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Abstract-The problem of the nonparametric estimation of a 
probability distribution is considered from three viewpoints: the 
consistency in total variation, the consistency in information 
divergence, and consistency in reversed order information diver- 
gence. These types of consistencies are relatively strong criteria 
of convergence, and a probability distribution cannot he consis- 
tently estimated in either type of convergence without any re- 
strictions on the class of probability distributions allowed. His- 
togram-based estimators of distribution are presented which, 
under certain conditions, converge in total variation, in informa- 
tion divergence, and in reversed order information divergence to 
the unknown probability distribution. Some a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori information 
about the true probability distribution is assumed in each case. 
As the concept of consistency in information divergence is 
stronger than that of convergence in total variation, additional 
assumptions are imposed in the cases of informational diver- 
gences. 

Index Tens-Consistent distribution estimation, total varia- 
tion, information divergence, reversed order information diver- 
gence, histogram-based estimate. 

I. INTRODUCTION 

E CONSIDER the problem of estimating an un- W known probability distribution p, defined on an 
arbitrary measurable space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA231, based on independent, 
identically distributed (i.i.d.) observations XI ,.*e, X,, from 
p. Here, X could be the real line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[w or the Euclidean 
space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARd, d 2 1, in which case % is the collection of 
Bore1 sets. As generic notation for the distribution esti- 
mate of a set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA we use 

= P . , * ( A X l , X * , . . . > X , , ) >  (1 .1> 

where p.,* is a measurable function of its arguments. 

In this paper, we examine density estimation problems 
and related distribution estimation problems that are mo- 
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tivated by statistical applications. As density estimation 
implicitly results in the estimation of a distribution, a 
reasonable error criterion for density estimation should 
correspond to an error criterion for the estimation of 
distributions. 

Such error criteria can be derived from dissimilarity 
measures of probability measures, like f-divergences in- 

troduced by Csiszir [9]. The f-divergences have several 
important properties, e.g., they are invariant under an 

invertible transformation of the sample space. 
The two most important f-divergences in mathematical 

statistics and information theory are the total variation 

and the information divergence: if p and v are probabil- 
ity measures on X ,  then the total variation and the 
information divergence are defined by 

T(P2 = SUP1 P ( A )  - 4 A ) I  

= -SUP CI P ( A , )  - W i ) L  

A 

1 
(1.2) 

( A , )  

and 

respectively, where for supA the supremum is taken over 
all measurable sets A ,  and where for sup{,,) the supre- 
mum is taken over all finite (measurable) partitions 
{ A , ,  A 2 ; - - ,  Am}  of X.  In this paper, log means logarithm 

to the base 2. 
It is well known (cf. Csisziir [9], Kemperman [23], and 

Kullback [25]) that 

w o g  e ) { T (  CL, .>I’ I( P3 v). (1.4) 

If p and v are absolutely continuous with respect to a 
a-finite measure A (i.e., p -e A, and v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ A), with densities 
f = dp/dA and g = du/dA,  respectively, then 

1 

2 
T (  P >  = - / l f (x )  - g(x)lA(&), (1.5) 

which is one half the L ,  distance between f and g ,  and 
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I (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv )  is also called the Z-divergence or Kullback-Lei- 
bler information number of p with respect to v ,  and will 
be denoted by D ( f , g )  as well in the sequel if f and g 
exist. If p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ v ,  and f = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdp/dv, then 

In this paper, we shall be interested in finding condi- 
tions under which suitably defined distribution estimators 

p,* are consistent estimators of p, either in total variation 
T( p, p,*), or in informational divergence I(  p, p,*), or in 

reversed order informational divergence I( p.,", p). 
We first recall the standard empirical measure p, which 

is often referred to next. For random variables XI; . . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI , ,  
which are i.i.d. according to p on ( X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA231, and any mea- 

surable set A we define the standard empirical measure 

pn of A by 

1 n  

where 1, = 1 if B occurs, and = 0 otherwise. 
As we shall see, though, the standard empirical mea- 

sure is not suited for estimating p when we wish to have 
a s .  consistency in total variation or in information diver- 

gence. 
We also recall the classical result by Glivenko-Cantelli, 

which states that if for a random variable X the distribu- 
tion function F corresponding to p on (R, B) is arbitrary, 
and F, is the empirical distribution function, then 

sup JF,(x) - F ( x ) l  + 0 a.s., (1.9) 
X 

as n -+ m. This is actually a weak result in many respects, 
since the Glivenko-Cantelli distance (1.9) only involves 
measure of half lines, as F,(x)  = p n ( ( - m ,  XI) and F(x) 
= p(( - m, XI), but not of any arbitrary (measurable) sets 

A .  It becomes an entirely different matter when one 
considers the total variation T( p, p,) between p and the 
standard empirical measure p,,. In the definition of 

T( p, p.,) (cf. (1.2)) the supremum is taken over all mea- 
surable sets A.  Now it is not true that T( p, p,) will tend 

to zero a s .  for all measures p. In fact, if p is absolutely 
continuous and pn is the standard empirical measure, 
then T( p, p,) = 1, as can be easily seen by considering 
the set A that is the finite support of pl,. Then, p n ( A )  = 1, 
p ( A )  = 0, and thus, T( p, p,) = 1. Also, in this case 
I (  p, p,) = m, since p is not absolutely continuous with 
respect to p,. 

Hence, when we want to find distribution estimators 
which are a.s. consistent in either total variation or in 
information divergence, the standard empirical measure 

p,, is not suitable if we allow all possible probability 
measures p, including the case that p is absolutely con- 
tinuous. Yet more is true. Recently, Devroye and Gyorfi 

[ 151 established the following negative finding. 

Lemma (Decroye and Gyorji [Is]): For any 6, 0 < 6 < 
1/2, and for any sequence of distribution estimators p: 
on (R, B), there exists a probability measure p such that 

inf T (  p,  pL,*) > 1/2 - 6 a s . ,  (1 .lo) 
n 

and thus, (by (1.4)) both 

in f I (  p, p.,") > 2(1og e)(1/2 - a s .  (1.11) 
n 

and 

i n f l (  pL,*, p )  > 2(1og e)(1/2 - 6)' a s .  (1.12) 

This indicates that, in our search for a distribution 

estimator p,* which is a.s. consistent in either total varia- 
tion or in information divergence, we should limit the 
class of probability measures for which we are estimating 

the unknown one. This can be achieved by assuming some 
a priori information about p. In addition, this shows that 

the standard empirical measure p, should be modified if 
absolutely continuous probability measures are retained 
in the restricted class. 

One of the main messages of the L ,  theory of density 

estimation is that there are estimators (histogram, kernel, 
etc.) which are a s .  consistent in L ,  without any condition 
on the unknown density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (see Devroye and Gyorfi [141). 
Therefore, if the underlying distribution has a density, 

then such as. consistent estimators in L ,  provide distri- 
bution estimates a.s. consistent in total variation. 

We now recall the standard histogram density estimator 
that is central in our work. For any given a-finite measure 

q and any partition 9, = { A , , , ,  A , , , ; . .  1 of 9 such that 
v ( A , , ~ )  > 0 for each i, th? corresponding standard his- 
togram density estimator f, with respect to 7 is defined 

n 

by 

if x E A, , , ,  (1.13) 

where p, is the standard empirical measure (1.8). The 
corresponding basic distribution estimator, denoted by b,,, 
is defined by 

(1.14) 

In Section 11, we present a certain histogram-based 
distribution estimate ,G, ((2.4)), which is a modification of 
b,,, and which is a s .  consistent in total variation, i.e., 

limn ~ T( p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,) = 0 a.s., and consistent in expected total 
variation, i.e., limn --)r E(T( p, I.,)) = 0 (cf. Theorem 1 

and (2.10)). In deriving Theorem 1 and its generalization 
Theorem l ' ,  we assume as a priori information about p 
that the nonatomic part of p is absolutely continuous 

with respect to a known a-finite measure v .  
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In Section 111, we present another histogram-based 

distribution estimator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp: ((3.2)), which is also a certain 
modification of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i n ,  and which is a s .  consistent in infor- 

mation divergence, i.e., limn 'r I(  p, p,*) = 0 a.s., and 
consistent in expected information divergence, i.e., 
limn --+m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(Z( p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp:)) = 0 (Theorem 2). In deriving Theo- 
rem 2, we assume that there exists a known probability 
measure v such that I(  p, v )  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. 

