
Distribution and Medical Impact of Loss-of-
Function Variants in the Finnish Founder 
Population

Citation
Lim, E. T., P. Würtz, A. S. Havulinna, P. Palta, T. Tukiainen, K. Rehnström, T. Esko, et al. 
2014. “Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder 
Population.” PLoS Genetics 10 (7): e1004494. doi:10.1371/journal.pgen.1004494. http://
dx.doi.org/10.1371/journal.pgen.1004494.

Published Version
doi:10.1371/journal.pgen.1004494

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12785953

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:12785953
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Distribution%20and%20Medical%20Impact%20of%20Loss-of-Function%20Variants%20in%20the%20Finnish%20Founder%20Population&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=69467b973f213c2c8c4a3328384be15a&department
https://dash.harvard.edu/pages/accessibility


Distribution and Medical Impact of Loss-of-Function
Variants in the Finnish Founder Population
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Abstract

Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect
sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically
relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases
as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral
variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5–5%) variants in
complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and
discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function
variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the
phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of
quantitative traits collected on these cohorts, we show 5 associations (p,561028) including splice variants in LPA that
lowered plasma lipoprotein(a) levels (P = 1.56102117). Through accessing the national medical records of these participants,
we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from
cardiovascular disease (OR = 0.84, P = 361024), demonstrating for the first time the correlation between very low levels of
LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates
substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns
and by combining a unique population genetic history with data from large population cohorts and centralized research
access to National Health Registers.
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Introduction

After widespread success with genome-wide association studies

(GWAS) of common variants, several studies have recently begun

to identify rare (with ,0.5% allele frequency) and low-frequency

(0.5–5%) variants in complex diseases and traits such as

triglycerides [1], insulin processing [2], bone mineral density [3],

Alzheimer’s disease [4], impulsivity [5], and prostate cancer [6],

some of which confer protection from disease [4]. Protective loss of

function variants that can be tolerated in a homozygote state in

humans are of particular interest as potential safe targets for

therapeutic inhibition. Interestingly, many of these studies that have

discovered rare and low-frequency variants use isolated populations

that have undergone bottlenecks resulting in frequency enrichment

of the associated variants. In contrast to the large number of

extremely rare variants present in out-bred populations, such

bottlenecked populations have a smaller spectrum of rare variation.

This observation has been borne out in examples of Mendelian

disease where, for example, Finns and Ashkenazi Jews have

characteristic high incidence of recessive diseases because of the

enrichment of specific mutations [7,8,9] – in the wider European

population these same diseases are rarer and have mutational

spectra involving a more diverse array of extremely rare mutations.

It has not yet been assessed to which extent these population

structures, so advantageous to Mendelian studies but of little

importance to common variant GWAS, might generally improve

the power to identify low-frequency loss-of-function (LoF) variants

in studies of complex disease.
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To explore this question, we used exome sequencing to

characterize the allelic architecture of the Finnish population

compared with a set of non-Finnish Europeans (NFEs) from the

United States, Great Britain, Germany and Sweden. We

demonstrate that Finns carry a significant enrichment of low-

frequency (0.5–5%) LoF variation, defined here as nonsense and

essential splice sites that are rare in NFEs. In addition to the isolate

population structure, Finland has nationwide health records that

provide decades of follow-up data that can be linked to

epidemiological studies. The availability of nationwide health

records in a population isolate structure triggered us to study the

impact of low-frequency variants on risk factors and disease

outcomes and their risk factors. The Sequencing Initiative Suomi

(The SISu project) aims to combine these resources and build

knowledge and tools for genome health initiatives. We genotyped

83 LoF variants discovered through our exome sequencing, in

several large well-phenotyped population-based cohorts comprised

of 36,262 Finns and tested for association to 60 quantitative traits

and used data from the 13 disease outcomes assessed using the

National Health Registers. We demonstrate that 5 of these

variants have significant associations with clinically relevant

phenotypes, illustrating the general value of the Finnish population

for the study of low-frequency variants studies in complex as well

as Mendelian diseases. We further confirm two LoF variants that

significantly reduce lipoprotein(a) levels are associated with

protection from cardiovascular disease.

Results

As part of the SISu Project, we assembled 3,000 whole-exome

sequences from Finns in projects including GoT2D, ENGAGE,

migraine, METSIM and the 1000 Genomes Project along with

3,000 whole exome-sequences of NFEs from GoT2D, ESP,

NIMH and 1000 Genomes project using the same data generation

and processing pipelines (Table S1). The raw BAM files from these

projects were compressed and re-processed at the Broad Institute

and variant calling was performed in a unified manner to

minimize potential batch effects. We compared the number and

frequency of variable sites in 3,000 Finns and 3000 NFEs (Fig. 1A)

and observed several expected hallmarks of the isolated bottle-

necked Finnish population history. There was a depletion of

‘singletons’, or variants that were observed only once in 3,000

individuals, in Finns compared to NFEs. An average Finn had 3.7

times fewer singleton variants in these data (binomial P,161026).

On the other hand, there was an excess of low-frequency variants

in Finns versus NFEs (binomial P,161026), collectively suggest-

ing that while most rare variants did not survive the bottleneck, the

variants that did have become substantially elevated in frequency

[10], while the rates of common variation were not different

between Finns and NFEs. All these findings are consistent with an

expected impact of the Finnish population bottleneck.

We then stratified the variants according to their functional

annotations – LoF variants, missense variants and synonymous

variants. We found a higher proportion of LoF variants in Finns

compared to NFEs across the rare and low-frequency allelic

spectrum (Fig. 1A, Table S2) and for missense variants predicted

to be deleterious by PolyPhen2 (Fig. S1). We found a similar

observation when comparing the Finns to an equivalent number of

Swedes (Fig. S2). This is also a direct consequence of the

bottleneck: alleles that are elevated in frequency through the

bottleneck are drawn at random from extremely rare variants in

the parental population, where there is a higher proportion of LoF

variants that arose recently or were kept at low frequencies

because of negative selection. This is clearly demonstrated with the

decreasing proportions of LoF variants with increasing allele

frequencies (Fig. 1B). The observation that LoF variants in the

0.5–5% range are enriched in Finns and our hypothesis that some

of these variants might have health related phenotypic conse-

quences, motivated the targeted association study described below

(Fig. 2).

