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Abstract: The pollution of water bodies by pharmaceuticals and personal care products (PPCPs)
has attracted widespread concern due to their widespread use and pseudo-persistence, but their
effects on sediments are less known. In this study, solid-phase extraction-high performance liquid
chromatography–tandem mass spectrometry (SPE-LC/MSMS) was used to investigate the occurrence
and ecological risks of five typical pharmaceuticals and personal care products (PPCPs) in thirteen
key reservoirs, sluices, dams, and estuaries in the Haihe River Basin. At the same time, the PPCP
exchanges of surface water, groundwater, and sediments in three typical sections were studied.
Finally, the PPCP’s environmental risk is evaluated through the environmental risk quotient. The
results showed that the five PPCPs were tri-methoprazine (TMP), sinolamine (SMX), ibuprofen (IBU),
triclosan (TCS), and caffeine (CAF). The average concentration of these PPCPs ranged from 0 to
481.19 µg/kg, with relatively high concentrations of TCS and CAF. The relationship between PPCPs
in the surface sediments was analyzed to reveal correlations between SMX and TMP, CAF and IBU,
CAF and TCS. The risk quotients (RQ) method was used to evaluate the ecological risk of the five
detected PPCPs. The major contributors of potential environmental risks were IBU, TCS and CAF,
among which all the potential environmental risks at the TCS samples were high risk. This study
supplemented the research on the ecological risk of PPCPs in sediments of important reaches of the
North Canal to reveal the importance of PPCP control in the North Canal and provided a scientific
basis for pollution control and risk prevention of PPCPs.

Keywords: risk assessment; surface sediments; PPCPs; North Canal Basin; spatial distributions

1. Introduction

In recent years, the existence of pharmaceuticals and personal care products (PPCPs)
as emerging pollutants has become a global concern [1]. PPCPs mainly include prescription,
over-the-counter, and consumer chemicals, including perfumes and sun-screen. PPCPs
have been detected in various water bodies in China and residual PPCPs in the envi-
ronment can lead to endocrine disorders, reduced reproductive rates, and reduced life
expectancy [2,3]. Exposure to even very low concentrations of PPCPs in the environment
poses potential risks to the ecosystem and human health [4–7].

Due to the continuous input of PPCPs into the aquatic environment, a large number
of PPCPs have been absorbed in river sediments and have been detected in most aquatic
sediments in China. Pan et al. [8] showed that the PPCP content in the sediments of
the eastern half of Chaohu Lake was higher in the coastal zone than in the open zone,

Water 2022, 14, 1999. https://doi.org/10.3390/w14131999 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14131999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w14131999
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14131999?type=check_update&version=3


Water 2022, 14, 1999 2 of 13

and showed a decreasing trend from west to east along the main lake flow direction.
Chen et al. [9] found that the PPCP pollution was more serious in the Luoma Lake Bay
area, with caffeine, ofloxacin, and sulfa-methoxazole in surface sediments of Luoma Lake
presenting higher ecological risks.

The binding of PPCPs to sediments affects the bioavailability and bioaccumulation
of PPCPs [10,11]. At the same time, when sediments are scoured by river water, PPCPs
are re-released into the water environment, causing secondary pollution [12,13]. Therefore,
toxicological data and ecological risks of PPCPs in sediments may be overestimated or
underestimated [14,15]. At present, studies have shown that the contribution of PPCPs in
sediments to water pollution cannot be ignored.

Although PPCPs were reported in some river basins in China [16,17], there are few
studies on PPCP concentrations in the North Canal sediments. Meanwhile, as one of the
largest PPCP consumption areas in China and even the world, Beijing’s daily sewage load is
about 3.3 million tons, but the sewage treatment capacity of suburbs and urban areas is only
50% and 83%, respectively [8,18,19]. Therefore, the study of PPCP pollution, sources, and
ecological risks in sediments is greatly significant for river pollution control and ecological
protection. The purpose of this study is as follows: (i) to determine the content and spatial
distribution of PPCPs in surface sediments in the North Canal of China; (ii) to analyze the
correlation between PPCP concentration and water quality parameters in river sediments;
(iii) to assess the potential risks of PPCPs in the sediment.