At the end of Section 111, we give implications of our 
results for the problem of universal source coding of finely 
quantized data. Similar implications of convergence in 
expected information divergence can be given for univer- 
sal portfolio selection (cf. Barron and Cover [5]). 

Earlier, Barron [3] considered the convergence in ex- 
pected information divergence of probability density esti- 
mators. In particular, he considered a modified histogram 
estimator for estimating an unknown probability density 
function on [0,1]. His estimator is given as a special case 
in Section 111. In Barrow and Sheu [6], convergence in 
probability of the information divergence for ordinary 
histogram estimators is established for density functions 
having finite Fisher information. See also Remark 6. 

Also earlier, Gyorfi and van der Meulen [20] showed 

a.s. consistency in information divergence of two his- 
togram-based density estimators under certain conditions. 

These conditions included a convergent series condition. 
In Theorem 2, we are able to relax this condition and, 

moreover, focus on the general case of distribution esti- 
mation rather than density estimation. Techniques of the 

proof in Section 111 are related to entropy estimation 
based on histograms (see Gyorfi and van der Meulen [ 191). 

Finally, in Section IV (Theorem 5 )  we prove the consis- 

tency in expected reversed order information divergence, 
i.e., limn '~ H I (  f i n ,  p)> = 0, for the basic histogram- 
based distribution estimator f i n  ((1.14)). Here, we assume 
not only that p is absolutely continuous with respect to a 
known a-finite measure v ,  but also impose additional 
conditions on p and v. Theorem 5 is arrived at by 
decomposing I(  f i n ,  p )  into a variance component and a 

bias component. The convergence properties of the vari- 
ance component are dealt with in Theorem 3 and those of 
the bias component are treated in Theorem 4. 

11. CONSISTENCY IN TOTAL VARIATION 

In this section, we consider the problem of estimating 
the unknown probability measure p, defined on an arbi- 
trary measurable space X ,  from i.i.d. observations 
XI;.., X,, such that the estimator used is a.s. consistent in 
total variation. In Section I, we saw that the standard 

empirical measure pn is not suitable for this purpose if all 
possible p are allowed. When proving the negative result 
given in the Lemma of Section I, Devroye and Gyorfi [151 
mentioned that a distribution might be estimated consis- 
tently in total variation, if the distribution is a mixture of 
just an atomic and an absolutely continuous part (and 
thus does not involve a continuous singular component). 
In the sequel, we slightly extend this program of thought, 

first for X = Rd and after that for .E being an arbitrary 

measurable space. We will present a histogram-based 
estimator of the distribution, which is a modification of f i n  
(defined in (1.1411, and which is indeed a s .  consistent in 
total variation under some conditions. It will be denoted 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,. One of these conditions assumes some prior infor- 
mation about p, viz. that there is a known (nonatomic) 
a-finite measure v which dominates the nonatomic part 
of p. 

For a probability measure p on X ,  we denote the 
atomic part of p by pa and the nonatomic part of p by 

pb ,  so that 

p = P p u  + (1 - P ) p b .  (2.1) 

Let v be a known a-finite measure on X such that pb 

Moreover, given the sample X,;.., X,,, define 

is absolutely continuous with respect to v ,  i.e., p b  Q v. 

where p, is the standard empirical measure (1.8). Finally, 

let N( 1 denote the cardinality of a set { ... I. 
We first discuss the case .X = R d  and state Theorem 1. 

We next observe that the results can be formulated in a 
general setting and state Theorem l', which generalizes 

Theorem 1 to the case that .X is an arbitrary measurable 
space. We then prove Theorem 1', which a fortiori pro- 

vides a proof of Theorem 1. 
Now turning to the case .T = Rd,  let 

be a partition of Rd with 0 < v (A , , ; )  < 0~ for all n 2 1, 
i 2 1. Next define, for measurable subsets A of Rd,  the 

distribution estimate 

We then have the following theorem. 

Theorem I :  Let p be an unknown probability measure 
on Rd. Suppose there exists a known a-finite measure v 
such that pb Q v. Let Pn be a sequence of partitions, as 
defined in (2.31, such that for each finite sphere S cen- 

tered at the origin 

and 

b) lim max [ sup IIx -yll 
( I :  A,  , n S + 0 )  x , y C 4 , ,  n ' -z 

(Here, I( ( 1  denotes Euclidean norm.) Let ji,, be defined as 
in (2.4). Then, 

lim T (  p,  F r , )  = 0 a s .  (2.7) 
n + =  
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Remark 1: We note that if the nonatomic part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAph is 
absolutely continuous (with respect to Lebesgue measure 

A) then the obvious choice for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv is A. We also note that if 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,,,'s in (2.3) are cubes of common size h,, then 

conditions (2.5) and (2.6) can be replaced by the condi- 
tions 

lim nhf = x (2.8) 
n - x  

and 

lim h,, = 0, (2.9) 
n - r  

respectively. Furthermore, since T( p, 6,) is bounded be- 
tween 0 and l ,  the as .  consistency of T( p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,) given by 
(2.7) implies the consistency in expected total variation, 
i.e., that 

lirn E ( T (  p ,  6,)) = 0 (2.10) 
n + x  

under the conditions of Theorem 1. 
Remark 2: The novelty of our result is the treatment of 

distributions with both discrete and absolutely continuous 
components. In what follows, we show how the result of 

Theorem 1 can be deduced by relating our situation to the 
case that the measure p is dominated by a given a-finite 
measure 7. Indeed, the estimator 6, ((2.4)) is shown to be 

close to a basic histogram estimator &, with respect to a 
a-finite measure 7, which is a mixture of v and an atomic 
measure K .  To make the arguments work, we will need 
less restrictive assumptions on the sequences of partitions. 
Furthermore, we assume .X to be arbitrary. The necessary 

conditions will now be defined. 
We recall the deFnition of the standard histogram-based 

density estimator f, ((1.13)) with respect to a given a-finite 
measure 7 and a partition 9, = { A n , , ,  A, , ,2 ,  of an 
arbitrary measurable space 3 such that v ( A , , , )  > 0. We 

also recall the definition (1.14) of the corresponding basic 
distribution estimate b,, for measurable subsets A of X .  

In a similar manner, we define 

which is the eTpected value of the histogram estimator 
(i.e., f , (x)  = Ef, (x) ) ,  and denote 

(2.14) 

Next, we recall the following definitions from Barron [41. 
Definition I: The €-effective cardinality of a partition 

9 of .E with respect to a measure 77 restricted to a subset 
S of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, denoted m ( 9 , 7 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, E), is the minimum number of 
sets in the partition such that the union of the remaining 
sets intersected with S has 7-measure less than E. 

Definition 2 (Condition A): The effective cardinality of a 
sequence of partitions pn with respect to a a-finite 

measure 7 is said to be of order o(n) if 

(2.15) 

for all E > 0 and all sets S with q ( S )  < CO. 

Condition A on the effective cardinality of a sequence 
of partitions of 3 can be shown (see Appendix A) to be 

equivalent to condition (D) in Abou-Jaoude [2], which he 
shows to be necessary and sufficient for the convergence 
to zero in probability of the variation term T(  c,, p,) for 
all probability measures p dominated by 7. This condition 
is also sufficient for the almost sure convergence of the 
variation term as shown in Abou-Jaoude [l]. 

In the case that the measurable space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ is a metric 
space, a sufficient condition for the effective cardinality of 
a sequence of partitions to be of order o(n) is that 

N{ i :  A,. ,  n S # 0) 
lim = 0, (2.16) 

for each ball S centered at some point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,,. (This is the 

same as condition (2.5) in the case that X = Rd.> In 
particular, a partition of R d  into cubes of common width 
h,  is of effective cardinality o(n)  provided (cf. (2.8)) 

The following concept is due to Csiszhr [lo]. 
Definition 3 (Condition B): For a measure 7 on a mea- 

surable space X ,  a sequence of partitions 9, of .X is said 
to be 7-approximating if, for every measurable set A with 
v(A) < CC and for every E > 0, there is for all n suffi- 

ciently large a set A, equal to a union of sets in 9, such 
that 

where A ,  A A denotes the symmetric difference of A ,  
and A .  