Despite the reduced overall variation in the isolated population,

the existence of a greater number of low frequency LoF variants

results in an average Finn harboring 0.16 homozygous LoF

variants compared to only 0.095 in an average NFE, driven

primarily by homozygosity in the 0.5 to 5% allele frequency range

(Fig. S3B). These features of the Finnish population have already

been well described as they pertain to Mendelian diseases: many

characteristic ‘‘Finnish founder mutations’’ exist at unusually high

frequencies, even up to 1%, for highly penetrant and reproduc-

tively lethal disorders while such variants are extremely rare or

absent in NFEs [11]. We confirmed with simulations that while

such variants are inevitably pushed to extremely low frequency

after 1,000 or more generations, they can easily persist at

frequencies between 0.1 and 1% up to 100 generations after a

bottleneck (Fig. S4). Table S3 shows a table of a set of Finnish

Disease Heritage (www.findis.org) variants and their population

frequencies. The extent to which such variants contribute to more

common diseases, either through highly-penetrant recessive

subtypes or modest risk to carriers, will correspond to advantages

in rare and low-frequency association studies in isolated popula-

tions.

Given our empirical observations of proportionally more LoF

variants in the 0.5–5% allele frequency range in Finns, we next

conducted a test of this hypothesis that some of the Finnish-

enriched low-frequency LoF variants might have strong pheno-

typic effects. We successfully genotyped 83 low-frequency LoF

variants (protein-truncating nonsense, essential splice site variants

and frameshift variants) enriched in Finns based on their ability to

multiplex in four Sequenom MALDI-TOF genotyping pools

(Table S4). Of these 83 variants, 76 variants were more than 2-fold

enriched and 26 were more than 10-fold enriched.in Finns vs.

NFEs. Three genes (SERPINA10, LPA and FANCM) contained

two LoF variants each; we combined these pairs and tested them

as single composite LoF variants, resulting in a total of 80

independent LoF variants tested in this study. These 83 variants

were genotyped in a total of 36,262 individuals from three

population cohorts: FINRISK [12] (26,245 individuals),

Author Summary

We explored the coding regions of 3,000 Finnish individ-
uals with 3,000 non-Finnish Europeans (NFEs) using whole-
exome sequence data, in order to understand how an
individual from a bottlenecked population might differ
from an individual from an out-bred population. We
provide empirical evidence that there are more rare and
low-frequency deleterious alleles in Finns compared to
NFEs, such that an average Finn has almost twice as many
low-frequency complete knockouts of a gene. As such, we
hypothesized that some of these low-frequency loss-of-
function variants might have important medical conse-
quences in humans and genotyped 83 of these variants in
36,000 Finns. In doing so, we discovered that completely
knocking out the TSFM gene might result in inviability or a
very severe phenotype in humans and that knocking out
the LPA gene might confer protection against coronary
heart diseases, suggesting that LPA is likely to be a good
potential therapeutic target.
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Figure 1. Allele frequency spectrum in Finns and NFEs, demonstrating that Finns have proportionally more deleterious rare and
low-frequency variants. (A) Ratio of the number of LoF, missense and synonymous variants found in Finns versus NFEs with the ratios for LoF
variants highlighted in red text and the ratios for synonymous variants in black. The p-values represent the probabilities of the excess of variable sites

Finnish Loss-of-Function Variants in Medical Genetics
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Health2000 (7,363 individuals) and Young Finns [13] (2,654

individuals).

As these three studies are population-based cohorts, we were

able to assess whether any of the homozygous LoF variants result

in such a severe phenotype that these individuals would not be

able to participate in a population survey for instance, due to

lethality in fetal life of early infancy. Study-wide, there was a

modest excess of homozygotes of the variants (1.23-fold versus

Hardy-Weinberg expectation) arising from within population

substructure. A nonsense variant (Q246X) in the Translation
Elongation Factor, Mitochondrial gene (TSFM) that is present at

1.2% allele frequency in Finns and absent in NFEs, was not found

in a homozygous state in .36,000 Finns (Hardy Weinberg

Equilibrium (HWE) P = 0.0077). This suggests that complete loss

of TSFM might result in embryonic lethality, severe childhood

diseases in humans, or that the individuals might not have been

ascertained by the studies employed, i.e. if the individuals are too

sick to be included in the studies. A lookup of this variant in

another 25,237 Finnish samples in exome chip genotyping data

from the GoT2D studies confirmed that the variant is present at

1.2% in Finns, but again with no homozygotes observed

(combined HWE P = 1.661024). Recessive missense variants in

TSFM have been reported to result in mitochondrial translation

deficiency [14,15] and Finnish mitochondrial disease patients from

two families have been identified with compound heterozygosity of

this nonsense variant (each with a different second hit in TSFM)

(personal communication) - lending strong evidence to the

hypothesis that complete loss of this gene is not tolerated in

humans. Neither did we observe strong associations for the TSFM
Q246X heterozygotes across major diseases (Table S5).

Several other LoF variants occur in genes where recessive

mutations have been noted to cause severe Mendelian diseases

from the Online Mendelian Inheritance in Man database (OMIM)

[16]. For instance, the Fanconi anemia complementation group M
gene (FANCM) was initially discovered in one family with Fanconi

anemia [17], but we did not observe any deficit of homozygous

LoFs in FANCM from our dataset (expected = 5, observed = 7),

which we would typically observe for a disease causing recessive

Figure 2. Study design figure for the project. The analysis was performed from an initial set of exome sequences from Finns and NFEs, as well as
the selection and survey of the 83 LoF variants across 60 quantitative traits and 13 disease categories.
doi:10.1371/journal.pgen.1004494.g002

in Finns occurring by chance. The p-values in red represent the probabilities for the LoF variants, the p-values in blue represent the probabilities for
the missense variants and the p-values in black represent the probabilities for the synonymous variants. (B) Percentage of variants that are LoF across
the allele frequency spectrum, with the numbers indicating the percentage of LoF variants in Finns versus NFEs. The p-values represent the p-values
from the hypergeometric test of whether the ratio of LoF variants differ from the ratio of synonymous variants in Finns compared to NFEs.
doi:10.1371/journal.pgen.1004494.g001

Finnish Loss-of-Function Variants in Medical Genetics

PLOS Genetics | www.plosgenetics.org 5 July 2014 | Volume 10 | Issue 7 | e1004494



T
a

b
le

1
.