2. Material and Method
2.1. Study Area

North Canal is located in the north of China, with a latitude of 40◦00′–40◦50′ north
and longitude of 115◦50′–116◦25′ east (Figure 1). It originates at the south foot of the
Jundu Mountain in Beijing, flows through the Hebei province, before merging into the
Haihe River in Tianjin. The region has a temperate monsoon climate, with hot and rainy
summers, followed by cold and dry winters. The annual average rainfall is 642.5 mm,
with most rainfall concentrated in June to August. The mainstream of the North Canal
has a total length of 260 km, a total area of 6166 km2, and an average annual runoff
of 572 million m3 [19]. As the main drainage channel of Beijing, the North Canal flows
through densely populated and highly industrialized areas, resulting in 93% of the water
source in the upper reaches of the North Canal belonging to wastewater discharged from
sewage treatment plants and 4% to untreated wastewater, while the middle and lower
reaches of the North Canal are affected by pesticides, fertilizers, and domestic sewage [20].

2.2. Sampling and Analysis

Sediment samples were collected from 13 typical sections of the North Canal by
a rigid plexiglas tube gravity sampler in July 2016. The collected columnar sediment
samples were divided into three groups by 0–20 cm, 20–40 cm, 40–60 cm and filtered
through a 1 mm screen. Water samples were collected 0–50 cm from the surface using a
water harvester at the same location as the sediment samples. Groundwater samples were
collected from 13 monitoring wells along the north Canal river, and collected at a depth
of 50 m by QED low-flow sampling equipment. Sediment river water and groundwater
samples were collected and sent to the laboratory for testing. Details of the analytical
procedure are provided elsewhere [13,18]. In short, all samples were stored in pre-cleaned
cryogenic containers and immediately transported to the laboratory for processing. In the
laboratory, the water samples were concentrated by pre-treated solid phase extraction and
sediment samples were extracted by ultrasonic extraction, followed by high performance
liquid chromatography–tandem mass spectrometry analysis of target antibiotics, following
appropriate quality assurance and quality control procedures, usually including solvent
blank procedures and independent inspection standards. Concentrations of 5 PPCPS were
determined for all samples. The 5 PPCPS were classified and abbreviated as follows:
sulfamethoxazole (SMX), trimethoprimethidine (TMP), caffeine (CAF), ibuprofen (IBU);
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triclosan (TCS). The main physicochemical properties of the five target PPCPS are shown in
Supplementary Materials Table S1. Limits of detection (limit of detection, LOD) and limits
of quantification (limit of quantification, LOQ) are generally determined as the minimum
detectable amount of analyte with a signal-to-noise ratio. The LOD and LOQ of each PPCPs
are shown in Table S2.
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2.3. Leaching Potential Assessment

In this study, the groundwater ubiquity score (GUS) method was used to evaluate the
leaching potential of PPCPs, and the parameters were provided by the leaching potential
evaluation mode [21,22]. Its calculation formula is as follows:

GUS = log t 1
2
(4− log KOC) (1)

KOC is the organic carbon-water allocation coefficient, and t1/2 is the soil degradation
half-life (days). GUS value classification criteria were as follows: low leaching potential
(GUS < 1.8), medium leaching potential (1.8 ≤ GUS ≤ 2.8), and the high leaching potential
(GUS > 2.8).

2.4. Ecological Risk Assessment

In this study, the environmental risk quotients (RQ) method was selected to assess
the potential risk of PPCPs in sediments to aquatic organisms. This entropy is based on
the risk assessment method in the European Technical Guidance document [23]. The RQ
value is calculated from the measured concentration (MEC) and the predicted no-effect
concentration (PNEC) by the following formula:

RQ =
MEC
PNEC

(2)

PNEC =
EC50

AF
or PNEC =

NOEC
AF

(3)

RQ represents the risk quotient calculated by EC50 or NOEC, and MEC represents the
measured environmental concentration. PNEC is the predicted no-effect concentration,
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which is the maximum concentration of a drug known to have no adverse effects on
microorganisms or ecosystems in the environment. PNEC is obtained by dividing EC50 or
NOEC by the assessment factor (AF, 1000 for acute toxicity, 100 for NOEC). The sources
of EC50 and NOEC are shown in Table S3. The RQ were divided into the following four
categories: RQ < 0.01 (no significant risk), 0.01 < RQ < 0.1 (low risk), 0.1 < RQ < 1 (medium
risk), RQ > 1 (high risk) [23].

