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Summary
Overdispersion and structural zeros are two major manifestations of departure from the Poisson
assumption when modeling count responses using Poisson loglinear regression. As noted in a
large body of literature, ignoring such departures could yield bias and lead to wrong conclusions.
Different approaches have been developed to tackle these two major problems. In this paper, we
review available methods for dealing with overdispersion and structural zeros within a
longitudinal data setting and propose a distribution-free modeling approach to address the
limitations of these methods by utilizing a new class of functional response models (FRM). We
illustrate our approach with both simulated and real study data.
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1 Introduction
Count (or frequency) responses such as number of heart attacks, days of hospitalization,
suicide attempts or unprotected vaginal sex arise quite often in biomedical and psychosocial
research. The Poisson distribution and more generally Poisson-based log-linear regression
are widely used for modeling such data. However, heterogeneity in study populations such
as data clustering often creates extra variability, which renders the Poisson distribution
inappropriate for modeling count data in such instances. One approach for addressing this
extra Poisson, or overdispersion, is the popular negative binomial (NB) distribution. This
modeling strategy, however, is rendered ineffective when the extra variability is caused by
an excessive number of zeros above and beyond the number of zeros expected by the
Poisson law. For example, when modeling behavioral outcomes such as the number of
unprotected vaginal sex over a period of time in HIV prevention research, the specific study
population often contains a subgroup of individuals who are not at risk for such a behavior
during the study period, in which case neither the Poisson nor NB is able to accommodate
such cases of structural zeros in the study population. One popular approach for addressing
such inflated zero counts is the zero-inflated Poisson (ZIP) model, which has been applied to
a diverse range of studies(1-16). The inherent methodological problems with structural zeros
have received a great deal of attention in the literature(4; 9; 10; 19; 17; 18).

When modelling count responses in the presence of overdispersion and structural zeros
within a longitudinal data setting, one of the current strategies is to employ random effects
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within the context of the generalized linear mixed-effects model (GLMM) to account for
correlated responses from repeated assessments over time(19). However, as it relies on
parametric assumptions about random effects and response for inference, such an approach
lacks robustness when real study data depart from the assumed distributional models.
Further, the random effects induce overdispersion into the marginal model at each
assessment, giving rise to quite different results and findings than those from the marginal
models(20; 21; 22). In addition, such an approach computes estimates using the expectation/
maximization (EM) algorithm, which can be problematic since EM is notorious for its slow
convergence and may yield local rather than global maxima, making it difficult to apply
such methods in routine analyses.

A popular alternative is to use the generalized estimating equations (GEE) to address
correlated longitudinal responses. The GEE approach is widely used for modeling the mean
response, or first-order moment. Unlike GLMM, model parameters have the same
interpretations between the marginal and joint models across assessment times. In addition,
as GEE models the marginal mean of the response variable at each assessment time, it
ignores both layers of assumptions and thereby provides consistent estimates regardless of
the complexity of the correlation structure and the distribution of the response. GEE
estimates are also much easier to compute than those based on the GLMM approach.

As the key difference between the standard (Poisson) log-linear model and other models for
count responses such as ZIP lies in the variance, or the second-order moment, GEE does not
apply directly to extending such models to a longitudinal data setting(23; 24; 25). Also,
since ZIP is a mixture of two distributions, we will not be able to identify the model
parameters by simply modeling the mean response(24; 26). One approach is to model the
zero and positive outcomes separately using a truncated Poisson for the positive response
and a logistic regression for the zero outcome(27). However, as the structural and sampling
zeros are mixed into a single category, this approach is unable to identify the parameters for
modeling the structural zeros, which is often of great interest in practice. For example, in the
hospitalization example, this approach will only model those who are hospitalized, since the
at-risk subgroup for hospitalization is mixed with those who are healthy and are not at risk
for hospitalization. In many studies, it is of great importance to model the at- and non-risk
subgroups separately. An alternative to address the identifiability issue is to include a
modeling component for the variance and apply GEE to both the specified mean and
variance(24; 25; 28; 29). However, all these methods do not sufficiently address missing
data, yielding biased inference if missing data does not follow the missing completely at
random (MCAR) assumption(30; 31).

In this paper, we propose an approach to overcome the aforementioned difficulties by
utilizing a class of functional response models (FRM) and the popular weighted generalized
estimating equations (WGEE). In Section 2, we first give a brief overview of the problems
with overdispersed and zero-inflated count data and popular models for addressing them.
We then introduce FRM and discuss its application to the current setting. In Section 3, we
discuss inference for the FRM-based models under both complete and missing data. In
Section 4, we illustrate the proposed models with real study data and investigate their
performance using simulated data. In Section 5, we give our concluding remarks.

2 Functional Response Models for Count Response
We start with a brief review of existing approaches for addressing overdispersion and
structural zeros.
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2.1 Models for Overdispersion and Structural Zeros
Consider first a cross-sectional study with n subjects, and let yi denote a count response and
xi a vector of explanatory variables. The popular Poisson log-linear regression, a member of
the generalized linear model (GLM) family, models the conditional mean of yi given xi, μi =

E(yi | xi), by applying the log function to link μi to the linear predictor :

(1)

where i.d. denotes independently distributed and P(μ) the Poisson distribution with mean μ.
Under (1), the conditional mean E(yi | xi) and variance Var(yi | xi) of yi given xi satisfy:

(2)

As mentioned, the conditional variance Var(yi | xi) often exceeds the conditional mean μi in
real study applications, making (1) inappropriate for modeling such count data. When
overdispersion occurs, the standard error of the parameter estimate of the Poisson model is
artificially deflated, giving rise to artificially inflated effect size estimates and false
significant findings.

Overdispersion can often be empirically detected by goodness of fit statistics or even
formally tested(25; 32; 33). When deemed present, overdispersion may be corrected post
hoc by using robust variance estimates(25). An alternative is to use models that explicitly
address this issue. For example, the popular negative binomial (NB) model allows the
variance to exceed the mean:

(3)

Unlike the Poisson, the NB has an extra parameter α to indicate the degree of
overdispersion. As α → 0, Var(yi ∣ μi, α) → μi. Thus, unless α = 0, the variance of NB is
always larger than the mean, addressing overdispersion. Under NB, we can check
overdispersion by testing the null: H0 : α = 0. Note, however that under H0, α = 0 is a
boundary point of α ≥ 0 and the maximum likelihood estimate (MLE) αˆ of α cannot be
used directly for testing H0, and alternative score statistics must be used(33; 34; 35).