Abou-Jaoude [2] showed that the condition that the 
sequence 9, is 7-approximating (condition B )  is neces- 
sary and sufficient for the convergence to zero of the bias 
term T( E, ,  p), for all measures p dominated by 7. 

For separable metric spaces, Csiszhr [lo, p. 1681 showed 

that a sufficient condition, for a sequence of partitions 9, 
to be 7-approximating for any a-finite measure 7, is that 

lim max diam(A,, ,)  = 0, (2.19) 
! 7 + =  ( 1 :  ~ ~ , , n S # 0 1  

for each ball S centered at some point xo. Here diam(A) 

-  SUP^,^ A d(x ,  y ) ,  and d(x ,  y )  denotes the distance be- 
tween points in the metric space. For partitions of Rd into 
cubes of width h,  this sufficient condition becomes (cf. 

(2.9)) 

- 

lim h,  = 0. (2.20) 
n + x  

This leads to the following generalization of Theorem 1. 

Theorem 1': Let X be a measurable space with the 

probability distribution p defined on it. Suppose there is a 

I 11 
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known (nonatomic) a-finite measure v that dominates the 

nonatomic part of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{A, , l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn,*, ... 1 be a 
sequence of partitions of .% such that 0 < v(A, , , )  < for 

all n 2 1, i 2 1. Assume that the sequence of partitions 
9, of X is v-approximating and has effective cardinality 
of order o(n> with respect to v. Let @, be defined on X 
as in (2.4), for subsets A of X and based on this 9,. 
Then, 

lim T(  p ,  @,,) = 0 a.s. (2.21) 
n + x  

Proof of Theorem 1': If we introduce the notation 

then, clearly 

B, c B a.s. (2.23) 

Let bj ,  i = 1,2, .  . . denote the points in B,  and let the 
partition generated by 9, and the point-sets in B be 

denoted by 

6, = { A , , ,  n B',  A , , ~  n B',... , { b , ) ,  ( 6 2 )  > *.. 1. (2.24) 

Similar to (1.14) and (1.15), let in be the (auxiliary) 

histogram-based- distribution "estimator" with respect to 
the partition 9, and the a-finite measure 7 = 1' + K ,  

where K is the counting measure restricted to B. Then, 

(2.25) 

The distribution L,, has density with respect to 7 given by 

Note that, unlike the 5stimator @,, requires knowl- 

edge of B .  Therefore, f in is not an estimator in the true 
sense, but an auxiliary, artificial estimnator introduced in 

the course of the proof. Note that f i , (A) = G,(A)  for 
A c B,, and f i ,(A) I @,(A)  for A c B', while /&(A) = 0 
for A c B - B,. Thus, the set A,,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi? B - B, has the 

property that b, is greater than or equal to ,&, when 
restricted to A,,, while the reverse inequality holds when 
restricted to A:,, i.e., 

and 

G,(A " A ; )  2 ; , (A  n A; ) ) .  

It is seen that the distribution &, is also absolutely 
continuous with respect to 77 and a version of the corre- 

sponding density is 

p n ( A n , r  B : ) / v ( A n , l ) 7  if B c 7  

(2.27) 

Let A* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x: L ( x )  > f;l(x)>. Then, A* = Aho. Now exam- 
ining the total variation distance between f in and @, (cf. 
definition (1.2)) we have that 

7-( b,,@,,) = SUP I i,W - G , ( 4  
A 

= ; , (A* )  - @ , ( A * )  

= p,(B - B,) - 0 

= P,(B) - P,(Bn). (2.28) 

Now put, for 6, E B,  p, = p({b, ) )  and p,, = p,({b,J). By 
the strong law of large numbers, 

lim p,, = p I  a.s. (2.29) 
n + x  

Next, let M > 0 be a fixed positive integer. Then, 

P,(B) - FAB,) 
I X 

= c P n ( { 4 } )  - c pL, ( Ib , } )1~~L, ( (b , j )>_2/n)  

= c p , ( { 6 ~ ) ) l ( ~ ~ ~ ~ ~ , ) ~ s l / ~ l )  

r = l  r = l  

X 

r = l  

M z 

= c P n r l { p , > ,  s I / , )  + c P"I1{Pn, < I,,). (2.30) 
r =  1 r = M +  I 

Now, (2.29) implies that, for each fixed M > 0, 

M 

lim c P n J { p n ,  s I/,) = 0 ass. (2.31) 
r = l  n + =  

Moreover, 
r 

l i m s u ~  C p n i 1 { p n ,  s l / n )  
n - x  r = M + I  

% I 

- < limsup c p,, = pra.s. (2.32) 
n + l  I = M + I  , = M + 1  

From (2.301, (2.311, and (2.321, we deduce that 
r 

0 2 limsup ( p , ( B )  - p, (B , ) )  I p, a . ,  
n + x  r = M +  1 

(2.33) 

and since M was arbitrary it follows that 

lim ( p,( B )  - p,( B,))  = 0 a.s. (2.34) 
n*= 

I I I  
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Thus, by (2.28) and (2.341, Defining the standard histogram density estimator (with 

respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv )  by (cf. (1.13)) 
lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT (  ,!in, f i n )  = o a s .  (2.35) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n + =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ( x >  = p n ( A n , L ) / v ( A n . L ) ,  i f x  EA, , , ,  (3.3) 

By applying the triangle inequality, it now follows that @,, 
converges a.s. to p in total variation, if and only if j&, 
converges a s .  to p in total variation. Now, since the 

and the corresponding distribution estimator (cf. 

(1.14)-(1.15)) by 

sequence of partitions 9, is assumed to be wapproximat- 

to v ,  it is easily checked that the sequence of partitions 

9, is 7-approximating and has effective cardinality of 

ing and has effective cardinality of order o(n) with respect G n ( A )  = J A L ( x ) v ( h ) 7  

we note that 

order o(n) with respect to 7. Therefore, by the results of 
Abou-Jaoude [ll, [2] just discussed, 

Observe that p.,* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ v and that the density f,* of I,* with 
respect to v has the form lim T (  G,, p )  = o a s .  ( 2 3 )  

n - =  

and hence, 

lim T (  G,, p )  = 0 a s .  (2.37) 

Thus, the proof of Theorem 1' (and hence, of Theorem 1) 

n - =  

is completed. 0 

111. CONSISTENCY IN INFORMATION DIVERGENCE 

Consider again the problem of estimating the unknown 
probability measure p from i.i.d. observations X,;.., X ,  
taking values in an arbitrary measurable space 3 .  We will 
now present another histogram-based estimator of the 
distribution, denoted by p.,*, which is also a certain modi- 
fication of f i n ,  and which is a.s. consistent in information 

divergence and consistent in expected information diver- 
gence. In order to derive these consistency results, we 
need to impose some additional assumptions. In particu- 
lar, we assume that there exists a known probability 
measure v on 3 such that I(  p, v )  < =. As is well-known, 

the condition that f ( p ,  v )  < cc implies that p is abso- 
lutely continuous with respect to v. Apart from the fact 

that v is known, v is otherwise arbitrary and thus may be 
discrete or have a discrete part. 

Now define a sequence of integers m,, 0 < m, < n, 
n = 1,2;.., and a sequence of real numbers h, > 0. 
Furthermore, introduce a sequence of partitions 9, = 

{A,, l ,  A n , 2 , - - . ,  A,.ma),  n = 1, 2 ; . . ,  of .X such that 
v(A,, , )  2 h,. Notice that this implies that m, 5 l /h, .  
We require that v ( A , , , )  2 h,  rather than AA, , , )  = h,, 
to allow for the possibility that v is discrete since in that 
case v(A, , , )  may exceed the prescribed number h,. 

