
Distribution Fields for Tracking

Laura Sevilla-Lara Erik Learned-Miller

University of Massachusetts Amherst

{lsevilla, elm}@cs.umass.edu

Abstract

Visual tracking of general objects often relies on the as-

sumption that gradient descent of the alignment function

will reach the global optimum. A common technique to

smooth the objective function is to blur the image. However,

blurring the image destroys image information, which can

cause the target to be lost. To address this problem we intro-

duce a method for building an image descriptor using distri-

bution fields (DFs), a representation that allows smoothing

the objective function without destroying information about

pixel values. We present experimental evidence on the su-

periority of the width of the basin of attraction around the

global optimum of DFs over other descriptors. DFs also

allow the representation of uncertainty about the tracked

object. This helps in disregarding outliers during tracking

(like occlusions or small misalignments) without modeling

them explicitly. Finally, this provides a convenient way to

aggregate the observations of the object through time and

maintain an updated model. We present a simple tracking

algorithm that uses DFs and obtains state-of-the-art results

on standard benchmarks.

1. Introduction

In this paper, we address the problem of searching for a

target in an image using gradient descent methods, i.e. local

methods of searching for a target match.

To implement tracking using local search, we must

choose a representation for the target and the patch to which

we are comparing it. There is a fundamental tension be-

tween two conflicting goals when choosing such an image

representation. On the one hand, we would like a matching

function whose global optimum represents the true position

of the target rather than a spurious match. We refer to this

property as the specificity of the descriptor.

On the other hand, we would like the optimization land-

scape (of the matching function) to have few local minima.

We refer to this as the landscape smoothness criterion.

There are many descriptors that exhibit one property but

not the other. For example, by blurring an image patch rep-

Figure 1. Information preserved using smoothing on a DF. (a)

Original image. (b) Image smoothed with traditional blur. (c)

Patch of image (b) where there central bar used to be. (d) Layer

of the DF corresponding to the intensity value of the bar. (e) Col-

lection of patches of the DF under the location of the central bar.

When an image is blurred, the new pixel values are a combina-

tion of the neighboring pixels around them, and all the informa-

tion is collapsed into a single number. In this case, for exam-

ple, the central bar of the tripod has blended in completely with

the background (c). When an image is exploded into a DF and

smoothed, different values are blurred separately in different lay-

ers, and therefore the pixel values are not combined. In this case,

the cameraman has been exploded into a DF with 25 layers, and

blurred with the same kernel that was used for smoothing with the

traditional blur. The central bar of the tripod is still represented in

one of the layers.

resentation, we can produce a representation whose opti-

mization landscape is quite smooth. However, the speci-

ficity of such a blurred image descriptor has been compro-

mised since the blurred image patch has lost significant in-

formation about the original target to be tracked.

In this paper, we use a representation for targets and im-

ages that has not previously been used in the tracking liter-

ature. We refer to this representation as distribution fields

(DFs).1 While DFs have been used in a variety of applica-

tions in computer vision, the particular technique we use to

build a DF representation of a target is novel. We show that

our DF descriptor is extraordinarily good at satisfying the

1Portions of this work have been described in a technical report [22].

specificity and smooth landscape requirements of a good

tracking algorithm. We present several types of evidence

supporting this claim.

First, we show that our DF representation for tracking

has a wider basin of attraction around a target’s location

than a large number of other descriptors that have been used

in the tracking literature (see Section 5). Second, we show

that a simple tracker built from this descriptor outperforms

all other trackers on a standard tracking data set. Finally,

we show that our tracker does not drift in a very long video

sequence.

The paper is organized as follows. In Section 2 we de-

scribe the previous work on descriptors for tracking. In Sec-

tion 3 we define DFs and the operators over them. In Sec-

tion 4 we describe the tracking algorithm. Section 5 shows

experimental evidence on the superiority on the basin of at-

traction and tracking performance of DFs. Section 6 closes

with a discussion.

2. Previous work

Tracking algorithms have different aspects including

motion modeling, image representation and model update.

