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Abstract 

The addition of runs-rules has been recommended to improve the performance of classical, 

normal theory Shewhart-type control charts, for detecting small to moderate size shifts. In this 

paper, we consider adding both standard and improved runs-rules to enhance the performance of 

the distribution-free Phase II Shewhart-type chart based on the well-known Mann-Whitney 

statistic proposed by Chakraborti and Van de Wiel [1].  Standard runs-rules are typically of the 

form w-of-(w+v) with w > 1 and v   0 and the improved runs-rules scheme is a combination of 

the classical 1-of-1 runs-rule and the w-of-(w+v) runs-rules. The improved scheme improves the 

performance of the charts in detecting larger shifts while maintaining its performance in 

detecting small to moderate shifts. The in-control and out-of-control performance of the 

proposed runs-rules enhanced distribution-free charts are examined through extensive 

simulations. It is seen that the proposed charts have attractive performance compared to some 

competing charts, and are better in many cases.  An illustrative example is provided, along with a 

summary and conclusions. 

Keywords: Case U, Improved Runs-rules, Mann-Whitney test, Shewhart-type chart. 

1. Introduction 

 During the last decade, distribution-free (nonparametric) control charts have become 

increasingly popular.  These charts are useful when the underlying distribution is not known and 

have been shown to perform well compared to their normal theory counterparts. Nonparametric 

control charts are often designed by adapting corresponding nonparametric hypothesis tests.  It 

may be noted that remarkably, even when the underlying distribution is normal, the efficiency of 

some nonparametric tests, relative to their normal theory counterparts, can be as high as 0.955 

(see e.g. Gibbons and Chakraborti [2] page 218). For some other heavy-tailed and skewed 

distributions, the efficiency can be 1.0 or even higher. It may be argued that nonparametric 

methods will be ‘less efficient’ than their parametric counterparts when one has a complete 
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knowledge of the process distribution for which that parametric method was specifically 

designed. However, the reality is that such information is seldom, if ever, available in practice.  

Over the last decade or so, many nonparametric control charts have been proposed in 

Statistical Process Control (SPC). Their advantages are listed in Chakraborti et al. [12] and are as 

follows: (i) easy to implement, i.e. simplicity; (ii) no need to assume a particular parametric 

distribution for the underlying process; (iii) the IC run-length distribution is the same for all 

continuous distributions; (iv) more robust and outlier resistant; (v) more efficient in detecting 

changes when the true distribution is markedly non-normal, particularly with heavier tails, and 

(vi) no need to estimate the variance to set up charts for the location parameter. For a thorough 

account on nonparametric control chart literature, including some recent developments, the 

reader is referred to Chakraborti et al. [12], Chakraborti and Graham [13] and Chakraborti et al. 

[14]. 

Among the many nonparametric control charts, the Mann-Whitney (hereafter MW) 

control chart, based on the well-known Mann-Whitney test (see Gibbons and Chakraborti [2]) is 

one of the most powerful due to its in-control (IC) robustness and good out-of-control (OOC) 

performance. Park and Reynolds [3] considered Shewhart-type charts for monitoring the location 

parameter of a continuous process in where the process parameters are unknown, and the MW 

chart based on the MW-Wilcoxon statistic is one of their special cases. However, they only 

considered properties of this chart when the reference sample size approaches infinity. 

Chakraborti and van de Wiel [1] considered the Shewhart-type MW chart for a finite reference 

sample size and studied its properties in more details. They showed that, in many cases, the MW 

chart performs better than the competing charts no matter the nature of the underlying process 

distribution. Among other uses of the MW statistic, a change-point formulation was investigated 

by Zhou et al. [4]. Li et al. [5] proposed a nonparametric cumulative sum (CUSUM) chart and a 

nonparametric exponentially weighted moving average (EWMA) control chart based on the 

Wilcoxon rank-sum (WRS) statistic W, respectively, with the W statistic being equivalent to the 

MW statistic. 

 In many settings, however, the Shewhart-type charts remain the most popular due to their 

operational simplicity and global performance. In order to improve their performance in 

detecting small to moderate shifts, the addition of runs-type signaling rules (in short, runs-rules) 

has been recommended for the normal theory Shewhart-type charts. The use of runs-rules with 
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the Shewhart  ̅ chart, to increase its sensitivity in detecting small shifts, has been studied by 

Champ and Woodall [6]. These runs-rules are typically of the form w-of-(w+v) with w > 1 and v   0. More recently, Klein [7] proposed runs-rules with w = 2 and v = 0 and 1, respectively, 

leading to the well-known 2-of-2 and 2-of-3 runs-rules. Khoo and Ariffin [8] proposed an 

improved runs-rules scheme which is a combination of the classical 1-of-1 runs-rule and the w-

of-(w+v) runs-rules. Koutras et al. [9] reviewed the well-known Shewhart-type charts 

supplemented with additional rules based on the theory of runs and scans. A class of Phase II 

nonparametric charts based on precedence statistics with runs-rules was proposed by Chakraborti 

et al. [10]. Zhang and Castagliola [11] investigated the runs-rules based Shewhart  ̅ charts when 

process parameters are unknown. However, to date, runs-rules have not been applied to the 

Shewhart-type MW chart studied by Chakraborti and Van de Wiel [1]. In this paper we fill this 

gap by proposing and studying a class of nonparametric control charts with runs-rules where the 

charting statistic is based on the MW test statistic.  

 The performance of control charts depends on many factors such as: the type of chart, the 

nature of the underlying process distribution, the charting statistic, etc. In order to implement a 

control chart we need at least one sample observed on a particular quality characteristic from 

which the charting statistic is calculated. Nonparametric charting statistics are mostly based on 

two-sample tests. This is for Case U where the process parameter(s) is/are unknown. The MW 

chart is based on the MW test, which is one of the most popular nonparametric tests for light 

tailed distributions (see Gibbons and Chakraborti [2] page 261). Thus, the MW control chart is 

expected to be more powerful than many other control charts in this case. We describe the details 

in the next section. 

2. Mann-Whitney control chart 

2.1 MW charting statistics 

 These charts are to monitor the location parameter in the unknown parameter case (so-

called Case U) where a reference sample is assumed to be available after a Phase I analysis. 

Assume that a reference sample of size  , say,           , is available from an IC process 

with an unknown continuous cdf     . Let                        denote the     test sample 

of size   ,        , since we are assuming that the Phase II samples are all of the same size. 

Let       denote the cdf of the distribution of the     Phase II sample and let              , since the Phase II samples are all assumed to be identically distributed.  The process is IC in 
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Phase II when    . Typically, the location model is assumed, that is              for all 

t, where   is the location difference (or shift in the location parameter).  In that case the process 

is IC when    . 

 The MW charting statistic     represents the total number of         pairs where the  -

observation (Phase II sample) is strictly greater than the  -observation (Phase I sample). This is 

defined by  

     ∑ ∑                  (1)  

where          is an indicator function defined as follows 

          {                            . (2)  

Note that there are            pairs for each Phase II sample, therefore,         . For the 

two most extreme orderings every   precedes every   (so that      ) and every   precedes 

every   (so that       ). The proposed charting statistics are given by,             . 

