
 Open access  Proceedings Article  DOI:10.1109/NAPS.2016.7747962

Distribution-agnostic stochastic optimal power flow for distribution grids
— Source link 

Kyri Baker, Emiliano Dall'Anese, Tyler H. Summers

Institutions: National Renewable Energy Laboratory, University of Texas at Dallas

Published on: 01 Sep 2016 - North American Power Symposium

Topics: AC power, Voltage regulation, Optimization problem, Probability distribution and Robustness (computer science)

Related papers:

 Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty ∗

 Analytical reformulation of security constrained optimal power flow with probabilistic constraints

 Probabilistic security-constrained AC optimal power flow

 Convex Approximations of Chance Constrained Programs

 Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables

Share this paper:    

View more about this paper here: https://typeset.io/papers/distribution-agnostic-stochastic-optimal-power-flow-for-
41cgw75td5

https://typeset.io/
https://www.doi.org/10.1109/NAPS.2016.7747962
https://typeset.io/papers/distribution-agnostic-stochastic-optimal-power-flow-for-41cgw75td5
https://typeset.io/authors/kyri-baker-156hu7md2u
https://typeset.io/authors/emiliano-dall-anese-1f2cjmuu98
https://typeset.io/authors/tyler-h-summers-1vzxnq0x7u
https://typeset.io/institutions/national-renewable-energy-laboratory-2zznt879
https://typeset.io/institutions/university-of-texas-at-dallas-rcu55ojf
https://typeset.io/conferences/north-american-power-symposium-1f5e4rck
https://typeset.io/topics/ac-power-268lhr01
https://typeset.io/topics/voltage-regulation-10ahaaii
https://typeset.io/topics/optimization-problem-xnbzp3ib
https://typeset.io/topics/probability-distribution-29q9mden
https://typeset.io/topics/robustness-computer-science-gkpqgcat
https://typeset.io/papers/chance-constrained-optimal-power-flow-risk-aware-network-p2vnf2hfkm
https://typeset.io/papers/analytical-reformulation-of-security-constrained-optimal-32wonavon8
https://typeset.io/papers/probabilistic-security-constrained-ac-optimal-power-flow-4i5ek1e4dc
https://typeset.io/papers/convex-approximations-of-chance-constrained-programs-53dipmjtl3
https://typeset.io/papers/chance-constrained-ac-optimal-power-flow-for-distribution-1peb7byrqf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/distribution-agnostic-stochastic-optimal-power-flow-for-41cgw75td5
https://twitter.com/intent/tweet?text=Distribution-agnostic%20stochastic%20optimal%20power%20flow%20for%20distribution%20grids&url=https://typeset.io/papers/distribution-agnostic-stochastic-optimal-power-flow-for-41cgw75td5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/distribution-agnostic-stochastic-optimal-power-flow-for-41cgw75td5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/distribution-agnostic-stochastic-optimal-power-flow-for-41cgw75td5
https://typeset.io/papers/distribution-agnostic-stochastic-optimal-power-flow-for-41cgw75td5


NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

 

  

Distribution-Agnostic Stochastic 
Optimal Power Flow for 
Distribution Grids 

Preprint 

Kyri Baker and Emiliano Dall’Anese 
National Renewable Energy Laboratory 

Tyler Summers 
University of Texas at Dallas 

Presented at the 2016 North American Power Symposium (NAPS) 
Denver, Colorado 
September 18–20, 2016 

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 

Conference Paper 
NREL/CP-5D00-66844 
September 2016 



 

 

NOTICE 

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC 
(Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US 
Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of 
this contribution, or allow others to do so, for US Government purposes. 