The main focus of this work is the representation of the im-

age using a descriptor that can overcome the challenges of

visual tracking.

One common approach is to use a template to represent

the object. This template can consist of the intensity val-

ues, gradient information, or other features [3]. These tech-

niques have limitations because they might be overly sen-

sitive to the spatial structure of the object. This means that

even if the optimization reaches the global optimum, this

might not coincide with the correct position of the object

due to changes in appearance. Robust metrics [18] allevi-

ate this problem, but performance decays in long sequences

[14]. DFs allow the representation of uncertainty in the de-

scriptor, where small misalignments or occlusions can be

represented as “unlikely” events as opposed to “impossible”

events, mitigating the oversensitivity to spatial structure.

Another problem with template-based methods is that

the objective function might not be smooth enough to reach

the global optimum, as pointed out by Szeliski [24]. Often,

the function is smoothed by blurring the image, for example

using a Gaussian pyramid [1]. Recently, it has been proven

that the Gaussian pyramid is not always the best choice for

smoothing the objective function [20], and alternative blur

kernels have been derived [20] specifically for smoothing

the optimization landscape. Blurring the image has the un-

desired effect of destroying information about the pixel val-

ues. Depending on the size of the target, the levels of the

pyramid and the characteristics of the background, the tar-

get might disappear completely. In the DF framework, the

layered, or channel-by-channel, blurring technique allows

smoothing the objective function without the mix of infor-

mation that occurs in traditional blurring. This process is

illustrated in Figure 1. The result is a smooth function with

a wider basin of attraction around the object location than

other descriptors. Figure 5 shows an example in one of the

benchmark frames.

An alternative to building a template is using a histogram

to describe the object [8, 6]. Histogram-based (also called

kernel-based) descriptors integrate information over a large

patch of the image. As a result they are not overly sensitive

to spatial structure and they provide a larger basin of attrac-

tion. These methods have had a lot of success because they

are fast, simple, and invariant to many pose changes. The

main problem of kernel-based methods is the loss of spa-

tial information that happens when building the histogram.

This creates ambiguity in the optimization function [13] de-

creasing the specificity of the descriptor. In order to resolve

these ambiguities, the size of the descriptor should be ex-

panded. Recent efforts include some spatial information in

the descriptor by using multiple kernels [13], or multiple

patches [11]. These methods improve the performance of

the single histogram descriptor, but require other mecha-

nisms to decide the number and shape of the kernels. Fan et

al. [12] propose a solution for the placement of the ker-

nels, but a change in object appearance may make these

kernels unstable. Also, if the number of these kernels is

small, the tracking accuracy is more vulnerable to occlusion

or abrupt motion. Other additions are higher order statistics

[4] or temporal information [5], and using feature selection

[7, 16, 26]. DFs capture the rich and robust information

contained in a histogram while preserving the spatial struc-

ture of the object by having a distribution at each pixel and

can be viewed as a soft combination of template-based and

histogram-based descriptors.

DFs are a generalization of many previous image repre-

sentations used for different purposes. These previous de-

scriptors can be viewed as special cases of DFs, and they

have many of the desired properties listed above. To our

knowledge, only the general case of DFs together with the

set of operators described in Section 3 presents all the prop-

erties.

In background subtraction, Elgammal et al. [10], and

Stauffer and Grimson [23] use DFs for modeling the back-

ground. A pixel is classified as background or foreground

depending on the probability of belonging to the back-

ground. These descriptors can adapt to changes in appear-

ance and be robust to certain noise and illumination. How-

ever, these descriptors do not spread information in space.

In object detection and recognition, descriptors like

HOG [9] and SIFT [17] use histograms of gradients. These

can be viewed as downsampled DFs with gradient as the

feature space. The large “support” of each histogram yields

a smooth descriptor and a smooth objective function. How-

ever, since the size of this “support” is fixed, the basin of

Figure 2. Left. DF after exploding the “cameraman” image. (The

original image is shown superimposed on the DF for clarity.) The

number of brightness levels (or layers) has been quantized to 8.

