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Abst rac t .  A practical approach to nonparametric cluster analysis of 
large data sets is presented. The number of clusters and the cluster cen- 
ters are derived by applying the mean shift procedure on a reduced set of 
points randomly selected from the data.. The cluster boundaries are de- 
lineated using a k-nearest neighbor technique. The resulting algorithm is 
stable and efficient, allowing the cluster decomposition of a 10000 point 
data set in only a few seconds. Complex clustering examples and appli- 
cations are discussed. 

1 I n t r o d u c t i o n  

In image understanding the feature spaces derived from real data  most often 
have a complex structure and a priori information to guide the analysis may 
not be available. The significant features whose recovery is necessary for the 
solution of a task, correspond to clusters in this space. The number of clusters, 
their shape and rules of assignment have to be discerned solely from the given 
data. 

The feature space can be regarded as a sample drawn from an unknown 

probability distribution. Representing this distribution with a parametric model 
(e.g., Gaussian mixture) will introduce severe artifacts since then the shape of the 
delineated clusters is predefined. Nonparametric cluster analysis, on the other 
hand, uses the modes of the underlying probability density to define the cluster 
centers and the valleys in the density to define the boundaries separating the 
clusters. 

To estimate the probability density several nonparametric techniques are 
available: multivariate histogram, the nearest neighbor method, kernel estima- 
tion, [5, 12, 14]. For higher dimensional feature spaces, multivariate histograms 
are less useful due to their exponentially growing number of bins with the space 
dimension, as well as due to the artifacts introduced by the quantization. The 
nearest neighbor method is prone to local noise (which makes difficult the ac- 
curate detection of the modes), and the obtained estimate is not a probability 
density since it integrates to infinity [14, p. 96]. For low to medium data  sizes 
kernel estimation is a good practical choice; it is simple, and for kernels obeying 
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mild conditions the estimate is asymptotically unbiased, consistent in a mean- 
square sense, and uniformly consistent in probability. 

The two nonparametric techniques discussed in this paper belong to the class 
of kernel estimators. In the first technique the underlying density is estimated 
and a hierarchical data structure is derived, based on which the data is decom- 
posed. An example is the graph theoretical approach [5, p. 539]. In the second 
technique density gradient estimation [4] is used, the modes being detected with 
the hill climbing mean shift procedure [1]. 

Note that both the density and the density gradient estimation require the 
search for the data points falling in the neighborhood delineated by the employed 
kernel. This task is called multidimensional range searching [13, p. 373]. However, 
unlike the nearest neighbor search which can be performed in logarithmic time [3, 
9], the performance of the multidimensional range searching is difficult to predict 
for a particular data set [13, p. 385]. Therefore, for applications involving large 
data sets (e.g., multispectral image segmentation [2], image restoration, speech 
and image coding), both the kernel estimation and density gradient estimation 
become computationally expensive, their complexity being proportional to the 
square of the number of data points. The attempt to reduce computations by 
subsampling the data leads to inaccuracy, most notably in the tails [1(3]. 

As a solution to the problem described above, this paper presents a practi- 
cal algorithm for unsupervised nonparametric clustering of large data sets. The 
algorithm is based on the mean shift procedure, being simple, efficient, and easy 
to implement. In Section 2 the principles behind the kernel density and the den- 
sity gradient estimation are reviewed, and the specific clustering techniques are 
discussed in Section 3. The proposed algorithm is presented in Section 4, with 
experimental results shown in Section 5. 

2 D e n s i t y  a n d  D e n s i t y  G r a d i e n t  E s t i m a t i o n  

Let X l . . .  X~ be a set of n points in the d-dimensional Euclidean space R d. 
The multivariate kernel density estimate obtained with kernel K(x) and window 
width h, computed in the point x is defined as [14, p. 76] 

1 
/ ( x )  = 

The kernel K(x) is a scalar function which must satisfy the following conditions 
[4] 

/R lim IlxllK(x)=0, /R K ( x ) d x =  1, sup IK(x)I < oo, IK(x)idx < c~, INl-~oo 
x C  R ~ a 

(2) 
where H" I] is the Euclidean norm. For optimum performance, the window width h 
has to be a function of the sample size n. Asymptotic unbiasedness, mean-square 
consistency, and uniform consistency in probability of the density estimate are 
assured if the following conditions are satisfied, respectively 
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lim h(n) = 0, lim nhd(n) = oo, lira nh2d(n) = oo. (3) 

The optimum kernel yielding minimum mean integrated square error (MISE) 
is the Epanechnikov kernel 

1 -1 2)(1 XTX) if xTx < 1 ~c d (d + - 
Ke(x) = 0 otherwise (4) 

where ca is the volume of the unit d-dimensional sphere [14, p. 76]. Uniform and 
Gaussian kernels are also frequently used. Note that a fast computation of (1) 
requires a fast multidimensional raa~ge searching around x. 

The use of a differentiable kernel allows to define the estimate of the density 
gradient as the gradient of the kernel density estimate (1) 

1 E V  K . (5) e l ( x )  - V ] (x )  = nhd ~=1 

Conditions on the kernel K(x)  and the window width h to guarantee asymptotic 
unbiasedness, mean-square consistency, and uniform consistency are derived in 
[4]. 