This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Available electronically at SciTech Connect http:/www.osti.gov/scitech 

Available for a processing fee to U.S. Department of Energy 
and its contractors, in paper, from: 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831-0062 
OSTI http://www.osti.gov 
Phone:  865.576.8401 
Fax: 865.576.5728 
Email: reports@osti.gov 

Available for sale to the public, in paper, from: 

U.S. Department of Commerce 
National Technical Information Service 
5301 Shawnee Road 
Alexandria, VA 22312 
NTIS http://www.ntis.gov 
Phone:  800.553.6847 or 703.605.6000 
Fax:  703.605.6900 
Email: orders@ntis.gov 

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795. 

NREL prints on paper that contains recycled content. 

http://www.osti.gov/scitech
http://www.osti.gov/
mailto:reports@osti.gov
http://www.ntis.gov/
mailto:orders@ntis.gov


Distribution-Agnostic Stochastic Optimal Power

Flow for Distribution Grids
Kyri Baker, Member, IEEE, Emiliano Dall’Anese, Member, IEEE and Tyler Summers, Member, IEEE

Abstract—This paper outlines a data-driven, distributionally
robust approach to solve chance-constrained AC optimal power
flow problems in distribution networks. Uncertain forecasts for
loads and power generated by photovoltaic (PV) systems are
considered, with the goal of minimizing PV curtailment while
meeting power flow and voltage regulation constraints. A data-
driven approach is utilized to develop a distributionally robust
conservative convex approximation of the chance-constraints;
particularly, the mean and covariance matrix of the forecast
errors are updated online, and leveraged to enforce voltage
regulation with predetermined probability via Chebyshev-based
bounds. By combining an accurate linear approximation of the
AC power flow equations with the distributionally robust chance
constraint reformulation, the resulting optimization problem
becomes convex and computationally tractable.

Index Terms—Distribution systems; optimal power flow;
chance constraints; renewable integration; voltage regulation.

I. INTRODUCTION

In 2014, installed solar power in the United States grew by

30%, amounting to 6.2 gigawatts of capacity. In the residential

sector alone, over a gigawatt of capacity was added, making

residential PV the fastest growing portion of the US solar

sector [1]. With this massive increase in renewables, many

issues in the electric power grid can be observed, such as re-

verse power flows, voltage fluctuations, and overloaded power

lines [2], [3]. With the utilization of advanced optimization and

control schemes, however, these issues can be mitigated [4]–

[6]. Specifically, with measurements drawn from PV systems

and load over time, advanced inverter control, and probabilistic

constraints, this paper will develop a control scheme that

attempts to minimize the curtailment of PV while adhering

to power flow and voltage constraints in a given distribution

network.

In this paper, we solve a chance-constrained voltage regula-

tion problem on a five-minute dispatch scale in a distribution

grid with a high penetration of PV, where the chance con-

straints are updated as measurements are taken from the PV

and load present in the grid. Here, measurements are made

of the actual observed irradiance and load, and the first and

second moments of the error distributions are updated over

time by using a sample average approximation [7]. Due to the

lack of knowledge of the underlying probability distributions

The work of K. Baker and E. Dall’Anese was supported in part by the
Laboratory Directed Research and Development Program at the National
Renewable Energy Laboratory.
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of every renewable source and load in the system, we consider

a distribution agnostic, or distribution free, approach to solving

the chance constrained OPF problem in distribution grids.

Convex approximations of chance constraints have been de-

veloped in the literature, some of which require a priori exact

knowledge of the probability distribution or its parameters [8]–

[10]. Because of this limitation, data driven chance constraints

have been receiving recent attention [11]–[14] for their ability

to cope with the lack of exact distributional information

present in many real-world instances. In [11] and [15], a

distributionally robust chance constrained DC OPF problem is

solved at the transmission level for uncertain wind and load.

Exact chance constraint reformulations have also been applied

to power systems problems by assuming that the underlying

probability distributions are Normally distributed [16], [17];

however, in practice this is not the case, or the underlying

distribution of the random variable is unknown. Monte-Carlo

sampling approaches to incorporate arbitrary probability distri-

butions, on the other hand, can be computationally expensive;

it is desirable to have tractable approximations of these chance

constraints [18], especially when real-time system operation is

considered.