Right. The same DF after smoothing in the dimensions of the

original image.

attraction is much more limited.

Another use of DFs was demonstrated by Learned-Miller

[15] in developing the congealing framework for joint im-

age alignment. In this work, the likelihood of each image

is maximized with respect to the DF defined by the set of

images. Congealing [15] has a large basin of attraction for

alignment, since a collection of images can smooth the op-

timization landscape.

Finally, the bilateral filter [25] introduced a way of

smoothing an image such that both proximity in space and

feature value are taken into account to preserve image de-

tail, which is similar to blurring using DFs.

3. Description of Distribution Fields

A DF is an array of probability distributions, one at each

pixel of the “field”. This distribution defines the probability

of a pixel of taking each feature value. For example, if the

feature space is gray-scale intensity, then at each pixel there

is a probability distribution over the values 0-255.

Representation: A DF is represented as a matrix d with

(2 + N) dimensions, where the first two dimensions are the

width and height of the image, and the other N dimensions

index the feature space that we choose. For example, if the

feature space is intensity, then an image of size m×n yields

a 3D DF of size m×n×b, where b is the number of intensity

feature values, or bins. For a higher dimensional feature

space, such as gradient, we can build a 2D distribution at

each pixel location, yielding a DF of four dimensions.

Construction: Exploding an image into a DF results in

a Kronecker delta function at each pixel location. In par-

ticular, exploding an image I into d with as many bins as

features values is defined by

d(i, j, k) =

{

1 if I(i, j) == k
0 otherwise,

where i and j index the row and column of the image, and

k indexes the possible values of the pixel. We call the col-

lection of bins at a fixed depth k a layer. This produces

a probability distribution at each pixel since the sum of the

components of each column is 1. The left side of Figure 2

shows the results of computing this DF for the well-known

“cameraman” image.

At this point, the DF representation contains exactly the

same information as the original representation, albeit in a

larger representation. We now show how to “spread” the

information in the image without destroying the brightness

values as occurs with traditional blurring.

The right side of Figure 2 shows a smoothed version of

the DF on the left. The 3D DF has simply been convolved

with a 2D Gaussian filter which spreads out in the x and y
dimensions, but not in the feature dimension. That is, each

layer k of the smoothed DF ds is computed as

ds(k) = d(k) ∗ hσs
, (1)

where h is a 2D Gaussian kernel of standard deviation σs,

and ∗ is the convolution operator.

Prior to convolution, we could interpret any value of 1

in layer L of a DF to mean “there is a pixel of value L at

this location in the original image.” After convolution, the

semantics of the smoothed DF is, for any non-zero value in

a layer L, “there is a pixel of value L somewhere near this

location in the original image.” Thus, the convolution has

introduced positional uncertainty into the representation. A

critical point is that no information has been lost about the

value of pixels in the original image, only about their po-

sition. This is because there has been no mixing of pixel

values during the convolution process.

It is easy to show that if the convolution kernel in Equa-

tion 1 is itself a probability distribution, then the smoothed

ds maintains the property that each column of pixels inte-

grates to 1,2 and hence is still properly called a DF.

The previous discussion describes smoothing a DF in the

x and y image dimensions. Smoothing can also take place

in feature space. This allows the model to explain small

changes due to subpixel motion, shadows, and changes

in brightness. In a grayscale image, this smoothing is a

1D Gaussian filter over the third dimension. Each of the

columns of ds can be smoothed to produce dss as

dss(i, j) = ds(i, j) ∗ hσf
, (2)

where hz is a 1D Gaussian kernel of standard deviation σf .

In summary, exploding an image into a DF and smooth-

ing it can be viewed as introducing uncertainty about the

object appearance. A DF is then a compact representation

of the image itself and a set of its “neighboring” images.

These images are the result of transforming the original

image with small changes in appearance and in location.

