore, we determine the δ threshold for any
t chosen vertices to be appear on a hamiltonian cycle H in a prescribed
order, with approximately predetermined distances along H between
consecutive chosen vertices.

1 Introduction

In this paper we use the following notation. For a graph G, let δ(G) be the
minimum degree, κ(G) be the connectivity of G, N(v) be the set of neighbors
of a vertex v ∈ V (G), d(v) = |N(v)| and dA(v) be |N(v) ∩ A| for any set
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A ⊆ V (G). Also let G[A] denote the subgraph of G induced on the vertices
of A.

We denote a path from u to v by (u, v) while a path from u to v, along
a path or cycle A, is denoted by (u, v)A. The distance between u and v is
denoted by d(u, v) while the distance, along a path or cycle A, is denoted by
dA(u, v). For any subgraph H ⊆ G, we define the order of H as the number
of vertices on H, that is, |H|. All other notation may be found in [1].

Recently Kaneko and Yoshimoto [5] proved the following result.

Theorem 1 Let G be a graph of order n, d ≤ n
4

a positive integer and A a
set of at most n

2d
vertices. If δ(G) ≥ n

2
then there exists a hamiltonian cycle

in G with the distance, along the cycle, between any pair of vertices of A at
least d.

The key restriction here is that δ(G) ≥ n
2

only guarantees that G is 2-
connected. Our results show that, with slightly stronger assumptions and
for n sufficiently large, there exists a hamiltonian cycle with approximately
given distances between the chosen vertices on a hamiltonian cycle.

Along with Theorem 1, our proofs use the following powerful result of
Szemerédi [7].

Theorem 2 For every real number 0 < δ < 1 and every positive integer k,
there exists a positive integer N such that every subset A of the set {1, ..., N}
of size at least δN contains an arithmetic progression of length k.

A graph is said to be k-linked if for every choice of 2k vertices x1, . . . , xk

and y1, . . . , yk, there exists a collection of vertex disjoint paths Pi = (xi, yi)
for all i. We use a recent result of Thomas and Wollan [8].

Theorem 3 If a graph G is 10k-connected, then G is k-linked.

A graph G is said to be panconnected if for each pair of vertices u, v ∈
V (G), there exists a path of length l in G for each l satisfying dG(u, v) ≤ l ≤
n − 1. Finally, we also make use of the following result of Williamson [9].

Theorem 4 If δ(G) ≥ n+2
2

, then the graph G is panconnected.

Given an integer t, for ease of notation, we consider all indices modulo t.
Using the above results, we prove the following theorems.
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Theorem 5 Let t ≥ 3 be an integer and let 0 < ǫ t
2
. For sufficiently large n,

let G be a graph of order n having δ(G) ≥ n
2

and κ(G) ≥ 2
⌈

t
2

⌉

. For every
X = {x1, x2, . . . , xt} ⊆ V (G), there exists a hamiltonian cycle H such that
dH(xi, xj) ≥ (1

t
− ǫ)n for all 1 ≤ i < j ≤ t.

Corollary 6 Let t ≥ 3 be an integer and let 0 < ǫ < t
2
. For sufficiently

large n, let G be a graph of order n having δ(G) ≥ n
2

and κ(G) ≥ 2
⌈

t
2

⌉

. For
every X = {x1, x2, . . . , xt} ⊆ V (G), there exists a hamiltonian cycle H and
an ordering of the elements of X such that (1

t
− ǫ)n ≤ dH(xi, xj) ≤ (1

t
+ ǫ)n

for all 1 ≤ i ≤ t.

We also consider the case in which the chosen vertices {x1, . . . , xt} ap-
pear in a prescribed order along the hamiltonian cycle and at approximately
predetermined distances.

Theorem 7 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt positive real numbers
having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large n, let G be a

graph of order n having δ(G) ≥ n+t−1
2

or δ(G) ≥ n
2

and κ(G) ≥ 3t
2
. For every

X = {x1, x2, . . . , xt} ⊆ V (G), there exists a hamiltonian cycle H containing
the vertices of X in order such that (γi − ǫ)n ≤ dH(xi, xi+1) ≤ (γi + ǫ)n for
all 1 ≤ i ≤ t.

The proofs of Theorems 5 and 7 are left to Section 3.

2 Lemmas

We now provide some lemmas which are necessary for the proofs of Theorems
5 and 7. The first lemma tells when and how to absorb vertices into a long
cycle.

Lemma 1 Let t ≥ 3, n ≥ 5t be integers, and let G be a graph of order n
having δ(G) ≥ n

2
. If there exists a cycle C of order at least 3n

4
containing

the vertices of X in order, there exists a hamiltonian cycle H containing the
vertices of X in order such that dH(xi, xi+1) ≥ dC(xi, xi+1) for all 1 ≤ i ≤ t.

Proof: Proceed by contradiction. Let J be a smallest collection of
vertices that cannot be absorbed into C while maintaining dC(xi, xi+1) for
all i. Let J ′ be a component of smallest order in J . If J ′ is the single vertex
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v, then since δ(G) ≥ n
2

it follows that dC(v) ≥ n
2
. Since |C| ≤ n−1, it follows

that v is adjacent to two consecutive vertices u and u+ of C, hence v can be
absorbed into C.

If |J ′| = 2, J ′ = {u, v}, then since J ′ is connected, G[J ′] contains the
edge uv. If one of u or v is adjacent to consecutive vertices along the cycle,
then we can make the same insertion as above. Also if u and v are adjacent
to vertices u′ and v′ respectively with u′v′ ∈ E(C), then we may replace u′v′

with u′uvv′ to absorb u and v into C. Thus, suppose neither of the above
cases occurs.

Since dC(u), dC(v) ≥ n
2
− 1 and |C| ≤ n − 2 = 2(n

2
− 1), we know u

and v must both be adjacent to every other vertex along C and NC(u) =
NC(v). Therefore, since n ≥ 5t, there must exist some vertex w ∈ C −
(N(u) ∪ N(v)) with w /∈ X. Let w− and w+ be the vertices adjacent to
w along C and without loss of generality select uw− and vw+. Then C ′ =
(..., w−, u, v, w+, ...) contradicts the maximality of C.