We will utilize a convex approximation of the chance con-

straint by using the traditional Chebyshev generating function

[9], [15], which reformulates the chance constraint into a

second-order cone constraint that depends only on the mean

and variance of the random variable. We assume the chance

constraints are independent; however, distributionally robust

joint chance constraints that are close to exact can be consid-

ered as in [19]. In addition, linear approximations of the AC

power flow equations [20], [21] which greatly approve upon

the DC power flow approximation, will be utilized to transform

the problem into one that can efficiently be solved in real

time. By combining these techniques into a cohesive approach,

we see that for enough collected data samples, the voltage is

between the prescribed limits with a high probability, and the

resulting optimization problem is convex.

The paper is thus organized as follows: In Section II,

variable definitions, models for the distribution grid and

random variables, and the AC power flow linearization will

be discussed. Section III will define the data-driven chance

constrained problem, and demonstrate how the resulting con-

vexification of the chance constraint is distribution-agnostic.

Simulation results are shown and interpreted in Section IV,

and finally, a conclusion and directions for future work are

given in Section V.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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II. SYSTEM MODEL AND AC APPROXIMATION

A. System model

Consider a distribution feeder1 comprising N + 1 nodes

within in the set N ∪ {0}, N := {1, . . . , N} (Node 0
is defined as the secondary side of the distribution trans-

former), and distribution lines represented by the set of edges

E := {(m,n)} ⊂ N × N . Let Vn ∈ C and In ∈ C

denote the complex phasors for the line-to-ground voltage

and the current injected at node n ∈ N , respectively, and

define the vectors i := [I0, I1, . . . , IN ]T ∈ C
N+1 and v :=

[V0, V1, . . . , VN ]T ∈ C
N+1. The system admittance matrix,

Y ∈ C
N+1×N+1, is formed based on the π-equivalent circuit

of the distribution lines and describes the relationship between

current and voltage via Ohm’s and Kirchoff’s laws as i = Yv.

Series and shunt admittances ymn and ysh
mn, respectively, of

line (m,n), the entries of Y are formed as:

[Y]m,n :=







∑

j∈Nm
ysh
mj + ymj , if m = n

−ymn, if (m,n) ∈ E
0, otherwise

(1)

where Nm := {j ∈ N : (m, j) ∈ E} is the set of nodes

connected to the m-th node through a single distribution

line. For simplicity, assume that shunt admittances ysh
mn are

negligible [22]. A constant-PQ model is adopted for the loads,

with Pℓ,n and Qℓ,n denoting the real and reactive loads at

node n ∈ N , respectively. Let pℓ := [Pℓ,1, . . . , Pℓ,N ]T and

qℓ := [Qℓ,1, . . . , Qℓ,N ]T be vectors describing the real and

reactive power at all nodes; if no load is present at node

n ∈ N , then Pℓ,n = Qℓ,n = 0.

B. PV and uncertainty model

Define the variable Pav,n as the maximum solar real power

generation, or available real power, at node n ∈ N . In order to

avoid overvoltages in the grid, real power curtailment can be

performed [5], [6], and will be modeled in our framework. To

account for the ability of the RES inverters to adjust the output

real power, let αn ∈ [0, 1] denote the percentage of available

real power curtailed by the PV inverters; i.e., the real power

curtailed from PV system n amounts to αnPav,n. If there is

no PV system at node n, αn = 0.