2This property breaks down at the boundaries of images. In order to

avoid this problem, the missing information outside the boundaries is filled

with uniform distributions.

These are weighted according to the simple assumption that

the most likely event is that the image will stay the same,

and larger changes are less likely.

Comparison: The comparison between DFs that differ-

ent images yield can be done with any distance function. In

this paper we use the L1 distance between the two arrays d1

and d2 as:

L1(d1, d2) =
∑

i,j,k

|d1(i, j, k) − d2(i, j, k)|. (3)

Combination: Combining the information of several

DFs can also be useful. In tracking we combine the DF

of initial model and the DFs of new observations using a

component-wise convex combination of them, which also

yields a DF:

dt+1(i, j, k) = λdt(i, j, k) + (1 − λ)dt−1(i, j, k) (4)

By combining DFs of different instances of the same object

we build a non-parametric data-driven model of the distri-

bution at each pixel. This is useful for learning the statistics

of the appearance of the object during tracking.

4. Tracking algorithm details

DFs can be used in a simple tracking algorithm. A model

of the target is created by exploding the image that contains

the target into a DF and smoothing it. Searching for the tar-

get in a new frame consists of building a new DF by also

exploding and smoothing the new frame, and following the

direction where the gradient of the L1 difference between

the DF of the model and the underlying part of the bigger

DF representing the new frame descends. Once a local min-

imum is reached, the model of the target is updated, using

a linear combination of the model and the new observation,

as in Equation 4.

For better performance, we use a hierarchical approach.

Instead of using a single DF to represent the target, we use

a small set of DFs, where each of them is built using an

increasing value of the parameter σs, which regulates the

amount of spatial blur. These DFs contain information at

different frequencies. At each frame, we use a coarse-to-

fine strategy. The most smoothed DF is used to start the

search, until it reaches a local minimum. This position is

the start for the search in the second DF.

The method for choosing the value of the parameters λ
and σf is using leave-one-out cross validation. The result

of picking σf separately for each video happens to coincide

for all of them to be σf = 10. This is also the case for

λ = 0.95.

Parameter b corresponding to the number of bins was

chosen, for speed, as the smallest power of two that does

not hurt the performance of the videos. This is b = 16.

Algorithm 1 Tracking with distribution fields

Input: V = video sequence.

I = patch containing target in frame 1.

σs = set of spatial smoothing parameters.

σf = brightness smoothing parameter .

b = number of brightness bins (b = 16).

λ = mixing parameter (λ = 0.95).

Output: (x, y)f {Positions of target at each video frame f
in V }

1: Initialize di
model = explode(I)∗hs(i)∗hf , i ∈ 1, ..|σs|

2: Initialize target location (x, y) to center of patch I .

3: for f = 2 → |V | do

4: for i = 1 → |σs| do

5: di
f = explode(f) ∗ hs(i) ∗ hf

6: (x′, y′) = argmin
(x,y)

L1(d
i
f (x, y), di

model)

7: (x, y) = (x′, y′)
8: end for

9: dmodel = λdmodel + (1 − λ)df (x, y)
10: end for

The schedule of σs for each video was chosen also using

cross validation but conditioned on the size of the target.

For each video, we choose the schedule of σs that performs

best for the video whose target is closest in size. The im-

pact of all parameters is studied in Section 5.3. The only

motion model present in the algorithm is the assumption of

constant velocity for computing the start of the search.

We now summarize the procedure in pseudo-code.

Here hs and hf are a 2D and a 1D Gaussian filters built

with σs and σf respectively.

The computational cost of our algorithm is dependent

on the number of bins used. We used b = 16. In a naive

implementation, the running time is then 16 times that of

template-matching with a Gaussian pyramid. However, the

step that requires extra computation is the convolution of

each layer of the DF. It is important to notice that this step

can be completely parallelized. We have implemented this

algorithm in a GPU in real-time at 70 frames per second on

a PAL video (768 × 576 pixels).