Finally, suppose |J ′| ≥ 3. Then there exists a path (v1, v2, v3) in J ′.
Clearly dC(vi) > n

2
− |J ′| for all i. Also note that |C| ≤ n − |J ′|. Therefore,

since |J ′| ≤ |J | ≤ n
4
, we get:

dC(v1) + dC(v2) + dC(v3) >
3n

2
− 3|J ′| ≥ n − |J ′| ≥ |C|.

It follows that there exists vi and vj for 1 ≤ i < j ≤ 3 which are adjacent to
distinct vertices w1 and w2 ∈ C with distC(w1, w2) ≤ 2 such that any vertex
between w1 and w2 along C is not in X. Let w be the vertex between w1 and
w2 along C (if one exists) and let v = v2 if i, j 6= 2. We may now replace the
path (w1, w, w2) or (w1, w2) with the path (w1, vi, v, vj, w2) or (w1, vi, vj, w2)
to again contradict the choice of J ′ and finish the proof of Lemma 1. �

In all that follows, let γ1, . . . , γt > 0, 0 < ǫ < min{γi

2
} and let x1, . . . , xt

be a set of t prescribed vertices in G. Given a hamiltonian cycle H, let
Pi be the path (xi, xi+1)H and let P be the collection of paths Pi. Let
f(i) = ⌈γin⌉ − |Pi|. Order the paths Pi such that f(i) ≥ f(i + 1) (not
depending on the order in which they appear in the cycle). Define:

µ(H) =
∑

i:f(i)>0

tf(i).
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We choose a hamiltonian cycle H such that µ(H) is minimum. Notice if
|Pi| >

⌈

(γi −
ǫ
t
)n

⌉

for all i, then |Pi| < ⌈(γi + ǫ)n⌉ for all i. Since we will
assume the graph does not contain the desired hamiltonian cycle, we may
assume f(1) > ǫ

t
n so µ(H) > t⌈nǫ/t⌉.

Let k be the smallest integer such that f(k) − f(k + 1) > ǫ
t2

n. Since
f(1) > ǫ

t
n, we know k exists and |Pk| < γin. Let B be the collection of

paths {Pi}
k
i=1 and let A = P \ B.

The next two lemmas are the main components of our proofs. The first
explains how to move path segments from one subpath of H to another. The
second describes conditions when we may abandon the path structure and
build the desired cycle directly.

Lemma 2 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt positive real numbers
having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large n, let G be a

graph of order n having δ(G) ≥ n
2
. For every X = {x1, x2, . . . , xt} ⊆ V (G),

if G contains a hamiltonian cycle H with the vertices of X in order with
distH(xi, xi+1) ≥ ǫn and the number of edges between the sets A and B given
by e(A ,B) ≥ h1n

2, then either µ(H) ≤ t⌈nǫ/t⌉ or there exists a hamiltonian
cycle H ′ with µ(H ′) < µ(H).

Proof: The goal of this lemma is to swap a segment of a path in
A with a segment of a path in B producing a hamiltonian cycle H ′ with
µ(H ′) < µ(H). This is done by finding a pair of 4-tuples (u1, v1, w1, y1) and
(u2, v2, w2, y2) with ui, vi ∈ V (A) and wi, yi ∈ V (B) for some A ∈ A and
B ∈ B (as seen in Figure 1) and moving the path (y1, w2) from B to A
and the path (v1, u2) from A to B. Such an ordered 4-tuple will be called a
crossing pair and the process of moving the segments will be called a swap.

A

B

xα

xβ

xα+1

xβ+1

u1 v1 u2 v2

w1 y1 w2 y2

A

B

xα

xβ

xα+1

xβ+1

u1 v1 u2 v2

w1 y1 w2 y2

Figure 1: A Crossing Pair.

By assumption, A and B are nonempty and e(A ,B) ≥ h1n
2. This

implies that there exists a pair of paths A = (xα, xα+1) ∈ A and B =
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(xβ, xβ+1) ∈ B with at least 4h1

t2
n2 > 0 edges between A and B. Let

an = |A| = dH(xα, xα+1) + 1 and bn = |B| = distH(xβ, xβ+1) + 1. By
our assumptions, 0 < a, b < 1.

Recall f(β) − f(α) > ǫ
t2

by the definition of B. Let M = ǫ
2t2

n. Notice
that if the swap uses less than M vertices, then the corresponding new f(α)
remains less than the new f(β).

For some h2 > 0, there exists a positive fraction of n vertices v ∈
A with dB(v) ≥ h2n. Call the collection of such vertices A′. Let k =
⌈

a
M

(

33b2

h2

2

+ 18b
h2

+ 3b3−6b2h2

h3

2

+ 1
)⌉

be the size of a desired subset of A′. The

constant k is chosen in this way to ensure that the distance between con-
secutive vertices of this subset is small. Since h2 ≤ b, we know a > M so
k > 33b2

h2

2

+ 18b
h2

+ 3b3−6b2h2

h3

2

+ 1 ≥ 49.

Label the vertices of A with increasing consecutive positive integers. For
n sufficiently large, by Theorem 2, there exists an arithmetic progression of
length k on the labels of the vertices of A′. Call the set of associated vertices
E. It follows that dH(u, v) ≤ an

k
for all consecutive vertices u, v ∈ E (in the

natural ordering of E).
By the pigeon hole principle and using the fact that dB(v) ≥ h2n, for

every choice of at least b
h2

+ 1 vertices of E, there exists a crossing pair

(u, v, w, y) with distH(w, y) ≤ b
h2

. By this argument, if we choose any set

E ′ of at least b
h2

+ 1 vertices with E ′ ⊆ E, there exists the desired crossing

pair with u, v ∈ E ′. Therefore, if we choose c = 3 b
h2

+ 1, we may find a
crossing pair (u, v, w, y), remove w and y from B, and we have not decreased
the degrees of vertices in A by more than 2. This implies we may still find
another crossing pair which is disjoint with respect to vertices of B. Let h be
the number of vertices we have removed from B. As long as h2n−h ≥ b

c−1
n,

there will exist yet another crossing pair. Therefore, we may repeat this
process until h = b

c−1
n, which means we find 2b

c−1
n crossing pairs which share

no vertices in B.
Call a collection of c = 3 b

h2

+ 1 consecutive vertices of E a block. By the

above argument, each block is involved in at least b
c−1

n crossing pairs which
are vertex disjoint in B. Consider a collection of c disjoint blocks such that
each pair of consecutive blocks has 2c + 1 + 2 b

h2

+ b2−2bh2

h2

2

+ 1 vertices of E

between them. This collection of blocks uses exactly

c2 + (c − 1)(2c + 1 + 2
b

h2

+
b2 − 2bh2

h2
2

+ 1)
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vertices of E. Clearly, E is large enough since we chose

k = a
M

(

33b2

h2

2

+ 18b
h2

+ 3b3−6b2h2

h3

2

+ 1
)

≥ 33b2

h2

2

+ 18b
h2

+ 3b3−6b2h2

h3

2

+ 1

≥ c2 + (c − 1)(2c + 1 + 2 b
h2

+ b2−2bh2

h2

2

+ 1).