To account for the uncertainty in solar and load in the

current five-minute time instance, pav, pℓ, and qℓ are modeled

as random variables [15]. Specifically, the available solar

power is modeled as pav = p̄av + δav, where p̄av ∈ R
N

1Upper-case (lower-case) boldface letters will be used for matrices (column
vectors); (·)T for transposition; (·)∗ complex-conjugate; and, (·)H complex-
conjugate transposition; ℜ{·} and ℑ{·} denote the real and imaginary parts of
a complex number, respectively; j :=

√
−1 the imaginary unit; |·| denotes the

absolute value of a number or the cardinality of a set; and, ◦ denotes Hadamard
product. For x ∈ R, function [x]+ is defined as [x]+ := max{0, x}. Further,
IA(x) denotes the indicator function over the set A ⊂ R; that is IA(x) = 1
if x ∈ A and IA(x) = 0 otherwise. For a given N × 1 vector x ∈ RN ,

‖x‖2 :=
√
xHx; diag(x) returns a N ×N matrix with the elements of x in

its diagonal; and, x � y implies that the inequality xi ≥ yi is enforced for
all the vector entries i = 1, . . . , N . Finally, IN denotes the N ×N identity
matrix; and, 0N , 1N the N -dimensional vectors with all zeroes and ones,
respectively, and 0N×M , 1N×M are N × M matrices with all zeroes and
ones.

is a vector comprising the forecasted values and δav ∈ R
N

is a random vector which represents the forecasting error.

Similarly, the real and reactive loads can be expressed as

pℓ = p̄ℓ + δp,ℓ and qℓ = q̄ℓ + δq,ℓ, respectively, where p̄τ
ℓ

and q̄τ
ℓ are the forecasted loads and δp,ℓ, δq,ℓ ∈ R

JℓN are

random vectors describing the forecasting errors for real and

reactive loads. In Section III, it will be described in further

detail how no information about the underlying probability

distribution has to be known in order to include these variables

in the optimization formulation, and how measured samples

representing the forecasting errors will be used to form the

data-driven chance constraints.

C. AC Power Flow Approximation

The power balance at node n can be written as the follow-

ing:

Vn
∑

m∈Nn

y∗nm(Vn − Vm)∗ = Sn (2)

where Sn = (1 − αn)Pav,n − Pℓ,n − jQℓ,n. This well-known

power balance equation typically appears in the constraint sets

of standard formulations of optimal power flow problems, and

renders the underlying optimization problem nonconvex [23].

Another source of nonconvexity can be derived from the

voltage constraint Vmin ≤ |Vn| ≤ Vmax, where Vmin and

Vmax represent a pre-determined lower and upper limits on the

voltage magnitude (e.g., ANSI C.84.1 limits). Non-convexity

of the problem can result in no guarantee of global optimality,

and from a computational standpoint, the problem complexity

may become prohibitive when the problem size grows [24].

While semidefinite relaxation techniques can sometimes be

successfully employed to bypass the nonconvexity of these

constraints while achieving globally optimal solutions of the

nonconvex OPF [5], [23], in order to develop a computation-

ally efficient OPF formulation, linear approximations of (2)

and voltage-regulation constraints will be utilized in this work.

These approximate power-flow relationships will also facilitate

the application of convex approximation of chance constraints

to the problem that will be formulated in Section III.

Hence, let vN := [V1, . . . , VN ]T and iN := [I1, . . . , IN ]T be

the vectors of voltages and currents, respectively, at all nodes

N , and rewrite the current-voltage relationship i = Yv as

follows:
[

I0
iN

]

=

[

y0j yT

0N

y0N YNN

] [

V0
vN

]

(3)

where y0N ∈ C
1×N is comprising elements {[Y]0,n}n∈N

of the admittance matrix Y and, similarly, YNN ∈ C
N×N

is comprising elements {[Y]m,n}m,n∈N . Without loss of

generality, node 0 is taken to be the slack node, and the

voltage at the secondary V0 = ρ0e
jθj

0 is assumed known. Let

s := (IN − diag{α})pav − pℓ − jqℓ denote the vector of

complex power injections. With V0 known, Theorem 1 and

Corollary 2 in [25] assert that, if (ρ0)
2 > 4‖Y−1

NN ‖†‖s‖2,

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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then the voltages across nodes N can be approximated as the

following:

vN ≈ V0

(

1N +
1

(ρ0)2
Y−1

NN (s)∗
)

(4)

with an approximation error per node n ∈ N that is bounded

by (4/(ρt0)
3)‖[Y−1

NN ]n‖2‖Y
−1
NN ‖†‖s‖22. This approximation

error is inversely proportional to ρ0, and decreases with respect

to the decreasing of the network net load [25].