2.5. Pseudo-Partitioning (P-PC)

To obtain a quantitative understanding of the relationship of the antibiotics between
the sediment and water phases, the pseudo-partitioning coefficient (kd,s) was used to
describe the system and was calculated according to the following equation:

kd,s = Cs/Cw

(
L kg−1

)
(4)

where Cs is the concentration in the sediment, and Cw is the corresponding concentration
in the water phase [24].

3. Results and Discussion
3.1. Occurrence of PPCPs in Surface Sediments

The detection results showed that the five PPCPs were detected in the North Canal.
The detection rates of TMP, SMX, IBU, TCS, and CAF were 100.00%, 61.53%, 76.92%,
100.00% and 69.00%, respectively. The average concentrations were ND–1.55 µg/kg,
ND–0.46 µg/kg, ND–7.47 µg/kg, 1.45–697.63 µg/kg and ND–246.59 µg/kg, respectively.
The total concentration of the five PPCPs in the North Canal was 5.53–641.93 µg/kg, and
the main pollutants were TCS and CAF. The proportion of the average concentration of the
five PPCPs to the total concentration was TCS (65.26%), CAF (32.32%), IBU (2.25%), TMP
(0.11%), SMX (0.05%), respectively. The average concentrations of TCS and CAF were the
highest among the five PPCPs, which were 57.77 µg/kg and 28.618 µg/kg, 14 to 585 times
higher than the other PPCPs. TCS is widely used as an antibacterial agent in a variety of
soaps, different kinds of toothpaste, and health care products [25]. CAF, as a stimulant, is
ubiquitous in our daily life and has been detected in waters around the world [26].

Compared to previous reports, TCS concentrations in Liuxi River and Zhujiang River
sediments were lower than those in the North Canal, while TCS concentrations in Shijing
River sediments were higher than those in the North Canal, and CAF concentrations in
the North Canal sediments were higher than those in Baiyang Lake. Additionally, CAF
concentrations in the North Canal sediments exceeded concentrations in the Songhua River.
The contents of the TMP, SMX, and IBU in the sediments of the North Canal were lower
than those in other regions of China (Table 1).

3.2. Spatial Variation in PPCPs in Surface Sediments

As shown in Figure 2, the five PPCPs in the North Canal showed no obvious increase or
decrease in the upstream and downstream regions but fluctuated constantly from upstream
to the downstream. In particular, PPCPs suddenly increased in some stations. The levels of
SMX, IBU, and TCS all fluctuate at the A5 site. The A5 site is located at the confluence of
the Qinghe River and Wenyu River, where there are three sewage treatment plants. The
discharge of reclaimed water may affect the concentration level of PPCPs in the sediment.
At the confluence points A8 and A9 of the Liangshui River and North Canal, the PPCP
concentration also showed the same level of fluctuations. At the sampling points A3,
A8, and A9, the distribution of CAF fluctuates more obviously than the other PPCPs.
In summary, the concentration fluctuation range was large in the upstream population
aggregation area, while the concentration was low in the downstream villages, towns, and
the fluctuation range was small.
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Table 1. Occurrence and concentration of PPCPs in sediments in different study areas (µg/kg).