Consequently, since n was chosen to be sufficiently large, there exists
two blocks in this collection containing crossing pairs (u1, v1, w1, y1) and

(u2, v2, w2, y2) such that w2 > y1 and 0 < dB(y1, w2) ≤ b2−2bh2

h2

2

+ 1 (see

Figure 2). This number is found by counting the number of crossing pairs
from a single block that share vertices in the segment (wi, yi) in B. One
would then use this to find the largest possible average distance between
crossing pairs.

A

B

xα

xβ

xα+1

xβ+1

u1 v1 u2 v2

w1 y1 w2 y2

≤ cs ≤ cs

[

2c + 1 + 2 b
h2

+ b2−2bh2

h2

2

+ 1
]

s ≤ d ≤ Mn

≤ b
h2

≤ b
h2

≤ b2−2h2

h2

2

Figure 2: A crossing pair.

At this point we make the swap by redefining B = (xβ, xβ+1) to be:

B′ = (xβ, ..., w1, v1, ..., u2, y2, ..., xβ+1)

and redefining A = (xα, xα+1) to be:
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A′ = (xα, ..., u1, y1, ..., w2, v2, ..., xα+1).

The segments (u1, v1), (u2, v2), (w1, y1) and (w2, y2) are no longer included
in the paths after we make the swap. The segments (wi, yi), for i = 1, 2, are of
length at most b

h2

. If we let s be the number of vertices between consecutive
elements of E along A, then the segments (ui, vi), for i = 1, 2, are of length
at most cs. Therefore the new cycle is at most 2( b

h2

+ cs) vertices shorter.

From the swap, |A′| gained at most b2−2bh2

h2

2

vertices from B and f(α) is

certainly still at most f(β). We also know that:

|B′| − |B| ≥
(

2c + 1 + 2b
h2

+ b2−2bh2

h2

2

+ 1
)

s − 2 b
h2

> 2cs + b2−2bh2

h2

2

+ 1.

Conversely, we know:

|B′| − |B| ≤ s[c2 + (c − 1)(2c + 1 + b
h2

+ b2−2bh2

h2

2

+ 1)]

≤ an
k

[c2 + (c − 1)(2c + 1 + b
h2

+ b2−2bh2

h2

2

+ 1)]

= Mn.

Therefore we have constructed a cycle H ′ which misses at most 2cs + o(n)
vertices of G with |B′| > |B|.

Let J be the missing vertices from the above transfer. Recall |J | < M =
ǫn
2t2

< n
4

by the choice of M . Now by Lemma 1, these vertices can be absorbed
into the cycle without decreasing the distances between any of our chosen
vertices {xi}. This creates a new hamiltonian cycle H ′′ and, since f(β) is
now smaller and f(α) is still less than f(β), we know that µ(H ′′) < µ(H).
This completes the proof of Lemma 2. �

If there exists a partition of G into two sets with very few edges from
one set to the other, then the next lemma constructs the desired hamiltonian
cycle directly.

Lemma 3 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt positive real numbers
having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large n, let G

be a graph of order n having δ(G) ≥ n+t−1
2

or δ(G) ≥ n
2

and κ(G) ≥ 3t
2
. If
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there exists a partition of V (G) into sets A and B with e(A,B) < ǫ2n2

1600
then

for every X = {x1, x2, . . . , xt} ⊆ V (G), there exists a hamiltonian cycle H
containing the vertices of X in order such that (γi − ǫ)n ≤ dH(xi, xi+1) ≤
(γi + ǫ)n for all 1 ≤ i ≤ t.

Proof: The proof of this lemma is broken into cases based on the
connectivity of G.

Case 1 Suppose κ(G) ≥ 5t.

Let DA (or DB) be the set of vertices in A (respectively B) with more
than ǫ

40
n edges into B (respectively A) and let D = DA ∪ DB. From the

hypotheses of the lemma, |DA|, |DB| < ǫ
40

n. Note that δ(G[A \ DA]) ≥
n
2
− ǫ

40
n − ǫ

40
n = n

2
− ǫ

20
n and, in particular, for any A′ ⊆ A \ DA we have

δ(G[A′]) ≥ |A′| − ǫ
10

n. Thus given A′ ⊆ A \ DA with |A′| ≥ ǫ
5
n + 2, we have

δ(G[A′]) ≥ |A′|+2
2

. Hence, by Theorem 4, we know G[A′] is panconnected. A
similar argument holds for B′ ⊆ B \ DB.

Choose a system X ′ = {u1, v1, u2, v2, . . . , ut, vt} of two distinct represen-
tatives for each of the vertices of X with xiui, xivi ∈ E(G) for all i such that
X ′ ⊆ G\(X∪D). By our degree conditions, there exists such a set X ′. Since
G is 5t-connected, we know there exists a set of 2t vertex disjoint paths from
A \ D to B \ D in G \ (X ∪ X ′). Let M be the collection of shortest such
paths (see Figure 3).

Suppose we have paths P1, . . . , Pi−1 for some 1 ≤ i < t where Pj =
(vj, uj+1) for j < i. Let vi, ui+1 ∈ X ′ and, without loss of generality, suppose
vi ∈ A. Let Qi = V (P1)∪· · ·∪V (Pi−1) and let A′ = [A\(D∪X∪X ′∪M∪Qi)]∪
{vi, u} for some u ∈ A∩M \(D∪Qi). If γin ≤ |A′|−( ǫ

3
n+3t+2)−(2t−i+1),

we use the fact that G[A′] is panconnected to construct a path P ′
i of order

γin − 3 in A′ from vi to u.
By the argument above, it follows that G[A′ \ P ′

i ] is panconnected. Also
for ui+1 ∈ A, we know that G[(A′ \P ′

i )∪ui+1] is panconnected, consequently
a path of length 2 from u to ui+1 exists and let Pi = (vi, . . . , u, . . . , ui+1)
be the desired vi, ui+1 path. If ui+1 ∈ B and we let v be the vertex in B
such that (u, v) is a path of M , we may use a similar argument to construct
the desired path Pi = (vi, . . . , u, . . . , v, . . . , ui+1) using the panconnectivity
of G[B \ (X ∪ X ′ ∪ D ∪ M ∪ Qi) ∪ {ui+1, v}].