For the EpaJaechnikov kernel (4) the density estimate (5) becomes 

1 d + 2  k d + 2  (_~ ) 
Cf(x)=~(h%) h~ Z [ X , - x ] -  Z [X,-x] n(hdcd) h 2 

X~ esh (x) X~ esh (x) 
(6) 

where the region Sh(x) is a hypersphere of radius h having the volume hdcd, 
centered on x, and containing k data points. Note that k implicitly depends on 
x. The last term in (6) 

1 1 Mh(x) _= ~ ~ IX,-  x] = ~ ~ x , -  x (7) 
x, es,~ (~) X~ es,, (x) 

is called the sample mean shift. Using a kernel different from the Epanechnikov 
kernel results in a weighted mean computation in (7). Note again that efficient 
mean shift computation requires efficient range searching. 

k is the kernel density estimate f(x)  computed with the The quantity 

hypersphere Sh(x) (the uniform kernel), and thus we can write (6) as 

d + 2  
Cf (x)  = ] (x ) -g~-Mh(x) ,  (S) 

which yields 
n 2 el(x) 

M n ( x ) -  d + 2  ](x) (9) 

The expression (9) was first derived in [4] and shows that an estimate of the 
normalized gradient can be obtained by computing the sample mean shift in a 
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uniform kernel centered on x. The mean shift vector has the direction of the 
gradient density estimate at x when this estimate is obtained with the Epanech- 
nikov kernel. Therefore, the Epanechnikov kernel is also called the shadow of the 
uniform kernel [1]. 

Since the mean shift, vector always points towards the direction of the max- 
imum increase in the density, it can define a path leading to a local density 
maximum, i.e., to a mode of the density. Note that the normalized gradient in 
(9) introduces a desirable adaptive behavior: the mean shift step is large for low 
density regions corresponding to valleys, and decreases as x approaches a mode. 

3 D i s t r i b u t i o n  F r e e  C l u s t e r i n g  

Associated with the two estimates (the density and its gradient), there are two 
basic algorithms of nonparametric clustering. For a given window radius h, both 
algorithms automatically detect the number of existing clusters and their corre- 
sponding boundaries. 

Using the density estimate (1) a hierarchical structure of the data can be 
obtained as follows. For each point X~ search its neighborhood for a parent Xj,  

for which the quantity [ f (Xj)  - f(Xi)]"  IlXj - X~l[ -1 is positive and maximum, 

i.e., Xj is the steepest uphill from Xi. If the above quantity is negative for all 
L d 

Xj in the neighborhood, Xi is declared to be a root node of the tree structure. 
Root nodes are assumed to be close to a mode of the underlying distribution. 
Clustering is performed in a natural way by following the branches of the struc- 
ture. The algorithm, called graph theoretical clustering, is described in detail 
in [5, p. 538]. The hierarchical structure can also be obtained through iterative 
thresholding [7] or through splitting [6] of the density estimate. 

The second algorithm uses the density gradient estimate to define an iter- 
ative, hill climbing technique which detects the modes and the valleys in the 
underlying distribution. The mean shift procedure is an adaptive steepest ascent 
technique that computes the mean shift vector (7) for each data point, translates 
the kernel by that amount, and repeats the computations till a mode is reached. 
Convergence properties of the mean shift procedure, generalizations and appli- 
cations to clustering are discussed in [1]. A variant of the mean shift, called the 
maximum entropy clustering is presented in [11]. However, clustering through 
applying the mean shift procedure to each data point cannot be satisfactory in 
practical applications since the convergence over the low density regions is poor, 
while high density regions can present plateaus without a clear local maximum. 

When the data set is large (over 10000 points) the most important drawback 
of the two algorithms discussed above is their computational complexity. They 
require the density or density gradient estimation at each data point which has 
a complexity of O(n 2) for a set of n data points. The complexity problem is 
induced by the lack of efficiency of the multidimensional range searching. The 
performance of the d-dimensional trees used in range searching is rather difficult 
to predict for random data, [13, p. 385]. 
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In the next section we present a probabilistic mean shift type algorithm 
which takes in account the difficulties mentioned so far, and whose complexity 
is O(mn), with m << n. 

4 C l u s t e r i n g  A l g o r i t h m  

The steps of the algorithm are described below. 
1. Define a sample set obeying distance and density constraints. To reduce 

the computational load, a set of rn points Xl . . .  X,~ called the sample set is 
randomly selected from the data. Two constraints are imposed on the points 
retained in the sample set. The distance between any two neighbors should 
not be smaller than h, the radius of the sphere Sh(X), and the sample points 
should not lie in sparsely populated regions. The latter condition is required to 
avoid convergence problems for the mean shift procedure. A region is sparsely 
populated whenever the number of points inside the sphere is below a threshold 
T1. Note that the distance and density constraints automatically determine the 
size m of the sample set. The spheres centered on the sample set cover most of 
the data points. 