Equation (4) provides a convenient way to bypass the non-

convexity of the balance constraint (2) in the OPF problem.

However, a second layer of approximation is sought next, in

order to establish a linear (and approximate) relationship be-

tween injected complex powers and voltage magnitudes. This

relationship will be utilized subsequently to derive convex con-

straints for voltage magnitudes. To this end, express the volt-

age phasors vN as vN = ρN ◦ejθN , where ρN ∈ R
N collects

the voltage magnitudes {ρn}
n∈N and θN the voltage phases

{θn}n∈N . Assuming that the nominal voltage ρ0 dominates

the voltage drops on the lines, i.e. ‖Y−1
NN (s)∗‖2/(ρ

t
0)

2 ≪ 1,

a first-order approximation to voltage magnitudes and angles

across the distribution network can be described as:

ρN ≈ gρ(α,pav,pℓ,qℓ) := ρ01N −
1

ρ0
CNNqℓ

+
1

ρ0
RNN ((IN − diag{α})pav − pℓ) (5)

θN ≈ gθ(α,pav,pℓ,qℓ) := θ01N +
1

(ρ0)2
RNNqℓ

+
1

(ρ0)2
CNN ((IN − diag{α})pav − pℓ) (6)

where the network-related matrices RNN and CNN are

defined as RNN := ℜ{Y−1
NN } and CNN := ℑ{Y−1

NN },

respectively. Equation (5) will be utilized next to develop a

computationally efficient solution to the chance-constrained

OPF problem.

III. PROBLEM FORMULATION

In this section, we will describe the problem formulation

first with generic chance constraints and then with their data-

driven convex approximation. Consider the following opti-

mization problem to compute the optimal curtailment levels

for the PV inverters:

(P0)min
ρ,α

E(f(ρ,α,pℓ,qℓ)) (7a)

subject to

ρ = gρ(α,pav,pℓ,qℓ) (7b)

Pr{Vmin ≤ ρn} ≥ 1− ǫ (7c)

Pr{ρn ≤ Vmax} ≥ 1− ǫ (7d)

0 ≤ αn ≤ 1 (7e)

for all n ∈ N , where gρ,n(·) denotes the n-th element of the

vector-valued function gρ(·) in (5). Constraint (7b) represents

a surrogate for the power balance equation; constraints (7d)

and (7c) are the chance constraints that require the voltage to

be within its upper and lower limits with at least 1−ǫ probabil-

ity; and constraint (7e) limits the curtailment percentage from

0−100%. The cost function f(ρ,α,pℓ,qℓ) is convex and can

consider a sum of penalties on curtailment, penalties on power

drawn from the substation, penalties on voltage violations,

among other objectives. In the data-driven framework, the

expected value of f(·) is formed from the sample average

over all data measurements.

In the current formulation, however, constraints (7d)–(7c)

can prove to be problematic. For non-Gaussian distributions,

Monte Carlo-based methods may be used; however, these can

lead to high computational burdens. In addition, even if the

function gρ,n(·) is affine, the feasible set of (7d)–(7c) may be

nonconvex. To account for a variety of possible distributions

of the forecasting errors δ and yet derive a computationally

efficient solution method for the optimization, a data-driven,

convex approximation of the chance constraints is described

next.