Count responses in many biomedical and psychosocial studies are dominated by a
preponderance of zeros that exceeds the expected frequency of the Poisson. Such excess or
structural zeros not only cause overdispersion, but also affect the conditional mean, leading
to biased estimates of model parameters. The zero-inflated Poisson (ZIP) model is a popular
approach to address the twin effects of structural zeros on both the mean and variance.

Let ui and vi be two subsets of xi, which may overlap one another or even identical, and thus
may not be a partition of xi. The ZIP regression model is defined by:

(4)

where ZIP(μ, ρ) denotes the ZIP distribution defined by:
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(5)

with f0(y) denoting a degenerate distribution centered at 0. In (5), the Poisson probability at
0, fP (0 ∣ μ), is modified by ρf0 (0) + (1 − ρ) fP (0 ∣ μ) with ρf0 (0) = ρ to account for
structural zeros.

Consider these models within a longitudinal setting with m assessments, with yit, xit, uit and
vit denoting the respective variables at time t (1 ≤ t ≤ m). We may model yit as a function of
xit (or uit and vit for ZIP) by using either a parametric or distribution-free modeling
approach. As mentioned, the former suffers interpretational and computational problems. A
popular distribution-free alternative with inference based on the generalized estimating
equations (GEE) is to specify the conditional mean of yit given xit, which for count response
has the following form,

(6)

This mean-based specification, however, is not sufficient to distinguish the Poisson from the
NB, as the two models only differ in the conditional variance V ar(yit ∣ xit). The classic
model specification also does not work for ZIP, since the conditional mean of yit given xit in
this case is

(7)

which in general does not provide sufficient information to identify βu and βv.

To help distinguish among the three models, one can augment the GEE by including the
distinct form of the conditional variance V ar(yit ∣ xit) for each model and use the resulting
GEE II for inference(23; 24; 28; 29). However, this approach is ad-hoc in the sense that
GEE II is a method of inference primarily used for improving efficiency over GEE, rather
than a formal model akin to (6), since the added response (or dependent variable) V ar(yit ∣
xit) is a function of parameters(25). In addition, it does not effectively address missing data.
Another approach is to model the zero and positive outcomes separately using a truncated
Poisson for the positive response and a logistic regression for the zero outcome(27).
However, this approach is unable to identify the parameters for modeling the structural zero,
which is often of greater interest in practice. Next we utilize a new class of regression
models to address the limitations of the aforementioned approaches.

2.2 Functional Response Models
Consider a class of distribution-free regression models defined by:

(8)

where yi = (yi1, …, yim)˕ denotes the vector of responses from the ith subject, f some vector-
valued function, h(θ) some vector-valued smooth function (e.g. with continuous derivatives

up to the second order), θ a vector of parameters of interest, q some positive integer, and 

the set of  combinations of q distinct elements (i1, …, iq) from the integer set {1, …, n}.
The functional response models (FRM) (8) extend the single-subject response in the classic
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GLM to a function of responses from multiple subjects. For example, by setting q = 1, we
immediately obtain from (8) the class of distribution-free GLMs for longitudinal data with m
assessments. With FRM, we can express a broader class of problems under a regression-like
framework(25; 36; 37; 38; 39; 40). Below, we focus on the application of FRM within our
setting for modeling count responses.

Consider first the simpler cross-sectional study setting. For the cross-sectional parametric
ZIP in (4), let

(9)

where ui(vi) denotes a subset of xi. Under (4), E(fi ∣ ui, vi) = hi(ui, vi). For NB, f (yi) is
defined the same as for ZIP in (9), but with hi = (h1i, h2i)⊤ modified as follows:

(10)

As a special case with α = 0, the FRM for NB reduces to a distribution-free Poisson with

. Note that under the FRM-based NB, we can allow α to be negative and thus
α = 0 is no longer a boundary point. Thus, we can readily use the estimate of α to test the
null H0 : α = 0 to determine whether the Poisson loglinear model is appropriate.

For longitudinal data, suppose that each subject is assessed m times, with yit and xit denoting
the respective variables at time t (1 ≤ t ≤ m). Define the FRM-based ZIP model as follows:

(11)

Likewise, we obtain a longitudinal version of FRM-based NB by defining the same fit, but
modifying hit as follows:

(12)

Note that we have assumed a constant α for NB, though the model above readily
accommodates a time-varying α. In many studies, clusters causing overdispersion such as
those formed by the subjects sampled from a common habitat may not change over time
during the study, and this assumption is reasonable.

Both the ZIP and NB models for longitudinal data in (11) and (12) yield the same first-and
second-order moment as their respective cross-sectional versions in (9)-(10) at each time t (1
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≤ t ≤ m). Thus, unlike their GLMM-based parametric counterparts, estimates from the FRM-
based ZIP and NB models for longitudinal data can be readily compared to their
corresponding cross-sectional versions. These distribution-free models are also called
semiparametric or moment-based in the literature(41; 42). We refer to these as distribution-
free models throughout the text unless otherwise stated.

3 Distribution-free Inference
We first discuss inference for cross-sectional data, and then extend the considerations to the
longitudinal setting.

3.1 Distribution-free Inference for Cross-sectional Data

For the FRM-based ZIP model in (??), let  and

(13)

We estimate θ by the following set of generalized estimating equations,

(14)

Given the ZIP model in (4), the elements of Vi in (13) are functions of the conditional
moments of yi given xi up to the 4th order, which can be expressed in closed form (see
Appendix A). Thus, the quantities Di, Vi and Si in (13) are readily evaluated. Note that (14)
bears a close resemblance to the generalized estimating equations II (GEE II) for generalized
linear models(25; 28; 29; 43).