Li
st

o
f

to
p

as
so

ci
at

io
n

re
su

lt
s

fr
o

m
th

e
d

is
co

ve
ry

d
at

as
e

t
w

it
h

p
,

26
1

0
2

4
.

D
is

co
v

e
ry

R
e

p
li

ca
ti

o
n

C
o

m
b

in
e

d
(D

is
co

v
e

ry
+

R
e

p
li

ca
ti

o
n

)

T
ra

it
G

e
n

e
C

h
r

P
o

si
ti

o
n

R
e

f
A

lt
A

ll
e

le
F

re
q

N
B

e
ta

S
E

P
-v

a
lu

e
N

B
e

ta
S

E
P

-v
a

lu
e

N
B

e
ta

S
E

P
-v

a
lu

e

L
p

(a
)

LP
A

-*
-

-
-

0
.0

7
5

6
6

9
6

2
0

.6
0

8
0

.0
3

1
2

.1
7
6

1
0

2
8

1
2

2
0

0
2

0
.7

2
9

0
.0

5
5

6
.8
6

1
0

2
3

9
8

8
9

6
2

0
.6

3
7

0
.0

2
7

1
.5

3
6

1
0

2
1

1
7

V
it

am
in

-B
1

2
FU

T2
1

9
4

9
2

0
6

6
7

4
G

A
0

.6
2

6
0

8
7

0
.1

9
9

0
.0

1
9

3
.6

86
1

0
2

2
6

G
a

le
ct

in
-3

T
B

P
L2

1
4

5
5

8
9

0
9

3
7

T
A

0
.0

1
1

6
6

4
8

2
0

.4
6

0
0

.0
8

0
9

.3
7
6

1
0

2
9

G
C

SF
A

TP
2C

2
1

6
8

4
4

9
5

3
1

8
A

C
0

.0
2

3
6

6
6

0
0

.2
7

2
0

.0
5

5
6

.9
86

1
0

2
7

2
1

8
8

2
0

.0
3

7
0

.1
0

5
0

.7
3

8
8

4
8

0
.2

0
6

0
.0

4
9

2
.2
6

1
0

2
5

IL
4

A
TP

2C
2

1
6

8
4

4
9

5
3

1
8

A
C

0
.0

2
3

6
6

6
0

0
.2

5
8

0
.0

5
5

2
.4

86
1

0
2

6
2

1
8

8
0

.0
3

5
0

.1
0

5
0

.7
4

8
8

4
6

0
.2

0
9

0
.0

6
1

5
.9

16
1

0
2

4

IF
N

-g
am

m
a

A
TP

2C
2

1
6

8
4

4
9

5
3

1
8

A
C

0
.0

2
3

6
6

6
0

0
.2

5
5

0
.0

5
5

3
.2

46
1

0
2

6
2

1
8

8
0

.0
6

0
0

.1
0

5
0

.5
7

8
8

4
1

0
.0

5
1

0
.0

1
6

1
.4

56
1

0
2

3

IL
6

A
TP

2C
2

1
6

8
4

4
9

5
3

1
8

A
C

0
.0

2
3

6
6

6
0

0
.2

5
1

0
.0

5
5

4
.5

86
1

0
2

6
2

1
8

8
0

.0
7

3
0

.1
0

5
0

.4
9

8
8

4
8

0
.2

1
3

0
.0

4
9

1
.1

66
1

0
2

5

En
d

o
th

e
lin

1
FU

T2
1

9
4

9
2

0
6

6
7

4
G

A
0

.6
2

6
1

4
6

0
.0

8
6

0
.0

1
9

5
.6

36
1

0
2

6

D
-d

im
e

r
FG

L1
8

1
7

7
2

6
4

7
0

A
A

T
0

.0
3

7
6

5
8

2
0

.2
1

0
0

.0
4

6
6

.1
2

E
6

1
0

2
6

IL
1

2
A

TP
2C

2
1

6
8

4
4

9
5

3
1

8
A

C
0

.0
2

3
6

6
6

0
0

.2
4

5
0

.0
5

5
8

.1
36

1
0

2
6

2
1

8
8

0
.0

4
2

0
.1

0
5

0
.6

9
8

8
4

8
0

.2
0

1
0

.0
4

9
3

.4
56

1
0

2
5

IL
1

7
A

TP
2C

2
1

6
8

4
4

9
5

3
1

8
A

C
0

.0
2

3
6

6
6

0
0

.2
4

1
0

.0
5

5
1

.1
26

1
0

2
5

2
1

8
8

2
0

.1
3

6
0

.1
0

5
0

.2
0

8
8

4
8

0
.1

6
0

0
.0

4
9

9
.9

16
1

0
2

4

S
y

st
o

li
c

b
p

A
T

P
2

C
2

1
6

8
4

4
9

5
3

1
8

A
C

0
.0

2
3

2
5

7
6

4
0

.1
2

5
0

.0
2

9
1

.2
5
6

1
0

2
5

9
3

5
5

0
.1

1
3

0
.0

5
4

0
.0

3
7

3
5

1
1

9
0

.1
2

2
0

.0
2

5
1

.3
1
6

1
0

2
6

IF
N

-g
am

m
a

P
4H

A
3

1
1

7
3

9
7

8
2

4
3

G
A

0
.3

2
6

6
5

5
0

.0
8

0
0

.0
1

9
1

.7
06

1
0

2
5

2
1

8
6

2
0

.0
3

6
0

.0
3

2
0

.2
7

8
8

4
1

0
.0

5
1

0
.0

1
6

1
.4

56
1

0
2

3

IL
1

7
P

4H
A

3
1

1
7

3
9

7
8

2
4

3
G

A
0

.3
2

6
6

5
5

0
.0

8
0

0
.0

1
9

1
.7

26
1

0
2

5
2

1
8

6
0

.0
1

5
0

.0
3

3
0

.6
3

8
8

4
1

0
.0

6
4

0
.0

1
6

7
.2

76
1

0
2

5

V
it

a
m

in
-

B
1

2
C

LY
B

L
1

3
1

0
0

5
1

8
6

3
4

C
T

0
.0

3
5

6
6

0
0

2
0

.2
0

3
0

.0
4

7
1

.8
3
6

1
0

2
5

T
N

F-
b

e
ta

H
TR

A
4

8
3

8
8

3
9

2
8

2
G

A
A

G
0

.0
1

3
6

6
6

9
2

0
.2

9
2

0
.0

6
9

2
.6

86
1

0
2

5
2

1
8

8
0

.3
7

8
0

.1
4

1
0

.7
3

8
8

5
7

2
0

.1
7

2
0

.0
6

2
5

.5
46

1
0

2
3

IL
4

A
TP

10
B

5
1

6
0

1
1

3
0

9
9

G
A

0
.0

3
4

6
6

7
3

0
.1

8
6

0
.0

4
5

3
.5

56
1

0
2

5
2

1
8

9
0

.1
4

1
0

.0
8

6
0

.1
0

8
8

6
2

0
.1

7
7

0
.0

4
0

9
.7

16
1

0
2

6

FG
F

P
4H

A
3

1
1

7
3

9
7

8
2

4
3

G
A

0
.3

2
6

6
5

5
0

.0
7

6
0

.0
1

9
4

.5
86

1
0

2
5

2
1

8
6

0
.0

0
6

0
.0

3
2

0
.8

5
8

8
4

1
0

.0
5

9
0

.0
1

6
2

.8
16

1
0

2
4

T
N

F-
b

e
ta

A
TP

10
B

5
1

6
0

1
1

3
0

9
9

G
A

0
.0

3
4

6
6

7
3

0
.1

8
4

0
.0

4
5

4
.6

56
1

0
2

5
2

1
8

9
0

.0
9

1
0

.0
8

1
0

.2
6

8
8

6
2

0
.1

6
4

0
.0

3
9

3
.2

66
1

0
2

5

T
N

F-
b

e
ta

A
TP

2C