For a given sequence a,, 0 < a, < 1, with 

f , * ( ~ )  = (1 - a n ) p n ( ' n , i ) / v ( ' n , i )  + a n ,  

if x E A, , , .  (3.5) 

We recall (cf. Section I) that if p Q A and v Q A, with 
f = d p / d A ,  g = dv/dA,  then, 

I (  p,  v )  = D(f, g )  lf(4 log % A ( & ) .  (3.6) 

Now, if in the above setup X = R, the A,,, 's are 

intervals, and it is assumed that v is absolutely continuous 
with respect to the Lebesgue measure A, with g = dv/dA,  
then the distribution estimate (3.2) can be derived from 
the density estimate 

= ((1 - a n ) p n ( A n , i ) / v ( A n , i )  + a n ) g ( x > ,  

if x EA,, , ,  (3.7) 

which can be regarded as a modified histogram (with 
respect to Lebesgue measure). It is easy to see that f,* is 

itself a density and in this case 

& A )  = " e ( x ) A ( W .  

Furthermore, if in this case one chooses v ( A , , ~ )  = l/m, 
= h,, 1 s i 5 m,, and 

mn 
a, = ____ 

n + m , '  

then 
ron [3]. It takes the particular form 

becomes a density estimator introduced by Bar- 

lim a, = 0, 
n + =  

we now define the distribution estimator 

mn ' ( A  nAn,i) Barron [3] showed that if 

i =  1 lim m, = 00 (3.10) 
PE(A) = (1  - a n >  C I * n ( A n , i )  v ( A , , i )  + a n v ( A ) ,  

(3.2) 
n + z  

and 

lim m,/n = 0 (3.11) where p, is again the standard empirical measure for the 
sample XI, X 2 , . . . ,  X,, as defined in (1.8). n + -  

7 11 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp has a density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf with respect to Lebesgue measure 

such that 

D ( f , g )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< x ,  (3.12) 

then 

lim E ( D ( f , p , * ) )  = 0. (3.13) 
n+= 

Whereas Barron [31 took the expected information diver- 
gence as a measure of accuracy (convergence criterion), 
we consider here the a s .  convergence in information 
divergence as our main objective. In the first part of 
Theorem 2, we extend his result. In the second part of 

Theorem 2, we show that the same conditions which 
guarantee convergence in expected information diver- 
gence are also sufficient conditions for the a.s. conver- 
gence in information divergence of our distribution esti- 
mator p: to the unknown probability measure p. In doing 
so, we relax the sufficient conditions for a s .  convergence 
in information divergence reported in Gyorfi and van der 

Meulen [20]. When stating Theorem 2 we assume the 
general framework introduced at the beginning of this 

section. 

Theorem 2: Let p be an unknown probability measure 
on d .  Assume that there exists a known probability mea- 
sure U such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I( p ,  U) < x .  (3.14) 

Moreover, assume that (3.1) is satisfied, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9,, is I.-approxi- 

mating, 

mr, 
lim - = 0, (3.15) 

and 

1 
limsup - - < 1. (3.16) 

n + z  na,h, 

Let p,* be defined as in (3.2). Then, 

lim E(Z( p,  p : ) )  = 0 (3.17) 
n + =  

a) 

and 

lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ( p ,  p;)  = 0 a s .  (3.18) 

Remark 3: There is an obvious question whether it is 
really necessary to impose more conditions when estimat- 

ing a distribution consistently in information divergence 
instead of consistently in total variation. For example, 

according to Theorem 1 each discrete distribution can be 
estimated consistently in total variation without any addi- 
tional assumption on the underlying distribution. This is 
not the case for information divergence. Namely, if for an 
infinite discrete distribution, we fail to detect at least one 
point of the unknown infinite support, then, using any 
basic distribution estimator f i n ,  the divergence I (  p, f i n )  is 
infinite, and it is impossible to discover from a finite 
sample with probability 1 the whole infinite support of a 

countably discrete distribution. On the other hand, our 
distribution estimator & A )  = (1 - a,>f i , (A)  + a , v ( A )  

1, + x 
b) 

= 0 iff u ( A )  = 0, and thus p a p: a.s. Hence, by adding 

the term a, U (  A )  the effect of empty cells is circumvented 

and I(  p, pz) is not necessarily infinite to start with. 
If we now assume that .X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, that p has a density f 

and U has a density s_, both with respect to Lebesgue 
measure, and we use f:(x) defined in (3.7) to construct 
,U;, then Theorem 2 yields the following corollary. 

Corollary: Assume .X = R, that the A,,, 's are intervals 

of equal u-measure v(A, , , )  = h,  = l /mn ,  that (3.1), 
(3.10), (3.151, and (3.16) are satisfied, that p has a density 
f ,  and that there exists a known absolutely continuous 
probability measure v with density g such that 

W f ,  8) < OC. (3.19) 

Let f i  be defined as in (3.7). Then, 

and 

lim D ( f , f i )  = o a.s. 
n + x  

(3.20) 

(3.21) 

Proof of Theorem 2: Before giving the specific proofs 
of parts a) and b), we start with some general facts which 

are used in both proofs. Given the partition Pn, the 
sequence a,, and the probability measure v ,  let f:(x,) be 
defined as in (3.5). Recall the definition (3.3) of fn(x) .  
Since p a v ,  let f = dp/du.  We also define, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E A, . , ,  

and 

We first decompose I (  p, p:). We then have 

= U, + v,. (3.24) 

Now, 

I I I  
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and 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 3 .  (3.26) 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, is vapproximating, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv is a probability mea- 
sure, we have by Theorem l of Csiszir [lo] that 

lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, = 0. (3.27) 
n - x  

a) We first prove (3.17). Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, is an Z-divergence, 
V,  2 0 a s .  Therefore, because of (3.27) it suffices to 
show that 

lim sup E( V,) I 0. (3.28) 
n + x  

By Jensen’s inequality 

(3.29) 

Moreover, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E A , , , ,  

. (3.31) 1 1 

n m i n { ( l  - an)/n,a,h,} 
E(V,) s log 

Now, conditions (3.1) and (3.16) imply that 

lim sup E( V,) I lim sup log 

1 

n - x  n - x  

< 0, (3.32) 

U 
1 * (  n min { (1 - a, ) / a ,  a, h,} - 

and thus the proof of (3.17) is complete. 

b) We next prove (3.18). Because of (3.24) and (3.271, it 
remains to prove that 

lim V, = 0 a s .  (3.33) 
n + x  

Choose 

and decompose V, as 

with 

I,‘” = { i :  c, < p ( A , , , ) } ,  

= { i :  P(A,,,) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb,J7 

b,,l = min (a ,v(  4J, c,). 

(3.37) 

(3.39) 

(3.40) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZi2) = { i :  bn,, < p(A , , , )  I c,} ,  (3.38) 

and 

Now V,  2 0, whereas K(3) I 0 because P ( A , , ~ )  5 

a, V ( A , , ~ ) ,  for all i E I,“). Therefore, (3.33) is proved 
if for all E > 0 

x 

P(V,(’) > E) < (3.41) 
n= 1 

and 
r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E P( V,(” > E) < 30. (3.42) 

We first prove (3.41). Choose n sufficiently large SO 

that - ~ / 2  < log(1 - a,) < 0. Then, 

n = l  

(3.43) 

From Lemma 4 of Gyorfi and van der Meulen [191, it 

follows that 

- < 2exp ( - n p (  A)(1  - 2-.12)’/4), 
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Hence, observing that m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 l/h,, we have from 

(3.34), (3.431, and (3.44) that for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 
cc 

P( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,’” > E )  

1 2 C m ,  

n = l  
z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P ( A )  

‘ sup A :  ‘[log ( l - u , ) p , ( A )  + a , v ( A )  >,) 
r 

5 2 m, exp (-nc,,(l - 2-‘/*)*/4) 
n = l  

. exp (-(log n)’(l - 2Ze/2)2/4 + In n )  < E ,  

and thus, (3.41) is proved. We next prove (3.421, and 
use thereby the technique of Poissonization (cf. De- 

vroye and Gyorfi [14, p. 131 and Hoeffding’s inequal- 
ity (Hoeffding [21]). Let the partition 9, be fixed. 