If γin > |A′|− ( ǫ
3
n+3t+2)− (2t− i+1), we again use the fact that G[A′]

is panconnected to create a path from vi to u. Let v be the vertex of M ∩B
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A′

B′

x1

xi

S
M C

ui

vi

v1

u1

S′

Figure 3: Graph G

such that (u, v) is a path of M . First suppose γin ≤ |B′|−( ǫ
3
n+3t+2)−(t−i)

where B′ = [B \ (D ∪ X ∪ X ′ ∪ M ∪ Qi)] ∪ v. We take the path of length
2 from vi to u, take the path from u to B through M , and then, using
the panconnectivity of G[B′], create a path of the desired length within B′.
Again breaking this into cases as above, based on whether ui+1 is in A or B,
construct Pi. If γin > |B′| − ( ǫ

3
n + 3t + 2) − (t − i), we mark vi as reserved

and construct the associated path later. This reservation of vertices happens
at most twice.

Suppose, without loss of generality, that vt is the single remaining vertex
in X ′ (whether it was reserved or not) and vt ∈ A and let u be a remaining
vertex of A∩M \ (D∪Qt). If u1 ∈ B, then use the panconnectivity of G[A′]
to connect vt to u using all of A′, take the path in M from u to B and use
the panconnectivity of B′ to pick up all of B′ on the path. This creates a
path of order lt for γtn ≥ lt > γtn − |D| − |M | > (γt −

ǫ
2
)n as long as n is

sufficiently large. If u1 ∈ A, we take a path (vt, u) of length 2, use all that
remains of B′ on a path between two vertices of M , come back to A and pick
up all of A′ to again construct the desired path.
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Finally suppose (vt−1) and (vt) are the two reserved vertices of X ′. One
may show that |A′|, |B′|, ⌈γt−1n⌉ and ⌈γtn⌉ are all within ǫ

2
n of each other.

As above, we create short paths from vt−1 and ut to vertices v′
t−1, u

′
t ∈ A and

from vt and u1 to vertices v′
t, u

′
1 ∈ B. We now use the panconnectivity of

G[A′] and G[B′] to construct a path P ′
t−1 = (v′

t−1, u
′
t) of length |A′| and a path

P ′
t = (v′

t, u
′
1) of length |B′|. We then let Pi = (vi, . . . , v

′
i, . . . , u

′
i+1, . . . , ui+1)

for i = t − 1, t. One may easily check that these paths are of length li with:

(γi −
ǫ

3
)n + 3t + 2 − |DA| < li < (γi +

ǫ

3
)n + 3t + 2

so since n was chosen to be large enough, we get:

(γi −
ǫ

2
)n < li < (γi +

ǫ

2
)n.

Notice, in this process, we can miss at most |DA|+|DB|+
ǫ
5
n+2+6t < ǫ

2
n

for n sufficiently large. Applying Lemma 1, the desired hamiltonian cycle
results.

Case 2 Suppose 3t
2
≤ κ(G) < 5t.

Let K be a minimum cutset of G with 3t
2
≤ |K| < 5t. Since δ(G) ≥ n

2
,

there cannot be more than two components of G\K. Call these components
A and B.

We call a vertex v ∈ K blocked to A (or B) if for every edge e from v into
A (respectively B), e = vxi for some xi ∈ X. For each vertex v ∈ K \ X
which is blocked to A, we choose a distinct vertex of xi ∈ N(v)∩X ∩A. Call
this the blocking vertex. We call the vertices of K ∩X with only one edge to
either A \ X (or B \ X) half-blocked to A (or B).

For v ∈ K \ X which is blocked by a vertex xi ∈ A ∩ X, remove all
edges to A ∩ X \ xi and move v to B and move xi to K. By the choice of
these removed edges, they will not affect the connectivity. Also we have only
removed a small number of edges so this will have no effect on our other
properties of the graph. We have now eliminated all the blocked vertices of
K \ X and possibly created more half-blocked vertices.

We next remove all edges between vertices of X to create a new graph
G′. Let K ′ be a minimum cutset in G′ containing the maximum number of
vertices of X and observe that we have the following facts about G′. The
following are true:
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• There are no blocked vertices in K ′.

• κ(G′) ≥ κ(G) − t
2
≥ t.

• No half-blocked vertices could also have been blocked or blocking.

For the sake of notation, we distinguish four different types of paths that
we would like to connect. A path Pi from xi to xi+1 is of Type I if xi ∈ K ′ and
xi+1 /∈ K ′ or xi /∈ K ′ and xi+1 ∈ K ′. A path Pi is of Type II if xi, xi+1 ∈ A
or both are in B. A path Pi is of Type III if xi, xi+1 ∈ K ′. Finally a path Pi

is of Type IV if xi ∈ A and xi+1 ∈ B or xi ∈ B and xi+1 ∈ A. See Figure 4.

A

B

C ′

I

I

II

II

III

IV

Figure 4: Types of paths.

Since δ(G) ≥ n
2

and |K ′| < 5t, we know n
2
− 5t ≤ |A|, |B| ≤ n

2
+ 5t and

G[A] and G[B] are panconnected by Theorem 4. Using the same argument as
in the previous case, as long as there are enough paths from A to B, we may
construct all paths as desired. If κ(G′) > t, the reader may verify that there
are enough paths from A to B to complete the above argument. If κ(G′) = t,
we know every vertex of X was either blocked or blocking. This implies that
all the paths are of Types II or IV . The reader may again verify that the
paths may be constructed as above to get the desired hamiltonian cycle.

Case 3 Suppose κ(G) < 3t
2
.