A. Distribution Agnostic Chance Constraints

First, consider a generic chance constraint Pr{g(x, δ) >
0} ≤ ǫ, where function g(x, δ) is convex in the optimization

variables x for given values of the random vector δ. In order

to develop a convex approximation of this constraint, next

consider a function ψ : R → R that is nonnegative valued,

nondecreasing, and convex. Assume that ψ(·) – referred to

as the (one-dimensional) generating function – satisfies the

conditions ψ(x) > ψ(0) ∀x > 0 and ψ(0) = 1. Given a

positive scalar z > 0 and a random variable δ, it follows

that ψ(·) is such that the following holds: Eδ{ψ(zδ)} ≥
Eδ{I[0,+∞)(zδ)} = Pr{zδ ≥ 0} = Pr{δ ≥ 0}. Thus, by

taking δ = g(x, δ) and replacing z with z−1, one has that the

following bound holds for all z > 0 and x [8]:

Pr{g(x, δ) > 0} ≤ Eδ
{

ψ
(

z−1g(x, δ)
)}

. (8)

Thus, the constraint

inf
z>0

{

zEδ
{

ψ(z−1g(x, δ))− zǫ
}}

≤ 0 (9)

represents a sufficient condition for Pr{g(x, δ) > 0} ≤ ǫ. This

implies that (9) is also a conservative convex approximation of

the chance constraint Pr{g(x, δ) ≥ 0} ≤ 1 − ǫ. With regards

to the convexity of (9), notice that since ψ(·) is nondecreasing

and convex and g(·, δ) is convex, it follows that the mapping

(x, z) → zψ(z−1g(x, δ)) is convex. In addition, if g is biaffine

in x and δ, and ψ is quadratic, then constraint (9) is also

convex.

Specifically, for the data-driven model that will be formu-

lated without knowledge of underlying probability distribu-

tions, consider the traditional Chebyshev generating function

ψ(x) = (1 + x)2 [15], and let δ̄ and Σ denote the mean and

covariance matrix, respectively, of δ formed from all samples

S. That is, δ̄ := 1
s

∑S
s=1 δ[s] and Σ := 1

s

∑S
s=1((δ[s] −

δ̄)(δ[s] − δ̄)T). Note that these moments can be computed

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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offline using the available collected data and updated whenever

additional samples are measured; thus, the number of samples

does not affect the computation time.

Notice further that function gρ,n(α, δ) expressing the volt-

age magnitude at node n can be re-written as gρ,n(α, δ) =
hT
n(α)δ+ρ0, where an := 1

ρ0

[RT

NN ]n and hn(α) is an affine

function of α defined as:

hn(α) :=







1
ρ0

(IN − diag{α})[RT

NN ]n
− 1

ρ0

[RT

NN ]n
− 1

ρ0

[CT

NN ]n






. (10)

Then, by using the the generating function ψ(x) = (1 + x)2,

we can write (9) as the following [9]:

gρ,n(α
τ , δ̄

τ
)− Vmax + ǭ

∥

∥

∥
(Στ )

1

2hn(α
τ )
∥

∥

∥

2
≤ 0 (11a)

Vmin − gρ,n(α
τ , δ̄

τ
) + ǭ

∥

∥

∥
(Στ )

1

2hn(α
τ )
∥

∥

∥

2
≤ 0 (11b)

where ǭ :=
√

1−ǫ
ǫ

. Notice that (11) are second-order cone

constraints, and so forming the final optimization problem by

replacing constraints (7d) and (7c) with (11), the result is

a second-order cone problem. It can be seen that from this

approach, equation (11) is a distributionally-robust constraint;

that is, (11) ensures that the original chance constraint is

satisfied for any distribution of the forecast errors as long

as data samples are measured to form the first and second

moments. If the first and second moments are known exactly,

the original chance constraints (7c) and (7d) are guaranteed

to be satisfied. However, in the following section it is shown

how accurately the chance constraints can be satisfied by only

using estimates of the mean and covariance that are drawn

from samples.

IV. SIMULATION RESULTS

A. Test feeder and input data

The proposed optimization and control scheme is tested

using a modified version of the IEEE 37-node test feeder

shown in Figure 1. Twenty-one photovoltaic (PV) systems are

located at nodes 4, 7, 9, 10, 11, 13, 16, 17, 20, 22, 23, 26,

28, 29, 30, 31, 32, 33, 34, 35, and 36, indicated in the figure

with boxes around the Node number. The modified network

is obtained by considering a single-phase equivalent, and by

replacing the loads specified in the original dataset with real

load data measured from feeders in Anatolia, CA during the

first week of August 2012 [26], which coincide with the solar

irradiance data from the same location.