Let XI, X,, be an infinite sequence of indepen- 
dent random variablesjdentically distributed accord- 
ing to p, and let N be a Poisson ( n )  random 
variable independent of the sequence {X, } .  Define, 
for i = l;.-,m,,, 

(3.45) 

N ( j :  x, € A n , f ,  1 < j 5 6) 
f i n ( A n , i )  = . (3.46) 

Then, nfin(An,l), n f i n ( A n , 2 ) , . . . ,  n f i n ( A n , m n )  are 
indepen-dent Poisson random variables with means 

i ~ p ( A , , ~ ) ; . . ,  np(A, , , , , ) .  Now, put 

n 

n d A , , A  

(3  S O )  

p(An, i )  
p ( A n ~ f )  log (1 - a,) min ( f i n (  A , , , ) ,  1) + a, v( A n , f )  

1 
2 - p ( A , , ; )  log 1 + - ( anhn 1 
= -p(An,i)O(log ‘1. (3.51) 

Therefore, <(*I is the sum of bounded independent 
random variables, and p(A,,i)O(log n )  is a bound 

on the absolute value of the ith term. Using Ho- 
effding’s inequality (Hoeffding [21, Theorem 211, we 

have that 

. (3.52) 
2 ( [  E - Et(* ’ ]  + )2 

c,O(log n)’ 

Therefore, by (3.34), (3.49), and (3.52), we get 

(3.47) 

On the event {fi = n), Af in (An, f )  = P , ( A , ~ , ~ ) ,  and 
therefore, on the event { N  = n), 

which is summable, i.e., (3.42) holds, if 

lim sup E@,) I 0. (3.54) 

Hence, 
It remains to prove (3.54). This can be done in much 
the same way as in deriving (3.32). The only differ- 

(3.48) 

P ( V p  > € )  = P ( y p  > €Iff = n )  

I P p  > E l i  = n j  

ence is that- in the case of (3.30) we applied an 

inequality for the binomial distribution, whereas here 
we use an inequality for the Poisson distribution, i.e., 

- < P (  vp > E ) / P (  ff = n )  

< - ( 2 T n ) 1 / w “ ? “ ) P (  lp > E ) .  (3.49) 

1 1 
E . (3.55) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I I  
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This inequality is also proved in Lemma 1 of Ap- 
pendix B. Thus proceeding, we have 

Et( * '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( A n , ; )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i E I:'' 

where the last inequality is by Markov's inequality 
applied to P( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&$A,,;) > 1) for cells with p ( A n , f )  I 
c,. Hence, 

1 

min ( ( 1  - U,) ,  na,h,} 
E t ( 2 )  I log 

(3.57) 

Since c ,  = o(1) and (3.16) holds, (3.54) follows from 
(3.57). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Remark 4: The immediate question arises whether the 
standard histogram estimate jl, (which corresponds to the 

case a, = 0 in (3.2)) is consistent in divergence. If we 
apply the decomposition of the divergence I (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, pz) into 
U, + V,  as in the proof of Theorem 2 (cf. (3.24)) for the 
case a, = 0, then U,, defined in (3.251, tends to zero (cf. 
(3.27)). Therefore, it is the behavior of V, (defined in 
(3.26)) which will determine the answer to our question. 
Clearly, if a, = 0, V, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa with positive probability. There- 

fore, for the standard histogram estimate, E(Z( p, f i n ) )  = 

x, and thus obviously we cannot have consistency in 

expected information divergence when using this density 
estimate. We now show by example that the standard, 

unmodified, histogram estimate cannot be a.s. consistent 
in information divergence either. Let v be the uniform 
distribution on [O, 11. Assume y > 1 such that 

lim nh; = 0. (3.58) 

Such y > 1 exists if h,, = O(n- " ) ,  0 < a < 1. Define a 

density f of p with respect to v on [O, 11 by 

and let 

Then, 

Now, setting a,r = 0 in the definition of V,, we have for 
any E > 0 that 

n + =  

f (  x) = yxy-  ' , 

'ti,, == [(i - ')'ri,i'n). 

P(A., I )  = h,Y. (3.59) 

2 P(P, (An. I )  = 0) = (1 - PL(A,,I)Y 

= (1  - h i ) ,  2 1 - nhi + 1, as n + x.  

(3.60) 

Hence V, does not converge to zero in probability, and a 
fortiori does not converge to zero almost surely. This 

proves that the standard histogram-based distribution es- 
timate f i n  cannot be a s .  consistent in information diver- 
gence, thus providing a negative answer to the question 

previously raised. 
Remark 5: An interpretation of our modified his- 

togram-based distribution estimator p: may be given in 
terms of Bayes rule. Consider the restriction of the distri- 

bution to the partition 9,. Suppose a prior distribution is 
assigned to  the simplex of cell probabilities 

F ( A , , ~ ) ; . . ,  P(A, ,~ , , , )  that takes the form of a Dirichlet 
distribution with parameters A,, I,..., A,,mn. Then, the pos- 
terior distribution of these cell probabilities given the data 
is Dirichlet with parameters np(A , , , )  + A,,,  for i = 

1,2;.., m, (see, e.g., Ferguson [16]). In particular, the 
Bayes estimator of the cell probabilities (given by the 

mean of the posterior distribution) is 

for i = 1,2;..,m,, where b, = C ~ ! , A , , , .  Note that when 
A,,/ is an integer, the Bayes estimator may be interpreted 
as the relative frequency of A , , ,  with A,,, additional 
(fictitious) observations in each cell. The modified his- 
togram estimator given by 

(3.62) 
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if x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,,,, defines a density with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  which is 

the Bayes estimator for a Bayesian who takes the prior 
distribution of the probabilities of cells in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, to be 

Dirichlet and who takes the conditional distribution within 
each cell to be fixed and equal to that given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A choice of parameters A,,/ proportional to u(A, , ,> ,  
i.e., 

An, /  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' n v ( ' n , / ) j  (3.63) 

makes the Bayesian estimator f,** the same as the modi- 
fied histogram estimator f,* (cf. (3.5)). The relationship 
between the constants 0 < a, < 1 and b, > 0 is 

bn 
a, = -. 

n + 6, 
(3.64) 

For the choices v ( A , , ~ )  = l /m, and b, = m,, we obtain 
An, i  = 1, the prior becomes the uniform distribution over 
the simplex of cell probabilities, and the density estimator 
becomes the one previously considered, with a,, given as 
in (3.8). This choice of prior distribution leads to some 

appealing universal data compression properties, first con- 
sidered by Gilbert [MI, see also Cover [8]. (Advantageous 
properties of the Dirichlet prior with parameters An, i  = 

1/2 instead of 1 are given in Krichevsky and Trofimov 
[24]. Unfortunately, condition (3.16) effectively requires 
that A,,i 2 1 for the application of our theorem.) 

Remark 6: Some observations concerning the rate of 
convergence in expected information divergence (made by 
Barron [3]) follow from the proof of part a) of Theorem 2 

in the case that u ( A , , ~ )  = h,  = l /m,  and a ,  = m,/(n 
+ m,)  as in (3.8). In this case, f:(x) takes the form 

x E A n , i .  

Now, setting again f = dp/dv, the reasoning which led to 
the derivation of inequality (3.31) can be simplified as 

follows: 

(3.65) 

where f n ( x )  is the histogram-shaped density (3.22) based 
on the true probabilities p. By (3.10, the first term on the 
right-hand side of (3.65) tends to zero. 
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The approximation error term D ( f , f , )  is examined in 
Barron and Sheu [6] in the case of a partition of [O, 11 into 

equal-spaced intervals of width v ( A , , ~ )  = h,  = l/m,, 
where v is taken there to be Lebesgue measure. (Barron 

and Sheu examine exponential family models based on 
splines, polynomials, and trigonometric series. Histograms 

arise in the case of splines of order 0.) It is shown there 
that D ( f ,  f , )  is of order O(l/m,)2 for density functions 

on [0,1] for which the derivative of log f ( x )  is square 
integrable with respect to Lebesgue measure. For such 
densities, we have that the modified histogram estimator 
p,* satisfies 

(3.66) 

In particular, choosing m, of order n1 l3  to optimize the 

order of the bound, we get for log-densities with square- 
integrable derivatives that 

(3.67) 

Using this bound on the expected informational diver- 

gence, order O( l /n )2 /3  bounds may also be given for the 
redundancy of universal codes (which turns out to have a 
representation as a Cesiro average of expected informa- 

tional divergences as discussed below). A somewhat dif- 
ferent proof of the same bounds on expected informa- 

tional divergence and redundancy for the modified his- 
togram, also based on inequalities from Barron and Sheu 
[6], are given in Rissanen, Speed, and Yu [26]. 