2.2 Control limits 

When implementing the MW control chart, we plot the charting statistics      (         for each test sample  . The classical 1-of-1 MW chart studied by Chakraborti and Van de 

Wiel [1] signals if the charting statistic falls on or above the upper control limit       or if the 

charting statistic falls on or below the lower control limit      . Since the IC distribution of the 

charting statistic     is symmetric about 
   , the control limits are taken to be symmetrical. By 

means of the symmetry property (see Gibbons and Chakraborti [2] page 264), we have                      for        when the process is IC. Thus we set           . If the charting statistic falls between the control limits, that is,            , the 

process is declared to be IC, otherwise the process is declared OOC.  

2.3 Run-length     and Average Run-Length       

 The reader is referred to Chakraborti and Van de Wiel [1] for more details. Here we only 

give some key concepts. Let   ( )                              denotes the 

probability of a signal with any test (Phase II) sample, given the reference sample 

(                         denoted    . Therefore, the conditional run-length 

distribution is given by 

            (    ( ))   (  ( ))  for          . (3)  
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Let N denote the run-length random variable for the chart given the reference sample    . N is 

geometrically distributed with parameter   ( ). Consequently, the conditional     is given by  

        ( |   )          (4)  

On the other hand, using Expression (4) and integrating over the distributions of the reference 

samples, the unconditional     is found to be   

        [  ( |   )]    (    ( ))  ∫  ∫                              (5)  

Note that Expression (5) is an  -dimensional integral, moreover we do not have an exact 

formula for the probability of a signal. Accordingly it is difficult and time-consuming to estimate 

the unconditional     using this formula.  To overcome these problems, Chakraborti and Van de 

Wiel [1] proposed using Monte Carlo simulations or a Markov chain approach. Using a Markov 

chain approach, one has to do matrix inversion which can be very time consuming, particularly 

for large matrices. For this reason, in this paper we used Monte Carlo simulation with 10000 

simulations. 

2.3.1 In-Control     

 In Phase II, the process is IC when    . Therefore, the unconditional IC     is found 

by substituting     into Expression (5).  

       ∫  ∫                            . (6)  

Expression (6) can be re-written, using the probability integral transformation, as: 

       ∫  ∫                        (7)  

For more details the reader is referred to Gibbons and Chakraborti [2] page 39. The subscript U 

refers to the U(0,1) distribution and       is the conditional probability of a signal at any test 

sample, given the reference sample, when the process is IC. 

2.3.2 Out-of-Control     

 In the OOC case,    , the unconditional OOC     is given by  

       ∫  ∫                              (8)  

where       represents the shift between   and    in their location parameters. Thus, in order 

to implement the MW chart we have to calculate the       and in order to evaluate the 

performance of the MW chart we have to evaluate the      . Using a similar argument as 
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earlier, it will not be easy to calculate these using Expressions (7) and (8) and, accordingly, we 

use Monte Carlo simulations. This will be explained in more detail later on. 

3. Runs-Rules and Enhancements of the MW Chart 

The classical 1-of-1 rule, i.e. when only one charting statistic is considered, as considered 

in Chakraborti and Van de Wiel [1], will be denoted by RR1-of-1 from this point forward. When 

considering the 2-of-2 runs-rule, which gives a signal when two consecutive charting statistics 

plot OOC, there is a distinction in the literature between the 2-of-2 runs-rules proposed by Klein 

[7], denoted KL (see (a) below), and the 2-of-2 runs-rules  proposed by Derman and Ross [15], 

denoted DR (see (b) below). The formal definitions are given as follows. 

(a) Two consecutive points both fall on or above the UCL or both fall on or below the LCL 

(KL scheme). 

(b) Two consecutive points (i) both fall on or above the UCL or, (ii) both fall on or below the 

LCL or, (iii) one falls on or above the UCL and the next one falls on or below the LCL or, 

(iv) one falls on or below the LCL and the next falls on or above the UCL (DR scheme). 

Chakraborti et al. [10] showed that the KL scheme outperforms the DR scheme and, accordingly, 

only the KL scheme is considered in this paper. The 2-of-2 KL runs-rule will be denoted by RR2-

of-2 from this point forward. The improved runs-rules of Khoo and Ariffin [8], which is a 

combination of the classical 1-of-1 runs-rule and the 2-of-2 runs-rule, will be denoted by IRR2-of-

2.  These rules are described below.  

3.1 The RR1-of-1, the RR2-of-2 and the IRR2-of-2 MW control chart 

Rule 1: RR1-of-1 

The RR1-of-1 scheme signals when the charting statistic     plots on or above the      or plots 

on or below the     . The subscript refers to the rule number. The use of subscripts is necessary 

in order to emphasize the fact that the values of the control limits for the three rules are not 

equal.  

Rule 2: RR2-of-2 

The RR2-of-2 scheme signals when two consecutive charting statistics, say      and        for        , both plot on or above the      or both plot on or below the     .  

Rule 3: IRR2-of-2 

For the IRR2-of-2 scheme some warning limits are introduced, namely, the      and the     , 

where                    . The improved runs-rules signal when one charting 
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statistic     plots on or above      or plots on or below      or when two consecutive 

charting statistics, say      and       , for        , plot between             or between           ]. 

4. Implementation of the MW control chart with runs-rules 

4.1 Monte Carlo simulation  

 The steps for determining the chart constants (control limits) and for obtaining the 

characteristics of the run-length distribution are given for the RR2-of-2 scheme; it can easily be 

amended to include warning limits for the IRR2-of-2 scheme. 

Step 1: Specify two distributions for generating a Phase I and Phase II sample, respectively. 

For the IC case, the two distributions are identical (we say that the shift equals zero 

(   0)). For the OOC case, the distribution for the Phase II sample is taken to be the 

same form as that for the Phase I sample, but with a shift in the location parameter in 

units of the population standard deviation. For example, the Phase I sample may be 

drawn from a normal distribution with mean 0 and standard deviation 1, whereas, in 

the OOC case, the Phase II sample may be drawn from a normal distribution with 

mean   0 and standard deviation 1 (we say that the shift in the location (mean),    is 

not equal to zero (   0)). 

Step 2: Specify the Phase I reference sample size ( ), the Phase II test sample size ( ), the 

number of simulations ( ) and the parameter(s) of the distribution. For example, 

suppose we have a reference sample of size 100 with mean 0 and standard deviation 1, 

a test sample of size 5 with mean   and standard deviation 1 and 10000 simulations 

are used, then    0 (0.25) 3,    100,    5 and   = 10000.  In the IC case    0 

while in the OOC case    0. 

Step 3: The      can take on any integer value in the range *          +. Thus, we vary      from the smallest integer in the specified range to the largest integer in 

increments of 1. In our example, with    100 and    5, the      can take on any 

integer value in the range [251,499]. 

Step 4: Randomly generate a Phase I sample from a distribution, such as the N(0,1) 

distribution. 
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Step 5: For any given value of the     , specified in Step 3, calculate its corresponding             . For example, say      = 300, then we have       (100)(5) – 

300 = 200 for    100 and    5. 