By defining Di, Vi and Si the same way as in (13), but with θ = (β⊤, α)⊤ and hi defined in
(10), the GEE in (14) can be used to obtain estimates of θ for NB as well.

Under (9), the GEE estimate θˆ of θ obtained as the solution to (14) is consistent and
asymptotically normal (see Theorem 1 below):

(15)

where →d denotes convergence in distribution(25). Unlike the MLE, the asymptotic results
above do not require that yi (given ui and vi) follow the ZIP distribution in (4). If yi does
follow such a parametric model, Σθ in (15) simplifies to Σθ = B−1, which is the model-based
asymptotic variance.

A consistent estimate of Σθ is obtained by substituting moment estimates in place of the
respective parameters:
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where Bˆi, Dˆ, Sˆi and Vˆi denote the corresponding quantities with θ replaced by θˆ. Our
simulations indicate that the model-based asymptotic variance estimate Bˆ outperforms its
sandwich alternative by yielding slightly more accurate type I error rates under the correct
parametric model(44).

3.2 Distribution-free Inference for Longitudinal Data
We begin with inference under complete data and then extend the discussion to include
missing data.

3.2.1 Inference under Complete Data—Let

(16)

where fit and hit are defined by (11) for the ZIP or by (12) for the NB model. We again
apply the GEE in (14), but with Di and Si revised to reflect the changed dimension, and Vi
modified to reflect the correlation between the fit's over time:

(17)

where R(τ) is a working correlation matrix among the components of fi parameterized by τ.
As in the cross-sectional data case, Ait is readily computed. For R(τ), the popular choices are
the working independence model (R(τ) = I2m) and the exchangeable correlation structure
given by:

Thus, τ is known for the working independence model, but unknown for the exchangeable
correlation model with τ = ρ.

Note that since the GEE estimate may not be consistent under working correlation structures
other than the independence model, especially in the presence of time-varying
covariates(45), we focus on this model in what to follow unless otherwise stated. With this
choice of R(τ), the GEE is readily solved for θ. However, when the working correlation
model used involves an unknown τ, an estimate must be substituted before the GEE is
solved to obtain estimates of θ.

As in the cross-sectional data case, the GEE estimate has nice asymptotic properties
summarized in Theorem 1 below. Since this is a special case of Theorem 2, its proof is
omitted. Since Theorem 1 is stated for general working correlation models, it includes the
condition for the estimate of τ to ensure such nice properties.

Theorem 1: Let θˆ denote the GEE estimate and let
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(18)

Under mild regularity conditions, θˆ is consistent. Further, if τˆ is , i.e.,

 is bounded in probability(25), then θˆ is asymptotically normal with the
asymptotic variance Σθ. A consistent estimate of Σθ is given by:

(19)

where Bˆi, Dˆi, Sˆi and Vˆi denote the corresponding quantities with θ replaced by θˆ.

Note that given the limited choices for the working correlation matrix R(τ),

 generally is not true in practice. Thus, unlike the cross-sectional data case,
there is no model-based asymptotic variance.

3.2.2 Inference under Missing Data—Missing data arise frequently in real studies. For
mean-based distribution-free models such as the GLM, the weighted generalized estimating
equations (WGEE) is the most popular for inference about model parameters. By integrating
the inverse probability weighting (IPW) technique with the GEE, the WGEE ensures valid
inference when the missing data follows the missing at random (MAR) model, a plausible
and general missing data mechanism applicable to many studies in practice(25; 31; 41; 46;
47). We discuss below how to extend this IPW approach to the current FRM-based models
for count responses.

Within the context of longitudinal data discussed in the preceding section, we define a
missing (or rather observed) data indicator for each subject as follows:

We assume no missing data at baseline t = 1 such that ri1 = 1 for all 1 ≤ i ≤ n. Let

(20)

In most applications, the weight function πit is unknown and must be estimated. Under
MCAR, ri is independent of xi and yi and thus πit = Pr (rit = 1) = πt. In this case, πt is a
constant independent of xi and yi and is readily estimated by the sample moment:

.

Under MAR, πit becomes dependent on the observed xi and yi, making it difficult to model
and estimate πit without imposing the monotone missing data pattern (MMDP) assumption
because of the large number of missing data patterns(25; 37; 41). Under MMDP, yit (xit) is
observed only if all yis (xis) prior to time t are observed (1 ≤ s ≤ t ≤ m).

Let
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where X̃it and ỹit contain the explanatory and response variables prior to time t,
respectively. Under MAR we have:

Let pit = Pr (rit = 1 ∣ ri(t−1) = 1, Hit), the one-step transition probability for observing the
response from time t − 1 to t. We can model pit using logistic regression:

(21)

where . Let . Then, under MMDP,

The above provides a relationship to estimate πit from the model for pit in (21).

We may estimate γ using the following estimating equations:

(22)

With estimated πit, we can estimate θ by generalizing the WGEE for mean-based response
models to a WGEE for the current context as follows:

(23)

where Di, Vi and Si are defined the same as in the GEE in the complete data case, and Δˆi
denotes Δi in (21) with estimated πit. Also, as in the complete data case, Vi may be a
function of τ if working dependence correlation models are used, which must replaced with
an estimate before (23) is used for inference about θ.

The WGEE estimate θˆ has nice asymptotic properties, as summarized by the theorem below
(see Appendix B for a proof).

Theorem 2: Let θˆ denote the WGEE II estimate. Under mild regularity conditions,

1. θˆ is consistent.
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2. If τˆ is  θˆ is asymptotically normal with asymptotic variance given
by:

(24)

A consistent estimate of Σθ is given by:

Note that the asymptotic variance in (24) contains a correction term B−1ΦB−⊤ to account for
the sampling variability in the estimated γˆ.

3.2.3 Score Test—As Wald-type tests are typically anti-conservative(21; 48; 49), score
statistics are often used as an alternative to reduce bias, especially in type I error rates for

small to moderate samples. Within the current context, let , with p and q
denoting the dimension of θ(1) and θ(2), respectively. Consider testing the null H0 : θ(2) =
θ(20), with θ(20) denoting a vector of known constants.