A. Implications for Universal Source Coding of Finely 
Partitioned Data 

We point out here how consistent estimation of a 
probability distribution in expected informational diver- 
gence E(Z( p, &)) (cf. (3.17)) leads naturally to a univer- 
sal source code for arbitrarily fine quantizations of the 

data. Similar applications were noted in Clarke and Bar- 
ron [7], but the examples there were limited to finite-di- 
mensional parametric families. 

Let {0,1}* be the set of finite length binary strings and 
let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ S I  denote the length of a string zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs E (0, l}*. Recall (cf. 
Gallager [17]) that for any countable alphabet d, there 
exists a unique decodable code 4: d + (0, 1}* with lengths 

I+(a>l, a E&', if and only if the Kraft-McMillan inequal- 
ity is satisfied, i.e., 

2-14'"" < - 1 

If X is not a discrete space, data sequences X17-..,  X ,  
cannot be represented exactly by a noiseless source code. 

Nevertheless, for any given partition of X n  (no matter 
how fine), we can code the element of the partition that 
includes the data in a uniquely decodable way. 

a& 

I I I  
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For any given probability distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, on X " ,  the 

Shannon code for elements of a partition {A,,r} assigns a 
codeword of length 

I @(An,r) I = I'og1/qn('n,i)l. (3.68) 

Suppose X,;.., X ,  are independently drawn from an un- 
known probability distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp on the space X. The 
lack of knowledge of the distribution leads in some cases 
to a nonnegligible redundancy of the code. The redun- 
dancy of a code is defined as the difference between the 
expected length and the entropy, divided by the sample 
size n. In the present case of description of elements of a 
partition, the redundancy is given by 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm n  

- C pn(An,i)l+(An,r)l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r = l  

1 mn 

n r = l  
- - C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApe( ~ n , i )  log ( l / p n (  An,r > I *  (3.69) 

The effect of rounding up to the nearest integer in (3.68) 
on the redundancy is bounded by l /n .  Ignoring the 
rounding effect, the redundancy of the Shannon code 
based on q, for elements of a partition 9, = {A,,r} of 

X n  is given by 

which we recognize as l /n  times the information diver- 
gence between the distribution pn and q, restricted to 
the partition 9, = {A,J of X". Taking the supremum 
over partitions of .E'' yields the least upper bound on the 
redundancy denoted by 

R, = SUP R,(P,,), (3.71) 

Thus, using definition (1.31, the redundancy is given in 
terms of the informational divergence by 

9" 

1 
R n  =z ;I( pn,  q n ) *  (3.72) 

As in Davisson [12], a code based on a given sequence 
q,, is said to be universal for a class of distributions if 

limn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--tz R, = 0 for all distributions p in this class. Be- 
cause of ( l . l l ) ,  no universal code exists for the class of all 
distributions. 

Now, we construct a universal code for a large class of 
distributions. The construction is based on our distribu- 
tion estimate (3.2). If, as in (1.0, we are given a sequence 
of estimators of a distribution on X ,  which we denote 
here as 

p , * ( A )  = PXAIXI,..., X , ) ,  (3.73) 

then in order to construct a distribution q,, on .X", we 
define q, by its conditional distributions qk+ , ( X k + ,  E 

AIX, ; . . ,  X k )  = pz(A), for k = 1,2;.., n - 1, and by the 
distribution of X ,  given by ql = p; = U .  

This distribution on E" that we have constructed from 
a sequence of estimators of distributions on 5 ,  may be 
used to provide the Shannon codes for partitions of X". 
By the chain rule for the information divergence (cf. [ l l ,  

p. 50]), the redundancy R, is equal to the Ceshro average 
of expected information divergences: 

1 n - 1  

k = O  

1 
R ,  = ; I (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 7  v,) = ; c E ( I (  P ,  Pz)> .  (3.74) 

If limn ~ E(Z( p, p:)) = 0, then the CesAro average in 

(3.74) must also converge to zero. Thus, we have the 
desired conclusion that if a sequence of distribution esti- 
mators is consistent in expected information divergence, 
then the redundancy of the code tends to zero as n -+ 30. 

Theorem 2 gives conditions such that a sequence of 
estimators p: converges to p, in the sense that 

limn ~~ E(Z( p, p:)) = 0, for all p for which I(  p, v )  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, 

for a given probability measure U which serves the role of 
the dominating measure. Consequently, the redundancy 
of the code based on this sequence of estimators con- 
verges to zero for all such p. Thus, the estimator & 
defined in (3.2) provides a universal code for the class of 
all measures p with I ( p ,  v >  < W. 

I v .  CONSISTENCY IN REVERSED ORDER 

INFORMATION DIVERGENCE 

In this section, we consider the problem of consistency 
of the histogram estimator with respect to an informa- 
tional divergence criterion in which we reverse the order 

of the estimating and the hypothetical distribution. Sup- 
pose again that XI;.-, X ,  are i.i.d. observations from an 
unknown distribution with probability measure p taking 
values in an arbitrary measurable space X. Assume also 

that there exists a known o-finite measure U such that p 
is absolutely continuous with respect to U .  Let f ( x >  de- 
note the density of p with respect to U .  Let 9, = 

{ A , , l ,  An,2 , . . . ,  n = 1,2;.., be a sequence of par- 
titions of X ,  with rn, either finite or infinite, such that 
0 < v (A , , , )  < CC for each i. Let p, be the standard 
empirical measure for X,; . . ,  X,, as defined in (1.8). We 
also define, as in (3.3), the standard histogram density 
estimator with respect to v and 9, by 

and the corresponding estimator f i n  of the distribution p 

by 

Ln(A) = 1 . L ( X ) V ( ~ ) .  ( 4 4  
A 

We are interested in studying the consistency of f i n  as the 

estimator of p with I( f i n ,  p )  as the informational diver- 
gence criterion. If for an arbitrary estimator k: we want 

I I1 
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I (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp.,*, p )  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, then p,“ must be absolutely continuous 
with respect to p, which is not only a condition on p.,* but 
a strict condition on p. However under this strict condi- 
tion (to be specified later) it is enough to consider the 
most simple estimator, the histogram f in,  rather than 

involved modifications of it. This contrary to the cases of 

estimating p in total variation or in I-divergence I( p, f in ) ,  
considered in Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111, where f in needed to be 

modified to G, and p:, respectively. 
We furthermore define, as in (3.22) and (3.23), f , ( x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EA(X), and 

(4.3) 

We then have 

= I ( f i , , P , )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,. (4.4) 

The first term in (4.4) is called the estimation error (or 
“variance”) component of the reversed order informa- 

tional divergence. Convergence properties of it are given 
in Theorem 3. The expected value of the second term W, 
is called the approximation error (or “bias”) component 
of I( b,,, p). The convergence properties of this bias com- 
ponent are studied after Theor:m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. We first examine the 

convergence properties of Nf,,, f, l). 
we de- 

fine the informational divergence between the empirical 
distribution p, and the true distribution p, restricted to 

Given a partition 9,, = { A , , , ,  An,Z,..., 

9 0 9  bY 

Thus, if p -e v, and L, f n ,  f i n ,  and jl, are asPefined in 

(4.1)-(4.3), then I,( p,, p)  = I( f i n ,  p,) = D<f,, f,). Let 
m, be the total number of sets in 9,, either finite or 
infinite, and denote the number of sets in 9, that are 
contained in a given set A by 

m , ( A )  = N I B  €9,: B C A } .  (4.6) 

Furthermore, given a certain partition 9, we define the 
entropy of p restricted to 9 by 

H9P(p) = - c P ( A ) h  4 A ) .  (4.7) 
A € 9  

The average number of sets in 9, that are contained in a 

set A of 9 is defined by 

mn( L L , ~ )  = C m n ( A ) p ( A ) .  (4.8) 
A € 9  

The first claim in the next theorem requires the total 
number of sets m, in each partition of a sequence of 
partitions 9,, to be finite, and obtains almost sure conver- 

gence of I,( p,, p), as well as of the expected value 
E(Z,l( p,, p)). The second claim allows for infinitely many 

sets in each partition 9,,, provided the average number 
mrr( p, 9) is finite, but only convergence of E(Z,( p,, p))  
is established in that case. 