Step 6: Randomly generate a Phase II test sample from the same distribution. Calculate the 

first MW charting statistic (point) using Expression (1) and compare it to the control 

limits obtained in Step 5. If this first point plots between the control limits we have to 

generate the next test sample, calculate the next point and compare it to the control 

limits obtained in Step 5. Continue this process until a point plots beyond the control 

limits. Once we get such a point, we again generate a new test sample and calculate 

the new point. The chart signals if both charting statistics (the previous and the new 

one) plot on or above (below) the      (    ). If this does not happen, then continue 

with the process until the chart signals for the first time and record the number of 

subgroups needed to get to that stage. In our example, after generating the first Phase 

II test sample, the first charting statistic (    ) is calculated. This is compared to the 

control limits      = 200 and      = 300. If       200 or       300 we generate a 

second Phase II test sample and calculate a second charting statistic (    ). The latter 

is compared to the control limits and, if it is also less than or equal to 200 (      200) 

or if it is also greater than or equal to 300 (      300) the chart signals. The run-

length will equal two because we needed two Phase II test samples in order to get a 

signal. On the other hand, assume that the second charting statistic plotted between the 

control limits. Then, we need to generate new Phase II test samples until we get a 

charting statistic less than (greater than) or equal to 200 (300). Once we obtain such a 

charting statistic, generate the next test sample and calculate the corresponding 

charting statistic. Compare the new charting statistic to 200 and 300. Then, the chart 

signals if the new charting statistic plots below (above) the 200 (300) as well. Record 

the number of subgroups needed until we get a signal for the first time. This number 

represents one value of the run-length distribution. 

Step 7: Repeat Step 6 a total of   times. 

Step 8: Once the run-length values are obtained, calculate  

        ∑        .                                                                                                     (9) 
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Step 9: Record the      and the      values next to the     value (for   = 0 this will be the 

IC    ). 

Step 10: Repeat Steps 5 to 9 until all the values of      allocated in Step 3 are considered. 

Step 11: Select the control limits for which the IC     is closest to the nominal value of 500. 

Step 12: Repeat Steps 4 to 8 using the control limits found in Step 11 by varying the shift   = 

0(0.25)3 where   = 0 provides IC values and    0 provides OOC values. Record the 

IC and OOC     values. 

Some illustrative examples are given below. 

Example 1 

 For Rule 1, the RR1-of-1 scheme, with        (20, 5), the attained      = 426.77 for      = 87 and      = 20(5) – 87 = 13. For a different combination of   and  , say        

(100, 5), the attained      = 499.36 for      = 436 so that      = (100)(5) – 436 = 64. 

Example 2 

 For Rule 2, the RR2-of-2 scheme, with        (20, 5), the attained      = 431.07 for      = 75 and      = 20(5) – 75 = 25. For a different combination of   and  , say        

(100, 5), the attained      = 508.42 for      = 373 so that      = (100)(5) – 373 = 127.  

 From Examples 1 and 2 it can be seen that, as the size of the reference sample ( ) 

increases, the attained      values tend to get closer to the nominal desired value of 500, i.e. the 

charts perform better, as expected nominally, for larger values of  .  

Example 3 

 For Rule 3, the IRR2-of-2 scheme, with        (500, 5), the attained      = 496.32 for      = 650,      = 326,      = 1850 and      = 2174. 

Table 1 presents the chart constants (or control limits) and the corresponding attained      values for different values of   and  , for the RR1-of-1, the RR2-of-2 and the IRR2-of-2 

schemes, respectively. 
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Table 1. Control limits and attained      values for the three rules, the RR1-of-1, the RR2-of-2 and the IRR2-of-2 

schemes, for the Shewhart MW chart for different values of   and  . 
Schemes                             

              
Attained      

          
Attained      

                    
Attained      

20 

5 13 87 426.77 25 75 431.07 13 25 75 87 454.06 

10 44 156 525.16 63 137 472.80 44 63 137 156 492.38 

25 159 341 463.00 189 311 494.36 159 189 311 341 476.43 

25 

5 16 109 478.43 31 94 487.70 16 31 94 109 486.14 

10 55 195 487.63 79 171 511.22 55 79 171 195 506.72 

25 196 429 472.18 237 388 505.74 196 237 388 429 507.18 

50 

5 32 218 472.55 63 187 481.01 32 63 187 218 497.03 

10 110 390 491.82 159 341 507.40 110 159 341 390 508.95 

25 391 859 497.17 476 774 524.82 391 476 774 859 513.61 

75 

5 47 328 508.73 95 280 512.29 47 95 280 328 513.17 

10 167 583 506.96 241 509 509.73 167 241 509 583 508.30 

25 590 1285 528.43 716 1159 523.58 590 716 1159 1285 510.07 

100 

5 64 436 499.36 127 373 508.42 64 127 373 436 498.86 

10 224 776 492.95 323 677 484.23 224 323 677 776 493.56 

25 793 1707 501.51 960 1540 504.14 793 960 1540 1707 509.87 

125 

5 80 545 492.68 160 465 499.92 80 160 465 545 496.09 

10 279 971 503.86 405 845 483.67 279 405 845 971 504.56 

25 992 2133 505.06 1204 1921 511.54 992 1204 1921 9133 510.64 

150 

5 97 653 489.83 192 558 501.33 97 192 558 653 503.40 

10 332 1168 502.40 486 1014 507.28 332 486 1014 1168 516.01 

25 1190 2560 510.12 1443 2307 502.33 1190 1443 2307 2560 513.26 

200 

5 130 870 512.44 257 743 504.73 130 257 743 870 503.58 

10 446 1554 498.33 650 1350 500.61 446 650 1350 1554 505.26 

25 1595 3405 501.76 1934 3066 505.70 1595 1934 3066 3405 518.14 

250 

5 161 1089 515.13 323 927 501.74 161 323 927 1089 509.84 

10 559 1941 521.56 819 1681 500.02 559 819 1681 1941 506.71 

25 1970 4550 513.52 2423 3827 484.23 1970 2423 3827 4550 488.16 

500 

5 326 2174 498.20 650 1850 493.10 326 650 1850 2174 500.21 

10 1125 3875 501.50 1648 3352 491.83 1125 1648 3352 3875 503.04 

25 4016 8484 492.46 4855 7645 519.89 4016 4855 7645 8484 507.05 
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 In Section 5 a performance comparison among the proposed runs-rules enhanced MW 

charts is done. We also include, in the comparison study, the distribution-free precedence charts 

proposed by Chakraborti et al. [10]. Note that although these authors considered the RR2-of-2 

scheme, they did not consider the improved runs-rules and, accordingly, for the performance 

comparison we used the improved precedence chart proposed by Malela-Majika et al. [16].  