The total loading of the feeder for a typical day during

this week can be seen in Figure 2, where data granularity is

of 5 minutes, and a 24-hour simulation period is considered.

Line impedances, shunt admittances, as well as active and

reactive loads are adopted from the IEEE 37-node dataset.2

The aggregate available power
∑

n Pav,n during the course of

the day is plotted in Figure 2. The voltage limits Vmax and

Vmin are set to 1.05 pu and 0.95 pu, respectively. It can be seen

2Available at: ewh.ieee.org/soc/pes/dsacom/testfeeders.

Figure 1: IEEE 37-node test feeder considered in the test cases.
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Figure 2: Total available solar generation and feeder loading.

from the system figure that many PV systems are placed at the

end of the feeder, which can result in overvoltage conditions

[27]. In this particular case, with PV inverters injecting all

available power into the feeder, overvoltage conditions are

observed at multiple nodes during solar peak irradiation hours,

as seen in Figure 3. For these simulations, the cost function

aimed to minimize the cost of PV curtailment; i.e.:

f(ρ,α,pℓ,qℓ) =
∑

i∈N

biαiPav,n, (12)

where the cost of curtailing power at each node is set to be

bi = $6/p.u.

B. Varying the amount of data

Varying the number of samples S used to form the mean

and covariance matrix and its impact on the solution is now

analyzed. In Figure 4, the voltage envelopes are shown for

the hours of 6 AM through 6 PM and compared for S =
5, 100, and 500 samples, and a chance constraint violation

parameter of ǫ = 0.05 (a 5% violation of the constraints is

allowed). Both the load and solar error samples are drawn

from a truncated Gaussian distribution with the tails ending

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 3: Voltages without advanced inverter control.
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Figure 4: Voltage envelope for different values of S.

at ±3σ of the distribution, where σ, the standard deviation,

is assumed to be 3% of the actual value of load and solar

irradiance.

For a small amount of measured data (S = 5), the voltage

limits are still satisfied due to the conservative nature of the

distributionally robust constraints, but the voltage magnitude

fluctuates dramatically at multiple points (around 11 AM and

1 PM, for instance) due to the inaccuracy of the chance con-

straints. For example, this could be due to the measurements

indicating that a higher level of solar irradiance is more likely,

so the controller curtails more power compared to when more

information is obtained, as seen in Figure 5. As the number of

samples increases, the voltage profile flattens, and due to the

conservativeness of the chance constraints, remains below the

maximum threshold of 1.05 p.u. A more detailed analysis on

the “value of data” with regards to conservatism of data-driven

chance constraints and amount of historical data can be found

in [14].

C. Restrictions on chance-constraint fulfillment

Depending on the level of chance constraint fulfillment

parameter ǫ, the constraint may be more or less conservative

with respect to regulating the voltage at each node. Relaxing

the constraint somewhat may improve the total system cost,

but if the constraint is relaxed too far, the voltage limits risk

causing a violation. In Figure 6, the total system cost is plotted

for the hours of 6 AM to 6 PM for ǫ = 0.05, 0.10, and 0.40. As

expected, the looser the chance constraint violation parameter,

the lower the cost. However, it can be seen from Figure 7 that

as this parameter increases, the voltage profile flattens and

the system is operating closer to the maximum voltage limits,

indicating that a large disturbance may cause overvoltage
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Figure 5: Total PV curtailment for different values of S.
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Figure 6: Total cost for different values of ǫ.
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Figure 7: Voltage envelopes for different values of ǫ.

conditions to occur. The cost and benefit from increasing this

parameter must be determined for each individual application;

here, it appears that ǫ = 0.05 may be too restrictive, but

ǫ = 0.40 may be too loose for the small tradeoff of cost

decrease from ǫ = 0.10. In addition, in model predictive or

multi-timestep approaches, ǫ could be varied throughout the

prediction horizon.