12



By assumption, κ(G) < 3t
2

implies δ(G) ≥ n+t−1
2

. Let k = ka+kb where ka

is the number of blockings or half-blockings into A and likewise for B. From
the above arguments, we know that if κ(G) ≥ t+1+ k then we may connect
the paths to get the desired hamiltonian cycle. Consider a vertex v ∈ A and
a vertex w ∈ B which are not involved in any half-blocking. The vertex v is
adjacent to at most κ(G)−ka vertices and w is adjacent to at most κ(G)−kb

vertices of K. Therefore |A| ≥ d(v) + 1 − (κ(G) − ka) ≥
n+t+1

2
− κ(G) + ka

and similarly |B| ≥ n+t+1
2

− κ(G) + kb. Hence n = |A| + |B| + κ(G) ≥
n + t + 1− κ(G) + ka + kb or κ(G) ≥ t + ka + kb + 1 and we have our result.

This completes the proof of Lemma 3. �

Our final lemma provides some structure similar to that in Theorem 1
but with the chosen vertices in a given order on the hamiltonian cycle.

Lemma 4 Let t ≥ 3 be an integer and for sufficiently large n, let G be a
graph of order n having δ(G) ≥ n+t−1

2
or δ(G) ≥ n

2
and κ(G) ≥ 3t

2
. For every

X = {x1, x2, . . . , xt} ⊆ V (G), there exists a hamiltonian cycle H containing
the vertices of X in order such that dH(xi, xi+1) ≥ ( 1

6400t3(1− 1

2t
)
)n for all

1 ≤ i ≤ t.

Proof: Let n be sufficiently large and G be as stated. Let {x1, . . . , xt} ∈
V (G) and let ǫ = 1

2t
. If there exists a partition of V (G) into two sets A and B,

having |A|, |B| ≥ ǫn such that e(A,B) < ǫ2

1600
n2 then we may apply Lemma

3 to get the desired hamiltonian cycle. Subsequently, we need only show how
to proceed if such a partition does not exist.

Claim 1 Suppose we are given a graph G of sufficiently large order n with
δ(G) ≥ n

2
and a real number ǫ > 0. If, for every partition of V (G) into two

sets A and B with |A|, |B| ≥ ǫn, we have e(A,B) ≥ ǫ2

1600
n2, then κ(G) ≥

ǫ2

1600(1−ǫ)
n.

Proof of Claim 1: Let K be a cutset of order less than ǫ2

1600(1−ǫ)
n.

Since δ(G) ≥ n
2
, we know there are only two components (call them A and

B) of G\K and since |K| < ǫ2

1600(1−ǫ)
n and δ(G) ≥ n

2
, we know |A|, |B| > ǫn.

Let A′ = A∪K. By assumption, e(A′, B) ≥ ǫ2

1600
n2 and all these edges must

13



be incident to vertices in K. Therefore, there exists a vertex v ∈ K such
that,

dB(v) ≥
ǫ2n2

1600
ǫ2n

1600(1−ǫ)

= (1 − ǫ)n.

However, since |A| > ǫn, this is a contradiction, completing the proof of
Claim 1. �

Since δ(G) ≥ n
2
, we may choose a system X ′ of two distinct representatives

from the neighborhood of each vertex of X. Also since δ(G) ≥ n
2

we may

create a collection P of 2t vertex disjoint paths in G\X of length ǫ2n
1600(1−ǫ)2t

−6

two of which start at each vertex of X. Let P = ∪V (Pi for Pi ∈ P. Notice
|P | ≤ κ(G) − 10t so G \ (P ∪ X) is at least 10t-connected. By Theorem 3,
we know G \ (P ∪ X) is t-linked. This implies that we may link, using only
vertices of G \ (P ∪X), the ends of the paths of P to create a cycle of length
at least ǫ2

1600(1−ǫ)
n − 11t containing the vertices of X in order.

Choose a longest cycle H having dH(xi, xj) ≥ ǫ2n
1600(1−ǫ)t

− 5 for i 6= j ≤

t. We may assume |H| < 3n
4

; otherwise applying Lemma 1, the desired
hamiltonian cycle results. Now suppose |H| ≤ n+t−1

2
. This implies dG\H(v) ≥

1 for all v ∈ H. Also any vertex of G\H may not be adjacent to consecutive

vertices of H so δ(G[G \ H]) ≥ n+t−1−|H|
2

> |G\H|
2

. By Dirac’s Theorem [3],
this implies G[G \ H] is hamiltonian connected. At this point we simply
choose two consecutive vertices v, v+ ∈ V (H) and neighbors of these vertices
u, u′ ∈ G\H. Now create H ′ from H by removing the edge vv+ and inserting
the hamiltonian path (v, u, . . . , u′, v+). Notice |H ′| > |H|, which contradicts
the choice of H.

Now suppose n+t−1
2

< |H| < 3n
4

. If J = G \ H, then n
4

< |J | < n−t+1
2

.

By assumption, e(H, J) ≥ ǫ2n2

1600
, hence it follows that there exists a path

Pi = (xi, xi+1)H such that e(Pi, J) ≥ ǫ2n2

1600t
. Consequently, there are at least

ǫ2n2

1600t|J |
− 1 ≥ ǫ2n

800t
− 1 vertices v ∈ Pi with dJ(v) ≥ 2. Since |Pi| < 3n

4
, the

average distance between such vertices is at most:

|Pi|
ǫ2n
800t

− 1
<

300t

ǫ2
<

n

4
< |J |

if n is sufficiently large. Therefore, there exist two vertices u, v ∈ Pi with
dPi

(u, v) < |J | such that dJ(u), dJ(v) ≥ 2.

14



Recall that no vertex of J may be adjacent to consecutive vertices of H
so δ(J) ≥ n+t−1

2
− |H|

2
≥ |J |+2

2
so, by Theorem 4, J is panconnected. Let

u′ ∈ J ∩ N(u) and let v′ ∈ J ∩ N(v) \ {u′}. There exists a hamiltonian
path P of J from u′ to v′. We now replace Pi = (xi, . . . , u, . . . , v, . . . , xi+1)
with the path P ′

i = (xi, . . . , u, u′, P, v′, v, . . . , xi+1). Because |J | > dH(u, v),
it follows that |P ′

i | > |Pi| contradicting the choice of H, completing the proof
of Lemma 4. �

3 Main Results

Theorem 5: Let t ≥ 3 be an integer and let 0 < ǫ t
2
. for sufficiently large

n, let g be a graph of order n having δ(g) ≥ n
2

and κ(g) ≥ 2
⌈

t
2

⌉

. for every
x = {x1, x2, . . . , xt} ⊆ v(g), there exists a hamiltonian cycle h such that
dh(xi, xj) ≥ (1

t
− ǫ)n for all 1 ≤ i < j ≤ t.