 Since obtaining the control limits is often time-consuming, we propose an approximation 

using regression, fitting a straight line between the Phase I sample size (the explanatory variable) 

and the upper control limit (the dependent variable). For example, with the data at our disposal 

for Rule 2, the RR2-of-2 scheme, for the Shewhart MW chart (see Table 1, first and seventh 

columns for    ), the least squares regression line is given by     ̂   2.6682868 + 

3.7000365  and hence     ̂         ̂ where     ̂  and     ̂ denote the estimated lower 

and upper control limits, respectively.  Similarly, for Rule 1, the RR1-of-1 scheme, for the 

Shewhart MW chart (see Table 1, first and fourth columns for    ) the fitted line is given by     ̂   0.908363 + 4.349375  and     ̂         ̂.  For the IRR2-of-2 scheme, for the 

Shewhart MW chart (see Table 1), the estimated least squares regression lines for the upper 

warning and upper control limits are respectively given by     ̂   2.6682868 + 3.7000365  

and     ̂   0.908363 + 4.349375  where     ̂         ̂  and     ̂         ̂  The 

regression approach seems to provide good approximations that can be used in practice, at least 

as a starting point. For instance, for    20 and    5 we find     ̂        for the RR2-of-2 

scheme for the Shewhart MW chart. This value is close to the value 75 which was found using 

10000 Monte Carlo simulations (see Table 1). 

4.2 Performance of the charts 

4.2.1 The in-control     robustness 

One of the important appealing properties of a nonparametric control chart is its IC 

robustness property which means that the IC run-length distribution does not depend on the 

underlying process distribution. We study this property here in an extensive simulation study 

using a wide collection of continuous distributions, including non-normal distributions, light and 

heavy-tailed distributions, symmetric and asymmetric distributions, uni-modal, bi-modal 

distributions as well as some positively skewed distributions. Note that, wherever necessary, all 

distributions have been shifted and scaled such that the mean / median equals 0 and the standard 
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deviation equals 1, so that the results are easily comparable across the distributions. Specifically, 

the distributions considered in the study are: 

i.  The standard normal distribution, N(0,1). 

ii.  The Student’s t-distribution, t(v), with degrees of freedom v = 4 and 8, respectively, 

which is symmetric but with heavier tails than the Normal.  

iii. The gamma distribution, GAM(   ), with parameters       = (1,1), is the 

exponential distribution, EXP(1), which is positively skewed.  

iv. The Laplace (or double exponential) distribution, DE(0,1) which is symmetric but 

with a different tail behavior than the normal. 

v. The log-normal distribution,          , which is a heavy-tailed distribution.  

vi. The uniform distribution,       , acknowledged as to be symmetric. 

The attained      values for the proposed charts, for these distributions, are shown in Table 2. 

 

Table 2. Attained      values for the RR1-of-1, RR2-of-2 and IRR2-of-2 MW Shewhart charts with           = 326,            2174,           = 650,            1850 when    500 and   = 5 

Distribution 
     

RR1-of-1 RR2-of-2 IRR2-of-2 

N(0,1) 498.46 493.10 500.21 

DE(0,1) 501.74 494.72 484.70 

U(0,1) 495.56 499.27 498.37 

LogN(0,1) 488.86 492.17 507.58 

GAM(1,1) 500.12 498.27 496.97 

t(4) 504.10 493.27 488.58 

t(8) 498.83 497.28 492.46 

  

 From Table 2 it can be seen that, as expected, for every continuous distribution under 

consideration, the IC characteristics are almost equal; the difference between the values can be 

explained by simulation error. In practice we keep this error as small as possible (less than 10 

percent of the nominal value of the    ).  

4.2.2 In-control and Out-of-control     

 When using the ARL as the performance metric it is desirable to have a large attained      and a small     . The     can be calculated using Expression (9) by means of Monte 

Carlo simulations. However, since the run-length distribution is significantly right-skewed, 
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researchers have advocated using other more representative measures for the assessment of chart 

performance. These include the standard deviation of the run-length (    ) and other 

percentiles of the run-length, more specifically, the median run-length (   ), which provides 

additional and more meaningful information about the in-control and out-of-control 

performances of control charts, not given by the ARL. The idea of looking at percentiles, in SPC, 

goes back to Barnard [17] and more recently researchers such as Gan [18], Chakraborti [19] and 

Khoo et al. [20] have advocated the use of percentiles, such as the median, for assessment of 

chart performance. Tables 3 and 4 give the    ,     ,    ,     ,     ,      and      

percentiles of the run-length distribution for various distributions for Rule 1, the RR1-of-1 scheme, 

and Rule 2, the RR2-of-2 scheme, respectively. The results for Rule 3, the IRR2-of-2 scheme, are 

presented in Table 5. The first row of each cell gives the     and the      values, respectively, 

whereas the second row gives the values of the    ,     ,     ,      and      percentiles (in 

this order). The distribution with the best run-length characteristics is indicated using grey 

shading. When two or more columns are shaded it means that the charts perform similarly. This 

is done for all tables in this paper. Note that, for large shifts, the run-length characteristics 

converge toward one for the RR1-of-1 and IRR2-of-2 schemes and converge toward two for the RR2-

of-2 scheme. The largest shift under consideration is    2, since the run-length characteristics 

converge for large shifts, with shifts of magnitude   = 0.00(0.25)2.00 being under consideration. 

 For all three rules the charts perform better under the t-distribution (with small degrees of 

freedom) than the standard normal distribution. As the degrees of freedom increases, the t- and 

standard normal distributions perform similarly, which is to be expected. For all three rules the 

charts perform best when the underlying process distribution is uniform. When considering the 

other distributions under consideration, there is a clear pattern in that the run-rules enhanced 

charts outperform the standard 1-of-1 chart for small to moderate shifts, which is to be expected. 
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Table 3. Characteristics of the run-length distribution for Rule 1, the RR1-of-1 scheme, for the Shewhart MW chart for   = 500,   = 5,      = 326 and      = 2174 

Table 4. Characteristics of the run-length distribution for Rule 2, the RR2-of-2 scheme, for the Shewhart MW chart for   = 500,   = 5,      = 650 and      = 1850 

Shift(δ) N(0,1) LogN(0,1) t(4) t(8) GAM(1,1) U(0,1) DE(0,1) 

0.00 
493.10(498.47) 

25,140,323,660,1480 

492.17(511.38) 

27,145,334,666,1489 

493.27(496.33) 

22,137,345,653,1460 

497.28(504.79) 

24,143,342,681,1496 

498.27(522.02) 

24,132,332,679,1548 

499.27(518.89)               

29,141,338,687,1544 

494.72(507.70)            

24,127,338,687,1544 

0.25 
130.34(147.01)           

7,35,84,177,404 

214.69(262.18)              

11,55,125,276,710 

93.72(100.97)                

6,25,62,123,302 

121.85(139.34)            

6,32,78,161,383 

111.36(136.88)               

7,29,70,144,350 

7.73(6.52)                   

2, 3, 6, 10, 20 

169.67(190.59)            

8,44,108,228,558 

0.50 
28.06(28.83)             

3,8,19,38,84 

44.27(52.55)                

3,12,28,56,140 

15.73(14.60)                 

2,5,11,22,47 

23.45(23.87)              

2,7,16,31,71 

16.37(17.35)                 

1,4,8,16,39 

2.14(0.49)                   

2, 2, 2, 2, 3 

39.80(42.41)              

3,12,26,53,123 

0.75 
9.03(7.83)               

2,4,7,12,25 

11.21(11.76)                

2, 4, 7,14,33 

5.61(4.35)                   

2, 2, 4, 7, 14 

7.61(6.69)                

2, 3, 6, 10, 21 

3.97(2.85)                   