Theorem 3: Let p be a probability measure on X ,  
suppose XI ; - . ,  X ,  are i.i.d. observations from p, and let 
p, be the standard empirical measure for X,,..., X,. Let 

{g,,} be a sequence of partitions of X.  

a) If the cardinality m, of 9, satisfies 

(4.9) 
m,, 

lim - = 0, 
n - 2  n 

then 

lim In( p,, p )  = 0 a s .  (4.10) 
n - + x  

and 

lim E(I,,( F,, p ) )  = 0. (4.11) 

b) More generally, if each partition 9, is a refinement 

N-”( p )  < E >  (4.12) 

and if the average number of sets m,( p, 9) satisfies 

= 0, (4.13) 

n + s -  

of a certain partition 9, if 

mn( P >  9) 
lim 

n - 2  n 

then, 

lim E(I,,( P,, p ) )  = 0. (4.14) 
n + 2 

Remark 7: For X = R, suppose 9, = { A , , [ ,  i = 

... , - 1,0,1, ...} is a partition of E4 into intervals A n , f  = 

[ih,,(i + l)h,) of common length h,  = l/k,, where k, is 
a sequence of integers. Let 9 = { A , ,  i = ... , - 1,0,1, ... 1 
be the partition of R consisting of unit intervals A ,  = [i, i 
+ 1). Then 9, is a refinement of 9, condition (4.13) 

becomes k, = o(n), and H9( p )  can be interpreted as the 
entropy of a probability mass function on the integers. 
Note that the second set of conditions in Theorem 3 is 
more general than the first one. This can be seen by 
taking 9 to be the trivial partition {X,0}. In this case 

H9( p )  = 0 and m,( p,.”P) = m, for all p. Hence, for 
this choice of 9, (4.12) is always satisfied and (4.13) 
implies (4.9). 

Proof of Theorem 3 
a) We first take the case of a finite partition of 

cardinality m = m,. The first step in the proof follows 
Barron [4, pp. 112-1131 and is based on the method of 
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types (Csiszir and Korner [ l l ,  Section 1.21) and an in- 

equality due to Hoeffding [22, (2.811. 
If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{A, ,1 , . . . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,,,}, let pzn = (p , (A , , , ) :  A,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI E 

9,} denote the empirical distribution of the sample X = 

(XI;*-, X,) restricted to 9,. Then pfn is also the type Q 
of a sequence in 9,". Clearly, the number of types Q of 

). By Hoeffding's sequences in 9," equals 

inequality, it holds for any type Q of a sequence in 9," 
that 

P{ p T n  = Q) 5 ~ - " ~ J Q , P ) .  (4.15) 

n + m - 1  ( m - 1  

Therefore, given S > 0, 

P{I,( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACL,, PI 2 6) = P{ prn  = Q )  
(Q IJQ, P ) >  6) 

- < ~ - " ' , ( Q . P )  

(Q 1JQ, P ) Z  6)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 (4.16) - < 2-n(fi-tn) 

where E ,  = (1 + m/n)h(m/(n + m)) with h ( p )  = 

- p  log p - (1 - p )  log (1 - p ) .  Clearly E ,  + 0 as m/n 
+ 0. 

It follows that H I , (  p,, p )  2 6) converges to zero ex- 

ponentially as n + M under condition (4.9). Conclusion 
(4.10) follows by the Borel-Cantelli lemma, and conclu- 
sion (4.11) results after carrying out the following integra- 
tion: 

1 
< E , + -  

n I n 2 '  
(4.17) 

b) Next consider the case of a sequence of partitions 

9, satisfying (4.12) and (4.13). We obtain the following 
sequence of bounds. First, 

(4.19) 

Here, the exchange of expectation and summation is by 
the Fubini-Tonelli theorem applied to Z, , l  = 

which is nonnegative and has the same sum as in (4.18). 
The inequality (4.19) is by an inequality for the binomial 

P,(A,,i) log Pn(An, I ) / rU(An, l )  + P,(AJ - P(A, ,J>  

distribution (see Lemma 2 in Appendix B). Furthermore, 

(4.20) 

The inequality (4.20) follows form the concavity of the 

logarithm and Jensen's inequality, since CA,  , A p 
(A,, l  I AX1 + l / ( r ~ p ( A , , ~ ) ) )  = 1 + m,(A)/(np(A)).  
Next, we use the inequality 

which is valid for n > 0, y > 0. 
Taking into account (4.18)-(4.20) and applying (4.21), we 

obtain that for any c > 1, 

E([,( Pn, P ) )  

where in the last inequality we have used again the 
concavity of the logarithm and Jensen's inequality. 

Since H " ( p )  < LC is assumed, it follows by the domi- 
nated convergence theorem that the second term in the 
bound in (4.22) tends to zero for any sequence c = c, 
such that c, + E. Finally, since m,( p, 9 ) / n  -+ 0 by as- 
sumption (4.131, the bound in (4.22) tends to zero for any 
sequence c = c, chosen to satisfy c, -+ CC and 

c,m,( p, 9 ) / n  + 0 as n + E. Hence, conclusion (4.14) 
follows and the proof of Theorem 3 is completed. 
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We next turn to the investigation of the convergence 
properties of the bias component (cf. (4.4)) 

In Theorem 4, we will derive sufficient conditions under 
which I ( & ,  p)  tends to zero, where 

It then follows by the Fubini theorem that under the 
same conditions 

lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE( W,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= lim I (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,, p )  = 0. (4.25) 
n - r  n + r  

Remark 8: Unlike the case of distribution estimation 

with the criterion I(  p, pt) ,  as dealt with in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111, 
for which a s .  convergence to zero obtains (for a proper 
choice of p,*) for all p with I( p, v )  < =, more restrictive 
conditions on p are required for the convergence to zero 
of I (  jl,, p). Indeed, from inspection of the integral in 
(4.24) it is seen that, in order for (4.25) to hold, it is clearly 

necessary that the function log (l/f(x)) be integrable with 
respect to v on each set A,, l  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, that has positive 
p-probability (and this for all large n). Thus, a restriction 

that is necessarily imposed is that boundaries of the 
support set of p must coincide with boundaries of the 

cells of the partition, for all large n. For, if there is a set 
A , , ,  in 9, for which f(x)  is zero on a nontrivial portion 

of this set and f ( x )  > 0 on the remaining portion (so that 
f , (x)  > 0 on the entire set), then Z(p,,, p)  = D ( f , , , f >  = 

Remark 9: The necessary condition of Remark 8 rules 
out many simple examples. For instance, if p is the 

uniform distribution on [O,a] with a < 1 unknown irra- 
tional, v is the Lebesgue measure on [U, 11, and 9, = 

{[ih,, ( i  + 1)h,): i = ... , - 1,0,1, ) with h ,  rational, 

then D ( f , , f )  = m for all h, < a .  Before formulating 

Theorem 4, we note that I (&, ,  p)  = D ( f , , f )  can be 

decomposed as 

x. 