Chemical Location Range Reference

TMP

Nanjing ND–1.07 Xue et al. 2013 [27]
Taihu Lake ND–39.3 Xu et al., 2014 [28]

Beijing ND–5.02 Zhang et al. 2017 [29]
Hanjiang River ND–10 Hu et al., 2018 [30]
Baiyang Lake ND–7.26 Zhang et al., 2018 [31]

Pearl River 0.1–0.2 Xie et al., 2019 [32]
This study ND–1.55

SMX

Jiulong River 1.2–3.4 Zhang et al., 2011 [33]
Baiyang Lake ND–7.9 Li et al., 2012 [34]

Taihu Lake ND–49.3 Xu et al., 2014 [28]
Beijing ND–0.35 Zhang et al., 2017 [29]

Hanjiang River ND–1.2 Hu et al., 2018 [30]
Haihe River 1.2–2.54 Chen et al., 2018 [35]
Pearl River ND Xie et al., 2019 [32]
This study ND–0.46

IBU

Taihu Lake ND–21 Xie et al., 2015 [36]
Guangzhou ND–3.19 Peng et al., 2017 [37]

Songhua River 25.2–95.0 He et al., 2018 [38]
Pearl River ND–0.02 Xie et al., 2019 [32]
This study ND–7.47

TCS

Liuxi River ND–116 Zhao et al., 2010 [39]
Zhujiang River 12.2–196 Zhao et al., 2010 [39]
Shijing River 345–1329 Zhao et al., 2010 [39]
Yangtze River 0.18–0.63 Liu et al., 2015 [40]
Guangzhou 0.84–689 Peng et al., 2017 [37]

Hanjiang River 0–7.73 Gao et al., 2018 [41]
Pearl River ND–0.1 Xie et al., 2019 [32]
This study 1.45–697.63

CAF

Taihu Lake 25.4–482 Zhang et al., 2016 [42]
Chaohu Lake 1.87–3.27 Pan et al., 2016 [14]

Beijing ND–1.74 Zhang et al., 2017 [29]
Songhua River ND–63.7 He et al., 2018 [38]
Baiyang Lake 1.37–30.51 Zhang et al., 2018 [31]

This study ND–246.59

ND: not detected.

In the vertical direction, PPCPs were detected in different layers of each point. Al-
though it is currently difficult to prove the exact rate and timing of PPCP infiltration, PPCPs
in surface water may migrate vertically and laterally through hydraulic exchange between
surface water and groundwater [43,44]. The downward migration of surface PPCPs con-
taminates sediments as a whole and increases the ecological risk level of sediments. The
detection results of PPCPs in sediments show certain spatial and species differences, which
are caused by the comprehensive influence of factors, such as input source differences,
dilution effects, location differences, sediment properties, and drug properties. It has been
reported that photodegradation greatly reduces CAF in rivers [45,46]. It can be observed
that the content of PPCPs in sediments is higher than that in water bodies. Meanwhile, it is
worth noting that SMX, IBU and TCS are only detected in water bodies at some sites, but
not in sediments.

3.3. Pearson Correlation Analysis of PPCP Concentration and Hydrochemical Parameters in
Surface Sediments

The hydrochemical parameters of river sediments from 13 stations in the Yunhe River
Basin were tested (Figure 3); TP concentrations of A6, A8 and A9 were higher than those of
other samples, NH4-N concentrations of A2, A4 and A9 were higher than those of other
samples, and NH2-N concentrations of A6, A8 and A12 were slightly higher than those
of other samples. The concentrations of TN, NH3-N and OM were stable, and there was
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no difference among the different stations. From the analysis of the spatial location of the
stations, it can be found that the sudden change in concentration at stations A6 and A9
may be related to the intersection of the two rivers [47,48].
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Figure 2. Spatial distribution of PPCP concentration in sediments of the North Canal.

The correlation between the PPCP concentration and hydrochemical parameters in
the sediments of the North Canal Basin is shown in Figure 4. The river water quality
parameters analyzed include TP (4.11–33.8 mg/kg) and TN (0.16–0.26 g/100 g),
NH4-N (0.03–0.07 mg/g), NH2-N (0.01–0.02 mg/g), NH3-N (0.02–0.57 mg/g),
OM (113.04–131.59 g/kg). According to Pearson’s correlation analysis, TCS and NH4-
N (p < 0.05), CAF and NH4-N (p < 0.01), SMX and TMP (p < 0.05), CAF and IBU (p < 0.01),
CAF and TCS (p < 0.01), indicating that SMX, TMP, CAF, IBU, and TCS may come from
similar sources. However, the correlation coefficient between PPCPs is not high, and the
similarity of its sources still needs to be further explored. Meanwhile, NH4-N is negatively
correlated with PPCPs, which may be related to the influence of inorganic conditions in
sediments (NH4-N) on the distribution of PPCPs in sediments [49].
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3.4. The Relationship between PPCP Concentration in Surface Sediments and Water