2, 2, 3, 5, 10 

2.00(0.00)                   

2, 2, 2, 2, 2 

12.95(12.83)              

2, 4, 9, 17, 38 

1.00 
4.41(3.19)               

2, 2, 3, 6, 11 

4.04(3.16)                  

2, 2, 3, 5, 10 

3.27(1.90)                   

2, 2, 2, 4, 7 

3.90(2.62)                

2, 2, 3, 5, 9 

2.23(0.70)                   

2, 2, 2, 2, 4 

2.00(0.00)                   

2, 2, 2, 2, 2 

6.46(5.41)                

2, 3, 5, 8, 17 

1.50 
2.33(0.80)               

2, 2, 2, 2, 4 

2.04(0.31)                  

2, 2, 2, 2, 2 

2.20(0.60)                   

2, 2, 2, 2, 4 

2.28(0.78)                

2, 2, 2, 2, 4 

2.00(0.00)                   

2, 2, 2, 2, 2 

2.00(0.00)                   

2, 2, 2, 2, 2 

3.16(1.81)                

2, 2, 2, 4, 7 

1.75 
2.11(0.44)               

2, 2, 2, 2, 3 

2.00(0.09)                  

2, 2, 2, 2, 2 

2.08(0.37)                   

2, 2, 2, 2, 3 

2.11(0.44)                

2, 2, 2, 2, 3 

2.00(0.00)                   

2, 2, 2, 2, 2 

2.00(0.00)                   

2, 2, 2, 2, 2 

2.55(1.08)                

2, 2, 2, 3, 5 

2.00 
2.03(0.23)               

2, 2, 2, 2, 2 

2.00(0.00)                  

2, 2, 2, 2, 2 

2.02(0.19)                   

2, 2, 2, 2, 2 

2.04(0.25)                

2, 2, 2, 2, 2 

2.00(0.00)                   

2, 2, 2, 2, 2 

2.00(0.00)                   

2, 2, 2, 2, 2 

2.31(0.77)                

2, 2, 2, 2, 4 

 

 

 

  

Shift(δ) N(0,1) LogN(0,1) t(4) t(8) GAM(1,1) U(0,1) DE(0,1) 

0.00 
498.46(531.34) 

23,143,335,664,1522 

488.86(502.61) 

26,140,329,669,1486 

504.10(525.99) 

24,137,342,682,1530 

498.83(523.81) 

25,135,330,701,1482 

500.12(529.36) 

25,144,329,681,1588 

495.56(548.49)               

22,134,328,648,1613 

501.74(523.19)                

25,135,330,700,1548 

0.25 
197.86(216.20) 

10,52,129,263,628 

509.04(599.86) 

23,125,316,656,1646 

169.29(194.08) 

7,45,109,225,526 

185.74(201.38) 

8,48,120,257,568 

318.84(386.22)              

14,78,192,408,1065 

11.31(10.83)                 

1,4,8,15,34 

287.70(324.38)                

14,785,185,388,912 

0.50 
53.05(60.37) 

3,14,34,69,169 

230.53(284.58) 

10,57,139,299,726 

35.31(38.99)               

2,9,23,47,114 

47.26(52.16)         

3,13,31,63,147 

91.93(105.87)   

4,23,57,122,287 

1.82(1.22)                   

1, 1, 1, 2, 4 

94.74(107.51)                 

5,24,60,128,30,309 

0.75 
16.22(16.25)               

1, 5, 11, 22, 48 

103.20(127.33) 

5,25,61,132,341 

9.50(9.44)                 

1,3,7,13,28 

13.72(13.98)               

1,4,9,19,42 

26.68(30.32)                

2,7,17,35,83 

1.00(0.07)                   

1, 1, 1, 1, 1 

31.56(35.14)                  

2,8,21,42,99 

1.00 
6.52(6.17)                 

1, 2, 5, 9, 19 

42.33(51.06)     

2,10,26,55,140 

3.72(3.29)                 

1, 1, 3, 5, 10 

5.50(5.15)                 

1, 2, 4, 7, 16 

7.87(8.51)                  

1,2,5,10,24 

1.00(0.00)                   

1, 1, 1, 1, 1 

11.88(12.40)                  

1,4,8,16,36 

1.50 
2.05(1.44)                 

1, 1, 2, 3, 5 

8.41(9.95)               

1,2,5,11,27 

1.47(0.84)                 

1, 1, 1, 2, 3 

1.77(1.22)                 

1, 1, 1, 2, 4 

1.39(0.84)                  

1, 1, 1, 2, 3 

1.00(0.00)                   

1, 1, 1, 1, 1 

3.19(2.81)                    

1, 1, 2, 4, 9 

1.75 
1.48(0.85)                 

1, 1, 1, 2, 3 

4.15(4.63)               

1, 1, 3, 5, 13 

1.25(0.55)                 

1, 1, 1, 1, 2 

1.37(0.72)                 

1, 1, 1, 2, 3 

1.05(0.24)                  

1, 1, 1, 1, 1 

1.00(0.00)                   

1, 1, 1, 1, 1 

2.20(1.64)                    

1, 1, 2, 3, 5 

2.00 
1.19(0.47)                 

1, 1, 1, 1, 2 

2.26(2.46)               

1, 1, 1, 3, 6 

1.13(0.39)                 

1, 1, 1, 1, 2 

1.19(0.48)                 

1, 1, 1, 1, 2 

1.00(0.07)                  

1, 1, 1, 1, 1 

1.00(0.00)                   

1, 1, 1, 1, 1 

1.71(1.12)                    

1, 1, 1, 2, 4 
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Table 5. Characteristics of the run-length distribution for Rule 3, the IRR2-of-2 scheme, for the Shewhart MW chart for   = 500,   = 5,                 = 326,       = 1850 and      = 2174 

 

Table 6. ARL values of the RR1-of-1, RR2-of-2 and IRR2-of-2 Shewhart MW charts under the N(0,1), t(4) and GAM(1,1) distributions for   = 500 and   = 5 

Shifts 
N(0,1) t(4) GAM(1,1) 

RR1-of-1 RR2-of-2 IRR2-of-2 RR1-of-1 RR2-of-2 IRR2-of-2 RR1-of-1 RR2-of-2 IRR2-of-2 

0.00 

498.46(531.34) 

23,143,335,664,1522 

493.10(498.47) 

25,140,323,660,1480 

500.21(544.02)  

28,123,309,634,1508 

504.10(525.99) 

24,137,342,682,1530 

493.27(496.33) 

22,137,345,653,1460 

488.58(502.52)           

24,131,318,638,1487 

500.12(529.36) 

25,144,329,681,1588 

498.27(522.02) 

24,132,332,679,1548 

496.97(500.39)         

22,143,334,6921520 

0.25 

197.86(216.20) 

10,52,129,263,628 

130.34(147.01)         

7,35,84,177,404 

130.13(142.18) 

6,32,78,148,336 

169.29(194.08) 

7,45,109,225,526 

93.72(100.97)             

6,25,62,123,302 

119.75(145.65)           

5,31,78,167,403 

318.84(386.22)         

14,78,192,408,1065 

111.36(136.88)         