5. Experiments

One of the main advantages of DFs is the width of the

capture range around the position of the target. To illustrate

this, we first compare the width of the basin of attraction of

DFs to other descriptors. Second, we show that the tracking

algorithm that uses DFs is able to outperform other state-of-

the-art methods in standard benchmarks.

5.1. Experiments on basin of attraction of Distribu
tion Fields

Here we evaluate the improvement in the basin of attrac-

tion achieved by using DFs compared to other descriptors.

Experiment description: For an objective function

f(x, y) and a point p, the basin of attraction is the region

around the point p from which descending the gradient of

f(x, y) leads to p. The size of this region is crucial for

tracking algorithms that follow gradient descent to avoid

exhaustive search. In this experiment, given an image, a

patch is randomly selected and displaced in the horizontal

direction. The task is to find, using gradient descent, the

true position of the patch. This procedure is illustrated in

Figure 3. Since there is no noise or distortion, this task iso-

lates the problem of creating a spatially smooth objective

function to that of creating an objective function robust to

changes in appearance. 289 images from the UWA data set3

are used. The size of the patches is 30×30, and they were

displaced from 1 to 30 pixels in each direction of the hor-

izontal axis. We compare DFs to six other related or com-

monly used descriptors. These are the three traditional tech-

niques: sum of squared distances (ssd), normalized crossed

correlation (ncc), sum of squared distances of the blurred

image (blur) and the three related descriptors meanshift us-

ing Bhattacharyya distance (ms-bhatt), meanshift using L1

(ms) and multiple kernel tracking descriptor (mkt). We use

both L1 (df) and Bhattacharyya (df-bhatt) for the DF de-

scriptor. The size of the kernel used for blurring is the same

for all different descriptors that use blur. Figure 3 shows an

example of the result of evaluating each objective function

around the true location of a patch for one particular image.

Results: Figure 3 is the cumulative histogram of the size

of the basin of attraction for each image. It shows how of-

ten each descriptor is able to successfully follow a gradient

back to its original position as a function of the original dis-

placement. For example, the DF descriptor (cyan and ma-

genta lines) is able to follow a gradient back to its original

position from a displacement of 15 pixels more than 90%

of the time, while normalized cross correlation can only do

this about 20% of the time.

There are two important points to take from this graph.

The first is that the basin of attraction of DFs is larger than

for any other descriptor. The reason for the superiority over

traditional blur is that blurring the DF descriptor, as de-

scribed in Equation 1, does not mix the values of differ-

ent pixels. The reason for the superiority over the other

kernel-based descriptors is that the size of the signature

is increased and therefore there is more specificity among

patches. Kernel-based descriptors are a special case of DF,

where the value of σ is fixed and only the distribution of the

3http://www.cs.washington.edu/research/

imagedatabase/groundtruth/

Figure 3. Top left. Experiment to evaluate width of basin of attrac-

tion. The dashed rectangle is the true position of the patch, and it

is displaced by a distance d = 30. The basin of attraction tests

show how often a patch is able to find its original position at this

displacement. Top right. One instance of the different distance

metrics evaluated translating a patch 1-30 pixels in both directions

horizontally. Bottom. This plot shows, for a variety of descriptors,

the cumulative distribution of basin of attractions.

center pixel is used. The second point is that the basin of

attraction of a DF is consistently superior despite the dis-

tance metric used, this is, L1 and Bhattacharyya. Thus the

descriptor in this experiment is more influential than the dis-

tance metric.

5.2. Comparative tracking experiments

Data set: To evaluate the performance of the tracking

algorithm we use the list of videos compiled by Babenko et

al. [2] that is publicly available. 4 Since there is no standard

benchmark for tracking, we choose these videos because

they are the ones that most authors have compared to and

they represent a valuable de facto standard for evaluation.

They exhibit a wide range of phenomena from occlusion,

object deformation, significant change in object appearance

(subject turns 360 degrees out of plane), moving complex

backgrounds (surfing). They also show a variety of objects

being tracked such as faces, toys, and soda cans.