2

1
6

8
4

4
9

5
3

1
8

A
C

0
.0

2
3

6
6

6
0

0
.2

2
3

0
.0

5
5

4
.6

96
1

0
2

5
2

1
8

8
2

0
.0

2
4

0
.0

9
9

0
.8

1
8

8
4

8
0

.1
7

0
0

.0
4

8
3

.8
66

1
0

2
4

IF
N

G
A

TP
10

B
5

1
6

0
1

1
3

0
9

9
G

A
0

.0
3

4
6

6
7

3
0

.1
8

3
0

.0
4

5
4

.8
16

1
0

2
5

2
1

8
9

0
.0

3
7

0
.0

8
6

0
.6

7
8

8
6

2
0

.1
5

2
0

.0
4

0
1

.4
56

1
0

2
4

SD
F1

A
TP

2C
2

1
6

8
4

4
9

5
3

1
8

A
C

0
.0

2
3

6
6

6
0

0
.2

2
1

0
.0

5
5

5
.6

96
1

0
2

5
2

1
8

8
0

.0
5

7
0

.1
0

5
0

.5
9

8
8

4
8

0
.1

8
6

0
.0

4
9

1
.3

16
1

0
2

4

T
N

F-
b

e
ta

P
4H

A
3

1
1

7
3

9
7

8
2

4
3

G
A

0
.3

2
6

6
5

5
0

.0
7

5
0

.0
1

9
5

.9
46

1
0

2
5

2
1

8
6

0
.0

0
7

0
.0

3
1

0
.8

1
8

8
4

1
0

.0
5

8
0

.0
1

6
2

.6
66

1
0

2
4

FG
F

A
TP

2C
2

1
6

8
4

4
9

5
3

1
8

A
C

0
.0

2
3

6
6

6
0

0
.2

2
0

0
.0

5
5

5
.9

86
1

0
2

5
2

1
8

8
0

.0
3

3
0

.1
0

5
0

.7
5

8
8

4
8

0
.1

8
0

0
.0

4
9

2
.1

16
1

0
2

4

IL
1

8
EP

P
K

1
8

1
4

4
9

4
2

1
3

4
C

C
T

T
T

C
0

.0
2

3
6

6
7

7
2

0
.2

3
2

0
.0

5
8

6
.2

06
1

0
2

5
2

1
6

0
2

0
.2

4
0

0
.1

0
2

0
.1

9
8

8
3

7
2

0
.2

3
4

0
.0

5
0

3
.4

26
1

0
2

6

P
D

G
F

A
TP

10
B

5
1

6
0

1
1

3
0

9
9

G
A

0
.0

3
4

6
6

7
3

0
.1

8
1

0
.0

4
5

6
.2

06
1

0
2

5
2

1
8

9
2

0
.0

1
1

0
.0

8
6

0
.9

0
8

8
6

2
0

.1
3

9
0

.0
4

0
4

.8
46

1
0

2
4

SD
F1

A
TP

10
B

5
1

6
0

1
1

3
0

9
9

G
A

0
.0

3
4

6
6

7
3

0
.1

7
8

0
.0

4
5

7
.6

26
1

0
2

5
2

1
8

9
2

0
.1

1
8

0
.0

8
5

0
.1

7
8

8
6

2
0

.1
1

4
0

.0
4

0
4

.1
26

1
0

2
3

T
ri

g
ly

ce
ri

d
e

s
M

S
4

A
2

1
1

5
9

8
6

3
0

3
0

G
A

0
.0

1
9

2
5

0
5

1
0

.1
2

9
0

.0
3

3
7

.8
0
6

1
0

2
5

9
4

8
9

0
.1

5
1

0
.0

5
4

4
.8

5
6

1
0

2
3

3
4

5
4

0
0

.1
3

5
0

.0
2

8
1

.3
1
6

1
0

2
6

V
EG

F
H

TR
A

4
8

3
8

8
3

9
2

8
2

G
A

A
G

0
.0

1
3

6
6

6
9

2
0

.2
7

4
0

.0
6

9
7

.8
66

1
0

2
5

2
1

8
8

2
0

.0
1

0
0

.1
4

9
0

.9
5

8
8

5
7

2
0

.2
2

7
0

.0
6

3
3

.1
06

1
0

2
4

IL
1

7
C

LY
B

L
1

3
1

0
0

5
1

8
6

3
4

C
T

0
.0

3
5

6
6

7
1

0
.1

8
5

0
.0

4
7

8
.7

76
1

0
2

5

IL
1

0
A

TP
2C

2
1

6
8

4
4

9
5

3
1

8
A

C
0

.0
2

3
6

6
6

0
0

.2
1

4
0

.0
5

5
9

.3
36

1
0

2
5

2
1

8
8

0
.1

3
4

0
.1

0
5

0
.2

0
8

8
4

8
0

.1
9

7
0

.0
4

9
5

.0
86

1
0

2
5

IL
6

P
4H

A
3

1
1

7
3

9
7

8
2

4
3

G
A

0
.3

2
6

6
5

5
0

.0
7

2
0

.0
1

9
9

.7
06

1
0

2
5

2
1

8
6

2
0

.0
1

6
0

.0
3

3
0

.6
2

8
8

4
1

0
.0

5
1

0
.0

1
6

1
.7

36
1

0
2

3

Finnish Loss-of-Function Variants in Medical Genetics

PLOS Genetics | www.plosgenetics.org 6 July 2014 | Volume 10 | Issue 7 | e1004494



variant. Furthermore, examination of the hospital discharge

records did not provide any evidence for blood diseases, increased

cancer events or any other chronic diseases in these individuals

with homozygous LoFs in FANCM. We also had blood counts for

two homozygote individuals. Both of them had normal hemoglo-

bin, erythrocyte size and counts as well as leukocyte and

thrombocyte counts. Singh et al. reported that the initial case

that led to the association of FANCM with Fanconi anemia also

harbor biallelic, functional mutations in FANCA, a well-

established Fanconi anemia gene [18]. Our findings in this study,

combined with the findings by Singh et al. do not support the

hypothesis that FANCM is a Fanconi anemia gene but rather

suggest that the initial FANCM association was not causative. In

addition to FANCM, we further evaluated evidence for two other

genes COL9A2 and DPYD that were previously implicated in

other Mendelian diseases (Supplementary Methods).

The FINRISK cohort had collected 60 biochemical and

physiological quantitative measurements of cardiovascular or

immunologic relevance (Table S6), some of which are highly

correlated. We tested the 80 variants across the 60 traits and