7,29,70,144,350 

209.66(223.03)         

11,54,135,267,584 

0.50 

53.05(60.37)       

3,14,34,69,169 

28.06(28.83)           

3,8,19,38,84 

33.51(38.48) 

3,13,21,42,112 

35.31(38.99)              

2,9,23,47,114 

15.73(14.60)              

2,5,11,22,47 

24.84(24.19)             

2,6,15,30,81 

91.93(105.87)      

4,23,57,122,287 

16.37(17.35)           

1,4,8,16,39 

57.79(67.24)           

4,16,24,65,158 

0.75 
16.22(16.25)           

1, 5, 11, 22, 48 
9.03(7.83)             
2,4,7,12,25 

10.63(10.93)            
1, 3, 8, 11, 30 

9.50(9.44)                
1,3,7,13,28 

5.61(4.35)                
2, 2, 4, 7, 14 

6.25(6.31)               
1, 2, 5, 8,18 

26.68(30.32)           
2,7,17,35,83 

3.97(2.85)             
2, 2, 3, 5, 10 

16.33(18.52)           
1,4,12,21,49 

1.00 

6.52(6.17)             

1, 2, 5, 9, 19 

4.41(3.19)             

2, 2, 3, 6, 11 

4.33(4.19)              

1, 2, 3, 5, 10 

3.72(3.29)                

1, 1, 3, 5, 10 

3.27(1.90)                

2, 2, 2, 4, 7 

2.33(2.04)               

1, 1, 2, 4, 6 

7.87(8.51)             

1,2,5,10,24 

2.23(0.70)             

2, 2, 2, 2, 4 

5.19(5.65)             

1,2,4,6,15 

1.50 

2.05(1.44)             

1, 1, 2, 3, 5 

2.33(0.80)             

2, 2, 2, 2, 4 

1.39(0.99)              

1, 1, 2, 2, 3 

1.47(0.84)                

1, 1, 1, 2, 3 

2.20(0.60)                

2, 2, 2, 2, 4 

1.33(1.00)               

1, 1, 1, 1, 2 

1.39(0.84)             

1, 1, 1, 2, 3 

2.00(0.00)             

2, 2, 2, 2, 2 

1.36(0.90)             

1, 1, 1, 2, 3 

1.75 

1.48(0.85)             

1, 1, 1, 2, 3 

2.11(0.44)             

2, 2, 2, 2, 3 

1.33(0.78)              

1, 1, 1, 1, 2 

1.25(0.55)                

1, 1, 1, 1, 2 

2.08(0.37)                

2, 2, 2, 2, 3 

1.25(0.51)               

1, 1, 1, 1, 2 

1.05(0.24)             

1, 1, 1, 1, 1 

2.00(0.00)             

2, 2, 2, 2, 2 

1.04(0.21)             

1, 1, 1, 1, 1 

2.00 

1.19(0.47)             

1, 1, 1, 1, 2 

2.03(0.23)             

2, 2, 2, 2, 2 

1.14(0.51)              

1, 1, 1, 1, 2 

1.13(0.39)                

1, 1, 1, 1, 2 

2.02(0.19)                

2, 2, 2, 2, 2 

1.13(0.38)               

1, 1, 1, 1, 2 

1.00(0.07)             

1, 1, 1, 1, 1 

2.00(0.00)             

2, 2, 2, 2, 2 

1.00(0.00)             

1, 1, 1, 1, 1 

  

Shift(δ) N(0,1) LogN(0,1) t(4) t(8) GAM(1,1) U(0,1) DE(0,1) 

0.00 
500.21(544.02)  

28,123,309,634,1508 

507.58(534.33)             

22,139,339,691,1515 

488.58(502.52)             

24,131,318,638,1487 

492.46(505.52)            

23,122,328,683,1532 

496.97(500.39)             

22,143,334,6921520 

498.37(500.81)               

20,131,322,637,1567 

484.70(498.25)               

25,129,338,644,1409 

0.25 
130.13(142.18) 

6,32,78,148,336 

272.34(288.37)             

23,143,326,654,1520 

119.75(145.65)             

5,31,78,167,403 

130.51(131.97)            

5,37,94,174,394 

209.66(223.03)             

11,54,135,267,584 

11.86(12.27)                 

1,3,8,14,32 

187.79(230.60)                

14,785,185,388,912 

0.50 
33.51(38.48) 

3,13,21,42,112 

112.27(124.36)             

7,39,102,223,528 

24.84(24.19)               

2,6,15,30,81 

32.09(30.90)              

2,10,23,43,96 

57.79(67.24)               

4,16,24,65,158 

1.82(1.22)                   

1, 1, 1, 2, 4 

63.14(70.23)                  

3,17,26,66,155 

0.75 
10.63(10.93)              

1, 3, 8, 11, 30 

65.05(80.44)               

4,18,26,70,159 

6.25(6.31)                 

1, 2, 5, 8,18 

11.01(11.23)              

1,3,8,15,30 

16.33(18.52)               

1,4,12,21,49 

1.00(0.07)                   

1, 1, 1, 1, 1 

25.13(28.49)                  

2,7,16,32,82 

1.00 
4.33(4.19)                

1, 2, 3, 5, 10 

28.89(35.09)              

3,7,17,33,84 

2.33(2.04)                 

1, 1, 2, 4, 6 

4.29(3.57)                

1, 2, 3, 6, 12 

5.19(5.65)                 

1,2,4,6,15 

1.00(0.00)                   

1, 1, 1, 1, 1 

7.98(8.69)                    

1,2, 5, 11, 23 

1.50 
1.39(0.99)                

1, 1, 2, 2, 3 

11.23(12.35)               

1, 3, 5, 15, 36 

1.33(1.00)                 

1, 1, 1, 1, 2 

1.66(1.09)                

1, 1, 1, 2, 4 

1.36(0.90)                 

1, 1, 1, 2, 3 

1.00(0.00)                   

1, 1, 1, 1, 1 

2.23(1.81)                    

1, 1, 2, 3, 9 

1.75 
1.33(0.78)                

1, 1, 1, 1, 2 

5.49(5.31)                 

1, 2, 4, 7, 16 

1.25(0.51)                 

1, 1, 1, 1, 2 

1.32(0.66)                

1, 1, 1, 1, 3 

1.04(0.21)                 

1, 1, 1, 1, 1 

1.00(0.00)                   

1, 1, 1, 1, 1 

1.72(1.22)                    

1, 1, 1, 2, 4 

2.00 
1.14(0.51)                

1, 1, 1, 1, 2 

3.11(2.50)                 

1, 1, 2, 4, 8 

1.13(0.38)                 

1, 1, 1, 1, 2 

1.13(0.39)                

1, 1, 1, 1, 2 

1.00(0.00)                 

1, 1, 1, 1, 1 

1.00(0.00)                   

1, 1, 1, 1, 1 

1.45(0.87)                    

1, 1, 1, 2, 3 
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 In Table 6 we compare the RR1-of-1, RR2-of-2 and IRR2-of-2 Shewhart MW charts under the N(0,1), t(4) and 

GAM(1,1) distributions. For small shifts, no matter the nature of the underlying distribution, the RR2-of-2 scheme 

performs best. For moderate shifts the IRR2-of-2 scheme performs best. For large shifts the RR1-of-1 and IRR2-of-2 

schemes perform similarly and best, since the smallest value that their run-length can take on equals 1, whereas, 

for the RR2-of-2 scheme the smallest value that its run-length can take on equals 2, since at least two points are 

needed to give a signal. The results from Table 6 are illustrated in Figure 3 (d) – (f). 