Under H0 : θ(2) = θ(20),

(26)

Let θ̃(1) denote the estimate from solving the reduced WGEE:

(27)

Set

(28)

where q is the dimension of wn(2), B11 denotes the p × p submatrix, B12 the p × q submatrix,
and B22 the q × q submatrix from the partitioned (p + q) × (p + q) matrix B. Then, under

H0 : θ(2) = θ(20), the following score statistic has as an asymptotic (central)  distribution
with q degrees of freedom (see Appendix C for a proof):
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(29)

where Σ̃(2) = G̃Σ̃θG̃⊤ with G̃ and Σ̃θ denoting the corresponding quantities with θ replaced
by θ̃.

4 Applications
We first investigate the performance of the approach with small to moderate sample sizes by
simulation and then present a real data application. In all the examples, we set the statistical
significance level at α = 0.05.

4.1 Simulation Study
For space considerations, we only report results from the ZIP model for longitudinal data
with sample size n = 50, 100 and 200. All simulations were performed with a Monte Carlo
sample of 1,000. We start with data simulations under complete data.

4.1.1 Complete Data Case—For notational brevity, we considered a relatively simple
pre-post longitudinal study design, with only one explanatory variable xi following a normal
distribution N(1,1), and simulated the bivariate count response, yi = (yi1, yi2)⊤, to satisfy the
following marginal ZIP model:

(30)

We set βu0 = −1, β0 = β1 = 1. We first simulated xi from N(1, 1), and then conditional on xi,
generated yit by using a copula approach(50; 51; 52). The copula method can generate
correlated multivariate responses for any specified marginal distribution and correlation
structure. For our simulation study, we set Corr(yi1, yi2 ∣ xi) = 0.5.

To examine type I error rates, we considered the null, H0 : β1 = 1, and computed the Wald

statistic, , where  denotes the element of the estimated

asymptotic variance Σ̃θ corresponding to β̃1. Let  denote this statistic at the kth MC
simulation (1 ≤ k ≤ 1000). The type I error rate for testing H0 was estimated by:

, with q1,0.95 denoting the 95th percentile of a central  with
one degree of freedom.

Since Wald statistics are often anti-conservative, we also applied the score test in Section

3.2. Let , where θ(1) = (βu0, β0)⊤ and θ(2) = β1. Under H0, θ(2) = 1, the score

statistic Ts (θ̃(1), 1) in (29) has an  distribution. The type I error rate for testing H0 was

again estimated by: , where  denotes this statistic at the kth
MC simulation (1 ≤ m ≤ 1000).

Shown in Table 1 are the estimates of θ, standard errors, and type I errors for the ZIP model
in (30). For comparison purposes, we also included “Empirical” variance estimates and type
I error rates based on such a variance estimate. The “Empirical” type I error rates were
computed based on substituting Σθ with the Empirical variance estimate in the Wald test
statistic. It is seen that type I error rates were a bit inflated for sample sizes 50 and 100 under
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the Wald test, but were closer to the nominal 0.05 under the “Score” and “Empirical” tests
even for samples as small as n = 50.

To compare our approach with GEE II, we also estimated the parameters using a program
developed for such an alternative by Hall and Zhang (2004)(24). As noted earlier, their
method modeled the conditional variance, rather than the second moment. In addition, they
assumed working independence between the mean and variance. We obtain quite similar
results (not shown), which may not be surprising, as such differences are likely to have
minor impact on inference given the marginal ZIP model in (30).

4.1.2 Missing Data Case—Assuming no missing data at baseline t = 1, we simulated
missing responses under MCAR and MAR with about 20% missing data at t = 2. By
applying the discussion in Section 3.2 to the context of the pre-post design, we modeled the
missingness at time t = 2 under MAR by:

We again considered the null H0: β1 = 1, and computed the Wald and score statistics and the
associated type I error rates. The Wald statistic Qn is computed the same way as in the
complete data case except that the estimate of θ is obtained from the WGEE in (23).

Shown in Table 2(3) are the estimates of θ, standard errors, and type I errors for the ZIP
model under MCAR (MAR). As in the complete data case, the score test again performed a
marvelous job in correcting the upward bias in type I error rates by the Wald statistic in
testing the null H0: β1 = 1, especially for the sample size n = 50, 100. For inference under
MAR, the Wald statistic again yielded inflated type I error rates for testing the null, but the
score test corrected the upward bias and maintained a type I error rate consistently near 0.05
across all sample sizes.

4.2 Real Study Data
To illustrate the approach to real study data, we applied it to a multi-center, NIDA-
sponsored study entitled “HIV/STD Safer Sex Skills Groups For Men In Methadone
Maintenance Or Drug-free Outpatient Treatment Programs,” known as CTN0018 within the
Clinical Trials Network (CTN) studies. This study was designed to examine the
effectiveness of 5 session motivational and skills training in HIV/AIDS group interventions
developed to reduce sexual risk behaviors in men, as compared to an HIV education only
control condition. Unlike most community-based studies in which the HIV education
provided is limited to information, this trial integrated a component to provide skill-training
programs such as role plays to reducing sex risk behaviors. The primary outcome of the
study is the number of unprotected vaginal and anal sexual intercourse occasions (USO)
which was assessed at baseline, 2 weeks, 3- and 6-months(53; 54).

Out of 573 eligible subjects screened, 422 subjects completed assessment at baseline.
Among these, 381 (91.27%) and 345 (60.2 %) came for assessment at 3- and 6-months.
Since 2 weeks was too short to observe a reasonably large USO, we limited our analysis to
the period from baseline to 3- and 6-months follow-up visits.

Shown in Table 4 are the mean USOs and percent of zero USO at baseline, 3- and 6-months
for the two treatment groups. It is evident that there was a preponderance of zeros in the
distribution of this outcome at each assessment time. Accordingly, we modeled the USO at
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3-month (yi1) and 6-month (yi2) as a function of treatment condition, time and time by
treatment interaction, controlling for baseline USO, yi0, using the FRM-based ZIP model in
(11) with

(31)

where xi was an indicator with xi = 1 for the intervention and 0 otherwise.