Algorithms for comparison: We compare the perfor-

mance of our algorithm to three other algorithms. We use

the trackers that, to the best of our knowledge, perform best

4The videos can be found at http://vision.ucsd.edu/

˜bbabenko/project_miltrack.shtml One of the links to the

videos was broken.

http://www.cs.washington.edu/research/imagedatabase/groundtruth/
http://www.cs.washington.edu/research/imagedatabase/groundtruth/
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml

Video DF PROST MIL MKT

tiger1 88.57 79 43.14 12.86

david 100.00 80 58.91 30.43

sylvester 66.79 74 73.88 20.90

girl 73.00 89 55.20 7.00

faceocc 100.00 100 77.28 6.21

faceocc2 98.76 82 78.13 27.33

coke11 75.86 - 17.93 27.59

surfer 94.67 - 56.00 62.67

dollar 100.00 - 90.76 15.38

tiger2 81.94 - 46.39 8.33

cliffbar 87.69 - 72.31 -
Table 1. Percentage of correctly tracked frames

on most videos of this data set: MIL [2] and PROST [21].

MIL uses unsupervised online learning over Haar features

to train a discriminative model over the two classes back-

ground and foreground. In PROST, three different track-

ers are used and combined using a cascade. PROST has

only been run on a subset of six of the videos, and therefore

we can only compare directly to it on these. In addition,

our tracker is most similar in spirit to the Multiple Kernel

Tracker [13] (MKT), and so we implemented and ran it on

the same suite. The kernels used in our implementation are

those described in their experiments, which are an Epanech-

nikov kernel and a roof kernel. The MKT descriptor is up-

dated with the same scheme as used for DFs.

Quantitative analysis: We use two different metrics for

the analysis of the tracking results. These are the mean dis-

tance to the ground truth (Table 2) and the percentage of

frames correctly tracked. A frame is correctly tracked if the

track and the ground truth have an overlap that is larger than

the union of their areas. This is, if the track is rectangle A,

and the ground truth is rectangle B, then a frame is correctly

tracked if (A ∩ B)/(A ∪ B) > 0.5. This is shown in Ta-

ble 1. We consider this metric to be much more informative

than the distance, since once the track is lost the distance to

the ground truth is somewhat arbitrary, and might bias the

average distance. However, we report both for consistency

with existing literature. Since MIL is stochastic, we show

the average of the five runs that they report.

The tables show superiority of DF with respect to MIL

and MKT in all 11 videos. Compared to PROST, DF is bet-

ter in 4 out of the 6 videos that they use for comparison. In

the video “faceocc” where both algorithms track correctly

100% of the frames, the accuracy of DF is better.

Qualitative analysis: The tracking algorithm is able to

overcome different challenges like moderate occlusion and

moderate changes in appearances due to pose and illumina-

tion change. Occlusions can cause drift in systems that are

updated online without supervision. When the DF that rep-

Video DF PROST MIL MKT

tiger1 6.49 7.20 17.60 79.13

david 9.97 15.30 23.45 98.62

sylvester 15.92 10.60 10.62 49.24

girl 21.57 19.00 32.76 105.05

faceocc 5.00 7.00 27.28 102.47

faceocc2 11.25 17.20 21.06 87.68

coke11 7.19 - 20.85 20.33

surfer 5.20 - 12.06 17.54

dollar 5.26 - 15.15 81.26

tiger2 6.75 - 18.97 69.48

cliffbar 7.77 - 12.23 -
Table 2. Mean distance to the ground truth

Figure 5. Basin of attrac-

tion. If the center of the tar-

get is located at any of the

colored pixels, gradient de-

scent leads to the correct po-

sition (within a 3×3 neigbor-

hood). These pixels are color-

coded according to the value

of the objective function at

that point.

resents the model of the target is updated with an occluder,

this is represented in the distributions with small weight, as

an unlikely event. If the occluder is not present during many

frames, the model DF will not be polluted with the occluder,

and will successfully avoid drift. This is the case of many of

the videos of the benchmark, as depicted in Figure 4. This is

also the case for other changes in appearance, like changes

in illumination and pose. In the two videos where DFs per-

form worse (“girl” and “sylvester”) the track drifts due to

very drastic changes in appearance. In the first one, the girl

whose face is being tracked turns around twice before the

track drifts. In the second, the object undertakes large pose

and illumination changes simultaneously.