report from this initial screen all associations with p,261024 –

that is, a value where we would expect only one chance

observation in the entire study. In total, we observed 41

associations that exceeded this significance threshold (Table 1),

far beyond the expected. If the phenotype was available in the

Young Finns and Health 2000 cohorts, replication was attempted

for these initial scan hits and significant associations are

highlighted below when the combined p-value was smaller than

a conservative study-wide Bonferroni-corrected threshold of 0.05/

(80*60) = 161025.

Three of these association have been previously reported and

represent positive controls for our approach: a strong association

for the 2 splice variants (c.4974-2A.G and c.4289+1G.A) in the

Lipoprotein(a) gene (LPA) with lipoprotein(a) measurements in

plasma (Pdiscovery = 2.17610281, Pdiscovery+replication = 1.536102117,

combined b̂b = 20.64 or 28.77 mg/dL per allele, Table S7), the

W154X variant in Fucosyltransferase 2 (FUT2) with increased

Vitamin B12 levels [19] (b̂b = 0.2, P = 3.7610226 or 43 pg/mL per

allele, Table S8) and the R225X variant in the Citrate Lyase Beta

Like gene (CLYBL) with decreased Vitamin B12 levels [20] (b̂b =

20.2, P = 1.861025 or 243 pg/mL per allele, Table S9) [21].

The boxplots for these associations are shown in Fig. S5.

In addition to a strong correlation between circulating

lipoprotein(a) levels and cardiovascular disease, it has been

previously reported that genetic variants that elevate circulating

lipoprotein(a) levels are cardiovascular risk factors [22,23]. The

converse, critical for evaluation of the therapeutic hypothesis of

inhibition, that lowering lipoprotein(a) levels can confer cardio-

vascular protection has not yet been evaluated. With access to

National Health Records, we utilized the strong lipoprotein(a)

lowering variants discovered here to evaluate the impact of

lipoprotein(a) lowering via Mendelian randomization. Using a Cox

proportional hazards model for incident cardiovascular disease in

these cohorts (adjusted for age, gender and therapies), the

composite LPA variant was found to protect against coronary

heart disease (Hazard Ratio HR = 0.79, P = 6.761023), demon-

strating that lowering lipoprotein(a) levels are likely to confer

protection for cardiovascular diseases. We adjusted the association

for the composite LPA variant with a previously published risk

variant (rs3798220) [22], but observed a similarly protective effect

(N = 18,270, HR = 0.79, P = 0.014), suggesting that the splice

variants are independent from the previously reported risk variants

in LPA.
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We confirmed this finding using three independent non-Finnish

datasets: an early onset myocardial infarction dataset of 18,000

individuals and two studies from the Estonian Biobank (4,600 and

7,953 individuals respectively), which collectively replicated the

observation that the LPA variants confer cardioprotective effect

(OR = 0.87, P = 0.016). After meta-analyzing all the datasets, the

final odds ratio was found to be 0.84 (P = 361024, Fig. 3). We

found 227 individuals who are homozygous or compound

heterozygous for the two LPA splice variants with no evidence

for increased morbidity or mortality based on National Health

Records. This suggests that reduction of lipoprotein(a) is well-

tolerated and might constitute a potential drug target for

cardiovascular diseases. A survey across other diseases showed

potential association between the LPA variants with acute

coronary disease and myocardial infarction but not Type 2

Diabetes (Table S10). In addition, we surveyed the LPA variants

across other cardiovascular risk factors and observed that the LPA
variants were associated with mildly increased glucose levels but

not high-density lipoproteins (HDL), low-density lipoproteins

(LDL) or triglycerides (Table S11).