To account for potential response-dependent MAR missingness, we modeled the
missingness under MMDP using logistic regression:

(32)

We assumed a Markov condition in (32) so that the missingness only depended on the most
recent observed response.

Shown in Table 5 are the estimates of parameters from the logistic regression, their standard
errors and corresponding p-values. The results show that the missingness at time t = 1
depended on the treatment assignment, while at time t = 2 depended on the observed
response at time t = 1. In other words, the subjects in the intervention group were more
likely to drop out than those in the control at time t = 2, while those with smaller values of
USO at t = 1 were also more likely to drop out at t = 2. Based on these results, we proceeded
with inference under MAR.

Shown in Table 6 are the estimates of parameters of the ZIP model, their standard errors and
associated p-values. As the interaction term involving time and intervention was neither
significant in the logistic (ρit) nor in the Poisson (μit) component of the model, we refit the
model without this term, with the results from the revised model shown in Table 7.

For treatment effectiveness based on the results from the additive model, the logistic part of
the model indicates that the intervention increased the likelihood of no risk for USO during
the study, while the log-linear component shows that the intervention also significantly
reduced the mean frequency of USO for the at-risk subgroup. The ratio of the mean USO of
the treated to that of the control condition is exp(-0.09) = 0.9, suggesting a 10% decrease in
USO for the treated subjects.

Baseline USO also played a significant role. The logistic component indicates that lower
baseline USO would significantly increase the likelihood of being at no risk for USO during
the study period. The log-linear part of the model shows that higher baseline USO was
significantly associated with higher USO during the study. The findings suggest that
substance abuse treatment programs should consider offering motivational exercises and
skills training to achieve greater reductions in risky sexual activities.

5 Discussion
Count responses are a common type of outcome in biomedical, psychosocial and related
services research. We discussed two major manifestations of departure from the Poisson
assumption, overdispersion and structural zeros, and reviewed existing methods for
addressing these two important issues. In particular, we focused on the limitations of
available approaches with respect to longitudinal data analysis and proposed an approach to
systematically tackle these problems under a unified modeling framework.
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We applied the proposed approach to a real study in HIV prevention, allowing us to address
important methodological issues in a timely application. In addition, the results from the
simulation study show that the proposed approach works well for longitudinal study data
under both complete and missing data settings. Although inference is derived based on large
samples, the approach seems to provide valid inference for samples with sample size as
small as 50.
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Appendix

Appendix A
The variance V ar(fi ∣ xi) for the cross-sectional data case is readily computed using the
moments up to the 4th order under either ZIP or NB distribution. The first two order
moments for ZIP and NB are given in (9) and (10), while the 3rd and 4th order moments for
the two models are given by:

(33)

Appendix B. Proof of Theorem 2

Let  and πi = (πi1, …, πim1)⊤. Then, , with GiΔiSi = Gi(xi, θ,
α)Δi(ri, πi, γ)Si(yi, xi,θ). It follows from the iterated conditional expectation that E(GiΔiSi) =
E [GiSiE(Δi ∣ ri, yi, xi)]. By definition, Δiis a m × m block diagonal matrix with the tth block

diagonal matrix given by , with Im denoting the m × m identify matrix.

Since , it follows that E(GiΔiSi) = E(GiSi) = 0. Thus, the WGEE II
is unbiased and the estimate θˆ obtained as the solution to the equations is consistent.

Let γˆ be the solution to the (22). By a Taylor expansion of the estimating equations in (22)
and solving for γˆ−γ, we obtain

(34)

where op(1) denotes the stochastic o(1)(25). Also, by applying a Taylor series expansion to
the WGEE II in (23), we have

(35)

If αˆ is , it follows that
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By substituting op(1) for  in (35) and solving for  (θˆ −
θ), we obtain

(36)

It follows from (34) and (36) that

(37)

Since

(38)

where →p denotes convergence in probability, it follows from (37) and (38) that

(39)

By applying the central limit theorem and Slutsky's theorem to (39)(25), θˆ is asymptotically
normal with the asymptotic variance given by Σθ in (24).

Appendix C. Asymptotic Normality of Score Statistic

First, assume no missing data. Then,  By applying the law of large
numbers,

(40)

It follows from a Taylor's series expansion and (40) that

Thus,
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(41)

Similarly, since , we have:

(42)

It follows from (41) and (42) that

By the central limit theorem,

(43)

where G is defined in (28) and Σθ in (24).

In the presence of missing data,  as defined in (28). By a similar
argument, wn(2) (θ̃(1), θ(20)) has an asymptotic normal distribution, which implies that the

score statistic Ts((θ̃(1), θ(2))) has the asymptotic  distribution.

References
1. Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing.

Technometrics. 1992; 34:1–14.

2. Crepon B, Duguet E. Research and development, competition and innovation — pseudo-maximum
likelihood and simulated maximum likelihood methods applied to count data models with
heterogeneity. Journal of Econometrics. 1997; 79:355–378.

3. Miaou SP. The relationship between truck accidents and geometric design of road sections —
Poisson versus negative binomial regressions. Accident Analysis & Prevention. 1994; 26:471–482.
[PubMed: 7916855]

4. Welsh A, Cunningham RB, Donnelly CF, Lindenmayer DB. Modeling the abundance of rare
species: statistical-models for counts with extra zeros. Ecological Modelling. 1996; 88:297–308.

5. Faddy, M. Stochastic models for analysis of species abundance data. In: Fletcher, DJ.; Kavalieris,
L.; Manly, BF., editors. Statistics in Ecology and Environmental Monitoring 2: Decision Making
and Risk Assessment in Biology. University of Otago Press; 1998. p. 33-40.

6. Gurmu S, Trivedi P. Excess zeros in count models for recreational trips. Journal of Business &
Economic Statistics. 1996; 14:469–477.

7. Gurmu S. Semi-parametric estimation of hurdle regression models with an application to Medicaid
utilization. Journal of Applied Econometrics. 1997; 12:225–242.

8. Shonkwiler J, Shaw W. Hurdle count-data models in recreation demand analysis. Journal of
Agricultural and Resource Economics. 1996; 21:210–219.