 To illustrate the efficiency of the IRR2-of-2 and RR2-of-2 schemes we illustrate their performances under 

some of the distributions by presenting some graphs. Figures 1 (a), (b) and (c) show that the Shewhart MW 

chart is more efficient under non-normal distributions and we can see that the chart performs best under the 

uniform distribution.  
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Figure 1 (a). ARL versus shift for the RR1-of-1 Shewhart MW 

control chart under the N(0,1), t(4), GAM(1,1) and U(0,1). 
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Figure 1(b). ARL versus shift for the RR2-of-2 Shewhart MW control 

chart under the N(0,1), t(4), GAM(1,1) and U(0,1). 
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Figure 1 (c). ARL versus shift for the IRR2-of-2 Shewhart MW control chart under the N(0,1), t(4), GAM(1,1) and U(0,1). 
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     5.  Comparison of the MWRR control charts with other competing charts 

 It is meaningful to compare the runs-rule enhanced MW charts with other available nonparametric 

Shewhart-type charts. Thus we compare the RR1-of-1, RR2-of-2 and IRR2-of-2 Shewhart MW charts to the RR1-of-1 

and RR2-of-2 Shewhart precedence charts proposed by Chakraborti et al. [21] and Chakraborti et al. [10], 

respectively. In the latter papers the N(0,1), GAM(1,1) and t(4) distributions were considered and, accordingly, 

the same distributions are considered here. For benchmarking, the parametric RR1-of-1, RR2-of-2 and IRR2-of-2 

Shewhart  ̅ charts are also included in the performance comparison under the normal and non-normal 

distributions regardless of their non-robustness property (see Chakraborti et al. (2004)).  The results are shown 

in Tables 7, 8 and 9, respectively.  

            From Table 7 it can be seen that, under the N(0,1) distribution, the parametric Shewhart  ̅ chart 

performs best. This is to be expected, since the underlying assumption of normality was met.  Under the t(4) and 

GAM(1,1) distributions, see Tables 8 and 9, respectively, the RR2-of-2 Shewhart MW chart performs best for 

small to moderate shifts whereas the IRR1-of-1 Shewhart MW chart performs best for large shifts. The Shewhart 

precedence charts perform second best, whereas the parametric Shewhart  ̅ chart performs worst. The results of 

Tables 7 to 9 are illustrated in Figures 2 (a) – (f) and 3 (a) – (c) where it can be seen that the parametric 

Shewhart  ̅ charts perform best under normality and the Shewhart MW chart performs best when the 

underlying process distribution is non-normal. 
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Table 7. ARL and SDRL values for the RR1-of-1 and RR2-of-2 Shewhart  ̅, MW and precedence charts for the N(0,1) distribution when   = 500,   = 3 and   = 5 

 

Table 8. ARL and SDRL values for the RR1-of-1 and RR2-of-2 Shewhart  ̅, MW and precedence charts for the t(4) distribution when   = 500,   = 3 and   = 5 
 

Shift ( ) 

Rule 1: RR1-of-1 Rule 2: RR2-of-2 Rule 3:  IRR2-of-2 

Shewhart  ̅ MW Precedence Shewhart  ̅ MW Precedence Shewhart  ̅ MW Precedence 

ARL     SDRL ARL     SDRL ARL        SDRL ARL     SDRL ARL     SDRL ARL      SDRL ARL     SDRL ARL     SDRL ARL      SDRL 

0.00 517.60  27217.13 504.10   525.99 520.27     613.67 538.55   798.03 493.27   496.33 490.21   554.18 535.06  992.25 488.58  502.52 497.48  644.07 

0.25 361.12   81.30.44 169.29   194.08 328.18     426.13 181.58   508.52 93.72     100.97 138.19   170.25 348.48  883.42 119.75  145.65 153.56  195.67 

0.50 397.43  60026.60 35.31     38.99 117.63     167.75 445.18  886.59 15.73     14.60 25.09     27.66 220.68  800.24  24.84    24.19 46.88   54.93 

0.75 161.54  20545.26 9.50       9.44 37.43       53.44 115.42  297.59 5.61       4.35 7.43       6.66  74.25  341.64  6.25      6.31 15.93   18.28 

1.00 93.91 14137.58 3.72       3.29 12.58       16.84 41.83  12.74 3.27       1.90 3.61       2.36 36.54  300.28 2.33     2.04 6.32    6.61 

1.50 41.93 6250.00 1.47       0.84 2.40         2.20 18.57  896.44 2.20       0.60 2.17       0.55 8.79  108.94 1.33     1.00 1.84    1.42 

2.00 36.1 5672.63 1.13       0.39 1.18        0.49 2.06  1.93 2.02       0.19 2.02       0.16 4.23  86.61 1.13     0.38 1.11    0.39 

 

Table 9. ARL and SDRL values for the RR1-of-1 and RR2-of-2 Shewhart  ̅, MW and precedence charts for the GAM(1,1) distribution when   = 500,   = 3 and   = 5 
 

Shift ( ) 

Rule 1: RR1-of-1 Rule 2: RR2-of-2 Rule 3:  IRR2-of-2 

Shewhart  ̅ MW Precedence Shewhart  ̅ MW Precedence Shewhart  ̅ MW Precedence 

ARL     SDRL ARL     SDRL ARL        SDRL ARL     SDRL ARL     SDRL ARL      SDRL ARL     SDRL ARL     SDRL ARL      SDRL 

0.00 509.21  608.57 500.12   529.36 520.27    613.67 456.89  577.77 498.27   522.02 490.21  554.18 480.75  555.25 496.97  500.39 502.33  718.10 

0.25 204.85  241.37 318.84   386.22 600.16    844.59 123.27  141.52 111.36   136.88 310.12  405.49 225.70  242.90 209.66  223.03 236.98  313.90 

0.50 85.99  100.81 91.93   105.87 290.46    406.50 29.55    30.47 16.37     17.35 88.52  111.41 91.28  109.67 57.79    67.24 121.54  154.47 

0.75 37.03    42.78 26.68     30.32 141.80    196.68 9.94     9.24 3.97       2.85 28.03    33.05 55.07    69.65 16.33   18.52 58.53    70.34 

1.00 16.79    18.82 7.87       8.51 69.72      95.80 4.55    3.51 2.23       0.70 10.26    10.74 39.04    47.37 5.19     5.65 30.20    36.38 

1.50 4.19      4.11 1.39       0.84 17.67    23.33 2.09     0.39 2.00       0.00 2.61      1.34 6.96     6.93 1.36     0.90 7.05      8.76 

2.00 1.53      0.98 1.00       0.07 4.96        5.92 2.00     0.00 2.00       0.00 2.00      0.03 2.53     1.82 1.00     0.00 2.55     2.65 

Shift ( ) 