Pseudo-partitioning is used to better understand the relationship between the solid
phase and the water phase of PPCPs [50]. The P-PC value is calculated by dividing the
concentration in the sampled sediment by its concentration in the water phase. It can be
observed from Table 2 that the P-PC value of the TMP, SMX, IBU are at a low level, while
the relative P-PC value of TCS and CAF are at a high level, indicating that it is easier for
TCS and CAF to accumulate in the North Canal sediments.

Table 2. Pseudo-partitioning of 5 PPCPs in the North Canal.

Site TMP SMX IBU TCS CAF

A1 1.21 1.12 14.58 ND 22.69
A2 1.13 1.17 20.99 11.46 × 102 ND
A3 7.64 8.52 18.30 74.50 26.02 × 102

A4 5.34 ND ND 45.38 ND
A5 0.18 10.76 12.20 18.01 × 103 17.40 × 10
A6 0.56 ND ND 16.67 × 102 ND
A7 1.60 ND 11.44 × 10 34.93 × 10 ND
A8 0.47 ND 12.91 80.59 × 10 11.59 × 102

A9 2.71 ND 20.18 × 10 51.08 × 102 66.5 × 10
A10 1.36 1.06 ND 7.31 ND
A11 2.22 1.78 ND 7.39 ND
A12 93.74 3.66 ND 18.96 × 10 11.58 × 10
A13 12.49 14.80 ND 29.10 ND

ND: not detected.

The leaching capacity of the five PPCPs was shown in Table 3, among which CAF was
the most easily leaching due to its high T1/2 and low Koc, followed by SMX. TMP and IBU
have medium leaching capacity, and TCS has low leaching potential. Infiltration is mainly
affected by adsorption and decreases with the increase in PPCP adsorption. The GUS value
of PPCPs can better predict the risk of PPCP pollution to groundwater. Although TCS has a
low GUS value, it has a relatively high concentration in the surface sediments, which may
be related to its extensive and massive use and discharge. Therefore, more attention should
be paid to the risk of groundwater pollution. Although the concentration of CAF in surface
sediments is lower than that of TCS, its risk of groundwater pollution cannot be ignored
because of its strong permeability [22].

Table 3. The logT1/2, logKoc and GUS of PPCPs in sediment.

Name log T1/2 logKOC GUS Leaching Potential

TMP 1.89 2.857 2.16 Middle
SMX 1.88 2.412 2.98 High
IBU 1.48 2.626 2.03 Middle
TCS 2.08 4.369 −0.77 Low
CAF 1.48 1 4.43 High

Although the PPCP migration rule between surface water sediment and groundwater
cannot be analyzed as a typical seasonal river, the hydraulic connection between river
water and groundwater is mainly that surface water supplies groundwater [51]. According
to the P-PC and GUS values, river sediments are the key channel for PPCPs in river water
to enter groundwater. PPCPs in the river water will accumulate in sediments first and then
spread further into groundwater through the three typical sections in Table 4.
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Table 4. Concentrations of PPCPs in three media in typical sections.

Site Type TMP SMX IBU TCS CAF

A12

surface water (ng/L) 0.45 10.02 176.79 133.67 304.02
sediment (0–20) (µg/kg) 0.04 0.02 0.00 22.64 0.00

sediment (20–40) (µg/kg) 0.55 0.04 0.00 75.75 0.00
sediment (40–60) (µg/kg) 1.56 0.15 0.00 7.41 18.73

groundwater (ng/L) 0.17 7.32 189.07 6.49 612.30

A10

surface water (ng/L) 0.64 14.10 172.18 171.16 280.75
sediment (0–20) (µg/kg) 0.01 0.03 0.00 2.83 0.00