9. Hall DB. Zero-Inflated Poisson and binomial regression with random effects: A case study.
Biometrics. 2000; 56:1030–1039. [PubMed: 11129458]

Yu et al. Page 16

Stat Med. Author manuscript; available in PMC 2014 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



10. Yau KW, Lee AH. Zero-inflated Poisson regression with random effects to evaluate an
occupational injury prevention programme. Statistics in Medicine. 2001; 20:2907–2920. [PubMed:
11568948]

11. World Health Organization. Optimal duration of exclusive breastfeeding. Geneva: WHO; 2001.

12. Donath S, Amir LH. Rates of breastfeeding in Australia by State and socio-economic status:
Evidence from the 1995 National Health Survey. Journal of Pediatrics and Child Health. 2000;
36(2):164–168.

13. Cheung YB. Zero-infated models for regression analysis of count study of growth and
development. Statistics in Medicine. 2002; 21:1461–1469. [PubMed: 12185896]

14. Wyman PA, Cross W, Brown HC, Yu Q, Tu XM. Intervention to strengthen emotional self-
regulation in children with emerging mental health problems: Proximal impact on school behavior.
Journal of Abnormal Child Psychology. in press.

15. Abma JC, Martinez GM, Mosher WD, Dawson BS. Teenagers in the United States: Sexual
activity, contraceptive use, and child bearing. Vital Health Statistics. 2002; 23(24)

16. Abe T, Martin I, Roche L. Clusters of Census Tracts with High Proportions of Men with Distant-
Stage Prostate Cancer Incidence in New Jersey, 1995 to 1999. American Journal of Preventive
Medicine. 2006; 30(2):S60–S66. [PubMed: 16458791]

17. Hur K, Hedeker D, Henderson W, Khuri S, Daley J. Modeling clustered count data with excess
zeros in health care outcomes research. Health Services and Outcomes Research Methodology.
2002; 3:5–20.

18. Lachenbruch PA. Analysis of data with excess zeros. Statistical Methods in Medical Research.
2002; 11:297–302. [PubMed: 12197297]

19. Lee AH, Wang K, Scott JA, Yau KKW, McLachlan GJ. Multi-level zero-inflated Poisson
regression modelling of correlated count data with excess zeros. Statistical Methods in Medical
Research. 2006; 15:47–61.

20. Ritz J, Spiegelman D. Equivalence of conditional and marginal regression models for clustered and
longitudinal data. Statistical Methods in Medical Research. 2004; 13:309–323.

21. Zhang H, Xia Y, Chen R, Lu N, Tang W, Tu X. On Modeling Longitudinal Binomial Responses
— Implications from Two Dueling Paradigms. Journal of Applied Statistics. 2011; 38:2373–2390.

22. Zhang H, Tang W, Yu Q, Feng C, Gunzler D, Tu X. A New Look at the Differerence between
GEE and GLMM When Modeling Longitudinal Count Responses. Journal of Applied Statistics.

23. Estimating Equations. Oxford University Press; New York: 1991. Estimating equations for mixed
Poisson models; p. 35-46.

24. Hall DB, Zhang ZG. Marginal models for zero inflated clustered data. Statistical Modeling. 2004;
4:161–180.

25. Kowalski, J.; Tu, XM. Modern Applied U Statistics. Wiley; New York: 2007.

26. Crowder M. On linear and quadratic estimating functions. Biometrika. 1987; 74:591–97.

27. Dobbie MJ, Welsh AH. Modeling correlated zero-inflated count data. Australian & New Zealand
Journal of Statistics. 2001; 43:431–444.

28. Prentice RL, Zhao LP. Estimating Equations for Parameters in Means and Covariances of
Multivariate Discrete and Continuous Responses. Biometrics. 1991; 47:825–839. [PubMed:
1742441]

29. Liang KY, Zeger SL, Qaqish B. Multivariate regression analyses for categorical data. J R Statist
Soc B. 1992; 54:3–40. Rubeussin and Liang, 1998.

30. Rubin DB. Inference and Missing Data. Biometrika. 1976; 63:581–592.

31. Little, RJA.; Rubin, DB. Statistical Analysis with Missing Data. New York: Wiley; 1987.

32. McCullagh, P.; Nelder, JA. Generalized Linear Models. 2nd. Chapman and Hall; London: 1989.

33. Dean CB, Lawless JF. Tests for detecting overdispersion in Poisson regression models. J Amer
Statist Assoc. 1989; 84:467–472.

34. Cameron AC, Trivedi PK. Econometric models based on count data: Comparisons and applications
of some estimators and tests. Journal of Applied Econometrics. 1986; 1:29–53.

35. Lee LF. Specification test for Poisson regression models. International Economic Review. 1986;
27:689–706.

Yu et al. Page 17

Stat Med. Author manuscript; available in PMC 2014 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



36. Tu XM, Feng C, Kowalski J, Tang W, Wang H, Wan C, Ma Y. Correlation analysis for
longitudinal data: Applications to HIV and psychosocial research. Statistics in Medicine. 2007;
26:4116–4138. [PubMed: 17342700]

37. Ma Y, Tang W, Feng C, Tu XM. Inference for kappas for longitudinal study data: applications to
sexual health research. Biometrics. 2008; 64:781–789. [PubMed: 18047535]

38. Ma Y, Tang W, Yu Q, Tu XM. Modeling concordance correlation coefficient for longitudinal
study data. Psychometrika. 2010; 75:99–119.

39. Ma Y, Gonzalez Della Valle A, Zhang H, Tu XM. A U-statistics based approach for modeling
Cronbach Coefficient Alpha within a longitudinal data setting. Statistics in Medicine. 2011; 29(6):
659–670.

40. Yu Q, Tang W, Kowalski J, Tu XM. Multivariate U-Statistics: A Tutorial with applications. Wiley
Interdisciplinary Reviews – Computational Statistics. 2011; 3:457–471.

41. Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated
outcomes in the presence of missing data. JASA. 1995; 90:106–121.