2. Apply the mean shift procedure to the sample set. A set containing m 
cluster center candidates is defined by the points of convergence of the m mean 
shift procedures. Note the decrease in computational complexity which is now 
O(mn), with m << n, and that the computation of the mean shift vectors is based 
on the entire data set. Therefore, the quality of the density gradient estimate is 
not diminished by the use of sampling. 

3. Perturb the cluster center candidates and reapply the mean shift procedure. 
Since a local plateau can prematurely stop the iterations, each cluster center 
candidate is perturbed by a random vector of small norm and the mean shift 
procedure is let to converge again. 

4. Derive the cluster centers Y 1 . . . Y p  from the cluster center candidates. 
Any subset of cluster center candidates which are sufficiently close to each other 
(for any given point in the subset there is at least another point in the subset 
such that their distance is less than h), defines a cluster center. The cluster center 
is the mean of the cluster center candidates in the subset. Note that p < m. 

5. Validate the cluster centers. Between any two cluster centers Yi and 
Yj  a significant valley should occur in the underlying density. The existence of 
the valley is tested for each pair (Y~, Yj).  The sphere Sh(x) is moved with step 
h along the line defined by (Yi ,Yj)  and the number the data points lying in 
the sphere is counted at each position, i.e., the density is estimated with kernel 

Sh(X ) along the line. Whenever the ratio between rain I ] (X i ) , f (X j )  ~ and the 
6 ~ 

minimum density along the line is larger than a threshold T2, a valley is assumed 
between Yi and Yj.  If no valley was found between Yi and Y j, the cluster center 
of lower density (Y~ or Y j) is removed from the set of cluster centers. 

6. Delineate the clusters. At this stage each sample point is associated with 
a cluster center. To allocate the data points a k-nearest neighbor technique is 
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employed, i.e., each data  point belongs to the cluster defined by the majority of 
its k-nearest sample points. 
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Fig. 1. First experiment. (a) Original data set (32640 points). (b) Cluster delineation 
(3 clusters). (c) Sample set (167 points). (d) Cluster center candidates. 

5 Experimental Results 

The clustering algorithm makes use of three parameters: the searching sphere ra- 
dius h, the threshold T1 which imposes the density constraint, and the threshold 
T2 corresponding to the minimum acceptable peak-valley ratio. All the experi- 
mental results described here were obtained with T1 = 50 and T2 = 1.2. Since 
the experimental data sets had different scales, the sphere radius h has been 
changed a~cordingly. 

The first example is shown in Figure 1. The data set contained 32640 points 
with dimension d = 3, grouped into 3 non-linearly separable clusters (Figure la).  
Using a radius h = 0.2, the obtained sample set had 167 points (Figure lc) and 
converged to 3 cluster centers. In Figure lb  the 3 extracted clusters are shown, 
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having 11050, 10874, and 10716 points, respectively. The algorithm running t ime 
was 20 seconds on a s tandard workstation. 
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Fig. 2. Second experiment. (a) Original data set (10000 points). (b) Cluster delineation 
(2 clusters). 
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Fig. 3. The error rate of the proposed algorithm for different values of the sphere 
radius. The dash-dotted line represents the error rate of the Bayes classifier. 

A simpler clustering example is shown in Figure 2. The purpose of this ex- 
periment  was to compare the performance of the nonparametr ic  algorithm with 
the performance of the classical Bayes classifier. The data  set contained 10000 
points with dimension d = 3 coming from two normal distributions with co- 
variance 102I and mean vector (0, 0, 0) T and (40, 0, 0) T, respectively. Figure 2b 
shows the delineated clusters corresponding to a radius h = 10. Using the Bayes 
classifier the theoretical error rate  is 0.234%, due to 234 points tha t  overlap. 
Figure 3 shows the error rate  resulted from our algorithm for sphere radii be- 
tween 8 and 20. The  error rate  increases with radius h due to the increase in 
the boundary  delineation error. The straight line in the graph represents the 
Bayes error rate. The performance of the nonparametr ic  algorithm is very close 
to tha t  of the Bayes classifier, in spite of no a priori knowledge being used in the 
nonparametr ic  case. 
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The third experiment shows the application of our algorithm to the  segmenta- 
tion of the color image in Figure 4a. Clustering is performed in the: perceptually 
uniform L*u*v* color space, each delineated cluster corresponding to homoge- 
neous regions in the image. The color space (Figure 5a) contained 14826 points, 
and four clusters have been extracted by using a radius of h = 10. Note the ir- 
regular boundaries of the clusters in Figure 5b. The clustering quality can be as- 
sessed by observing the segmented image in Figure 4b, where spatial constraints 
have been used to remove small regions [2]. 

(~) (b) 

Fig. 4. Third experiment. (a) OriginM image. (b) Segmented image using nonparamet- 
ric clustering, 
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Fig. 5. Third experiment. (a) Original data set (14826 color points). (b) Cluster delin- 
eation (4 clusters). 

A second color segmentation example is presented in Figure 4. Using the 
same radius of h = 10, the algorithm extracted three color clusters. 
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(a) (b) 

Fig. 6. Fourth experiment. (a) Original image. (b) Segmented image using nonpara- 
metric clustering. 
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