In addition, we observed novel associations for the FGL1,

MS4A2 and ATP2C2 variants. The 1-bp c.545_546insA frame-

shift in the Fibrinogen-like 1 gene (FGL1) was associated with

increased D-dimer levels (b̂b = 0.21, P = 6.161026 or 52.23 ng/mL

per allele, Table S12). D-dimers are products of fibrin degradation

and their concentration in the blood flow is clinically used to

monitor thrombotic activity. The role of FGL1 in clot formation

remains unclear: although FGL1 is homologous with fibrinogen, it

lacks the essential structures for fibrin formation, with one study

suggesting its presence in fibrin clots [24]. In addition, given prior

links between variants associated with D-dimer levels and stroke,

we utilized the same Mendelian randomization approach as for

LPA above and found a nominally significant association between

FGL1 c.545_546insA and increased risk of ischemic stroke

(OR = 1.32, P = 0.024). If replicated, this would be consistent

with modest risk increase for stroke that other variants associated

to circulating D-dimer levels, such as reported for variants in

coagulation Factor V, Factor III and FGA [25].

We found suggestive associations for the c.637-1G.A splice

variant in the membrane-spanning 4-domains, subfamily A,
member 2 gene (MS4A2) with triglycerides (Pdiscovery = 7.8061025,

Pdiscovery+replication = 1.3161026, b̂b = 0.14 or 0.14 mmol/L per

allele, Table S13). This observation is consistent with our

previously published study of 631 individuals in the DILGOM

subset of FINRISK showing that whole blood expression of

MS4A2 was strongly negatively associated with total triglycerides

(b̂b = 21.62, P = 2.1610227, Fig. S6) [26] and a wide range of

systemic metabolic traits [27]. A similar but insignificant trend was

observed in 15,696 individuals from the D2D2007, DPS,

FUSION, METSIM and DRSEXTRA cohorts (b̂b = 0.04,

P = 0.32). The MS4A2 gene encodes the b-subunit of the high

affinity IgE receptor, a key mediator of the acute phase

inflammatory response.

The c.2482-2A.C splice variant in the ATPase Ca++
Transporting Type 2C Member 2 gene (ATP2C2) was associated

with increased systolic blood pressure (Pdiscovery = 1.2561025,

Pdiscovery+replication = 1.361026, b̂b = 0.12 or 2.13 mmHg per allele

(an association that is undisturbed by correction for lipid lowering

medication (b̂b = 0.12, P = 1.7561025) or blood pressure lowering

medication (b̂b = 0.13, P = 1.361025), Table S14). Based on its

structure, ATP2C2 is predicted to catalyze the hydrolysis of ATP

coupled with calcium transport. Interestingly, the ATP2C2
c.2482-2A.C variant is also significantly associated to several

highly correlated immune markers, such as granulocyte colony-

stimulating factor (b̂b = 0.26, P = 6.9861027), interleukin-4

(b̂b = 0.27, P = 2.4861026), interferon-c (b̂b = 0.26, P = 3.2461026)

and interleukin-6 (b̂b = 0.25, P = 4.5861026).

Discussion

The empirical data of this study sheds light on an active debate

in population genetics theory whether or not bottlenecked

populations have an excess burden of deleterious alleles.

Lohmueller et al. first observed that there were proportionally

more deleterious variants in European American individuals

compared to African American individuals [28]. They performed

a series of forward simulations to demonstrate that such an

observation is consistent with an Out-of-Africa bottleneck

experienced by the European populations from which the

European-American individuals descend, and illustrated that

bottlenecked populations are likely to accumulate a higher

proportion of deleterious alleles. A recent study by Simons et al.
showed conflicting results suggesting that there are similar burdens

of deleterious alleles in Europeans and West Africans and that

demography is unlikely to contribute to the proportions of

deleterious alleles in human populations [29].

The comparison of Finns, with a well-documented bottleneck,

with non-Finnish Europeans here provides strong empirical data

on these questions. While the distribution of common alleles, both

synonymous and non-synonymous, is as expected unchanged by

the bottleneck, when exploring the rare and low-frequency allelic

spectrum where the Finns and NFEs demonstrate distinct

distributions, we indeed observe a significant excess of deleterious

variants in the Finns – despite the considerable deficit in variable

sites in the population overall. This suggests that negative selection

has had insufficient time to suppress the frequency of deleterious

alleles dramatically elevated in frequency through the founding

bottleneck, an observation that generalizes the intuitive under-

standing of the existence of characteristic and unusually common

Mendelian recessive disorders in Finland. However, we note that

while we observe a strong influence of the founding bottleneck, the

observed results, particularly the proportional enrichment of rare

deleterious variants, are also influenced by other elements in the

unique history of the Finnish population and will not necessarily

apply to all populations influenced by a bottleneck.

This excess of presumably deleterious variants motivated the

subsequent association study and indeed, the absence of homo-

zygotes at TSFM (contemporaneously identified as an early-onset

mitochondrial disease gene) suggests that low-frequency variants in

Finns, beyond those already identified in Mendelian disease, do

include more unusually strong acting alleles than in non-founder

populations. In this study, both replicated results and novel

associations demonstrate the association of low-frequency LoF

variants with various complex traits and diseases. In addition, we

discovered a novel cardiovascular protective effect from splice

variants in the LPA gene, suggesting that knocking down levels of

circulating lipoprotein(a), or Lp(a), can confer a protection from

cardiovascular diseases. Given that we detected numerous

individuals in these adult population cohorts, healthy and in the

expected Hardy-Weinberg proportions, carrying a complete

knockout of LPA (homozygous or compound heterozygous for

the 2 splice variants), this suggests that knocking out the gene in

humans does not result in severe medical consequences. As such,

this study provides data suggesting that LPA may be an effective

target for therapeutic purposes.

As more Finnish samples are being sequenced, these enriched

variants can also be imputed with high precision to the large
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number of existing samples with array-based GWAS genotypes.

This advantage is likely to be more pronounced for the much

larger pool of missense variation – while one can presume all LoF

variants in a gene might have a comparable effect on phenotype

(and thereby burden tests of LoF variants in an out-bred sample is

not at a great disadvantage compared to isolated populations), it is

evident that many rare missense variants within the same gene will

not all have the same impact on gene function. Thus the ability to

assess single low-frequency variants conclusively, especially since

they will include an excess of damaging variants enriched through

a bottleneck, rather than perform burden tests on heterogeneous

sets of extremely rare variants, will offer substantial ongoing

advantage to isolated population studies as indicated by these and

other recent findings.

Materials and Methods

All research involving human participants have been approved

by the Hospital District of Helsinki and Uusimaa Coordinating

Ethical Committee, and all clinical investigation was conducted

according to the principles expressed in the Declaration of

Helsinki.