Rule 1: RR1-of-1 Rule 2: RR2-of-2 Rule 3:  IRR2-of-2 

Shewhart  ̅ MW Precedence Shewhart  ̅ MW Precedence Shewhart  ̅ MW Precedence 

ARL     SDRL ARL     SDRL ARL        SDRL ARL     SDRL ARL     SDRL ARL      SDRL ARL     SDRL ARL     SDRL ARL      SDRL 

0.00 500.00  511.14 498.46  531.34 520.27  613.67 502.37   519.24 493.10  498.47 490.21   554.18 523.19 599.63 500.21  544.02 505.24  722.71 

0.25 184.12  216.66 197.86  216.20 261.60  329.17 117.00   122.92 130.34   147.01 170.07   203.00 179.98 198.68 130.13  142.18 142.50  149.69 

0.50 43.38    48.51 53.05    60.37 77.73    95.38 23.48   21.96 28.06    28.83 39.37    43.17 33.04   40.61 33.51  38.48 33.14   27.94 

0.75 13.12    13.71 16.22    16.25 25.79    29.64 7.68     6.78 9.03      7.83 12.99    12.60 18.17   19.06 10.63  10.93 18.23   19.48 

1.00 5.19      4.93 6.52      6.17 10.26    10.93 3.89     2.66 4.41      3.19 5.99      4.90 4.12    4.83 4.33   4.19 6.04   5.03 

1.50 1.67      1.08 2.05      1.44 2.76      2.34 2.22      0.62 2.33      0.80 2.67      1.26 1.36   1.03 1.39   0.99 2.12   1.59 

2.00 1.09      0.32 1.19      0.47 1.39      0.75 2.01      0.16 2.03      0.23 2.10      0.41 1.09   0.31 1.14   0.51 1.48    0.95 
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Figure 2(a). ARL versus shift for the RR1-of-1 Shewhart  ̅, 

precedence and MW charts under the standard normal distribution 

for m = 500 and n = 5. 

Figure 2(c).  ARL versus shift for the RR1-of-1 Shewhart  ̅, 

precedence and MW charts under the t(4) distribution for m = 

500 and n = 5. 

Figure 2(e).  ARL versus shift for the RR1-of-1 Shewhart  ̅, precedence 

and MW charts under the GAM(1,1) distribution for m = 500 and n = 

5. 
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Figure 2(b).  ARL versus shift for the RR2-of-2 Shewhart  ̅, 

precedence and MW charts under the standard normal distribution 

for m = 500 and n = 5. 

Figure 2(d).  ARL versus shift for the RR2-of-2 Shewhart  ̅, 

precedence and MW charts under the t(4) distribution for m = 

500 and n = 5. 

Figure 2(f).  ARL versus shift for the RR2-of-2 Shewhart  ̅, precedence 

and MW charts under the GAM(1,1) distribution for m  

= 500 and n = 5. 
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Figure 3(a). ARL versus shift for the IRR2-of-2 Shewhart  ̅, 

precedence and MW charts under the GAM(1,1) distribution for 

m = 500 and n = 5. 

Figure 3(b). ARL versus shift for the IRR2-of-2 Shewhart  ̅, 

precedence and MW charts under the GAM(1,1) distribution 

for m = 500 and n = 5. 

Figure 3(c). ARL versus shift for the IRR2-of-2 Shewhart  ̅, 

precedence and MW charts under the t(4)distribution for m 

= 500 and n = 5. 
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Figure 3(d). Performance comparison of the RR1-of-1, RR2-of-2   

and IRR2-of-2 MW charts under the standard normal distribution 

for m = 500 and n = 5. 

Figure 3(e). Performance comparison of the RR1-of-1, RR2-of-2   

and IRR2-of-2 MW charts under the GAM(1,1) distribution for 

m = 500 and n = 5. 

Figure 3(f). Performance comparison of the RR1-of-1, RR2-of-2   

and IRR2-of-2 MW charts under the t(4) distribution for m = 

500 and n = 5. 
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6. Illustrative example 

 We illustrate the implementation of the proposed distribution-free charts using a well-known  

dataset from Montgomery [22; page 223; Tables 5.2 and 5.3]. The data are the inside diameters of piston 

rings manufactured by a forging process. The data given in Table 5.2 contains fifteen prospective (Phase 

II) samples, each of size   = 5. Table 5.3 contains 125 retrospective or Phase I observations, that were 

collected when the process was considered IC (  = 125). These data are considered to be the Phase I 

reference data for which a goodness of fit test for normality is not rejected. 

 For the RR1-of-1 Shewhart MW chart, for an        500, the lower and upper control limits are 

given by 80 and 545, respectively, which yield an      of 492.68. A plot of the MW charting statistics 

is shown in Figure 4. It is seen that the RR1-of-1 Shewhart MW chart signals for the first time on the 12
th

 

sample in the prospective phase. 

 For the RR2-of-2 Shewhart MW chart, for a nominal      of 500, we find       160 and       465 which yields an      of 499.92. A plot of the MW charting statistics is shown in Figure 4. 

It is seen that the RR2-of-2 Shewhart MW chart signals for the first time on the 9
th

 sample in the 

prospective phase. Thus, the RR2-of-2 scheme performs better than the RR1-of-1 scheme. 

 Using the same dataset Malela-Majika et al. [16] showed that the Min chart signals on the 13
th

 

sample in the retrospective phase, whereas the precedence chart based on the median signals on the 9
th

 

sample in the prospective phase. This confirms again that the RR2-of-2 Shewhart MW chart performs 

better than its competitors for these data. 

           For the IRR2-of-2 Shewhart MW chart, for a nominal      of 500, we find       80,       

160,       465 and       545 which yields an      of 497.81. A plot of the MW charting 

statistics is shown in Figure 4. It is seen that the IRR2-of-2 Shewhart MW chart signals for the first time 

on the 9
th

 sample in the prospective phase. Thus, the IRR2-of-2  and the RR2-of-2  schemes perform better 

than the RR1-of-1 scheme. 



22 

 

 

 

 
 

Figure 4. The RR1-of-1, RR2-of-2 and IRR2-of-2 Shewhart MW charts for the Montgomery 

(2005) piston ring data 

 

7.   Conclusion and remarks 

In this paper, we consider enhancing the performance of the Phase II Shewhart-type distribution-

free chart based on the well-known Mann-Whitney statistic the Shewhart MW chart, considered by 

Chakraborti and Van de Wiel [1], by adding standard and improved runs-rules. A performance 

comparison of the runs-rules enhanced Shewhart MW charts with the existing parametric and 

nonparametric Shewhart-type charts shows that the enhanced charts perform better in detecting shifts 

under distributions of various shapes. Thus, on the basis of practicality, minimal assumptions, 

robustness of the in-control run-length distribution and out-of-control performance, the runs-rules 

enhanced Shewhart MW charts are strong contenders in practical SPC applications. Note that, the focus 

in this article has been on the standard and improved runs-rules and enhancements of the Phase II 

Shewhart-type distribution-free charts. Adaptations to the scenario, such as the modified runs-rules 

proposed by Antzoulakos and Rakitzis [23] are currently being investigated and will be reported in a 

separate paper.  
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