Proof: By Theorem 1, we know there exists a hamiltonian cycle H in G
such that, for a given set of t vertices {xi}, dH(xi, xj) ≥

1
2t

for all i 6= j. Let
H be the set of hamiltonian cycles which satisfy Theorem 1. For each H in
H , define A and B as above. We choose H ∈ H with µ(H) minimized.
Reorder the vertices in whatever order they fall on the cycle. Then if the
number of edges between A and B is at least ǫ2

1600
n2, apply Lemma 2 with

γi = 1
t

for all i to get the desired result.

Suppose the number of edges between A and B is less than ǫ2

1600
n2. Let

K be a minimum cutset of G. By the minimum degree condition, there can
only be two components A and B of G \ K, furthermore, |K| ≥ 2

⌈

t
2

⌉

. For
every vertex xi /∈ K make a short path to a vertex vi of K and contract
the path to a new vertex xi ∈ K. Notice we have only removed at most
2t vertices and we have not changed the connectivity of G. If t is even, we
may connect x1 to x2 through A, x2 to x3 through B, and so on to get a
hamiltonian cycle with all vertices equally spaced.

If t is odd, there exists at least one vertex v ∈ K \ X and we may again
connect most of the paths as above. There may be one path Pt = (xt, x1)
remaining that cannot fit into only one of A or B. For this path we must use
the vertex v to cross between A and B to get the desired hamiltonian cycle.

For sharpness of the minimum degree condition, the graph G consisting
of two cliques of order n+1

2
sharing a common vertex has δ(G) ≥ n

2
− 1 with
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G not hamiltonian.

For sharpness of the connectivity condition, consider the graph in Figure
5. This graph consists of two sets A = B = Kn−t

2

and an A,B separating

set K with |K| = 2
⌈

t
2

⌉

− 1. Notice |K| is always odd and |K| ≤ t. If all
of the vertices X are in A (or B), we would need at least

⌈

t
2

⌉

paths to cross
into B to construct the desired set of paths. This uses 2

⌈

t
2

⌉

vertices of K
but |K| = 2

⌈

t
2

⌉

− 1 so it is impossible to construct the desired hamiltonian
cycle.

|C| = 2⌈ t
2
⌉ − 1

A

B

x1 x2 xt

Figure 5: The graph G.

This completes the proof of Theorem 5. �

Theorem 7: Let t ≥ 3 be an integer and γ1, γ2, . . . , γt positive real numbers
having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large n, let G be a

graph of order n having δ(G) ≥ n+t−1
2

or δ(G) ≥ n
2

and κ(G) ≥ 3t
2
. For every

X = {x1, x2, . . . , xt} ⊆ V (G), there exists a hamiltonian cycle H containing
the vertices of X in order such that (γi − ǫ)n ≤ dH(xi, xi+1) ≤ (γi + ǫ)n for
all 1 ≤ i ≤ t.

Proof: By Lemma 4 a hamiltonian cycle H with the vertices of Xt in
order and dH(xi, xi+1) ≥ ǫn for all xi ∈ Xt and for some ǫ > 0 results. Now
applying Lemmas 2 and 3, the desired result follows.
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Again sharpness of the minimum degree bound is trivial. For sharpness
of the connectivity bound, consider the graph in Figure 6. Notice each path
we connect must use a vertex of K hence |K| ≥ 3t

2
.

A

B

C
x1

x3

x5

x2

x4

x6

x7

x9

x11

x8

x10

x12

Figure 6: The graph G.

This completes the proof of Theorem 7. �

4 Further Results

Using only slight modifications to the above lemmas, we also prove the the-
orems below. A survey of similar results may be found in [4]. In 1995, Ota
[6] found a sharp lower bound on σ2 for any set of t chosen vertices to be
contained in a common cycle of G.

Theorem 8 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt be positive real numbers
having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large n, let G be a

graph of order n having δ(G) ≥ n+t−1
2

. For every set X = {x1, x2, . . . , xt} ⊆
V (G), there exists a spanning collection C of vertex disjoint cycles Ci with
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xi ∈ Ci such that (γi − ǫ)n ≤ |Ci| ≤ (γi + ǫ)n for all 1 ≤ i ≤ t. Furthermore,
this condition is sharp.

The conditions in this theorem are sharp because of the following example.
Let G1 = Kt + (K(n−t)/2 ∪ K(n−t)/2) when n − t divisible by 2. Clearly
δ(G1) = n+t

2
− 1. If we choose S to be the vertices of the Kt and we choose

γ1, γ2, . . . , γt so there is no subset I0 ⊂ [t] of the index set such that 1
2
−ǫtn ≤

∑

i∈I0
γi ≤

1
2

+ ǫtn then this graph cannot contain the desired collection of
cycles.

Theorem 9 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt be positive real num-
bers having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large

n, let G be a graph of order n having δ(G) ≥ n+⌈1.5t⌉−1
2

. For every set
X = {x1, x2, . . . , xt, y1, y2, . . . , yt} ⊆ V (G) of 2t vertices, there exists a
spanning collection P of vertex disjoint paths Pi = (xi, . . . , yi) such that
(γi − ǫ)n ≤ |Pi| ≤ (γi + ǫ)n for all 1 ≤ i ≤ t. Furthermore, this condition is
sharp.

The sharpness of Theorem 9 is given by the following construction. Let

a =
⌈

n−⌈frac3t2−1⌉
2

⌉

and b =
⌈

n−⌈frac3t2−1⌉
2

⌉

and let A = Ka, B = Kb and

K = K⌈frac3t2−1⌉. Let G2 = K + (A∪B). Suppose γi = 1
t

let xi ∈ K and let
yi ∈ A for 1 ≤ i ≤ t. If we suppose n has the correct parity, it can be shown
that δ(G2) = n+⌈frac3t2⌉−1

2
− 1 but there cannot exist a spanning collection of

paths of length approximately n
t

from xi to yi for 1 ≤ i ≤ t.
The following is an easy corollary to Theorem 9. The sharpness is also

given by the same example as above.

Corollary 10 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt be positive real
numbers having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large

n, let G be a graph of order n having δ(G) ≥ n+⌈1.5t⌉−1
2

. For every set
X = {x1, x2, . . . , xt} ⊆ V (G) and Y ⊆ V (G) with t ≤ |Y | ≤ n

8
, there exists a

spanning collection P of vertex disjoint paths Pi = (xi, . . . , yi) where yi ∈ Y
such that (γi − ǫ)n ≤ |Pi| ≤ (γi + ǫ)n for all 1 ≤ i ≤ t. Furthermore, this
condition is sharp.