Exome sequencing quality control, annotation and
filtering

Raw Binary Sequence Alignment/Map (BAM) files from the

various projects were jointly processed at the Broad Institute and

joint variant calling was performed on all exomes to minimize

batch differences. Functional annotation was performed using the

Variant Effect Predictor (VEP v2.5) tool from Ensembl (http://

useast.ensembl.org/info/docs/tools/vep/). We modified it to

produce custom annotation tags and additional loss-of-function

annotations. The additional annotations were applied to variants

that were annotated as STOP_GAINED, SPLICE_DONOR_-

VARIANT, SPLICE_ACCEPTOR_VARIANT, and FRAME_-

SHIFT and the variants were flagged if any filters failed. A loss-of-

function variant was predicted as high confidence if there is one

transcript that passes all filters, otherwise it is predicted as low

confidence. In our genotyping study, we had used loss-of-function

variants that were predicted to be high confidence. For quality

control, we required all variants to pass the basic GATK filters and

required all genotypes to have a quality score of $30, read depth

of $10 and allele balance of between 0.3 and 0.7 for heterozygous

calls and ,0.1 for homozygous calls. Allele counts and frequencies

were calculated within the 3,000 individuals for Finns and NFEs

respectively.

Detecting amount of substructure in the Finnish and NFE
exomes

To estimate the amount of substructure or homozygosity by

descent, we fitted a regression model on all coding variants with

the intercept set to 0, where q is the allele frequency of the

alternate allele and FST is the proportion of allelic variance

explained by population structure. Here we fit FST to capture the

empirical departure from Hardy-Weinberg equilibrium arising

from population substructure to insure this is not creating the

observed difference between Finnish and NFE samples:

Number of homozygotes

Number of individuals
~FST qz(1-FST )q2

Using the whole-exome sequencing data for the 3,000 NFEs, we

estimated the parameters:

E(FST )~0:00898

1{E(FST )~0:991

FST~
E(FST )

1{E(FST )
~0:91%

Using the whole-exome sequencing data for the 3,000 Finns, we

estimated the parameters:

E(FST )~0:00675

1{E(FST )~0:993

FST~
E(FST )

1{E(FST )
~0:68%

Figure 3. Forest plot for the LPA splice variants with cardiovascular diseases. The cardiovascular diseases were defined as coronary heart
disease (CHD), ischemic heart disease (IHD), heart failure (HF) or myocardial infarction (MI) from the various cohorts.
doi:10.1371/journal.pgen.1004494.g003
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As shown, there is little substructure in the 3,000 Finns compared

to the 3,000 NFEs, given that the estimates for FST are similar in

both populations.

Variant selection for genotyping
All frameshifts and loss-of-function single nucleotide variants

with allele frequencies of 0.5–5% in Finns and at least 2-fold

enriched in Finns compared to NFEs were selected for

genotyping. To minimize the false positives in our variant

selection, we performed Fisher’s Exact Test for each variant

between two independent NFE datasets and kept variants whose

allele frequencies were highly concordant between the two NFE

datasets (P.161025). The high concordance between the allele

frequencies in two independent NFE datasets ensures that the

variants are unlikely to arise from alignment or sequencing

artifacts and that these variants are unlikely to reside in a region

of the exome that is difficult to sequence or genotype, which can

result in highly variable allele frequencies from different

experiments.

Sequenom genotyping
Genotyping was performed using the iPLEX Gold Assay

(Sequenom Inc.). Assays for all SNPs were designed using the

eXTEND suite and MassARRAY Assay Design software version

3.1 (Sequenom Inc.). Amplification was performed in a total

volume of 5 mL containing ,10 ng genomic DNA, 100 nM of

each PCR primer, 500 mM of each dNTP, 1.256 PCR buffer

(Qiagen), 1.625 mM MgCl2 and 1 U HotStar Taq (Qiagen).

Reactions were heated to 94uC for 15 min followed by 45 cycles at

94uC for 20 s, 56uC for 30 s and 72uC for 1 min, then a final

extension at 72uC for 3 min. Unincorporated dNTPs were SAP

digested prior to iPLEX Gold allele specific extension with mass-

modified ddNTPs using an iPLEX Gold reagent kit (Sequenom

Inc.). SAP digestion and extension were performed according to

the manufacturer’s instructions with reaction extension primer

concentrations adjusted to between 0.7–1.8 mM, dependent upon

primer mass. Extension products were desalted and dispensed onto

a SpectroCHIP using a MassARRAY Nanodispenser prior to

MALDI-TOF analysis with a MassARRAY Analyzer Compact

mass spectrometer. Genotypes were automatically assigned and

manually confirmed using MassARRAY TyperAnalyzer software

version 4.0 (Sequenom Inc.). The genotyped variants were then

checked for concordance in allele frequencies with the exome

sequencing data.

Phenotyping
Data on disease status from National Health registers (Hospital

Discharged Registers maintained by THL (Institute for Health

and Welfare, Finland), Cause of Death Register, Statistics Finland

and Prescription Medication Register, THL) for FINRISK,

Health2000 and the Young Finns Study participants of this study

were collected and curated. A description of each cohort is

provided in the Supplement.

Analyses of RNA sequencing data
To analyze the effects of the LoF variants on gene expression,

we used RNA sequencing data from two major studies: the

GEUVADIS project [30] with RNA sequencing data from

lymphoblastoid cell lines of 462 individuals participants from the

1000 Genomes Project [31]), and the GTEx project with RNA-

sequencing data from a total of 175 individuals with 1–30 tissues

each (http://www.broadinstitute.org/gtex/) [32]. The processing

of the GEUVADIS data and the methods for allele-specific

expression analysis are described in Lappalainen et al. [30] and the

GTEx data were analyzed using similar methods. Allele-specific

expression analysis was used primarily to capture nonsense-

mediated decay. Additionally, to assess whether LoF variants lead

to decreased exon expression levels overall or for individual exons,

we calculated an empirical p-value for each exon of all the LoF

genes with respect to all other exons genome-wide, denoting the

proportion of all exons where carriers of the LoF variants are more

extreme than in the each studied exon in LoF variant genes. The

analyses were performed separately in each studied tissue:

lymphoblastoid cell lines from the GEUVADIS data and nine

tissues from the GTEx data. The significance threshold after

correcting for the total number of tested exons across all tissues is

0.05/1070 = 4.6761025.