Now suppose that .X = Rd,  and U is Lebesgue measure. 
Also suppose that the density f (x)  = d p / d u  is continu- 
ous, positive, and of known rectangular compact support. 
Denoting this support set by C, let 9’ = {C, X - C) be an 
initial partition of .E .  Let 9, be a sequence of partitions 

of X into cells, such that each 9, is a refinement of 9 
and the maximum width of the cells tends to zero as 
n -j =. Furthermore suppose the Lebesgue (and 

Lebesgue-Stieltjes) integral 

is finite. It can then be shown by the theory of 
Riemann-Stieltjes integration that both terms in (4.26) 

tend to -Hv(  p) as n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. Therefore, in the case that 

.X = Rd,  and f ( x )  is continuous, positive, and of known 
bounded rectangular support, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIffu( 11.11 < 30, one has 

that 

lim D ( f , , f )  = 0. (4.28) 
n + =  

The reason that this result does not apply to the above 
example ( p uniform on [O, a] ,  a < 1 unknown irrational) 

is that a and thus the support are unknown in this case. 
We now present a result on the convergence of D(f,,  f )  

to zero, if the underlying space W is not necessarily Rd, 
and f ( x )  is not necessarily continuous. 

Theorem 4: Let .X be an arbitrary measurable space. 
Let p be an unknown probability measure and v a given 

a-finite measure on W, such that- p Q U .  Let 9 be a 
given partition of X and define f(x) = p ( A , ) / v ( A , )  if 
x E A i  €9 and p ( A )  = / , f(x)v(&). Suppose thaf each 
partition pn is a refinement of 9, that f(x)/f(x> = 

d p / d p  is bounded and that 

Moreover, suppose that the sequence of partitions 9, is 
v-approximating. Then, 

lim I (  ji,, p )  = 0, (4.30) 
n + =  

with Z(p,, p )  as defined in (4.24). 

Remark 10: Note that, since 

the condition Z(P, p) < x necessitates that f (x)  > 0 v- 
almost everywhere within each set A ,  in 9 that has 
positive p-probability, in accordance with the point made 

in Remark 8. 
Theorem 4 yields the following corollary when U is 

assumed to be a probability measure and we take for 9’ 
the trivial partition { W , 0 } .  In this case it is assumed that 
f ( x )  is bounded and Z(v, p)  < =. 

Corollary: Let ,X be an arbitrary measurable space. Let 

p be an unknown probability measure and v a given 
probability measure on X ,  such that p 4 v and the 

density f (x)  = d p / d u  is bounded. Suppose that 

I ( v , p )  < (4.31) 

and that the sequence of partitions 9, is v-approximat- 
ing. Then, 

I I I  
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Proof of Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Suppose f(x)/f(x) I c. Then, 
for each measurable set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

The informational divergence between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAji, and p can be 

written as 

Notice that, by convexity, for each measurable set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  

so that the summands in (4.34) are nonnegative. Hence, 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ( I (  F ,  P )  - I n (  F ,  PI) .  (4.35) 

Now, by Theorem 1 of CsiszAr [lo], since 1. e v a n d p  e v 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, is assumed to be v-approximating, it follows that 

lim I,( 1.9 PI  = I (  F., CL). (4.36) 
n + x  

Therefore, since Z(F ,  p) < 30, it follows that 

lim I (  F , ,  p )  = 0. (4.37) 
n + =  

Thus, the proof of Theorem 4 is completed. 0 

Remark 11: As in Remark 7, for X = R, suppose 9, = 

{An, i ,  i = ... , - 1,0,1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. e . }  is the partition into intervals 

An,z = [ih,,(i + l)h,) of common length h, = l/k,, 
where k, is a sequence of integers. Then the partition of 
R consisting of unit intervals A ,  = [ i , i  + 1) is a natural 

choice for 9 in Theorem 4. The conditions that f(x>/f(x) 
be bounded and that D(f, f < 30, are automatically satis- 

fied if the ratio of the maximum value to the minimum 
value of f (x)  on the cells of the partition is bounded. A 
sufficient condition in the case of densities on the real 
line is that log f(x)  be uniformly continuous. For density 
functions that are continuous and positive on a compact 
support set C,  we may take for 9 the partition of X into 
C and its complement. Then the conditions of Theorem 4 

are satisfied provided 9, is a refinement of 9. Therefore, 
as a special case, Theorem 4 includes the case covered by 
the Riemann-Stieltjes integration theory mentioned in 

Remark 9. 
Finally, by the decomposition in (4.41, and by (4.14), 

(4.23, and (4.371, the results in Theorem 3 on the one 
hand, and those in Theorem 4 on the other, can be 
combined to yield conditions under which the expected 
reversed order informational divergence between the his- 
togram estimator f i n  and the distribution p converges to 
zero. Combining Theorem 3, part b), and Theorem 4, we 
obtain the following result. 

Theorem 5: Let p be an unknown probability measure 
on an arbitrary measurable space X. Assume there exists 
a known a-finite measure v on M such that p Q v. Let 
9 be a given partition of X such that H 9 ( p )  < m. 

Define f ( x )  = p ( A , ) / v ( A , )  if x E A ,  €9 and F ( A )  = 

/ , f (x)v(dx) .  Assume that f(x)/f(x) = d p / d F  is 
bounded and I(  F ,  p )  < W. Let 9, be a sequence of 

partitions such that each 9, is a refinement of 9 and 

m,( p, 9) = o(n). Suppose further that the sequence 9, 
is v-approximating. Let XI;**, X ,  be i.i.d. observations 

from p, and let f i n  be defined as in (4.2). Then, 

lim E( I (  f i n ,  p ) )  = 0. (4.38) 
n + x  
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APPENDIX A 

Here, we show the equivalence of the condition of effective 
cardinality of order o(n) (condition A) with condition (D) of 
Abou-Jaoude [2], for a sequence of partitions Pn and a a-finite 
measure 77. Abou-Jaoude's condition (D) is that for every set S 
with q(S) < 30, and every c and E > 0, there is an N ( E , c ,  S )  
such that for all n 2 N ( E ,  c,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS), 

To show the equivalence, first suppose Abou-Jaoude's condition 
is satisfied. Then, the cardinality of sets An, r  n S with q(A, , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
S )  > - satisfies 

C 

n 
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From this, it follows that the €-effective cardinality of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, with 
respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 restricted to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS satisfies 

for all n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 N(E, c ,  S). Since for any S with q(S) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< x this bound 
holds with c arbitrarily large, it follows that 

Thus the sequence Pn has effective cardinality with respect to 7 
of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo(n>. 

Conversely, suppose the effective cardinality of the sequence 
9, with respect to -q is of order o h ) .  Let an arbitrary set S with 
r ] (S)  < and E > 0 be given. Let rn, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm(9,,, 7, S, ~ / 2 )  be the 
~/2-effective cardinality of P,, restricted to S. Then, 

m 
lim 2 = 0. 

n + x  n 

Thus, for every c,  we have that for all n sufficiently large, 

( ‘4.5) 

Now, let A,, , ,  i E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGn, denote a collection of rn, sets with the 
largest values for q(A,, ,  n S). By the definition of ~/2-effective 
cardinality we have 

c 7(’4,,, SI I 5 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A.6) 
2 I € G L  

€ E  

(A.7) = -  
2 + ? = € .  

This completes the demonstration of the equivalence of the 
condition of effective cardinality of order o( n )  (condition A) and 
Abou-Jaoude’s condition (D). 

APPENDIX B 

Here, we state and prove two useful inequalities used in the 
proofs of Theorem 2 and Theorem 3, respectively. 

1453 

Lemma 1; If X has a binomial distribution with parameters n 
and p ,  or if X has a Poisson distribution with parameter np, 
then, 

Proof: If X is binomial ( n ,  p ) ,  then, 

If X has a Poisson (np )  distribution, let A = np. Then, 

1 Ak 

1 
= ;(I - e - ^ )  

1 1  
< - = -. 
- A  np 

0 (B.3) 

Lemma 2: If X has a binomial distribution with parameters n 
and p ,  and p ,  = X / n ,  then, 

Proof: For 0 < 4 < 1, 

and setting 4 = p + (l/n)(l - p ) ,  which can be shown to opti- 
mize this bound, we have 

0 (B.6) 
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