V. CONCLUSION

In this paper, we demonstrated a data-driven approach to

solving the chance-constrained voltage regulation problem in

a distribution network under high levels of PV generation.

The resulting chance constraints are distribution-agnostic; i.e.,

no knowledge about the underlying probability distributions

needs to be known a priori. It was shown that the amount

of measured data can improve the accuracy of the constraints

and does not greatly impact the speed of the method, due to

the fact that the first and second moments used in the chance

constraints can be computed offline.

Future work will extend this framework into the joint chance

constraint case, as well as include other sources of uncertainty

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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such as price, user behavior, and demand responsive loads.

A model predictive approach could be considered in future

work in order to incorporate energy storage models and other

intertemporal constraints into the framework as well.

REFERENCES

[1] D. Cusick, “Solar power sees unprecedented boom in U.S.” Scientific
American, March 2015.

[2] A. Woyte, V. Van Thong, R. Belmans, and J. Nijs, “Voltage fluctuations
on distribution level introduced by photovoltaic systems,” IEEE Trans.

on Energy Conv., vol. 21, no. 1, pp. 202–209, 2006.

[3] B. Palmintier, R. Broderick, B. Mather, M. Coddington, K. Baker,
F. Ding, M. Reno, M. Lave, and A. Bharatkumar, “On the path to
sunshot: Emerging issues and challenges in integrating solar with the
distribution system,” National Renewable Energy Laboratory, Tech.
Rept. NREL/TP-5D00-65331, May 2016.

[4] E. Liu, J. Bebic, B. Kroposki, J. de Bedout, and W. Ren, “Distribution
system voltage performance analysis for high-penetration pv,” in IEEE

Energy 2030 Conf.

[5] E. Dall’Anese, S. V. Dhople, and G. B. Giannakis, “Optimal dispatch of
photovoltaic inverters in residential distribution systems,” IEEE Trans.

Sust. Energy, vol. 5, no. 2, pp. 487–497, Apr. 2014.

[6] A. Samadi, R. Eriksson, L. Soder, B. G. Rawn, and J. C. Boemer,
“Coordinated active power-dependent voltage regulation in distribution
grids with PV systems,” IEEE Trans. on Power Del., vol. 29, no. 3, pp.
1454–1464, June 2014.

[7] W. Wang and S. Ahmed, “Sample average approximation of expected
value constrained stochastic programs,” Operations Research Letters,
vol. 36, no. 5, pp. 515–519, 2008.

[8] A. Nemirovski and A. Shapiro, “Convex approximations of chance
constrained programs,” SIAM J. on Optimization, vol. 17, no. 4, pp.
969–996, 2007.

[9] G. Calafiore and L. El Ghaoui, “On distributionally robust chance
constrained linear programs,” Journal of Optimization Theory and Ap-

plications,, vol. 130, no. 1, pp. 1–22, 2006.

[10] E. Dall’Anese, S. V. Dhople, B. B. Johnson, and G. B. Giannakis,
“Optimal dispatch of residential photovoltaic inverters under forecasting
uncertainties,” IEEE J. of Photovoltaics, vol. 5, no. 1, pp. 350–359, Jan
2015.

[11] S. S. Y. Zhang and J. Mathieu, “Data-driven optimization approaches
for optimal power flow with uncertain reserves from load control,” in
Proceedings of the American Control Conference (ACC), Chicago, IL,
2015.

[12] E. Delage and Y. Ye, “Distributionally robust optimization under mo-
ment uncertainty with application to the problems,” Operations Re-

search, vol. 58, no. 3, pp. 595–612, 2010.

[13] B. Stellato, “Data-driven chance constrained optimization,” Master’s
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