42. Cameron, AC.; Trivedi, PK. Regression analysis of counter data. Cambridge Univ. Press; London:
1998.

43. Reboussin BA, Liang KY. An estimating equations approach for the LISCOMP Model.
Psychometrika. 1998; 63:165–182.

44. Yu, Q. Department of Biostatistics and Computational Biology School of Medicine and Dentistry.
University of Rochester; Rochester, New York: 2009. Distribution-free models for longitudinal
count data. Ph.D. Thesis.

45. Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with
longitudinal data and general correlated response data. Communications in Statistics: Simulation
and Computation. 1994; 23:939–951.

46. Scharfstein, DO.; Rotnitzky, A.; Robins, JM. Adjusting for nonignorable drop-out using semi-
parametric nonresponse models. Vol. 94. Journal of the American Statistical Association; 1999. p.
1096-1146.

47. Tsiatis, AA. Semiparametric Theory and Missing Data. New York: Spring; 2006.

48. Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized
linear models for cluster correlated data. Biometrika. 1990; 77:485–497.

49. Pan W. On the robust variance estimator in generalized estimating equations. Biometrika. 2001;
88:901–906.

50. Freesm EW, Valdez EA. Understanding relationships using copulas. North American Actuarial
Journal. 1998; 2:1–25.

51. Nelsen, RB. An introduction to Copulas. Springer; New York: 2006.

52. Yan, JR. Package copula on CRAN, multivariate dependence with copula. 2009. http://cran.r-
project.org/web/packages/copula/index.html

53. Calsyn, DA.; Wells, EA.; Saxon, AJ.; Jackson, R.; Heiman, JR. Sexual activity under the influence
of drugs is common among methadone clients. In: Harris, L., editor. Problems of Drug
Dependence 1999. Vol. 315. National Institute on Drug Abuse; 2000. NIH Pub. No. 00-4773

54. Calsyn DA, Hatch-Maillette M, Tross S, et al. Motivational and Skills Training HIV/Sexually
Transmitted Infection Sexual Risk Reduction Groups for Men. Journal of Substance Abuse
Treatment. 2009; 37(2):138–150. [PubMed: 19150206]

Yu et al. Page 18

Stat Med. Author manuscript; available in PMC 2014 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://cran.r-project.org/web/packages/copula/index.html
http://cran.r-project.org/web/packages/copula/index.html


N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yu et al. Page 19

Ta
bl

e 
1

G
E

E
 e

st
im

at
es

 o
f 

pa
ra

m
et

er
s,

 s
ta

nd
ar

d 
er

ro
rs

, a
nd

 ty
pe

 I
 e

rr
or

 r
at

es
 b

as
ed

 o
n 

W
al

d 
an

d 
sc

or
e 

te
st

s,
 a

lo
ng

 w
ith

 e
m

pi
ri

ca
l s

ta
nd

ar
d 

er
ro

rs
 a

nd
 ty

pe
 I

 e
rr

or
ra

te
s 

fo
r 

Z
IP

 u
nd

er
 c

om
pl

et
e 

da
ta

 f
ro

m
 1

,0
00

 M
C

 s
im

ul
at

io
ns

.

Si
m

ul
at

io
n 

su
m

m
ar

y 
fo

r 
Z

IP
 u

nd
er

 c
om

pl
et

e 
da

ta

β u
0 

= 
−1

, β
0 

= 
1,

 β
1 

= 
1

P
ar

am
et

er
M

ea
n

St
an

da
rd

 e
rr

or
s

T
yp

e 
I 

er
ro

r 
fo

r 
H

0 
: 
β 1

 =
 1

W
G

E
E

E
m

pi
ri

ca
l

W
al

d
Sc

or
e

W
G

E
E

E
m

pi
ri

ca
l

Sa
m

pl
e 

si
ze

 o
f 

50

β u
0

−
1.

05
2

0.
36

3
0.

38
5

β 0
1.

00
0

0.
09

0
0.

10
0

β 1
0.

99
8

0.
03

9
0.

04
8

0.
09

5
0.

06
1

0.
04

5

Sa
m

pl
e 

si
ze

 o
f 

10
0

β u
0

−
1.

02
1

0.
25

2
0.

25
6

β 0
1.

00
0

0.
06

3
0.

06
7

β 1
0.

99
9

0.
02

7
0.

03
1

0.
07

6
0.

05
2

0.
05

4

Sa
m

pl
e 

si
ze

 o
f 

20
0

β u
0

−
1.

01
2

0.
17

7
0.

17
6

β 0
0.

99
9

0.
04

4
0.

04
6

β 1
1.

00
0

0.
01

9
0.

02
1

0.
06

5
0.

04
2

0.
04

2

Stat Med. Author manuscript; available in PMC 2014 June 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yu et al. Page 20

Ta
bl

e 
2

W
G

E
E

 e
st

im
at

es
 o

f 
pa

ra
m

et
er

s,
 s

ta
nd

ar
d 

er
ro

rs
, a

nd
 ty

pe
 I

 e
rr

or
 r

at
es

 b
as

ed
 o

n 
W

al
d 

an
d 

Sc
or

e 
te

st
s,

 a
lo

ng
 w

ith
 e

m
pi

ri
ca

l s
ta

nd
ar

d 
er

ro
rs

 a
nd

 ty
pe

 I
 e

rr
or

ra
te

s 
fo

r 
Z

IP
 u

nd
er

 M
C

A
R

 f
ro

m
 1

,0
00

 M
C

 s
im

ul
at

io
ns

.

Si
m

ul
at

io
n 

su
m

m
ar

y 
fo

r 
Z

IP
 u

nd
er

 m
is

si
ng

 d
at

a 
fo

llo
w

in
g 

M
C

A
R

β u
0 

= 
−1

, β
0 

= 
1,

 β
1 

= 
1

P
ar

am
et

er
M

ea
n

St
an

da
rd

 e
rr

or
s

T
yp

e 
I 

er
ro

r 
fo

r 
H

0 
: 
β 1

 =
 1

G
E

E
E

m
pi

ri
ca

l
W

al
d

Sc
or

e

G
E

E
E

m
pi

ri
ca

l

Sa
m

pl
e 

si
ze

 o
f 

50

β u
0

−
1.

07
7

0.
37

8
0.

40
2

β 0
0.

99
1

0.
11

2
0.