5.3. Parameter Analysis

All parameters in the algorithm are chosen using cross

validation. In this section we further study the effect of

each of them in tracking performance. The most important

parameters are σs and σf , which are the standard deviation

of the Gaussian filters in image space and feature space re-

spectively. In the algorithm we use a coarse-to-fine strategy

for σs, where we convolve the DF first with a large, flat-

ter filter, and we progressively sharpen it. The initial large

filters smooth the optimization landscape, allowing the re-

covery of long displacements. The final smaller filters in-

crease the specificity of the descriptor, allowing the opti-

mization function to be more discriminative. If the value

Figure 4. Sample Frames. Our algorithm overcomes limited occlusions (a, b), moderate changes in illumination (c, d, e), and it’s robust

to low resolution outdoors sequences (f). Drift occurs when the changes in appearance are prolonged and very drastic (g, h).

of σs is too large, all patches might be too similar, and the

track might be lost. If it is too small, the tracker might get

stuck in a local minimum. Figure 6 shows the result of run-

ning the tracking algorithm with different configurations of

σs. The bars for a given video show the sizes of σs in as-

cending order. Although improvements in accuracy are not

very smooth (since a single occlusion can cause the track to

be lost forever), often larger targets are better tracked with

larger values of σs. For example, “girl” and “faceocc” seem

to perform better with larger sizes of σs. This seems reason-

able, because descriptors that represent small patches can

become indistinguishable from each other more easily when

blurred, since they have lower dimensionality. This sug-

gests that the parameter is somewhat consistent and what is

most important, is generalizable. That is, the best value for

a particular target will be very good for a different target in

a different video if they have similar sizes.

The case of the value of σf in feature space is similar to

σs in space, and in general smaller targets are better tracked

with smaller kernels. However, there are other factors that

also influence the best value of σf , such as the similarity

between background and foreground and the variance in the

appearance of the model. If σf is very small, large targets

tend to perform worse and videos with small targets tend

to perform better. If σf is very large, the opposite is true.

This explains the large variation of the performance in small

and large values of the parameter in Figure 7. Potentially,

both σs and σf could be learned to be adaptative for the

particular characteristics of the video, but in this case the

suite of videos is too reduced and diverse.

Parameter λ controls the rate at which the model is up-

Figure 6. Percent of frames correctly tracked across different σ

configurations. Top. Using a two-level pyramid. Bottom. Using

a three-level pyramid.

Figure 7. Mean percentage of frames correctly tracked vs.

value of σf and λ.

dated as described in Equation 4. If the model is updated

very fast, small errors accumulate quickly and cause the

track to drift. This trade-off is shown in Figure 7. If the

model is updated very slowly, it may become outdated since

it may be unable to reflect changes in the appearance.

Figure 8. Sample frames of a sequence with 19000 frames. Al-

though in some frames (3000 to 4000) there is a certain amount of

background included in the model, the tracker successfully recov-

ers the correct position of the head.

5.4. Drift avoidance over long sequences

Tracking algorithms that are updated online tend to drift

over long sequences [19]. Once the model starts including a

part of the background, errors will accumulate and the track

will drift away from the target. We argue that our algorithm

for tracking with DFs is able to avoid this problem natu-

rally by keeping a model of the target that is flexible enough

to account for changes in appearance but allows a certain

memory on the appearance model. We ran our algorithm

with the parameters chosen as in Section 4 in a sequence of

19000 frames. Although during some frames there is some

part of the background included (frames 3000 - 4000), the

tracker successfully recovers as shown in Figure 8.