Statistical analyses and methods
Inverse rank-based normalization was performed on the

quantitative measurements in males and females separately,

with linear regression residuals using age and age2 as covariates.

Linear regression was then performed on the normalized Z-

scores using R to obtain the statistics for the associations. We

tested the correlations between the quantitative measurements

and disease outcomes using two one-tailed t-tests to assess the

significance of observing higher levels of the quantitative

measurements in cases (individuals with the disease outcomes)

versus controls (individuals without the disease outcomes), as

well as lower levels of the quantitative measurements in cases

versus controls. To test the association of the variants with the

prevalent disease outcomes, we performed a logistic regression

in R to obtain the reported statistics. In addition, a Fisher’s

Exact Test on the homozygous counts in cases and controls were

performed to test for association with the homozygotes. The

results for the LPA with cardiovascular disease association from

MIGen ExA and the Estonian Biobank were meta-analyzed

using METAL [33] and the combined results with FINRISK

were obtained using the Fisher’s Combined P method with 4

degrees of freedom.

Associations between MS4A2 c.637-1G.A, gene
expression and triglycerides

We fit a linear model in which the log2-normalised gene probe

expression of individual i was regressed on the LoF genotype,

which was encoded as Xi = 0, 1 or 2 for the LoF genotypes 2/2,

+/2 or +/+ respectively and association analysis of MS4A2 gene

expression and triglycerides was performed as previously reported

[26]. Briefly, we used a multivariate linear regression adjusted for

age, gender, and use of cholesterol or blood pressure lowering

medication. We further tested for association between MS4A2
c.637-1G.A and triglycerides using a 2-sided t-test.

Supporting Information

Figure S1 Ratio of the number of missense variants predicted by

PolyPhen2 found in Finns versus NFEs. (A) The ratios for

probably damaging missense variants highlighted in red text and

the ratios for benign missense variants in black. The p-values

represent the binomial probabilities of the variants being enriched

in Finns and similarly, the p-values in red represent the

probabilities for the probably damaging missense variants and

the p-values in black represent the probabilities for the benign

missense variants. (B) Percentage of variants that are missense

variants across the allele frequency spectrum.

(DOCX)
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Figure S2 Allele frequency distribution in 3,000 Finns compared

to 3,000 Swedes. The ratios for LoF variants highlighted in red

text and the ratios for synonymous variants in black.

(DOCX)

Figure S3 Distribution of LoF variants per individual. (A) Number

of LoF variants in an average Finn vs NFE individual. (B) Number of

homozygous LoF variants in Finns vs NFEs per individual.

(DOCX)

Figure S4 Simulations for a set of variants (ranging from 1%

to 5% allele frequencies) with complete recessive lethality. The

red line indicates the expected allele frequencies in present-day

Finns (where the Finnish bottleneck occurred ,100 generations

ago) and the blue line indicates the expected allele frequencies

in Finns 1,000 generations after the Finnish bottleneck, similar

to the out-of-Africa bottleneck which occurred .1,000 gener-

ations ago.

(DOCX)

Figure S5 Boxplots for the known and novel associations.

(DOCX)

Figure S6 Correlation between triglycerides and MS4A2 gene

expression.

(DOCX)

Table S1 Exomes collected from ongoing studies. All the Finnish

and NFE exome sequences were captured using the Agilent

SureSelect v2 kit. The replication data for the LPA variants from

the different studies was performed on the exome chip genotyping

platform.

(XLSX)

Table S2 The number of variants in each category in Finns and

NFEs.

(XLSX)

Table S3 Allele frequencies of variants discovered from the

FinDis database.

(XLSX)

Table S4 Final list of variants from Sequenom genotyping in

36,262 Finns. The cohorts used in this study are from FINRISK

1992, FINRISK 1997, FINRISK 2002, FINRISK 2007,

Health 2000 and Young Finns studies (83 variants + 3 composite

variants).

(XLSX)

Table S5 Associations between TSFM Q246X heterozygotes

and various disease states, as well as various neurological and

muscular diseases from the medical record system (ICD 9/10) with

.30 cases.

(XLSX)

Table S6 List of 60 blood pressure measures and biochemical

assays from plasma/serum of fasting subjects.

(XLSX)

Table S7 Correlations between the combined LPA variant and

various disease states. The rows with significant correlation

between the levels of the biomarker and disease status

(P,161023) are shaded in blue and the rows with significant

association (P#0.05) between the variant and disease status

(allelic or homozygous tests) are highlighted in red text.

(XLSX)

Table S8 Correlations between FUT2 W154X and various

disease states. The rows with significant correlation between the

levels of the biomarker and disease status (P,161023) are shaded

in blue and the rows with significant association (P#0.05) between

the variant and disease status (allelic or homozygous tests) are

highlighted in red text.

(XLSX)

Table S9 Correlations between CLYBL R225X and various

disease states. The rows with significant correlation between the

levels of the biomarker and disease status (P,161023) are shaded

in blue and the rows with significant association (P#0.05) between

the variant and disease status (allelic or homozygous tests) are

highlighted in red text.

(XLSX)

Table S10 Association of the composite LPA variant with

different diseases.

(XLSX)

Table S11 Association of LPA composite variant with other

potential cardiovascular risk factors.

(XLSX)

Table S12 Correlations between FGL1 c.545_546insA and

various disease states. The rows with significant correlation

between the levels of the biomarker and disease status (P,

161023) are shaded in blue and the rows with significant

association (P#0.05) between the variant and disease status (allelic

or homozygous tests) are highlighted in red text.

(XLSX)

Table S13 Correlations between MS4A2 c.637-1G.A and

various disease states. The rows with significant correlation

between the levels of the biomarker and disease status (P,

161023) are shaded in blue and the rows with significant

association (P#0.05) between the variant and disease status (allelic

or homozygous tests) are highlighted in red text.

(XLSX)

Table S14 Correlations between ATP2C2 c.2482-2A.C and

various disease states. The rows with significant correlation

between the levels of the biomarker and disease status (P,

161023) are shaded in blue and the rows with significant

association (P#0.05) between the variant and disease status (allelic

or homozygous tests) are highlighted in red text.

(XLSX)
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