12
0

β 1
0.

99
7

0.
11

5
0.

13
5

0.
10

8
0.

06
1

0.
04

6

Sa
m

pl
e 

si
ze

 o
f 

10
0

β u
0

−
1.

02
6

0.
25

7
0.

25
8

β 0
0.

99
7

0.
08

0
0.

08
2

β 1
0.

99
8

0.
08

2
0.

08
8

0.
07

5
0.

05
7

0.
04

4

Sa
m

pl
e 

si
ze

 o
f 

20
0

β u
0

−
1.

01
6

0.
18

0
0.

18
3

β 0
0.

99
8

0.
05

7
0.

05
5

β 1
1.

00
0

0.
05

9
0.

06
0

0.
05

5
0.

04
9

0.
04

5

Stat Med. Author manuscript; available in PMC 2014 June 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yu et al. Page 21

Ta
bl

e 
3

W
G

E
E

 e
st

im
at

es
 o

f 
pa

ra
m

et
er

s,
 s

ta
nd

ar
d 

er
ro

rs
, a

nd
 ty

pe
 I

 e
rr

or
 r

at
es

 b
as

ed
 o

n 
W

al
d 

an
d 

Sc
or

e 
te

st
s,

 a
lo

ng
 w

ith
 e

m
pi

ri
ca

l s
ta

nd
ar

d 
er

ro
rs

 a
nd

 ty
pe

 I
 e

rr
or

ra
te

s 
fo

r 
Z

IP
 u

nd
er

 M
A

R
 f

ro
m

 1
,0

00
 M

C
 s

im
ul

at
io

ns
.

Si
m

ul
at

io
n 

su
m

m
ar

y 
fo

r 
Z

IP
 u

nd
er

 m
is

si
ng

 d
at

a 
fo

llo
w

in
g 

M
A

R

β u
0 

= 
−1

, β
0 

= 
1,

 β
1 

= 
1

P
ar

am
et

er
M

ea
n

St
an

da
rd

 e
rr

or
s

T
yp

e 
I 

er
ro

r 
fo

r 
H

0 
: 
β 1

 =
 1

W
G

E
E

E
m

pi
ri

ca
l

W
al

d
Sc

or
e

W
G

E
E

E
m

pi
ri

ca
l

Sa
m

pl
e 

si
ze

 o
f 

50

β u
0

−
1.

05
0.

40
2

0.
40

0

β 0
0.

99
5

0.
12

8
0.

10
5

β 1
1.

00
0

0.
16

8
0.

15
1

0.
09

4
0.

06
2

0.
05

2

Sa
m

pl
e 

si
ze

 o
f 

10
0

β u
0

−
1.

02
0.

25
3

0.
26

1

β 0
1.

00
1

0.
06

4
0.

06
6

β 1
0.

99
8

0.
08

8
0.

08
0

0.
08

7
0.

05
8

0.
04

3

Sa
m

pl
e 

si
ze

 o
f 

20
0

β u
0

−
1.

01
0.

17
6

0.
17

7

β 0
0.

99
9

0.
04

4
0.

04
4

β 1
1.

00
0

0.
06

6
0.

06
0

0.
05

5
0.

05
6

0.
05

1

Stat Med. Author manuscript; available in PMC 2014 June 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yu et al. Page 22

Table 4

Comparison of mean USO and percent of zero USO between the two treatment groups at baseline, 3- and 6-
month follow-up for the CTN0018 Study.

Mean USO and number of zeros at each assessment time for CTN0018 study

Intervention (S.D.) Without intervention (S.D.) zeros (%)

Baseline 21.46(26.66) 22.34(27.77) 65(15.40)

USO at 3 months 15.71(25.43) 18.14(27.21) 125(32.80)

USO at 6 months 15.05(23.35) 17.19(25.89) 132(38.26)
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Table 5

Estimates of logistic regression for modeling missingness under MAR and MMDP for CTN0018 Study.

Estimates of logistic regression for modeling missingness for CTN0018 study

Assessment time t = 1

Predictors Estimates Standard errors P-values

Intercept 2.777 0.319 < 0.001

yi1 −0.002 0.006 0.752

intervention −0.869 0.351 0.013

Assessment time t = 2

Intercept 1.443 0.206 < 0.001

yi2 0.019 0.007 0.007

intervention −0.325 0.257 0.206
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Table 6

WGEE estimates of parameters, standard errors, and p-values from FRM-based ZIP model with treatment by
time interaction based on Wald and score tests under MAR and MMDP for the CTN0018 Study.

Results of FRM-based ZIP model for CTN0018 study

P-value for H0 : β = 0

Parameter Estimate Standard errors Wald Score

Log-linear part (μit)

β0 2.69 0.196 < 0.001 < 0.001

β1 (intervention) −0.08 0.028 < 0.001 < 0.001

β2 (baseline USO) 0.012 0.001 < 0.001 < 0.001

β3 (time) −0.017 0.118 0.885 0.883

β4(intervention*time) −0.062 0.187 0.742 0.741

Logistic part (ρit)

βu0 −0.52 0.354 0.142 0.140

βu1 (intervention) 0.301 0.499 0.564 0.562

βu2 (baseline USO) −0.017 0.004 < 0.001 < 0.001

βu3(time) 0.126 0.221 0.568 0.566

βu4(intervention*time) −0.121 0.314 0.701 0.700
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Table 7

WGEE estimates of parameters, standard errors, and p-values from revised additive ZIP model based on Wald
and score tests under MAR and MMDP for the CTN0018 Study.

Results from revised additive ZIP model for CTN0018 study

Parameter Estimate Standard errors P-value for H0 : β = 0

Wald Score

Log-linear part (μit)

β0 2.90 0.021 < 0.001 < 0.001

β1 (intervention) −0.09 0.025 < 0.001 < 0.001

β2 (baseline USO) 0.012 0.0004 < 0.001 < 0.001

Logistic part (ρit)

βu0 −0.68 0.144 < 0.001 < 0.001

βu1 (intervention) 0.371 0.200 0.065 0.068

βu2 (baseline USO) −0.015 0.004 < 0.001 < 0.001
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