6. Conclusion

In this paper we have used a descriptor called DF for

the tracking of general objects in video sequences. Track-

ing with DFs has two contributions. First, they have a larger

basin of attraction than other similar descriptors, which pre-

vents the search from getting stuck in local minima. Sec-

ond, DFs present a variety of advantages for tracking, they

include spatial information in the kernel-based framework,

which resolves ambiguity and overcomes the undersensitiv-

ity to spatial structure. They also resolve the oversensitivity

that other descriptors have to the geometric structure of the

target, and they are able to model slow changes in appear-

ance and pose and be robust to minor occlusions.

We believe that DFs are a fertile framework for image

comparison and there are many improvements to our algo-

rithm that could be explored, such as modeling occlusion,

combining information over multiple feature spaces or in-

cluding a memory model to store different poses.

Acknowledgements

This work was supported in part by National Science

Foundation under CAREER award IIS-0546666.

References

[1] S. Avidan. Support vector tracking. In PAMI, 2001. 2

[2] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking

with online multiple instance learning. In CVPR, 2009. 5, 6

[3] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A

unifying framework. IJCV, 2004. 2

[4] S. T. Birchfield and S. Rangarajan. Spatiograms versus his-

tograms for region-based tracking. In CVPR, 2005. 2

[5] K. J. Cannons, J. M. Gryn, and R. P. Wildes. Visual tracking

using a pixelwise spatiotemporal oriented energy representa-

tion. In EECV, 2010. 2

[6] R. T. Collins. Mean-shift blob tracking through scale space.

In CVPR, 2003. 2

[7] R. T. Collins and Y. Liu. On-line selection of discriminative

tracking features. In ICCV, 2003. 2

[8] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking

of non-rigid objects using mean shift. In CVPR, 2000. 2

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 2

[10] A. M. Elgammal, D. Harwood, and L. S. Davis. Non-

parametric model for background subtraction. In EECV,

2000. 2

[11] Z. Fan, M. Yang, and Y. Wu. Multiple collaborative kernel

tracking. In CVPR, 2005. 2

[12] Z. Fan, M. Yang, Y. Wu, G. Hua, and T. Yu. Efficient optimal

kernel placement for reliable visual tracking. In CVPR, 2006.

2

[13] G. Hager, , G. D. Hager, M. Dewan, and C. V. Stewart. Mul-

tiple kernel tracking with SSD. In CVPR, 2004. 2, 6

[14] A. D. Jepson, D. J. Fleet, and T. El-Maraghi. Robust online

appearance models for visual tracking. In CVPR, 2001. 2

[15] E. G. Learned-Miller. Data driven image models through

continuous joint alignment. PAMI, page 2006, 2006. 3

[16] A. P. Leung and S. Gong. Mean shift tracking with random

sampling. In BMVC, 2006. 2

[17] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 2004. 2

[18] H. N. Marcel, M. Worring, and R. V. D. Boomgaard. Oc-

clusion robust adaptive template tracking. In ICCV, 2001.

2

[19] I. Matthews, T. Ishikawa, and S. Baker. The template update

problem. In BMVC, 2003. 8

[20] H. Mobahi, C. L. Zitnick, and Y. Ma. Seeing through the

blur. In CVPR, 2012. 2

[21] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof.

PROST: Parallel robust online simple tracking. In CVPR,

2010. 6

[22] L. Sevilla-Lara and E. Learned-Miller. Distribution fields.

Technical report, University of Massachusetts Amherst,

2011. Supplied as additional material techreport.pdf.

1

[23] C. Stauffer and W. Grimson. Learning patterns of activity

using real-time tracking. PAMI, 2000. 2

[24] R. Szeliski. Image alignment and stitching: a tutorial. Found.

Trends. Comput. Graph. Vis., 2:1–104, January 2006. 2

[25] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In ICCV, 1998. 3

[26] Z. Yin, F. Porikli, and R. T. Collins. Likelihood map fusion

for visual object tracking. In IEEE Workshop on Applications

of Computer Vision, 2008. 2