Given a subgraph H ⊂ G with 2t chosen vertices X = x1, x2, . . . , xt,
y1, y2, . . . , yt ⊆ H, the following corollary to Theorem 9 constructs a spanning
collection of vertex disjoint paths from xi to yi in G \ H of lengths within
the prescribed range.
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Corollary 11 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt be positive real
numbers having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large

n, let G be a graph of order n and let H ⊂ G with |H| = r. Suppose

δ(G) ≥ n+r+⌈0.5t⌉−1
2

. For every set X = {x1, x2, . . . , xt, y1, y2, . . . , yt} ⊆ V (H)
of 2t vertices, there exists a spanning collection P of vertex disjoint paths
Pi = (xi, . . . , yi) ⊂ (G \ H) such that (γi − ǫ)(n − r) ≤ |Pi| ≤ (γi + ǫ)(n − r)
for all 1 ≤ i ≤ t. Furthermore, this condition is sharp.

In particular, this corollary implies that one may place a linear forest on
a hamiltonian cycle in a prescribed order with a given orientation on each
path and with approximately given distances between the paths of the linear
forest. Similar work may be found in [2].

As before, we use the same process of 4 lemmas to prove the desired
results. The first lemma is used to absorb vertices into a collection of cycles
containing fixed vertices. For this section, we define the following notation.
For a collection of subgraphs H = {H1, H2, . . . , Ht}, let ‖ H ‖= | ∪t

i=1

V (Hi)|.

Lemma 5 Let t ≥ 3 be an integer, G a graph of order n ≥ 5t, X =
{x1, x2, . . . , xt} ⊆ V (G) a specified set of t vertices and C a set of t ver-
tex disjoint cycles {C1, C2, . . . , Ct} such that xi ∈ Ci for all 1 ≤ i ≤ t. If
‖ C ‖≥ 3n

4
and δ(G) ≥ n+t−1

2
then either ‖ C ‖= n or there exists a collec-

tion C ′ = {C ′
1, C

′
2, . . . , C

′
t} of vertex disjoint cycles again with each cycle C ′

i

containing xi such that ‖ C ′ ‖>‖ C ‖ and |C ′
i| ≥ |Ci| for all 1 ≤ i ≤ t.

Proof: Let C = ∪t
i=1V (Ci), J = G \ C and let J0 be the smallest

component of G[J ]. By the assumed degree condition, every vertex v ∈ J0

must satisfy dC(v) ≥ n+t−1
2

−(|J0|−1). By definition, |C| = n−|J | ≤ n−|J0|

so if |J0| ≤ t, it follows that dC(v) ≥ n+t−1−2(|J0|−1)
2

> n−|J0|
2

≥ |C|
2

. This
implies that v must be adjacent to at least one pair of vertices which are
consecutive along a cycle Ci ∈ C so v may be absorbed into Ci. Therefore
we may assume t + 1 ≤ |J0| ≤

n
4
.

Since J0 is connected and |J0| ≥ t + 1 ≥ 4, there exist three vertices u, v
and w such that (u, v, w) is a path in J0. We know:
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dC(u), dC(w) ≥ n+t
2

− (|J0| − 1)

≥ n
4

+ t
2

+ 1

> |C|−t
4

+ t + 1.

By the pigeon hole principle, there exists a pair of vertices u′ and w′ ad-
jacent to u and w respectively with dCi

(u′, w′) < 4 for some cycle Ci and
with no prescribed vertex xi in the u′w′ path. We may replace Ci with
C ′

i = (. . . , u′, u, v, w, w′, . . . ) with |C ′
i| > |Ci| thereby contradicting the as-

sumptions on C and completing the proof of Lemma 5. �

The following lemma is used to absorb vertices into a collection of paths
with fixed endpoints. The proof is similar to the proof of Lemma 1 above.

Lemma 6 Let t ≥ 3 be an integer, G a graph of order n ≥ 5t, X =
{x1, y1, x2, y2, . . . , xt, yt} ⊆ V (G) a specified set of 2t vertices and P a set of
t vertex disjoint paths {P1, P2, . . . , Pt} with Pi = (xi, . . . , yi) for all 1 ≤ i ≤ t.

If ‖ P ‖≥ 3n
4

+ t and δ(G) ≥ n+⌈frac3t2⌉−2
2

then either ‖ P ‖= n or there
exists a collection P ′ = {P ′

1, P
′
2, . . . , P

′
t} of vertex disjoint paths again with

Pi = xi, . . . , yi such that ‖ P ′ ‖>‖ P ‖ and |P ′
i | ≥ |Pi| for all 1 ≤ i ≤ t. �

In all that follows, let γ1, . . . , γt > 0, 0 < ǫ < min{γi

2
} and let x1, . . . , xt

be a set of t prescribed vertices in G. Given a collection of cycles C =
C1, C2, . . . , Ct (or a collection of paths P = P1, P2, . . . , Pt), let f(i) = ⌈γin⌉−
|Ci| (or f(i) = ⌈γin⌉ − |Pi| respectively). Order the cycles Ci (respectively
paths Pi) such that f(i) ≥ f(i + 1). Define:

µ(C ) = µ(P) =
∑

i:f(i)>0

tf(i).

We always choose a collection of cycles C (or paths P) such that µ(C )
(respectively µ(P)) is minimum. Notice if |Ci| >

⌈

(γi −
ǫ
t
)n

⌉

for all i, then
|Ci| < ⌈(γi + ǫ)n⌉ for all 1 ≤ i ≤ t. Since we will assume the graph does
not contain the desired collection of cycles, we may assume f(1) > ǫ

t
n so

µ(H) > t⌈nǫ/t⌉. Identical statements hold for paths as well.
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Let k be the smallest integer such that f(k) − f(k + 1) > ǫ
t2

n. Since
f(1) > ǫ

t
n, we know k exists and |Ck| < γin. Let B be the collection of

cycles {Ci}
k
i=1 and let A = C \ B. Again, identical definitions are assumed

for paths.
We now restate Lemma 2 in two forms which are appropriate to our

current situation. Lemma 7 takes a collection of cycles containing chosen
vertices and, given certain conditions, shows the existence of a collection
which is closer, in some sense, to the desired cycle partition. Lemma 8
accomplishes the same task for paths with chosen endpoints.