sediment (20–40) (µg/kg) 0.07 0.04 0.00 1.16 12.04
sediment (40–60) (µg/kg) 0.02 0.04 0.00 0.34 0.00

groundwater (ng/L) 0.01 0.74 144.70 13.05 170.67

A3

surface water (ng/L) 0.12 4.49 369.06 79.13 444.68
sediment (0–20) (µg/kg) 0.05 0.04 5.54 16.63 0.00

sediment (20–40) (µg/kg) 0.03 0.06 2.62 0.74 0.00
sediment (40–60) (µg/kg) 0.07 0.13 7.48 1.18 178.51

groundwater (ng/L) ND ND 10.93 2.67 153.37

Compared with the concentration of sediment, it can be observed that part of the
PPCPs are enriched in the sediment during the infiltration of surface water, except IBU, into
groundwater. Therefore, PPCPs in sediment have the risk of water diffusion to groundwater,
and is a key indicator affecting the ecological risk to water environments [52–54].

3.5. Environmental Risks of PPCPs in Surface Sediments

To evaluate the possible environmental risks caused by five PPCPs in the water
sediments of the North Canal, the potential environmental risks of PPCPs in the sediments
of thirteen sampling points in the North Canal basin were evaluated by the RQ values. RQ
values corresponding to TMP, SMX, IBU, TCS, and CAF are in the range of 0.02 to 2.47, 0 to
1.03, 0 to 2.52 × 10, 4.63 to 1.24 × 103, and 0 to 5.07 × 102, respectively (Figure 5).
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TMP and SMX are at medium and low risk upstream, TMP is at a high risk at A12
and A13, and SMX is at high risk at A13. IBU, CAF, and TCS are highly toxic to the surface
sediments in the study area and are the main potential ecological risk factors for the surface
sediments in the study area. IBU, TCS, and CAF are the main contributors to the potential
environmental risks of the five PPCPs in the North Canal, and the potential environmental
risks of the TCS samples are all high risks. The potential ecological risks of TCS and CAF
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of A5 and A9 are extremely high. At the same time, the combined effect of multiple PPCPs
may further increase the level of ecological risk, and the impact and persecution of the
aquatic environment cannot be ignored.

PPCPs in most areas pose a threat to the ecosystem and may have adverse effects on
aquatic organisms [52]; therefore, it is worth paying attention to the control and elimination
of PPCPs in sediments. It is difficult to completely remove PPCPs in sediments of urban
rivers, and their accumulation in sediments will affect the survival and reproduction of
benthic animals as recently reported; CAF is a psychoactive compound with high ecotoxi-
cological relevance in many other natural water domains. TCS has been shown to produce
cytotoxic genotoxicity and endocrine disruptor effects, while TCS in the environment can
increase bacterial resistance at the same time. PPCPs in sediments will further spread into
groundwater, thus threatening the safety of drinking water. For example, IBU entering the
body for a long time will lead to renal failure [22,34].

4. Conclusions

As an important tributary of the Haihe River system, the North Canal flows through
the most densely populated area with the highest urbanization intensity in China and
plays a major role in urban drainage and landscape greening. With the development of
the regional economy and society and the need for water environment protection, the
ecological risk caused by PPCP pollution is widely concerning.

In this study, the distribution and migration of five PPCPs in sediments of the North
Canal were investigated, and the ecological risk of PPCPs was evaluated by using environ-
mental risk quotients. The relationship between sediment PPCPs and the river ecological
environment was analyzed from the perspective of aquatic organisms. According to the
analysis results, the concentrations of trimethopretin (TMP), sinolamine (SMX), and ibupro-
fen (IBU) in the sediments of the North Canal were low, while the concentrations of triclosan
(TCS) and caffeine (CAF) were relatively high, and TCS and CAF have been enriched in
some reaches. IBU, TCS, and CAF in the sediments have high ecological risk levels, which
may affect the survival of regional organisms. Therefore, the existence of new pollutants,
such as PPCPs, should not be ignored in order to maintain the stability of the river ecosys-
tem. This paper has practical guiding significance for river water quality management and
integrated river management.
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