Lemma 7 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt positive real num-
bers having

∑t
i=1 γi = 1, 0 < ǫ < min{γi

2
} and h1 > 0. For sufficiently

large n, let G be a graph of order n having δ(G) ≥ n+t−1
2

. For every
X = {x1, x2, . . . , xt} ⊆ V (G), if G contains a collection of cycles C =
C1, C2, . . . , Ct with xi ∈ Ci such that e(A ,B) ≥ h1n

2, then either µ(C ) ≤
t⌈nǫ/t⌉ or there exists a collection of cycles C ′ with µ(C ′) < µ(C ). �

Lemma 8 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt positive real numbers
having

∑t
i=1 γi = 1, 0 < ǫ < min{γi

2
} and h1 > 0. For sufficiently large

n, let G be a graph of order n having δ(G) ≥ n+⌈1.5t⌉−1
2

. For every X =
{x1, x2, . . . , xt, y1, y2, . . . yt} ⊆ V (G), if G contains a collection of paths P =
P1, P2, . . . , Pt with Pi = xi, . . . , yi such that e(A ,B) ≥ h1n

2, then either
µ(P) ≤ t⌈nǫ/t⌉ or there exists a collection of paths P ′ with µ(P ′) < µ(P).
�

The proofs of these lemmas are identical to the proof of Lemma 2 except
we use Lemmas 5 and 6 respectively to absorb vertices into the cycles and
paths.

If there are many edges between the collections of paths, we apply Lem-
mas 7 or 8. Conversely, if there are very few edges between the parts of a
bipartition of the V (G), then we apply the following lemmas. The proofs of
these lemmas are similar to the proof of Lemma 3.

Lemma 9 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt positive real numbers
having

∑t
i=1 γi = 1, 0 < ǫ < min{γi

2
} and h1 > 0. For sufficiently large n, let
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G be a graph of order n having δ(G) ≥ n+t−1
2

. If V (G) admits a partition into

two sets A and B with e(A,B) < ǫ2n2

1600
then for every X = {x1, x2, . . . , xt} ⊆

V (G), there exists a collection of cycles C with µ(C ) ≤ t⌈nǫ/t⌉. �

Lemma 10 Let t ≥ 3 be an integer and γ1, γ2, . . . , γt positive real numbers
having

∑t
i=1 γi = 1, 0 < ǫ < min{γi

2
} and h1 > 0. For sufficiently large

n, let G be a graph of order n having δ(G) ≥ n+⌈1.5t⌉−1
2

. If V (G) admits

a partition into two sets A and B with e(A,B) < ǫ2n2

1600
then for every X =

{x1, x2, . . . , xt, y1, y2, . . . , yt} ⊆ V (G), there exists a collection of paths P

with µ(P) ≤ t⌈nǫ/t⌉. �

The following lemmas provide a starting structure similar to Lemma 4.
Lemma 11 provides a spanning collection of cycles each containing a chosen
vertex and each of order a positive fraction of n. Lemma 12 provides a
spanning collection of paths with the chosen endpoints each of order a positive
fraction of n. Once again, the proofs of these lemmas are almost identical to
the proof of Lemma 4 above.

Lemma 11 Let t ≥ 3 be an integer and for sufficiently large n, let G be a
graph of order n having δ(G) ≥ n+t−1

2
. For every set X = {x1, x2, . . . , xt} ⊆

V (G), there exists a spanning collection C of vertex disjoint cycles Ci with
xi ∈ Ci such that |Ci| ≥ ( 1

6400t3(1− 1

2t
)
)n for all 1 ≤ i ≤ t. �

Lemma 12 Let t ≥ 3 be an integer and for sufficiently large n, let G be a
graph of order n having δ(G) ≥ n+⌈1.5t⌉−1

2
. For every set X = {x1, x2, . . . , xt}

⊆ V (G), there exists a spanning collection C of vertex disjoint cycles Ci with
xi ∈ Ci such that |Ci| ≥ ( 1

6400t3(1− 1

2t
)
)n for all 1 ≤ i ≤ t. �

Finally we prove the main results of this section.
Theorem 8: Let t ≥ 3 be an integer and γ1, γ2, . . . , γt be positive real

numbers having
∑t

i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large

n, let G be a graph of order n having δ(G) ≥ n+t−1
2

. For every set X =
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{x1, x2, . . . , xt} ⊆ V (G), there exists a spanning collection C of vertex dis-
joint cycles Ci with xi ∈ Ci such that (γi − ǫ)n ≤ |Ci| ≤ (γi + ǫ)n for all
1 ≤ i ≤ t. Furthermore, this condition is sharp.

Proof: First apply Lemma 11 to get a spanning collection of cycles each
containing one vertex of X. Let C be such a collection with µ(C ) minimum
and suppose µ(C ) > t⌈nǫ/t⌉. Define A and B as above. If e(A ,B) ≥ ǫ2n2

1600
,

then we apply Lemma 7 to contradict the choice of C . If e(A ,B) < ǫ2n2

1600
,

then we apply Lemma 9 to construct the desired cycle system directly. �

Theorem 9: Let t ≥ 3 be an integer and γ1, γ2, . . . , γt be positive real
numbers having

∑t
i=1 γi = 1 and 0 < ǫ < min{γi

2
}. For sufficiently large n,

let G be a graph of order n having δ(G) ≥ n+⌈1.5t⌉−1
2

. For every set X =
{x1, x2, . . . , xt, y1, y2, . . . , yt} ⊆ V (G) of 2t vertices, there exists a spanning
collection P of vertex disjoint paths Pi = (xi, . . . , yi) such that (γi − ǫ)n ≤
|Pi| ≤ (γi + ǫ)n for all 1 ≤ i ≤ t. Furthermore, this condition is sharp.

Proof: First apply Lemma 12 to get a spanning collection of paths
xi, . . . , yi for 1 ≤ i ≤ t. Let P be such a collection with µ(P) minimum and
suppose µ(P) > t⌈nǫ/t⌉. Define A and B as above. If e(A ,B) ≥ ǫ2n2

1600
, then

we apply Lemma 8 to contradict the choice of P. If e(A ,B) < ǫ2n2

1600
, then

we apply Lemma 10 to construct the desired path system directly. �
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